Sample records for adult mice led

  1. Postnatal Loss of Hap1 Reduces Hippocampal Neurogenesis and Causes Adult Depressive-Like Behavior in Mice

    PubMed Central

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-01-01

    Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. PMID:25875952

  2. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice.

    PubMed

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-04-01

    Depression is a serious mental disorder that affects a person's mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.

  3. Examining Young Recreational Male Soccer Players' Experience in Adult- and Peer-Led Structures.

    PubMed

    Imtiaz, Faizan; Hancock, David J; Côté, Jean

    2016-09-01

    Youth sport has the potential to be one of the healthiest and most beneficial activities in which children can partake. Participation in a combination of adult-led and peer-led sport structures appears to lead to favorable outcomes such as enhanced physical fitness, as well as social and emotional development. The purpose of the present study was to examine the subjective and objective experiences of 27 recreational male soccer players aged 10 to 12 years old (M = 10.11 years, SD = 0.32) across adult-led and peer-led sport structures. Direct video observation and experience-rating scales were utilized in an effort to shed light on the impact of adult-led and peer-led sport structures on the same athletes. In the adult-led structures, youth experienced high levels of effort and concentration while spending more time physically or mentally engaged. Meanwhile, youth experienced high rates of prosocial behaviors, sport-related communication, and general communication during the peer-led structures. The results of the present study indicate that rather than one approach being superior to the other, both adult- and peer-led sport structures have the potential to yield unique benefits toward children's positive experiences in sport.

  4. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  5. Employing a youth-led adult-guided framework: "Why Drive High?" social marketing campaign.

    PubMed

    Marko, Terry-Lynne; Watt, Tyler

    2011-01-01

    The "Drugged Driving Kills project: Why Drive High?" social marketing campaign was developed and implemented by youth leaders and adult facilitators from public and community health to increase youth awareness of the adverse effects of marijuana on driving. The youth-led adult-guided project was founded on the Holden's youth empowerment conceptual model. This article reports on the results of the focus group evaluation, conducted to determine to what extent the tailored youth-led adult-guided framework for the "Why Drive High?" social marketing campaign provided an environment for youth leadership development.

  6. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory.

    PubMed

    Loepke, Andreas W; Istaphanous, George K; McAuliffe, John J; Miles, Lili; Hughes, Elizabeth A; McCann, John C; Harlow, Kathryn E; Kurth, C Dean; Williams, Michael T; Vorhees, Charles V; Danzer, Steve C

    2009-01-01

    Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice. Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials. Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco(2), lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss. Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions

  7. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  8. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    PubMed

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  9. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.

    PubMed

    Psotta, Laura; Lessmann, Volkmar; Endres, Thomas

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [Imprinting as a mechanism of information memorizing in the adult BALB/c mice].

    PubMed

    Nikol'skaia, K A; Berezhnoĭ, D S

    2011-09-01

    Study of spatial learning in adult BALB/c mice revealed that a short exposition to the environment (from 3 to 8 minutes) could be enough for spatial information to be fixed in the long-term memory, and affected subsequent learning process in the new environment. Control group, learning in the same maze, followed the "shortest path" principle during formation of the optimal food-obtaining habit. Experimental animals, learning in a slightly changed environment, were unable to apply this rule due to persistent coupling of the new spatial information with the old memory traces which led to constant errors. The obtained effect was observed during the whole learning period and depended neither on frequency nor on interval of repetition during the initial information acquisition. The obtained data testify that memorizing in adult state share the properties with the imprinting process inherent in the early ontogeny. The memory fixation on all development stages seems to be based on a universal mechanism.

  11. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  12. Persistence of polyomavirus in mice infected as adults differs from that observed in mice infected as newborns.

    PubMed Central

    Berke, Z; Dalianis, T

    1993-01-01

    By using the polymerase chain reaction (PCR) technique, a technique more sensitive than Southern analysis, which allows detection of polyomavirus DNA only in newborn and nude adult mice, it has now been possible to monitor the persistence pattern of polyomavirus DNA after infection of normal adult CBA mice for the first time. Viral signs appeared gradually, showing variations in time course and organ distribution between mice, and reached a peak activity after 2 to 3 weeks, when they could be found in bone, heart, gonads, lymph node, and skin, but disappeared by 2 to 5 months. No virus DNA was detected in the kidneys or lungs, which is in contrast to what is observed after infection of newborn mice. This finding suggests that the persistence pattern of polyomavirus is age dependent. PMID:8389934

  13. Examining Young Recreational Male Soccer Players' Experience in Adult- and Peer-Led Structures

    ERIC Educational Resources Information Center

    Imtiaz, Faizan; Hancock, David J.; Côté, Jean

    2016-01-01

    Purpose: Youth sport has the potential to be one of the healthiest and most beneficial activities in which children can partake. Participation in a combination of adult-led and peer-led sport structures appears to lead to favorable outcomes such as enhanced physical fitness, as well as social and emotional development. The purpose of the present…

  14. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  15. Evaluation of a Peer-Led, Low-Intensity Physical Activity Program for Older Adults

    ERIC Educational Resources Information Center

    Werner, Danilea; Teufel, James; Brown, Stephen L.

    2014-01-01

    Background: Physical inactivity is a primary contributor to decreasing functional physical fitness and increasing chronic disease in older adults. Purpose: This study assessed the health-related benefits of ExerStart for Lay Leaders, a 20-week, community based, peer-led, low-impact exercise program for older adults. ExerStart focuses on aerobic…

  16. SELF ADMINISTRATION OF OXYCODONE BY ADOLESCENT AND ADULT MICE AFFECTS STRIATAL NEUROTRANSMITTER RECEPTOR GENE EXPRESSION

    PubMed Central

    Mayer-Blackwell, B.; Schlussman, S. D.; Butelman, E. R.; Ho, A.; Ott, J.; Kreek, M. J.; Zhang, Y.

    2014-01-01

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n= 12) and of adult mice (11 weeks old, n= 11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1 h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice. PMID:24220688

  17. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  18. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    PubMed

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice.

    PubMed

    Subbanna, Shivakumar; Nagre, Nagaraja N; Shivakumar, Madhu; Basavarajappa, Balapal S

    2016-12-01

    The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function. Published by Elsevier Inc.

  20. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  2. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice

    PubMed Central

    Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio

    2015-01-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394

  3. Age-Dependent Ocular Dominance Plasticity in Adult Mice

    PubMed Central

    Lehmann, Konrad; Löwel, Siegrid

    2008-01-01

    Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674

  4. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice.

    PubMed

    Liu, Yen-Wenn; Liu, Wei-Hsien; Wu, Chien-Chen; Juan, Yi-Chen; Wu, Yu-Chen; Tsai, Huei-Ping; Wang, Sabrina; Tsai, Ying-Chieh

    2016-01-15

    Ingestion of specific probiotics, namely "psychobiotics", produces psychotropic effects on behavior and affects the hypothalamic-pituitary-adrenal axis and neurochemicals in the brain. We examined the psychotropic effects of a potential psychobiotic bacterium, Lactobacillus plantarum strain PS128 (PS128), on mice subjected to early life stress (ELS) and on naïve adult mice. Behavioral tests revealed that chronic ingestion of PS128 increased the locomotor activities in both ELS and naïve adult mice in the open field test. In the elevated plus maze, PS128 significantly reduced the anxiety-like behaviors in naïve adult mice but not in the ELS mice; whereas the depression-like behaviors were reduced in ELS mice but not in naïve mice in forced swimming test and sucrose preference test. PS128 administration also reduced ELS-induced elevation of serum corticosterone under both basal and stressed states but had no effect on naïve mice. In addition, PS128 reduced inflammatory cytokine levels and increased anti-inflammatory cytokine level in the serum of ELS mice. Furthermore, the dopamine level in the prefrontal cortex (PFC) was significantly increased in PS128 treated ELS and naïve adult mice whereas serotonin (5-HT) level was increased only in the naïve adult mice. These results suggest that chronic ingestion of PS128 could ameliorate anxiety- and depression-like behaviors and modulate neurochemicals related to affective disorders. Thus PS128 shows psychotropic properties and has great potential for improving stress-related symptoms. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  7. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice

    PubMed Central

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-01-01

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice. PMID:29721159

  8. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice.

    PubMed

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-04-10

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.

  9. Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice

    PubMed Central

    Kajiwara, Chiaki; Kondo, Shiho; Uda, Shizuha; Dai, Lei; Ichiyanagi, Tomoko; Chiba, Tomoki; Ishido, Satoshi; Koji, Takehiko; Udono, Heiichiro

    2012-01-01

    Summary It is controversial whether a functional androgen receptor (AR) on germ cells, including spermatogonia, is essential for their development into sperm and, thus, initiation and maintenance of spermatogenesis. It was recently shown that many spermatocytes underwent apoptosis in the testes of Hsp90α KO mice. We had generated Hsp90α KO mice independently and confirmed this phenotype. However, the important question of whether Hsp90α is required to maintain spermatogenesis in adult mice in which testicular maturation is already completed could not be addressed using these conventional KO mice. To answer this question, we generated a tamoxifen-inducible deletion mutant of Hsp90α and found that conditional deletion of Hsp90α in adult mice caused even more severe apoptosis in germ cells beyond the pachytene stage, leading to complete arrest of spermatogenesis and testicular atrophy. Importantly, immunohistochemical analysis revealed that AR expression in WT testis was more evident in spermatogonia than in spermatocytes, whereas its expression was aberrant and ectopic in Hsp90α KO testis, raising the possibility that an AR abnormality in primordial germ cells is involved in spermatogenesis arrest in the Hsp90α KO mice. Our results suggest that the AR, specifically chaperoned by Hsp90α in spermatogonia, is critical for maintenance of established spermatogenesis and for survival of spermatocytes in adult testis, in addition to setting the first wave of spermatogenesis before puberty. PMID:23213375

  10. Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice.

    PubMed

    Konstantoudaki, Xanthippi; Chalkiadaki, Kleanthi; Vasileiou, Elisabeth; Kalemaki, Katerina; Karagogeos, Domna; Sidiropoulou, Kyriaki

    2018-03-01

    Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABA A receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced

  11. Pains, joys, and secrets: nurse-led group therapy for older adults with depression.

    PubMed

    Nance, Douglas C

    2012-02-01

    This is the first study of nurse-led group therapy in Mexico. Forty-one depressed older adults with a median age of 71 participated in nurse-led cognitive behavioral group therapy once a week for 12 weeks. Participants' scores on the Patient Health Questionaire-9 showed mild to moderate improvement. Participants experienced positive results in personal growth, changing negative thoughts, and relationships with family. An important therapeutic factor was the support of fellow group members. The nurses experienced positive personal and professional growth. Difficulties included physician resistance and a too-rigid cognitive behavioral group therapy model. A combination of cognitive behavioral therapy and supportive group therapy is recommended.

  12. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  13. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate

  14. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders.

    PubMed

    Bey, K; Ciron, C; Dubreil, L; Deniaud, J; Ledevin, M; Cristini, J; Blouin, V; Aubourg, P; Colle, M-A

    2017-05-01

    Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.

  15. Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

    PubMed Central

    Chau, You-Ying; Brownstein, David; Mjoseng, Heidi; Lee, Wen-Chin; Buza-Vidas, Natalija; Nerlov, Claus; Jacobsen, Sten Eirik; Perry, Paul; Berry, Rachel; Thornburn, Anna; Sexton, David; Morton, Nik; Hohenstein, Peter; Freyer, Elisabeth; Samuel, Kay; van't Hof, Rob; Hastie, Nicholas

    2011-01-01

    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover. PMID:22216009

  16. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE PAGES

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...

    2017-06-30

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  17. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  18. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  19. Lepidium meyenii (Maca) increases litter size in normal adult female mice

    PubMed Central

    Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F

    2005-01-01

    Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility. PMID

  20. Lepidium meyenii (Maca) increases litter size in normal adult female mice.

    PubMed

    Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F

    2005-05-03

    Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility.

  1. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking.

    PubMed

    Holstein, Sarah E; Spanos, Marina; Hodge, Clyde W

    2011-10-01

    Binge alcohol drinking during adolescence is a serious health problem that may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). Binge-like alcohol consumption was investigated in adolescent (4 weeks) and adult (10 weeks) male C57BL/6J mice for 2 to 4 h/d for 16 days. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with the intake of a novel tastant (NaCl). Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. These results indicate that adolescent mice consume more alcohol, per kilogram body weight, than adults in a binge-like model of alcohol drinking and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge alcohol intake during

  2. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking

    PubMed Central

    Holstein, Sarah E.; Spanos, Marina; Hodge, Clyde W.

    2011-01-01

    Background Binge alcohol drinking during adolescence is a serious health problem which may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). Methods Binge-like alcohol consumption was investigated in adolescent (4 wk) and adult (10 wk) male C57BL/6J mice for 2-4 h/day for 16 d. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with intake of a novel tastant (NaCl). Results Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. Conclusions These results indicate that adolescent mice consume more alcohol, per kg body weight, than adults in a binge-like model of alcohol drinking, and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge

  3. The effect of nurse-led education on hospitalisation, readmission, quality of life and cost in adults with heart failure. A systematic review.

    PubMed

    Rice, Helena; Say, Richard; Betihavas, Vasiliki

    2018-03-01

    The purpose of this systematic review was to highlight the effect of nurse-led 1:1 patient education sessions on Quality of Life (QoL), readmission rates and healthcare costs for adults with heart failure (HF) living independently in the community. A systematic review of randomised control trials was undertaken. Using the search terms nurse, education, heart failure, hospitalisation, readmission, rehospitalisation, economic burden, cost, expenditure and quality of life in PubMed, CINAHL and Google Scholar databases were searched. Papers pertaining to nurse-led 1:1 HF disease management of education of adults in the community with a history of HF were reviewed. The results of this review identified nurse-led education sessions for adults with HF contribute to reduction in hospital readmissions, reduction in hospitalisation and a cost benefit. Additionally, higher functioning and improved QoL were also identified. These results suggest that nurse-led patient education for adults with HF improves QoL and reduces hospital admissions and readmissions. Nurse-led education can be delivered utilising diverse methods and impact to reduce readmission as well as hospitalisation. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    PubMed Central

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  5. Monocular Deprivation in Adult Mice Alters Visual Acuity and Single-Unit Activity

    ERIC Educational Resources Information Center

    Evans, Scott; Lickey, Marvin E.; Pham, Tony A.; Fischer, Quentin S.; Graves, Aundrea

    2007-01-01

    It has been discovered recently that monocular deprivation in young adult mice induces ocular dominance plasticity (ODP). This contradicts the traditional belief that ODP is restricted to a juvenile critical period. However, questions remain. ODP of young adults has been observed only using methods that are indirectly related to vision, and the…

  6. Exposure to swainsonine impairs adult neurogenesis and spatial learning and memory.

    PubMed

    Wang, Jiutao; Song, Lingzhen; Zhang, Qi; Zhang, Wei; An, Lei; Zhang, Yamei; Tong, Dewen; Zhao, Baoyu; Chen, Shulin; Zhao, Shanting

    2015-01-05

    Swainsonine (SW) is an indolizidine triol plant alkaloid isolated from the species Astragalus, colloquially termed locoweed. Ingestion induces severe neurological symptoms of livestock and wildlife, including ataxia, trembling, exaggerated fright reactions. Toxicity to the central and peripheral nervous system is caused by inhibition of lysosomal a-mannosidase (AMA) and accumulation of intracellular oligosaccharide. However, the effects of SW on adult neurogenesis and cognition have remained unclear. Therefore, the present study was conducted to examine the effects of SW on adult neurogenesis and learning as well as memory performance in adult mice. SW (10μg/mL in drinking water) was administered orally to mice for 4 weeks. Our results showed that SW reduced proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of adult mice. In addition, exposure to SW led to down-regulation of doublecortin (DCX) and synaptophysin (SYP) in the hippocampus. However, caspase 3 and glial fibrillary acidic protein (GFAP) levels were significantly increased in SW-treated mice. Finally, SW-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that SW affects adult neurogenesis and cognitive function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Adolescent mice are less sensitive to the effects of acute nicotine on context pre-exposure than adults.

    PubMed

    Kutlu, Munir Gunes; Braak, David C; Tumolo, Jessica M; Gould, Thomas J

    2016-07-01

    Adolescence is a critical developmental period associated with both increased vulnerability to substance abuse and maturation of certain brain regions important for learning and memory such as the hippocampus. In this study, we employed a hippocampus-dependent learning context pre-exposure facilitation effect (CPFE) paradigm in order to test the effects of acute nicotine on contextual processing during adolescence (post-natal day (PND) 38) and adulthood (PND 53). In Experiment 1, adolescent or adult C57BL6/J mice received either saline or one of three nicotine doses (0.09, 0.18, and 0.36mg/kg) prior to contextual pre-exposure and testing. Our results demonstrated that both adolescent and adult mice showed CPFE in the saline groups. However, adolescent mice only showed acute nicotine enhancement of CPFE with the highest nicotine dose whereas adult mice showed the enhancing effects of acute nicotine with all three doses. In Experiment 2, to determine if the lack of nicotine's effects on CPFE shown by adolescent mice is specific to the age when they are tested, mice were either given contextual pre-exposure during adolescence or adulthood and received immediate shock and testing during adulthood after a 15day delay. We found that both adolescent and adult mice showed CPFE in the saline groups when tested during adulthood. However, like Experiment 1, mice that received contextual pre-exposure during adolescence did not show acute nicotine enhancement except at the highest dose (0.36mg/kg) whereas both low (0.09mg/kg) and high (0.36mg/kg) doses enhanced CPFE in adult mice. Finally, we showed that the enhanced freezing response found with 0.36mg/kg nicotine in the 15-day experiment may be a result of decreased locomotor activity as mice that received this dose of nicotine traveled shorter distances in an open field paradigm. Overall, our results indicate that while adolescent mice showed normal contextual processing when tested both during adolescence and adulthood, they

  8. Adolescent silymarin treatment increases anxiety-like behaviors in adult mice.

    PubMed

    Kosari-Nasab, Morteza; Rabiei, Afshin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-08-01

    Adolescence is one of the most important periods of brain development in mammals. There is increasing evidence that some medicines during this period can affect brain and behavioral functions in adulthood. Silymarin (SM), a mixture of flavonolignans extracted from the milk thistle Silybum marianum, is known as a hepatoprotective, anti-inflammatory, and neuroprotective drug. Although researchers have extensively studied the effects of SM during adulthood, to date there is no information on the effects of this drug during the stages of brain development on behavioral functions in adulthood. In the current study, we investigated the effects of adolescent SM treatment on body weight and anxiety-like behaviors in adult male and female mice. Adolescent NMRI mice (postnatal day 30-50) were treated orally with water or SM (50 and 100 mg/kg). Animals were weighed during drug treatment and were then subjected to open field, elevated plus maze, and light-dark box tests from postnatal day 70. The results indicated that adolescent SM treatment increased anxiety-like behaviors in open field, elevated plus maze, and light-dark box in adult mice, while not altering body weight. Collectively, these findings suggest that adolescent SM treatment may have profound effects on the development of brain and behavior in adulthood.

  9. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  10. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    USDA-ARS?s Scientific Manuscript database

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  11. Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice.

    PubMed

    Dluzen, D E; Gao, X; Story, G M; Anderson, L I; Kucera, J; Walro, J M

    2001-07-01

    Deletion of a single copy of the BDNF gene has been shown to affect the nigrostriatal dopaminergic system of young adult BDNF mice. In the present report we evaluated various indices of nigrostriatal dopaminergic function between 9-month-old wild-type (+/+) and heterozygous (+/-) BDNF mutant mice. Performance in a sensorimotor beam walking task was significantly decreased in +/- mice as indicated by increased times required to traverse both a wide (21 mm) and narrow (6 mm) beam. No differences in spontaneous locomotor behavior were observed between the +/+ and +/- mice. Amphetamine-stimulated (5 mg/kg) locomotor behavior was increased to a greater degree in the +/- mice, with the number of movements performed by these mice being significantly greater than their +/+ controls. Corpus striatal dopamine concentrations were significantly greater in the +/- BDNF mice. The absence of any significant differences for dopamine concentrations within the hypothalamus and olfactory bulb of these mice, as well as an absence of any difference in striatal norepinephrine concentrations, suggested a relative specificity of these effects to the corpus striatum. Both the +/- and +/+ mice showed similar reductions in striatal dopamine concentrations in response to a neurotoxic regimen of methamphetamine (20 mg/kg). Collectively these data show increased levels of striatal dopamine concentrations associated with altered behavioral responses involving the nigrostriatal dopaminergic system within the heterozygous BDNF mutant mice. Copyright 2001 Academic Press.

  12. Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice.

    PubMed

    García-Pardo, Maria P; Rodríguez-Arias, Marta; Maldonado, Concepcion; Manzanedo, Carmen; Miñarro, Jose; Aguilar, Maria A

    2014-09-01

    Exposure to social defeat stress increases the rewarding effects of psychostimulants in animal models, but its effect on 3,4-methylenedioxymethylamphetamine (MDMA) reward has received little attention. In the present study, we evaluated the influence of social defeat on the rewarding effects of MDMA in adolescent [postnatal day (PND) 29-40] and adult (PND 50-61) male mice using the conditioned place preference paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1.25 or 10 mg/kg of MDMA. The effects of social defeat on corticosterone levels and the motor or the anxiogenic effects of MDMA were also evaluated. Mice exposed to social defeat during adulthood did not show conditioned place preference after conditioning with either dose of MDMA. Conversely, social defeat did not affect the anxiogenic and motor effects of MDMA. Adult mice exposed to social defeat showed higher levels of corticosterone than their controls and adolescent mice. Social stress did not induce behavioural effects in adolescent mice. Our results show that stress induced by social defeat decreases the sensitivity of adult mice to the rewarding effects of MDMA.

  13. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  14. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

    PubMed Central

    Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin

    2011-01-01

    Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521

  15. Inducible knockdown of pregnancy-associated plasma protein-A gene expression in adult female mice extends life span.

    PubMed

    Bale, Laurie K; West, Sally A; Conover, Cheryl A

    2017-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) knockout (KO) mice, generated through homologous recombination in embryonic stem cells, have a significantly increased lifespan compared to wild-type littermates. However, it is unknown whether this longevity advantage would pertain to PAPP-A gene deletion in adult animals. In the present study, we used tamoxifen (Tam)-inducible Cre recombinase-mediated excision of the floxed PAPP-A (fPAPP-A) gene in mice at 5 months of age. fPAPP-A mice, which were either positive (pos) or negative (neg) for Tam-Cre, received Tam treatment with quarterly boosters. Only female mice could be used with this experimental design. fPAPP-A/neg and fPAPP-A/pos mice had similar weights at the start of the experiment and showed equivalent weight gain. We found that fPAPP-A/pos mice had a significant extension of life span (P = 0.005). The median life span was increased by 21% for fPAPP-A/pos compared to fPAPP-A/neg mice. Analysis of mortality in life span quartiles indicated that the proportion of deaths of fPAPP-A/pos mice were lower than fPAPP-A/neg mice at young adult ages (P = 0.002 for 601-800 days) and higher than fPAPP-A/neg mice at older ages (P = 0.004 for >1000 days). Thus, survival curves and age-specific mortality indicate that female mice with knockdown of PAPP-A gene expression as adults have an extended healthy life span. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Nurse-led liaison mental health service for older adults: service development using lean thinking methodology.

    PubMed

    Atkinson, Paula; Mukaetova-Ladinska, Elizabeta B

    2012-04-01

    Liaison Psychiatric Services for Older Adults in the UK have been established over the last decade, with rather divergent team composition and involvement. The latest documents (National Dementia Strategy, Who Cares Wins) set the gold standard for liaison services for older adults in England, requiring a proactive approach to services and integrating assessment and treatment of mental disorder into routine general hospital practice. This requires a physical presence of liaison services in the hospital, with collaboration with medical colleagues. We have adopted the above strategy in a nurse-led liaison service working in a General District Hospital, and used the Toyota Production System. In the current study we reflect on the 5 day rapid progress improvement workshops event for the liaison branch of the project, and describe the process of identifying real situation problems for the care of the medically ill, the involvement of the liaison team in their clinical care, and a feedback on the change in practice. The novel approach of identifying areas for change in an ongoing nurse-led Liaison service for Older Adults resulted in improving access to mental health services for elderly medically ill inpatients and improved quality of their overall care. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  18. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  19. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice.

    PubMed

    Tadokoro, Takahiro; Miyanohara, Atsushi; Navarro, Michael; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Marsala, Silvia; Platoshyn, Oleksandr; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Lukacova, Nada; Bimbova, Katarina; Marsala, Martin

    2017-07-13

    The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 µL; 1.2 x 10 13 genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.

  20. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    PubMed Central

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  1. Lyophilized airborne Clostridium botulinum spores as inocula that intestinally colonize antimicrobially pretreated adult mice.

    PubMed Central

    Sugiyama, H; Prather, J L; Woller, M J

    1986-01-01

    Adult mice, made susceptible to Clostridium botulinum by feedings of metronidazole, were immobilized with an anesthetic and held for 30 min in isolators in which a fine powder of lyophilized pathogen spores was made airborne. Exposed mice were surface decontaminated before being kept for 2 days in holding isolators. Mice were intestinally colonized by the pathogen. Colonization rates were related to spore numbers (10(4) to 10(7) type A or B) seeded into isolators. PMID:3531017

  2. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice.

    PubMed

    Choi, Doo-Sup; Wang, Dan; Dadgar, Jahan; Chang, Wesley S; Messing, Robert O

    2002-11-15

    Conventional gene targeting is a powerful tool to study the influence of specific genes on behavior. However, conclusions relevant for adult animals are limited by consequences of gene loss during development. Mice lacking protein kinase C epsilon (PKCepsilon) consume less alcohol and show greater acute sensitivity to alcohol than do wild-type mice. There are no selective inhibitors of PKCepsilon that can be administered systemically and cross the blood-brain barrier to test whether these phenotypes result from loss of PKCepsilon during development or in adulthood. Here we used conditional expression of PKCepsilon in the basal forebrain, amygdala, and cerebellum to rescue wild-type responses to alcohol in adult PKCepsilon(-/-) mice. Subsequent suppression of transgenic PKCepsilon restored PKCepsilon(-/-) behaviors. These findings establish that PKCepsilon signaling in the adult brain regulates alcohol consumption and sensitivity. If this extends to humans, then PKCepsilon inhibitors might prove useful as novel therapeutics for alcoholism.

  4. Anemia in new congenital adult type polycystic kidney mice.

    PubMed

    Koumegawa, J; Nagano, N; Arai, H; Wada, M; Kusaka, M; Takahashi, H

    1991-12-01

    Mechanisms for the development of anemia and the effects of recombinant human erythropoietin (r-HuEPO) on hematological parameters were studied in new congenital adult type polycystic kidney (DBA/2FG-pcy) mice. The majority of DBA/2FG-pcy mice showed progressive anemia and an elevation of blood urea nitrogen, while a minority showed progressive anemia following polycythemia. Kidneys with numerous cysts in the cortex and medulla occupied virtually the entire abdominal cavity, and the combined kidney weight taken as a percentage of body weight reached 13.5% in the DBA/2FG-pcy mouse. The osmotic fragility of DBA/2FG-pcy mice erythrocytes was significantly increased compared with that of normal control mice. In addition, two-fold increases in serum EPO levels, determined by radioimmunoassay, and a decreased number of colony forming unit-erythroid (CFU-E) were observed in the DBA/2FG-pcy mice. The administration of r-HuEPO during anemia significantly increased the red blood cell count, hemoglobin concentration, hematocrit and reticulocyte percentage in a dose-dependent manner. These findings indicate that anemia in the DBA/2FG-pcy mouse is due to increased fragility of erythrocytes, a deficiency in EPO for the degree of anemia and a decreased number or a decreased response of erythroid progenitor cells. We suggest that the DBA/2FG-pcy mouse is a useful spontaneous model of chronic progressive renal failure.

  5. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis

    PubMed Central

    Wang, Guohao; Liu, Xudong; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2016-01-01

    The Huntington’s disease (HD) protein, huntingtin (HTT), is essential for early development. Because suppressing the expression of mutant HTT is an important approach to treat the disease, we must first understand the normal function of Htt in adults versus younger animals. Using inducible Htt knockout mice, we found that Htt depletion does not lead to adult neurodegeneration or animal death at >4 mo of age, which was also verified by selectively depleting Htt in neurons. On the other hand, young Htt KO mice die at 2 mo of age of acute pancreatitis due to the degeneration of pancreatic acinar cells. Importantly, Htt interacts with the trypsin inhibitor, serine protease inhibitor Kazal-type 3 (Spink3), to inhibit activation of digestive enzymes in acinar cells in young mice, and transgenic HTT can rescue the early death of Htt KO mice. These findings point out age- and cell type-dependent vital functions of Htt and the safety of knocking down neuronal Htt expression in adult brains as a treatment. PMID:26951659

  7. Selenium Status Alters the Immune Response and Expulsion of Adult Heligmosomoides bakeri Worms in Mice

    PubMed Central

    Cheung, Lumei; Beshah, Ethiopia; Shea-Donohue, Terez; Urban, Joseph F.

    2013-01-01

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity. PMID:23649095

  8. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    PubMed

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  10. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  11. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Acute exposure to diesel exhaust impairs adult neurogenesis in mice: prominence in males and protective effect of pioglitazone.

    PubMed

    Coburn, Jacki L; Cole, Toby B; Dao, Khoi T; Costa, Lucio G

    2018-05-01

    Adult neurogenesis is the process by which neural stem cells give rise to new functional neurons in specific regions of the adult brain, a process that occurs throughout life. Significantly, neurodegenerative and psychiatric disorders present suppressed neurogenesis, activated microglia, and neuroinflammation. Traffic-related air pollution has been shown to adversely affect the central nervous system. As the cardinal effects of air pollution exposure are microglial activation, and ensuing oxidative stress and neuroinflammation, we investigated whether acute exposures to diesel exhaust (DE) would inhibit adult neurogenesis in mice. Mice were exposed for 6 h to DE at a PM 2.5 concentration of 250-300 μg/m 3 , followed by assessment of adult neurogenesis in the hippocampal subgranular zone (SGZ), the subventricular zone (SVZ), and olfactory bulb (OB). DE impaired cellular proliferation in the SGZ and SVZ in males, but not females. DE reduced adult neurogenesis, with male mice showing fewer new neurons in the SGZ, SVZ, and OB, and females showing fewer new neurons only in the OB. To assess whether blocking microglial activation protected against DE-induced suppression of adult hippocampal neurogenesis, male mice were pre-treated with pioglitazone (PGZ) prior to DE exposure. The effects of DE exposure on microglia, as well as neuroinflammation and oxidative stress, were reduced by PGZ. PGZ also antagonized DE-induced suppression of neurogenesis in the SGZ. These results suggest that DE exposure impairs adult neurogenesis in a sex-dependent manner, by a mechanism likely to involve microglia activation and neuroinflammation.

  13. Individual differences in torpor expression in adult mice are related to relative birth weight.

    PubMed

    Kato, Goro A; Sakamoto, Shinsuke H; Eto, Takeshi; Okubo, Yoshinobu; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2018-04-20

    Daily torpor is a physiological adaptation in small mammals and birds, characterised by drastic reductions in metabolism and body temperature. Energy-constraining conditions, such as cold and starvation, are known to cause the expression of daily torpor. However, the reason for high degrees of inter- and intra- individual variation in torpor expression (TE) in similar situations is not clear. As littermates of altricial animals are exposed to an uneven allocation of maternal resources from conception to weaning, we tested whether early nutritional experiences have long-term effects on TE in adults. We used full-sibling littermates of laboratory mice that as adults were starved overnight to induce torpor. We measured body weight from birth until adulthood as an indicator of nutritional status, and calculated the relative body weight (RBW) as an indicator of the difference in nutritional status within a litter. After maturation, we subjected mice to five repeated torpor induction trials involving 24 hours of fasting and 5 days of recovery. Half of the female mice displayed great individual variation in TE, whereas male mice rarely exhibited daily torpor. In females, RBW at birth influenced TE, irrespective of body weight in adulthood; thus, female mice born with low RBWs displayed high TE in adulthood. In conclusion, we provide evidence that TE in mice differs among littermates, and that this variation is linked closely to heterogeneous nutritional experiences during the foetal period. © 2018. Published by The Company of Biologists Ltd.

  14. Radiation Exposure Enhances Hepatocyte Proliferation in Neonatal Mice but not in Adult Mice.

    PubMed

    Shang, Yi; Sawa, Yurika; Blyth, Benjamin J; Tsuruoka, Chizuru; Nogawa, Hiroyuki; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-08-01

    There is a natural tendency to expect that irradiation of an infant organ prior to development-related expansion will result in a higher risk of developing cancer than that of fully-developed adult tissue, and this has generally been observed. However, if tissues also vary in their initial responses to radiation depending on age, the interplay between tissue- and age-dependent risk would potentially be quite complex. We have previously shown opposing age-dependent induction of apoptosis for the intestinal epithelium and hematopoietic cells in mice, but such data are not yet available for the liver. Here, we have examined markers of DNA damage, initiation of DNA damage responses, cell cycle arrest, apoptosis and proliferation, as well as gene expression, in the B6C3F1 mouse liver over the hours and days after irradiation of mice at 1 or 7 weeks of age. We found that induction and resolution of radiation-induced DNA damage is not accompanied by significant changes in these cellular end points in the adult liver, while in infant hepatocytes modest induction of p53 accumulation and p21-mediated cell cycle arrest in a small fraction of damaged cells was overshadowed by a further stimulation of proliferation over the relatively high levels already found in the neonatal liver. We observed distinct expression of genes that regulate cell division between the ages, which may contribute to the differential responses. These data suggest that the growth factor signaling environment of the infant liver may mediate radiation-induced proliferation and increased liver cancer risk after irradiation during early life.

  15. Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice.

    PubMed

    Montagud-Romero, S; Aguilar, M A; Maldonado, C; Manzanedo, C; Miñarro, J; Rodríguez-Arias, M

    2015-08-01

    Stressful experiences modify activity in areas of the brain involved in the rewarding effects of psychostimulants. In the present study we evaluated the influence of acute social defeat (ASD) on the conditioned rewarding effects of cocaine in adolescent (PND 29-32) and adult (PND 50-53) male mice in the conditioned place preference (CPP) paradigm. Experimental mice were exposed to social defeat in an agonistic encounter before each session of conditioning with 1mg/kg or 25mg/kg of cocaine. The effects of social defeat on corticosterone levels were also evaluated. Adult mice exposed to ASD showed an increase in the conditioned reinforcing effects of cocaine. Only these mice developed cocaine-induced CPP with the subthreshold dose of cocaine, and they needed a higher number of extinction sessions for the 25mg/kg cocaine-induced CPP to be extinguished. In adolescent mice, on the other hand, ASD reduced the conditioned reinforcing effects of cocaine, since CPP was not produced with the lower dose of cocaine and was extinguished faster when they were conditioned with 25mg/kg. Adult mice exposed to social defeat displayed higher levels of corticosterone than their controls and adolescent mice. Our results confirm that the effect of social defeat stress on the acquisition and reinstatement of the CPP induced by cocaine varies depending on the age at which this stress is experienced. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    PubMed

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  17. Feasibility and Acceptability of Nurse-Led Primary Palliative Care for Older Adults with Chronic Conditions: A Pilot Study.

    PubMed

    Izumi, Shigeko Seiko; Basin, Basilia; Presley, Margo; McCalmont, Jean; Furuno, Jon P; Noble, Brie; Baggs, Judith G; Curtis, J Randall

    2018-05-24

    Many older adults live with serious illness for years before their death. Nurse-led primary palliative care could improve their quality of life and ability to stay in their community. To assess feasibility and acceptability of a nurse-led Transitional Palliative Care (TPC) program for older adults with serious illness. The study was a pilot trial of the TPC program in which registered nurses assisted patients with symptom management, communication with care providers, and advance care planning. Forty-one older adults with chronic conditions were enrolled in TPC or standard care groups. Feasibility was assessed through enrollment and attrition rates and degree of intervention execution. Acceptability was assessed through surveys and exit interviews with participants and intervention nurses. Enrollment rate for those approached was 68%, and completion rate for those enrolled was 71%. The TPC group found the intervention acceptable and helpful and was more satisfied with care received than the control group. However, one-third of participants perceived that TPC was more than they needed, despite the number of symptoms they experienced and the burdensomeness of their symptoms. More than half of the participants had little to no difficulty participating in daily activities. This study demonstrated that the nurse-led TPC program is feasible, acceptable, and perceived as helpful. However, further refinement is needed in selection criteria to identify the population who would most benefit from primary palliative care before future test of the efficacy of this intervention.

  18. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice.

    PubMed

    Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek

    2009-03-01

    Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.

  19. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    PubMed Central

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012

  20. Molecular mechanisms mediating a deficit in recall of fear extinction in adult mice exposed to cocaine in utero.

    PubMed

    Kabir, Zeeba D; Katzman, Aaron C; Kosofsky, Barry E

    2013-01-01

    Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.

  1. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    PubMed Central

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  2. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation

    PubMed Central

    Rossi, Mark A.; Go, Vinson; Murphy, Tracy; Fu, Quanhai; Morizio, James; Yin, Henry H.

    2015-01-01

    In recent years optogenetics has rapidly become an essential technique in neuroscience. Its temporal and spatial specificity, combined with efficacy in manipulating neuronal activity, are especially useful in studying the behavior of awake behaving animals. Conventional optogenetics, however, requires the use of lasers and optic fibers, which can place considerable restrictions on behavior. Here we combined a wirelessly controlled interface and small implantable light-emitting diode (LED) that allows flexible and precise placement of light source to illuminate any brain area. We tested this wireless LED system in vivo, in transgenic mice expressing channelrhodopsin-2 in striatonigral neurons expressing D1-like dopamine receptors. In all mice tested, we were able to elicit movements reliably. The frequency of twitches induced by high power stimulation is proportional to the frequency of stimulation. At lower power, contraversive turning was observed. Moreover, the implanted LED remains effective over 50 days after surgery, demonstrating the long-term stability of the light source. Our results show that the wireless LED system can be used to manipulate neural activity chronically in behaving mice without impeding natural movements. PMID:25713516

  3. Prenatal ethanol weakens the efficacy of reinforcers for adult mice.

    PubMed

    Gentry, G D; Middaugh, L D

    1988-02-01

    Pregnant C57BL/6cr mice were fed a liquid diet containing 20% of the total calories from either ethanol (E) or sucrose (S) for gestation days 5-17. Adult male and female (six of each from both prenatal-treatment groups) offspring were tested under various schedules of food reinforcement. The first phase was a test of fixed-ratio (FR) acquisition in which the required number of responses per unit of reinforcement was increased from 1 to 20 to 100. Prenatal ethanol exposure interacted with other factors to produce an acquisition deficit. The second phase involved responding under extinction (Ext). Under standard Ext procedures there were no prenatal-ethanol effects; however, when a conditioned reinforcer was superimposed on an FR 5, the E males did not increase their rates as much as the S males. Finally, under a multiple FR 5 DRO 15-sec (differential-reinforcement-of-other-behavior) arrangement, prenatal-ethanol effects were found in each component. For the FR 5 component, prenatal ethanol eliminated the sex differences found in the S subjects. For the DRO 15-sec component, prenatal ethanol elevated response rates. The results indicate a general decreased efficacy of positive reinforcement in adult mice following prenatal ethanol exposure.

  4. In-vivo wound healing modulation after irradiation with a blue LED photocoagulator

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Cicchi, Riccardo; Magni, Giada; Tatini, Francesca; Bacci, Stefano; Paroli, Gaia; Alfieri, Domenico; Tripodi, Cristina; De Siena, Gaetano; Pavone, Francesco S.; Pini, Roberto

    2017-07-01

    A faster healing process was observed in superficial skin wounds after irradiation with a blue LED (EmoLED) photocoagulator. EmoLED is a compact handheld device, used to induce a thermal effect and thus coagulation in superficial abrasions. We present the results of an in vivo study, conducted in different mouse model, to analyze the induced wound healing. Two superficial abrasions were produced on the back of the mice: one area was treated with EmoLED (1.4 W/cm2, 30 s treatment time), while the other one was left naturally recovering. During the treatment, a temperature around 40-45°C was induced on the abrasion surface. Mice back healthy skin was used as a control. We compared the treatment in black mice, healthy albino mice, diabetic albino mice and albino mice with coagulation problem. The animals underwent a follow up study and were sacrificed at 0, 3, 6, 9, 18, 24 hours p.o.. Samples from the two abraded areas were harvested and examined by histopathological and immunofluorescence analysis, SHG imaging and confocal microscopy. The aim of the study was to compare the effects in the different target groups and to investigate the early phase of the wound healing process. Our results show that the effects are comparable in all the treated groups and that the healing process appears to be faster in respect to the naturally recovered wounds. This study confirms the previous results obtained in a study on a rat model an in a study on healthy albino mice: the selective photothermal effect we used for inducing immediate coagulation in superficial wounds seems to be associated to a faster and improved healing process.

  5. Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice.

    PubMed

    Kane, Cynthia J M; Phelan, Kevin D; Douglas, James C; Wagoner, Gail; Johnson, Jennifer W; Xu, Jihong; Phelan, Patrick S; Drew, Paul D

    2014-02-01

    Alcohol use occurs across the life span beginning in adolescence and continuing through adulthood. Ethanol (EtOH)-induced pathology varies with age and includes changes in neurogenesis, neurodegeneration, and glial cell activation. EtOH-induced changes in glial activation and immune activity are believed to contribute to EtOH-induced neuropathology. Recent studies indicate an emerging role of glial-derived neuroimmune molecules in alcohol abuse and addiction. Adolescent and adult C57BL/6 mice were treated via gavage with 6 g/kg EtOH for 10 days, and tissue was harvested 1 day post treatment. We compared the effects of EtOH on chemokine and cytokine expression and astrocyte glial fibrillary acidic protein (GFAP) immunostaining and morphology in the hippocampus, cerebellum, and cerebral cortex. EtOH increased mRNA levels of the chemokine CCL2/MCP-1 in all 3 regions of adult mice relative to controls. The cytokine interleukin-6 (IL-6) was selectively increased only in the adult cerebellum. EtOH did not affect mRNA levels of the cytokine tumor necrosis factor-alpha (TNF-α) in any of these brain regions in adult animals. Interestingly, CCL2, IL-6, and TNF-α mRNA levels were not increased in the hippocampus, cerebellum, or cortex of adolescent mice. EtOH treatment of adult and adolescent mice resulted in increased GFAP immunostaining. Collectively, these data indicate an age- and region-specific susceptibility to EtOH regulation of neuroinflammatory and addiction-related molecules as well as astrocyte phenotype. These studies may have important implications concerning differential alcohol-induced neuropathology and alcohol addiction across the life span. Copyright © 2013 by the Research Society on Alcoholism.

  6. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Overweight and metabolic and hormonal parameter disruption are induced in adult male mice by manipulations during lactation period.

    PubMed

    Loizzo, Alberto; Loizzo, Stefano; Galietta, Gabriella; Caiola, Stefania; Spampinato, Santi; Campana, Gabriele; Seghieri, Giuseppe; Ghirlanda, Giovanni; Franconi, Flavia

    2006-01-01

    Neonatal manipulations (10 min of maternal separation plus s.c. sham injection, daily for the first 21 d of life) determine overweight in male adult mice. In this work, we investigated the mechanisms underlying mild obesity and the alteration of caloric balance. Neonatally manipulated mice become overweight after onset of maturity, showing increased fat tissue and hypertrophic epididymal adipocytes. Increase in body weight occurs in the presence of a small increase in daily food intake (significant only in the adult period) and the absence of a decrease in spontaneous locomotor activity, while the calculated caloric efficiency is higher in manipulated mice, especially in adulthood. Fasting adult animals show hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and hyperleptinemia. Soon after weaning and in the adulthood, plasma corticosterone and adrenocorticotropin (ACTH) are also significantly increased. Thus, neonatal manipulations in nongenetically susceptible male mice program mild obesity, with metabolic and hormonal alterations that are similar to those found in experimental models of diabetes mellitus, suggesting that this metabolic derangement may have at least part of its roots early on in life and, more interestingly, that psychological and nociceptive stimuli induce these features.

  8. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice.

    PubMed

    Bereczky, Sándor; Lindegren, Gunnel; Karlberg, Helen; Akerström, Sara; Klingström, Jonas; Mirazimi, Ali

    2010-06-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality, transmission and geographical distribution. To date, there is no vaccine or specific treatment available and the knowledge regarding its pathogenesis is highly limited. Using a small-animal model system, this study showed that adult mice missing the type I interferon (IFN) receptor (IFNAR(-/-)) were susceptible to CCHFV and developed an acute disease with fatal outcome. In contrast, infection of wild-type mice (129 Sv/Ew) was asymptomatic. Viral RNA was found in all analysed organs of the infected mice, but the amount of CCHFV RNA was significantly higher in the IFNAR(-/-) mice than in the wild-type mice. Furthermore, the liver of IFNAR(-/-) mice was enlarged significantly, showing that IFN is important for limiting virus spread and protecting against liver damage in mice.

  9. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice

    NASA Astrophysics Data System (ADS)

    Schuster, Andrea C.; Carl, Teresa; Foerster, Katharina

    2017-04-01

    Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice ( Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.

  10. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice.

    PubMed

    Ben Abdallah, Nada M-B; Filipkowski, Robert K; Pruschy, Martin; Jaholkowski, Piotr; Winkler, Juergen; Kaczmarek, Leszek; Lipp, Hans-Peter

    2013-09-01

    In adult rodents, decreasing hippocampal neurogenesis experimentally using different approaches often impairs performance in hippocampus-dependent processes. Nonetheless, functional relevance of adult neurogenesis is far from being unraveled, and deficits so far described in animal models often lack reproducibility. One hypothesis is that such differences might be the consequence of the extent of the methodological specificity used to alter neurogenesis rather than the extent to which adult neurogenesis is altered. To address this, we focused on cranial irradiation, the most widely used technique to impair hippocampal neurogenesis and consequentially induce hippocampus-dependent behavioral deficits. To investigate the specificity of the technique, we thus exposed 4-5 months old female cyclin D2 knockout mice, a model lacking physiological levels of olfactory and hippocampal neurogenesis, to an X-ray dose of 10 Gy, reported to specifically affect transiently amplifying precursors. After a recovery period of 1.5 months, behavioral tests were performed and probed for locomotor activity, habituation, anxiety, and spatial learning and memory. Spatial learning in the Morris water maze was intact in all experimental groups. Although spatial memory retention assessed 24h following acquisition was also intact in all mice, irradiated wild type and cyclin D2 knockout mice displayed memory deficits one week after acquisition. In addition, we observed significant differences in tests addressing anxiety and locomotor activity dependent on the technique used to alter neurogenesis. Whereas irradiated mice were hyperactive regardless of their genotype, cyclin D2 knockout mice were hypoactive in most of the tests and displayed altered habituation. The present study emphasizes that different approaches aimed at decreasing adult hippocampal neurogenesis may result in distinct behavioral impairments related to locomotion and anxiety. In contrast, spatial long-term memory retention is

  11. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    PubMed

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  12. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  13. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice.

    PubMed

    Murphy, Kate T; Ryall, James G; Snell, Sarah M; Nair, Lawrence; Koopman, René; Krasney, Philip A; Ibebunjo, Chikwendu; Holden, Kathryn S; Loria, Paula M; Salatto, Christopher T; Lynch, Gordon S

    2010-05-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.

  14. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    PubMed

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  15. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  16. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  18. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  19. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice.

    PubMed

    Demas, G E; Chefer, V; Talan, M I; Nelson, R J

    1997-11-01

    Animals must balance their energy budget despite seasonal changes in both energy availability and physiological expenditures. Immunity, in addition to growth, thermoregulation, and cellular maintenance, requires substantial energy to maintain function, although few studies have directly tested the energetic cost of immunity. The present study assessed the metabolic costs of an antibody response. Adult and aged male C5BL/6J mice were implanted with either empty Silastic capsules or capsules filled with melatonin and injected with either saline or keyhole limpet hemocyanin (KLH). O2 consumption was monitored periodically throughout antibody production using indirect calorimetry. KLH-injected mice mounted significant immunoglobulin G (IgG) responses and consumed more O2 compared with animals injected with saline. Melatonin treatment increased O2 consumption in mice injected with saline but suppressed the increased metabolic rate associated with an immune response in KLH-injected animals. Melatonin had no effect on immune response to KLH. Adult and aged mice did not differ in antibody response or metabolic activity. Aged mice appear unable to maintain sufficient heat production despite comparable O2 production to adult mice. These results suggest that mounting an immune response requires significant energy and therefore requires using resources that could otherwise be allocated to other physiological processes. Energetic trade-offs are likely when energy demands are high (e.g., during winter, pregnancy, or lactation). Melatonin appears to play an adaptive role in coordinating reproductive, immunologic, and energetic processes.

  20. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  1. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    PubMed Central

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  2. Developmental and Adult GAP-43 Deficiency in Mice Dynamically Alters Hippocampal Neurogenesis and Mossy Fiber Volume

    PubMed Central

    Latchney, Sarah E.; Masiulis, Irene; Zaccaria, Kimberly J.; Lagace, Diane C.; Powell, Craig M.; McCasland, James S.; Eisch, Amelia J.

    2014-01-01

    Growth Associated Protein-43 (GAP-43) is a pre-synaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene [GAP-43(+/-) mice] exhibit hippocampal structural abnormalities and impaired spatial learning and stress-induced behavioral withdrawal and anxiety (Zaccaria et al., 2010), behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity, and neurogenesis, we tested if behaviorally-naïve GAP-43(+/-) mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (DCX), and mossy fiber volume (synaptoporin) in behaviorally-naïve postnatal (P) day 9 (P9), P26, and behaviorally-experienced 5-7 month old GAP-43(+/-) and (+/+) littermate mice. P9 GAP-43(+/-) mice had fewer Ki67+ and DCX+ cells compared to (+/+) mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43(+/-) mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male (+/+). These increases were not seen in females. In 5-7 month old GAP-43(+/-) mice whose behaviors were the focus of our prior publication (Zaccaria et al., 2010), there was no global change in number of proliferating or immature neurons relative to (+/+) mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43(+/-) mice compared to male (+/+) mice. This reduction was not observed in females. These results suggest that young GAP-43(+/-) mice have decreased hippocampal neurogenesis and synaptic connectivity

  3. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    PubMed

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  5. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice.

    PubMed

    Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S

    2015-01-01

    Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    PubMed

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  7. Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis

    PubMed Central

    Kondratiuk, Ilona; Plucinska, Gabriela; Miszczuk, Diana; Wozniak, Grazyna; Szydlowska, Kinga; Kaczmarek, Leszek; Filipkowski, Robert K.; Lukasiuk, Katarzyna

    2015-01-01

    The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2 – 10 days) in wt mice and 8 days (range 2 – 16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1 – 3.4; cD2 KO: 0.57, range 0.1 – 2.0 seizures/day) or median seizure duration (wt: 51 s, range 23 – 103; cD2 KO: 51 s, range 23 – 103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state. PMID:26020770

  8. Early Exposure to Intermediate-Frequency Magnetic Fields Alters Brain Biomarkers without Histopathological Changes in Adult Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Ohtani, Shin; Ushiyama, Akira; Kunugita, Naoki

    2015-01-01

    Recently we have reported that intermediate-frequency magnetic field (IF-MF) exposure transiently altered the mRNA expression levels of memory function-related genes in the hippocampi of adult male mice. However, the effects of IF-MF exposure during brain development on neurological biomarkers have not yet been clarified. In the present study, we investigated the effect of IF-MF exposure during development on neurological and immunological markers in the mouse hippocampus in 3- and 7-week-old male mice. Pregnant C57BL/6J mice were exposed to IF-MF (21 kHz, 3.8 mT) for one hour per day from organogenesis period day 7 to 17. At adolescence, some IF-MF-exposed mice were further divided into exposure, recovery, and sham-exposure groups. The adolescent-exposure groups were exposed again to IF-MF from postnatal day 27 to 48. The expression of mRNA in the hippocampi was examined using a real-time RT-PCR method, and microglia activation was examined by immunohistochemical analysis. The expression levels of NR1 and NR2B as well as transcription factors (CaMKIV, CREB1), inflammatory mediators (COX2, IL-1 β,TNF-α), and the oxidative stress marker heme-oxygenase (HO)-1 were significantly increased in the IF-MF-exposed mice, compared with the control group, in the 7-week-old mice, but not in the 3-week-old mice. Microglia activation was not different between the control and other groups. This study provides the first evidence that early exposure to IF-MF reversibly affects the NMDA receptor, its related signaling pathways, and inflammatory mediators in the hippocampus of young adult mice; these changes are transient and recover after termination of exposure without histopathological changes. PMID:25913185

  9. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  10. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome.

    PubMed

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.

  11. Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice.

    PubMed

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Fernandes, Lynette B; Zosky, Graeme R; Sly, Peter D; Larcombe, Alexander N

    2014-01-01

    Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.

  12. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  13. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    PubMed Central

    Lepeshko, Arina A.; Reshetnikov, Vasiliy V.

    2018-01-01

    Stressful events in an early postnatal period have critical implications for the individual's life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling), which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior. PMID:29619126

  14. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice.

    PubMed

    Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E

    2014-03-01

    Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.

  15. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  16. A Peer-Led HIV Mediation Adherence Intervention Targeting Adults Linked to Medical Care but without a Suppressed Viral Load

    PubMed Central

    Enriquez, Maithe; Cheng, An-Lin; Banderas, Julie; Farnan, Rose; Chertoff, Keyna; Hayes, Deana; Ortego, Gerry; Moreno, Jose; Peterson, Jane; McKinsey, David

    2017-01-01

    Background Non-adherence to antiretroviral (ART) treatment remains a prevalent problem even among the segment of the U.S. HIV population that is ‘linked’ to medical care. Methods Controlled pilot feasibility study with ART experienced adult patients (n=20) linked to HIV medical care without suppressed viral load. Patients were randomized to a peer-led HIV medication adherence intervention named ‘Ready’ or a time equivalent ‘healthy eating’ control arm. Lay individuals living with HIV were trained to facilitate ‘Ready’. Results Patients had been prescribed a mean of three prior ART regimens. The group randomized to ‘Ready’ had significantly improved adherence. MEMS and pharmacy refill data correlated with viral load log drop. Higher readiness for healthful behavior change correlated with viral load drop and approached significance. Conclusion A peer-led medication adherence intervention had a positive impact among adults who had experienced repeated non-adherence to HIV treatment. A larger study is needed to examine intervention dissemination and efficacy. PMID:25412724

  17. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effectiveness of nurse-led clinics on service delivery and clinical outcomes in adults with chronic ear, nose and throat complaints: a systematic review.

    PubMed

    Whiteford, Caroline; White, Sarahlouise; Stephenson, Matthew

    2016-04-01

    Ear, nose and throat complaints are very common and can cause significant disruption to patients' lives. Many conditions are of a chronic nature and are not currently managed in a timely manner by general practitioners in the community. This may be due to a lack of specialized knowledge, necessary diagnostic equipment or time for lengthy patient education on management of their condition. A nurse-led model of care may be an effective alternative. To examine the effectiveness of nurse-led clinics on adults with chronic ear, nose and throat complaints. Adult patients, aged 18 years and older, attending ear, nose and throat clinics, regardless of the complaint. Nurse-led care in general practice and acute care in which the nurse was identified as taking a lead role in the care of the patients with chronic ear, nose and throat complaints. General practitioner-led care, or ear, nose and throat consultant-led care, sometimes described as "standard care". Service delivery outcomes, clinical and health outcomes and financial outcomes. Any relevant quantitative studies published in English between 1980 and 2013 were considered. A standardized three-step search strategy aimed to find both published and unpublished studies. Databases searched include PubMed, CINAHL, Cochrane Library (CENTRAL), Scopus, Embase, MedNar and ProQuest Theses and Dissertations. Methodological validity was assessed independently by two reviewers using standardized critical appraisal instruments from the Joanna Briggs Institute. Due to methodological heterogeneity of the included studies, no statistical pooling was possible and all results are presented narratively. The search identified 13,536 titles, of which 20 potentially relevant articles were retrieved. Of these 20, 17 were excluded following full-text review leaving three studies that were assessed for methodological quality and included in the review. Service delivery outcome findings were that patient satisfaction was equal or higher and

  19. Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice

    PubMed Central

    Chen, Chih-Ming; Orefice, Lauren L.; Chiu, Shu-Ling; LeGates, Tara A.; Huganir, Richard L.; Zhao, Haiqing; Xu, Baoji; Kuruvilla, Rejji

    2017-01-01

    Stability of neuronal connectivity is critical for brain functions, and morphological perturbations are associated with neurodegenerative disorders. However, how neuronal morphology is maintained in the adult brain remains poorly understood. Here, we identify Wnt5a, a member of the Wnt family of secreted morphogens, as an essential factor in maintaining dendritic architecture in the adult hippocampus and for related cognitive functions in mice. Wnt5a expression in hippocampal neurons begins postnatally, and its deletion attenuated CaMKII and Rac1 activity, reduced GluN1 glutamate receptor expression, and impaired synaptic plasticity and spatial learning and memory in 3-mo-old mice. With increased age, Wnt5a loss caused progressive attrition of dendrite arbors and spines in Cornu Ammonis (CA)1 pyramidal neurons and exacerbated behavioral defects. Wnt5a functions cell-autonomously to maintain CA1 dendrites, and exogenous Wnt5a expression corrected structural anomalies even at late-adult stages. These findings reveal a maintenance factor in the adult brain, and highlight a trophic pathway that can be targeted to ameliorate dendrite loss in pathological conditions. PMID:28069946

  20. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.

  1. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice.

    PubMed

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I; Basselin, Mireille

    2014-05-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents. Published by Elsevier Ltd.

  2. Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice.

    PubMed

    Bazhan, Nadezhda M; Baklanov, Alexandr V; Piskunova, Julia V; Kazantseva, Antonina J; Makarova, Elena N

    2017-10-01

    C57Bl mice exhibit impaired glucose metabolism by the late adult age under standard living conditions. The aim of this study was to evaluate white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle expression of genes involved in carbohydrate-lipid metabolism at postpubertal stages preceding the late adult age in C57Bl mice. Muscle mRNA levels of uncoupling protein 3 ( Ucp3 ) and carnitine palmitoyltransferase 1 ( Cpt1 ) (indicators of FFA oxidation), WAT mRNA levels of hormone-sensitive lipase ( Lipe ) and lipoprotein lipase ( Lpl ) (indicators of lipolysis and lipogenesis), muscle and WAT mRNA levels of the type 4 glucose transporter Slc2a4 (indicators of insulin-dependent glucose uptake), and BAT mRNA levels of uncoupling protein 1 ( Ucp1 ) (indicator of thermogenesis) were measured in fed and 16 h-fasted mice in three age groups: 10-week-old (young), 15-week-old (early adult), and 30-week-old (late adult). Weight gain from young to early adult age was not accompanied by changes in WAT and BAT indexes and biochemical blood parameters. Weight gain from early to late adult age was accompanied by increased WAT and BAT indexes and decreased glucose tolerance. Muscle Ucp3 and Cpt1 mRNA levels and WAT Lipe and Slc2a4 mRNA levels increased from young to early adult age and then sharply decreased by the late adult age. Moreover, BAT Ucp1 mRNA level decreased in the late adult age. Fasting failed to increase muscle Cpt1 mRNA levels in late adult mice. These transcriptional changes could contribute to impaired glucose metabolism and the onset of obesity in late adult mice during normal development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Variable phenotypic penetrance of thrombosis in adult mice after tissue-selective and temporally controlled Thbd gene inactivation

    PubMed Central

    van Mens, Thijs E.; Liang, Hai-Po H.; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; May, Jennifer; Zhan, Min; Yang, Qiuhui; Foeckler, Jamie; Kalloway, Shawn; Sood, Rashmi; Karlson, Caren Sue

    2017-01-01

    Thrombomodulin (Thbd) exerts pleiotropic effects on blood coagulation, fibrinolysis, and complement system activity by facilitating the thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor and may have additional thrombin- and protein C (pC)-independent functions. In mice, complete Thbd deficiency causes embryonic death due to defective placental development. In this study, we used tissue-selective and temporally controlled Thbd gene ablation to examine the function of Thbd in adult mice. Selective preservation of Thbd function in the extraembryonic ectoderm and primitive endoderm via the Meox2Cre-transgene enabled normal intrauterine development of Thbd-deficient (Thbd−/−) mice to term. Half of the Thbd−/− offspring expired perinatally due to thrombohemorrhagic lesions. Surviving Thbd−/− animals only rarely developed overt thrombotic lesions, exhibited low-grade compensated consumptive coagulopathy, and yet exhibited marked, sudden-onset mortality. A corresponding pathology was seen in mice in which the Thbd gene was ablated after reaching adulthood. Supplementation of activated PC by transgenic expression of a partially Thbd-independent murine pC zymogen prevented the pathologies of Thbd−/− mice. However, Thbd−/− females expressing the PC transgene exhibited pregnancy-induced morbidity and mortality with near-complete penetrance. These findings suggest that Thbd function in nonendothelial embryonic tissues of the placenta and yolk sac affects through as-yet-unknown mechanisms the penetrance and severity of thrombosis after birth and provide novel opportunities to study the role of the natural Thbd-pC pathway in adult mice and during pregnancy. PMID:28920104

  4. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice.

    PubMed

    Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B

    2014-05-01

    Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p < 0.02; ANOVA). Performance under all other conditions did not change from baseline. Maintenance in groups in the SE statistically improved NOR (p < 0.01), whereas maintenance in isolation in the SE did not alter performance from baseline. Maintenance in the EE statistically improved performance in NOR for mice housed in groups and individually (p < 0.01). Maintenance under isolated conditions slightly increased reactive oxygen/nitrogen species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.

  5. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice.

    PubMed

    Akillioglu, Kubra; Babar Melik, Emine; Melik, Enver; Kocahan, Sayad

    2012-09-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. It is known that growing up in an enriched environment has effects on emotional and cognitive performance. In our study, we evaluated the effects of physically enriched environment on the emotional and cognitive functions of the adult brain in the setting of previous NMDA receptor hypoactivity during the critical developmental period of the nervous system. In this study, NMDA receptor blockade was induced 5-10 days postnatally (PD5-10) using MK-801 in mice Balb/c (twice a day 0.25 mg/kg, for 5 days, intraperitoneal). MK-801 was given to developing mice living in a standard (SE) and an enrichment environment (EE) and once the animals reached adulthood, emotional behaviors were evaluated using an open field test (OF) and an elevated plus maze (EPM) test whereas cognitive processes were evaluated using the Morris water-maze (MWM). The EE group showed decreased locomotor activity (p<0.05) in the OF and increased exploratory behaviour (p<0.01) and decreased fear of heights/anxiety-like behaviour (p<0.05) in the EPM test. The EE had positive effects on spatial learning in the MWM (p<0.05). Blockade of the NMDA receptor increased the fear of height (p<0.05), decreased exploratory behaviour and locomotor activity (p<0.001). Also, it led to decreased spatial learning (p<0.05). The decreases in spatial learning and exploratory behaviours and the increase in fear of heights/anxiety-like behaviour with NMDA receptor blockade was not reversed by EE. NMDA receptor blockade during the critical period of development led to deterioration in the emotional and cognitive processes during adulthood. An enriched environmental did not reverse the deleterious effects of the NMDA receptor blockade on emotional and cognitive functions. Copyright © 2012. Published by Elsevier Inc.

  6. Characteristics of Multi-Organ Lymphangiectasia Resulting from Temporal Deletion of Calcitonin Receptor-Like Receptor in Adult Mice

    PubMed Central

    Hoopes, Samantha L.; Willcockson, Helen H.; Caron, Kathleen M.

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrlfl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrlfl/fl/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrlfl/fl/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia. PMID:23028890

  7. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    PubMed

    Hoopes, Samantha L; Willcockson, Helen H; Caron, Kathleen M

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl)/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl)/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl)/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  8. Meeting the needs? Perceived support of a nurse-led lifestyle programme for young adults with mental illness in a primary health-care setting.

    PubMed

    Rönngren, Ylva; Björk, Annette; Kristiansen, Lisbeth; Haage, David; Enmarker, Ingela; Audulv, Åsa

    2018-02-01

    Being a young adult with mental illness challenges all aspects of health, including an increased risk for developing lifestyle-related diseases. There is a lack of lifestyle programmes in primary health care that target physical, mental, and social needs for young adults with mental illness. The aim of the present study was to describe the experiences of young adults with mental illness receiving support from a nurse-led lifestyle programme, and how this support was related to their life context, including challenges and coping strategies. Two focus groups and six individual interviews were performed with 13 young adults (16-25 years), and analysed using a qualitative content analysis. The findings showed that the young adults experienced challenges in their daily lives, including psychiatric symptoms, lack of social understanding, and loneliness. The study indicated that the programme could support lifestyle habits with its components of supportive interpersonal relationships, awareness of coping strategies, understanding of health and illness, and cognitive support (e.g. schedules and reminders). However, the programme could not meet everyone's needs for new social relationships or more comprehensive support. Even so, this nurse-led programme provides health information-management strategies that could easily be integrated in a primary health-care setting. © 2017 Australian College of Mental Health Nurses Inc.

  9. Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse.

    PubMed

    Charles, Roch-Philippe; Iezza, Gioia; Amendola, Elena; Dankort, David; McMahon, Martin

    2011-06-01

    Mutated BRAF is detected in approximately 45% of papillary thyroid carcinomas (PTC). To model PTC, we bred mice with adult-onset, thyrocyte-specific expression of BRAF(V600E). One month following BRAF(V600E) expression, mice displayed increased thyroid size, widespread alterations in thyroid architecture, and dramatic hypothyroidism. Over 1 year, without any deliberate manipulation of tumor suppressor genes, all mice developed PTC displaying nuclear atypia and marker expression characteristic of the human disease. Pharmacologic inhibition of MEK1/2 led to decreased thyroid size, restoration of thyroid form and function, and inhibition of tumorigenesis. Mice with BRAF(V600E)-induced PTC will provide an excellent system to study thyroid tumor initiation and progression and the evaluation of inhibitors of oncogenic BRAF signaling.

  10. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level.

  11. Idiotypic manipulation in mice: BALB/c mice can express the crossreactive idiotype of A/J mice.

    PubMed Central

    Moser, M; Leo, O; Hiernaux, J; Urbain, J

    1983-01-01

    The response of A/J mice to arsonate-coupled keyhole limpet hemocyanin is characterized by a crossreactive idiotype (CRIA). CRIA+ antibodies are restricted to the Igh-Ic haplotype and are never expressed in BALB/c mice after immunization with antigen. Studies at the DNA level suggest that the gene encoding the CRIA heavy chain in A/J mice is probably absent in the genome of BALB/c mice. Despite this, using the immunization cascade tool, we have been able to induce the expression of CRIA+ antibodies in BALB/c mice. These studies led to an apparent paradox, whose understanding will provide new insights into the regulatory mechanisms of the immune system. We suggest that clones secreting CRIA-like Igs in BALB/c mice are "somatic variants" that could arise from gene conversion events. PMID:6576348

  12. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    USDA-ARS?s Scientific Manuscript database

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  13. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  14. Long-Term Intermittent Hypoxia Elevates Cobalt Levels in the Brain and Injures White Matter in Adult Mice

    PubMed Central

    Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.

    2013-01-01

    Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt

  15. Round and Round and Round We Go: Behavior of Adult Female Mice on the ISS

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2016-01-01

    The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.

  16. Midbrain stimulation-evoked lumbar spinal activity in the adult decerebrate mouse.

    PubMed

    Stecina, Katinka

    2017-08-15

    Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice

    PubMed Central

    Yusifov, Rashad

    2018-01-01

    Abstract For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162–P182] SC-raised mice. This was indeed the case: 40–50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice. PMID:29379877

  18. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.

    PubMed

    Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid

    2018-01-01

    For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162-P182] SC-raised mice. This was indeed the case: 40-50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice.

  19. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress

    PubMed Central

    Warren, Brandon L; Sial, Omar K.; Alcantara, Lyonna F.; Greenwood, Maria A.; Brewer, Jacob S.; Rozofsky, John P.; Parise, Eric M.; Bolaños-Guzmán, Carlos A.

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional or physical stress on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day [PD] 35) or adult (eight-week old) mice were exposed to emotional (ES) or physical stress (PS) using a vicarious social defeat paradigm. Twenty-four hours after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted ERK2, reduced transcription of ΔFosB, and had no effect on CREB mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent-exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice, and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc. PMID:24943326

  20. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system.

    PubMed

    Montagud-Romero, Sandra; Nuñez, Cristina; Blanco-Gandia, M Carmen; Martínez-Laorden, Elena; Aguilar, María A; Navarro-Zaragoza, Javier; Almela, Pilar; Milanés, Maria-Victoria; Laorden, María-Luisa; Miñarro, José; Rodríguez-Arias, Marta

    2017-07-01

    Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.

  1. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  2. Long-term effects of chronic nicotine on emotional and cognitive behaviors and hippocampus cell morphology in mice: comparisons of adult and adolescent nicotine exposure.

    PubMed

    Holliday, Erica D; Nucero, Paul; Kutlu, Munir G; Oliver, Chicora; Connelly, Krista L; Gould, Thomas J; Unterwald, Ellen M

    2016-11-01

    Nicotine dependence is associated with increased risk for emotional, cognitive and neurological impairments later in life. This study investigated the long-term effects of nicotine exposure during adolescence and adulthood on measures of depression, anxiety, learning and hippocampal pyramidal cell morphology. Mice (C57BL/6J) received saline or nicotine for 12 days via pumps implanted on postnatal day 32 (adolescent) or 54 (adults). Thirty days after cessation of nicotine/saline, mice were tested for learning using contextual fear conditioning, depression-like behaviors using the forced swim test or anxiety-like behaviors with the elevated plus maze. Brains from nicotine- or saline-exposed mice were processed with Golgi stain for whole neuron reconstruction in the CA1 and CA3 regions of the hippocampus. Results demonstrate higher depression-like responses in both adolescent and adult mice when tested during acute nicotine withdrawal. Heightened depression-like behaviors persisted when tested after 30 days of nicotine abstinence in mice exposed as adolescents, but not adults. Adult, but not adolescent, exposure to nicotine resulted in increased open-arm time when tested after 30 days of abstinence. Nicotine exposure during adolescence caused deficits in contextual fear learning indicated by lower levels of freezing to the context as compared with controls when tested 30 days later. In addition, reduced dendritic length and complexity in the apical CA1 branches in adult mice exposed to nicotine during adolescence were found. These results demonstrate that nicotine exposure and withdrawal can have long-term effects on emotional and cognitive functioning, particularly when nicotine exposure occurs during the critical period of adolescence. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Administration of midazolam in infancy does not affect learning and memory of adult mice.

    PubMed

    Xu, Hua; Liu, Zhi-Qiang; Liu, Yi; Zhang, Wei-Shi; Xu, Bo; Xiong, Yuan-Chang; Deng, Xiao-Ming

    2009-12-01

    1. Midazolam is a common fast-acting GABA(A) receptor agonist. Recent data suggest that exposure to midazolam in early life may cause long-term effects on brain function through stable epigenetic reprogramming. The aim of the present study was to determine whether the administration of midazolam to infant mice would affect their learning and memory in adulthood. 2. An open-field test was conducted before and then 3, 24, 48 and 72 h after administration of midazolam (50 mg/kg, i.p.) to infant mice. Saline control mice received an equal volume of saline i.p. 3 h before the open-field test. Total movements, total movement time, total movement distance and velocity were analysed. Novel object recognition (NOR), Morris water-maze and passive avoidance tests were performed when the treated mice grew to adulthood (105 days of age). 3. The results of open-field test showed that midazolam significantly reduced locomotor activity (total movements, total movement time, total movement distance and velocity) in infant mice 3 and 24 h after drug administration and that these effects had disappeared by 72 h after drug administration. The results of the water-maze, NOR and passive avoidance tests in adulthood (at 105 days of age) indicated that administration of midazolam in infancy had no long-term effects on the learning and memory behaviours of adult mice compared with the saline control. 4. Acute midazolam administration to infant mice affected spontaneous locomotor activity for approximately 2 days, but did not seem to have any significant impact on cognitive functioning that lasted into adulthood.

  4. Effect of Anti-Sclerostin Therapy and Osteogenesis Imperfecta on Tissue-level Properties in Growing and Adult Mice While Controlling for Tissue Age

    PubMed Central

    Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2016-01-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age

  5. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  6. Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function.

    PubMed

    Hsieh, Minnie; Boerboom, Derek; Shimada, Masayuki; Lo, Yuet; Parlow, Albert F; Luhmann, Ulrich F O; Berger, Wolfgang; Richards, JoAnne S

    2005-12-01

    Previous studies showed that transcripts encoding specific Wnt ligands and Frizzled receptors including Wnt4, Frizzled1 (Fzd1), and Frizzled4 (Fzd4) were expressed in a cell-specific manner in the adult mouse ovary. Overlapping expression of Wnt4 and Fzd4 mRNA in small follicles and corpora lutea led us to hypothesize that the infertility of mice null for Fzd4 (Fzd4-/-) might involve impaired follicular growth or corpus luteum formation. Analyses at defined stages of reproductive function indicate that immature Fzd4-/- mouse ovaries contain follicles at many stages of development and respond to exogenous hormone treatments in a manner similar to their wild-type littermates, indicating that the processes controlling follicular development and follicular cell responses to gonadotropins are intact. Adult Fzd4-/- mice also exhibit normal mating behavior and ovulate, indicating that endocrine events controlling these processes occur. However, Fzd4-/- mice fail to become pregnant and do not produce offspring. Histological and functional analyses of ovaries from timed mating pairs at Days 1.5-7.5 postcoitus (p.c.) indicate that the corpora lutea of the Fzd4-/- mice do not develop normally. Expression of luteal cell-specific mRNAs (Lhcgr, Prlr, Cyp11a1 and Sfrp4) is reduced, luteal cell morphology is altered, and markers of angiogenesis and vascular formation (Efnb1, Efnb2, Ephb4, Vegfa, Vegfc) are low in the Fzd4-/- mice. Although a recently identified, high-affinity FZD4 ligand Norrin (Norrie disease pseudoglioma homolog) is expressed in the ovary, adult Ndph-/- mice contain functional corpora lutea and do not phenocopy Fzd4-/- mice. Thus, Fzd4 appears to impact the formation of the corpus luteum by mechanisms that more closely phenocopy Prlr null mice.

  7. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  8. Community Peer-Led Falls Prevention Presentations: What Do the Experts Suggest?

    PubMed

    Khong, Linda A M; Berlach, Richard G; Hill, Keith D; Hill, Anne-Marie

    2018-04-01

    Falls among older adults are a major problem. Despite considerable progress in falls prevention research, older adults often show low motivation to engage in recommended preventive strategies. Peer-led falls prevention education for older adults may have potential for bridging the research evidence-practice gap, thereby promoting the uptake of falls prevention strategies. We evaluated peer educators' presentations of falls prevention education to community-dwelling older adults in regard to established criteria that were consistent with adult learning principles, the framework of health behaviour change, falls prevention guidelines, and recommendations for providing falls prevention information. We conducted a within-stage mixed model study using purposive and snowball sampling techniques to recruit 10 experts to evaluate video recordings of the delivery of three peer-led falls prevention presentations. Each expert viewed three videos and rated them using a questionnaire containing both open-ended and closed items. There was a good level of expert agreement across the questionnaire domains. Though the experts rated some aspects of the presentations highly, they thought that the presentations were mainly didactic in delivery, not consistently personally relevant to the older adult audience, and did not encourage older adults to engage in the preventive strategies that were presented. Based on the experts' findings, we developed five key themes and recommendations for the effective delivery of peer-led falls prevention presentations. These included recommending that peer educators share falls prevention messages in a more interactive and experiential manner and that uptake of strategies should be facilitated by encouraging the older adults to develop a personalised action plan. Findings suggest that if peer-led falls prevention presentations capitalise on older adults' capability, opportunity, and motivation, the older adults may be more receptive to take up falls

  9. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice.

    PubMed

    Lloyd, S A; Oltean, C; Pass, H; Phillips, B; Staton, K; Robertson, C L; Shanks, R A

    2013-07-02

    Given the widespread use and misuse of methamphetamine (METH) and methylphenidate (MPD), especially in relation to women of childbearing age, it is important to consider the long-lasting effects of these drugs on the brain of the developing fetus. Male and female C57Bl/6J mice were prenatally exposed to METH (5mg/kg), MPD (10mg/kg), or saline. Following a 3-month washout, behavioral analysis using the 5-Choice Serial Reaction Time Task (5CSRTT) was performed on adult mice. After reaching training criteria, performance on a pseudo-random intertrial interval test session revealed decrements in 5CSRTT behavior. Prenatally-treated METH and MPD mice demonstrated significant increases in impulsivity, compulsivity, and motivation for reward compared to their saline controls. There were sex by drug interactions indicating a possible sexually dimorphic response to these prenatal drug exposures. Of particular clinical interest, we find that mice prenatally exposed to METH or MPD express characteristics of both inhibitory control decrements and heightened motivation for rewards, which represent core symptoms of addiction and other impulse control disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The effect of the anabolic steroid, nandrolone, in conditioned place preference and D1 dopamine receptor expression in adolescent and adult mice.

    PubMed

    Martínez-Rivera, Freddyson J; Natal-Albelo, Eduardo J; Martínez, Namyr A; Orozco-Vega, Roberto A; Muñiz-Seda, Oscar A; Barreto-Estrada, Jennifer L

    2015-04-01

    Adolescents and adults engage in anabolic-androgenic steroid (AAS) misuse seeking their anabolic effects, even though later on, many could develop neuropsychological dependence. Previously, we have shown that nandrolone induces conditioned place preference (CPP) in adult male mice. However, whether nandrolone induces CPP during adolescence remains unknown. In this study, the CPP test was used to determine the rewarding properties of nandrolone (7.5 mg/kg) in adolescent mice. In addition, since D1 dopamine receptors (D1DR) are critical for reward-related processes, the effect of nandrolone on the expression of D1DR in the nucleus accumbens (NAc) was investigated by Western blot analysis. Similar to our previous results, nandrolone induced CPP in adults. However, in adolescents, nandrolone failed to produce place preference. At the molecular level, nandrolone decreased D1DR expression in the NAc only in adult mice. Our data suggest that nandrolone may not be rewarding in adolescents at least during short-term use. The lack of nandrolone rewarding effects in adolescents may be due, in part to differences in D1DR expression during development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of the anabolic steroid, nandrolone, in conditioned place preference and D1 dopamine receptor expression in adolescent and adult mice

    PubMed Central

    Martínez-Rivera, Freddyson J.; Natal-Albelo, Eduardo J.; Martínez, Namyr A.; Orozco-Vega, Roberto A.; Muñiz-Seda, Oscar A.; Barreto-Estrada, Jennifer L.

    2015-01-01

    Adolescents and adults engage in anabolic-androgenic steroid (AAS) misuse seeking their anabolic effects, even though later on, many could develop neuropsychological dependence. Previously, we have shown that nandrolone induces conditioned place preference (CPP) in adult male mice. However, whether nandrolone induces CPP during adolescence remains unknown. In this study, the CPP test was used to determine the rewarding properties of nandrolone (7.5 mg/kg) in adolescent mice. In addition, since D1 dopamine receptors (D1DR) are critical for reward-related processes, the effect of nandrolone on the expression of D1DR in the nucleus accumbens (NAc) was investigated by Western blot analysis. Similar to our previous results, nandrolone induced CPP in adults. However, in adolescents, nandrolone failed to produce place preference. At the molecular level, nandrolone decreased D1DR expression in the NAc only in adult mice. Our data suggest that nandrolone may not be rewarding in adolescents at least during short-term use. The lack of nandrolone rewarding effects in adolescents may be due, in part to differences in D1DR expression during development. PMID:25612844

  12. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    PubMed

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Inhibition of the NLRP3 inflammasome reduces the severity of experimentally-induced acute pancreatitis in obese mice

    PubMed Central

    York, Jason M; Castellanos, Karla J; Cabay, Robert J; Fantuzzi, Giamila

    2014-01-01

    Acute pancreatitis (AP), while most often a mild and self-limiting inflammatory disease, worsens to a characteristically necrotic severe acute pancreatitis (SAP) in about 20% of cases. Obesity, affecting more than a third of American adults, is a risk factor for the development of SAP, but the exact mechanism of this association has not been identified. Coincidental with chronic low-grade inflammation, activation of the NLRP3 inflammasome increases with obesity. Lean mice genetically deficient for specific components of the NLRP3 inflammasome are protected from experimentally-induced AP, indicating a direct involvement of this pathway in AP pathophysiology. We hypothesized that inhibition of the NLRP3 inflammasome with the sulfonylurea drug glyburide would reduce disease severity in obese mice with cerulein-induced SAP. Treatment with glyburide led to significantly reduced relative pancreatic mass and water content and less pancreatic damage and cell death in genetically obese ob/ob mice with SAP compared to vehicle-treated obese SAP mice. Glyburide administration in ob/ob mice with cerulein induced SAP also resulted in significantly reduced serum levels of interleukin-6, lipase and amylase, and led to lower production of LPS-stimulated IL-1β release in cultured peritoneal cells, compared to vehicle treated ob/ob mice with SAP. Together, these data indicate involvement of the NLRP3 inflammasome in obesity-associated SAP, and expose the possible utility of its inhibition in prevention or treatment of SAP in obese individuals. PMID:25152324

  14. Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice.

    PubMed

    Wu, Jianfeng; Wen, Xiaoquan William; Faulk, Christopher; Boehnke, Kevin; Zhang, Huapeng; Dolinoy, Dana C; Xi, Chuanwu

    2016-06-01

    Heavy metal pollution is a principle source of environmental contamination. Epidemiological and animal data suggest that early life lead (Pb) exposure results in critical effects on epigenetic gene regulation and child and adult weight trajectories. Using a mouse model of human-relevant exposure, we investigated the effects of perinatal Pb exposure on gut microbiota in adult mice, and the link between gut microbiota and bodyweight changes. Following Pb exposure during gestation and lactation via maternal drinking water, bodyweight in A(vy) strain wild-type non-agouti (a/a) offspring was tracked through adulthood. Gut microbiota of adult mice were characterized by deep DNA sequencing of bacterial 16S ribosomal RNA genes. Data analyses were stratified by sex and adjusted for litter effects. A Bayesian variable selection algorithm was used to analyze associations between bacterial operational taxonomic units and offspring adult bodyweight. Perinatal Pb exposure was associated with increased adult bodyweight in male (P < .05) but not in female offspring (P = .24). Cultivable aerobes decreased and anaerobes increased in Pb-exposed offspring (P < .005 and P < .05, respectively). Proportions of the 2 predominant phyla (Bacteroidetes and Firmicutes) shifted inversely with Pb exposure, and whole bacterial compositions were significantly different (analysis of molecular variance, P < .05) by Pb exposure without sex bias. In males, changes in gut microbiota were highly associated with adult bodyweight (P = .028; effect size = 2.59). Thus, perinatal Pb exposure results in altered adult gut microbiota regardless of sex, and these changes are highly correlated with increased bodyweight in males. Adult gut microbiota can be shaped by early exposures and may contribute to disease risks in a sex-specific manner. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  15. Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice

    PubMed Central

    Wu, Jianfeng; Wen, Xiaoquan William; Faulk, Christopher; Boehnke, Kevin; Zhang, Huapeng; Dolinoy, Dana C.; Xi, Chuanwu

    2016-01-01

    Heavy metal pollution is a principle source of environmental contamination. Epidemiological and animal data suggest that early life lead (Pb) exposure results in critical effects on epigenetic gene regulation and child and adult weight trajectories. Using a mouse model of human-relevant exposure, we investigated the effects of perinatal Pb exposure on gut microbiota in adult mice, and the link between gut microbiota and bodyweight changes. Following Pb exposure during gestation and lactation via maternal drinking water, bodyweight in Avy strain wild-type non-agouti (a/a) offspring was tracked through adulthood. Gut microbiota of adult mice were characterized by deep DNA sequencing of bacterial 16S ribosomal RNA genes. Data analyses were stratified by sex and adjusted for litter effects. A Bayesian variable selection algorithm was used to analyze associations between bacterial operational taxonomic units and offspring adult bodyweight. Perinatal Pb exposure was associated with increased adult bodyweight in male (P < .05) but not in female offspring (P = .24). Cultivable aerobes decreased and anaerobes increased in Pb-exposed offspring (P < .005 and P < .05, respectively). Proportions of the 2 predominant phyla (Bacteroidetes and Firmicutes) shifted inversely with Pb exposure, and whole bacterial compositions were significantly different (analysis of molecular variance, P < .05) by Pb exposure without sex bias. In males, changes in gut microbiota were highly associated with adult bodyweight (P = .028; effect size = 2.59). Thus, perinatal Pb exposure results in altered adult gut microbiota regardless of sex, and these changes are highly correlated with increased bodyweight in males. Adult gut microbiota can be shaped by early exposures and may contribute to disease risks in a sex-specific manner. PMID:26962054

  16. Scavenger Receptor Class B Type 1 Deletion Led to Coronary Atherosclerosis and Ischemic Heart Disease in Low-density Lipoprotein Receptor Knockout Mice on Modified Western-type Diet

    PubMed Central

    Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George

    2017-01-01

    Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983

  17. Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice1

    PubMed Central

    Dicken, Cary L.; Israel, Davelene D.; Davis, Joe B.; Sun, Yan; Shu, Jun; Hardin, John; Neal-Perry, Genevieve

    2012-01-01

    ABSTRACT The mechanism(s) by which vitamin D3 regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D3 deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D3) null mice to study the effect of vitamin D3 deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D3-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D3 deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D3-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D3-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D3-replete diet. Estrous cycles were restored when vitamin D3-deficient Cyp27b1 null young adult females were transferred to a vitamin D3-replete diet. This study is the first to demonstrate that peripubertal vitamin D3 sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D3 is a key regulator of neuroendocrine and ovarian physiology. PMID:22572998

  18. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice.

    PubMed

    Coleman, Georgia; Gigg, John; Canal, Maria Mercè

    2016-11-01

    The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Lithium rescues synaptic plasticity and memory in Down syndrome mice

    PubMed Central

    Contestabile, Andrea; Greco, Barbara; Ghezzi, Diego; Tucci, Valter; Benfenati, Fabio; Gasparini, Laura

    2012-01-01

    Down syndrome (DS) patients exhibit abnormalities of hippocampal-dependent explicit memory, a feature that is replicated in relevant mouse models of the disease. Adult hippocampal neurogenesis, which is impaired in DS and other neuropsychiatric diseases, plays a key role in hippocampal circuit plasticity and has been implicated in learning and memory. However, it remains unknown whether increasing adult neurogenesis improves hippocampal plasticity and behavioral performance in the multifactorial context of DS. We report that, in the Ts65Dn mouse model of DS, chronic administration of lithium, a clinically used mood stabilizer, promoted the proliferation of neuronal precursor cells through the pharmacological activation of the Wnt/β-catenin pathway and restored adult neurogenesis in the hippocampal dentate gyrus (DG) to physiological levels. The restoration of adult neurogenesis completely rescued the synaptic plasticity of newborn neurons in the DG and led to the full recovery of behavioral performance in fear conditioning, object location, and novel object recognition tests. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult DS mice rescues hippocampal plasticity and memory and implicate adult neurogenesis as a promising therapeutic target to alleviate cognitive deficits in DS patients. PMID:23202733

  20. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. PENTACHLOROPHENOL POTENTIATES BENZO[A]PYRENE DNA ADDUCT FORMATION IN ADULT BUT NOT INFANT B6C3F1 MALE MICE

    EPA Science Inventory

    Abstract

    The objective of this study is to determine whether pentachlorophenol (PCP) alters benzo[a]pyrene (B[a]P) induced DNA adduct formation in infant and adult B6C3Fl mice. Mice were exposed to 55 ug B[a]P/g body weight (BW) alone and in combination with several dose...

  2. Immunogenicity and efficacy following sequential parenterally-administered doses of Salmonella Enteritidis COPS:FliC glycoconjugates in infant and adult mice.

    PubMed

    Baliban, Scott M; Curtis, Brittany; Toema, Deanna; Tennant, Sharon M; Levine, Myron M; Pasetti, Marcela F; Simon, Raphael

    2018-05-23

    In sub-Saharan Africa, invasive nontyphoidal Salmonella (iNTS) infections with serovars S. Enteritidis, S. Typhimurium and I 4,[5],12:i:- are widespread in children < 5 years old. Development of an efficacious vaccine would provide an important public health tool to prevent iNTS disease in this population. Glycoconjugates of S. Enteritidis core and O-polysaccharide (COPS) coupled to the homologous serovar phase 1 flagellin protein (FliC) were previously shown to be immunogenic and protected adult mice against death following challenge with a virulent Malian S. Enteritidis blood isolate. This study extends these observations to immunization of mice in early life and also assesses protection with partial and full regimens. Anti-COPS and anti-FliC serum IgG titers were assessed in infant and adult mice after immunization with 1, 2 or 3 doses of S. Enteritidis COPS:FliC alone or co-formulated with aluminum hydroxide or monophosphoryl lipid A (MPL) adjuvants. S. Enteritidis COPS:FliC was immunogenic in both age groups, although the immune responses were quantitatively lower in infants. Kinetics of antibody production were similar for the native and adjuvanted formulations after three doses; conjugates formulated with MPL elicited significantly increased anti-COPS IgG titers in adult but not infant mice. Nevertheless, robust protection against S. Enteritidis challenge was seen for all three formulations when three doses were given either during infancy or as adults. We further found that significant protection could be achieved with two COPS:FliC doses, despite elicitation of modest serum anti-COPS IgG antibody titers. These findings guide potential immunization strategies that may be translated to develop a human pediatric iNTS vaccine for sub-Saharan Africa.

  3. Enduring influences of peripubertal/adolescent stressors on behavioral response to estradiol and progesterone in adult female mice.

    PubMed

    Laroche, Julie; Gasbarro, Lauren; Herman, James P; Blaustein, Jeffrey D

    2009-08-01

    Exposure to stressors during particular stages of development leads to acute and long-term physiological and behavioral changes. We have reported that shipping mice during the peripubertal/adolescent period results in decreased induction of feminine sexual behavior by estradiol and progesterone in adult female mice. To study further the factors involved in this decreased behavioral response, female mice were exposed to a variety of experimental stressors when 6 wk old. Effects of peripubertal/adolescent exposure to these stressors on acute plasma corticosterone levels and changes in body weight and adult behavioral response to estradiol and progesterone were assessed. Although restraint for three daily 3-h periods, 36-h food deprivation, or a multiple stressor regimen acutely increased plasma corticosterone levels and reduced body weight, only exposure to particular doses of the bacterial endotoxin lipopolysaccharide (LPS; 1-1.5 mg/kg body weight, doses that induced moderate levels of sickness behavior in these studies) resulted in reduced behavioral response to estradiol and progesterone in adulthood. Like the effects of shipping, the effects of LPS on adult feminine sexual behavior appear most robust when injected at 6 wk old and are limited to exposure during a vulnerable period at approximately 4-6 wk of age. Therefore, an immune stressor during the peripubertal/adolescent period, but not restraint, food restriction, or a combined stressor, has an enduring influence on behavioral response to estradiol and progesterone. This demonstrates that the decreased response to estradiol and progesterone is not a general response to all stressors during this developmental stage.

  4. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.

    PubMed

    Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore

    2018-05-10

    Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice.

    PubMed

    Mahmoud, Yomna Ibrahim

    2012-07-01

    Hibiscus sabdariffa extract is a popular beverage in many tropical and sub-tropical countries. Although, Hibiscus tea is known for its medicinal effects for thousands of years, scientific evidence of its systemic safety is very limited. The current study aimed to assess the potential adverse effects of H. sabdariffa extract on sperm morphology and testicular ultrastructure of albino mice. Thirty adult male albino mice were divided into three equal groups and were given: (a) distilled water, (b) cold Hibiscus aqueous extract, and (c) boiled Hibiscus aqueous extract. Hibiscus extract was administered orally daily for 4 weeks in a dose of 200 mg/kg body weight/mouse. Twenty-four hours after the last treatment, mice were decapitated and the testes and epididymides were excised and processed for transmission electron microscopy to assess ultrastructural and sperm abnormalities. The results clearly demonstrate that aqueous extracts from dried calyx of H. sabdariffa, either cold or boiled, alter normal sperm morphology and testicular ultrastructure and adversely influence the male reproductive fertility in albino mice. The current data suggest that Hibiscus extract should be consumed with caution, and reasonable estimates of the human risk associated with its consumption should be provided. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice.

    PubMed

    Barakat, Radwa; Lin, Po-Ching; Park, Chan Jin; Best-Popescu, Catherine; Bakery, Hatem H; Abosalum, Mohamed E; Abdelaleem, Nabila M; Flaws, Jodi A; Ko, CheMyong

    2018-04-23

    Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200μg, 500mg, or 750mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16 to 22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by SLIM microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing

  7. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes

    PubMed Central

    Kurbegovic, Almira; Côté, Olivier; Couillard, Martin; Ward, Christopher J.; Harris, Peter C.; Trudel, Marie

    2010-01-01

    While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild-type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from ∼2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1TAG mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and ∼15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left-ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1TAG mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1TAG mouse model demonstrates that overexpression of wild-type Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD. PMID:20053665

  8. Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells.

    PubMed

    Pihlaja, Rea; Takkinen, Jatta; Eskola, Olli; Vasara, Jenni; López-Picón, Francisco R; Haaparanta-Solin, Merja; Rinne, Juha O

    2015-04-28

    Recently, the role of monoacylglycerol lipase (MAGL) as the principal regulator of simultaneous prostaglandin synthesis and endocannabinoid receptor activation in the CNS was demonstrated. To expand upon previously published research in the field, we observed the effect of the MAGL inhibitor JZL184 during the early-stage proinflammatory response and formation of beta-amyloid (Aβ) in the Alzheimer's disease mouse model APdE9. We also investigated its effects in proinflammatory agent - induced astrocytes and microglia isolated from adult mice. Transgenic APdE9 mice (5 months old) were treated with JZL184 (40 mg/kg) or vehicle every day for 1 month. In vivo binding of the neuroinflammation-related, microglia-specific translocator protein (TSPO) targeting radioligand [(18) F]GE-180 decreased slightly but statistically non-significantly in multiple brain areas compared to vehicle-treated mice. JZL184 treatment induced a significant decrease in expression levels of inflammation-induced, Iba1-immunoreactive microglia in the hippocampus (P < 0.01) and temporal and parietal (P < 0.05) cortices. JZL184 also induced a marked decrease in total Aβ burden in the temporal (P < 0.001) and parietal (P < 0.01) cortices and, to some extent, in the hippocampus. Adult microglial and astrocyte cultures pre-treated with JZL184 and then exposed to the neuroinflammation-inducing agents lipopolysaccharide (LPS), interferon-gamma (IFN-γ), and Aβ42 had significantly reduced proinflammatory responses compared to cells without JZL184 treatment. JZL184 decreased the proinflammatory reactions of microglia and reduced the total Aβ burden and its precursors in the APdE9 mouse model. It also reduced the proinflammatory responses of microglia and astrocytes isolated from adult mice.

  9. Tegumental alterations of adult Schistosoma japonicum harbored in mice treated with a single oral dose of mefloquine.

    PubMed

    Xiao, Shu-hua; Xue, Jian; Shen, Bing-gui

    2010-02-01

    To observe the effect of mefloquine on the tegument of adult Schistosoma japonicum harbored in mice. Twelve mice were each infected with 60-80 S. japonicum cercariae. At 35 days post-infection, 10 mice were treated orally with mefloquine at a single dose of 400 mg/kg. Two mice were sacrificed at 8 h, 24 h, 3 days, 7 days, and 14 days post-treatment respectively, and schistosomes were collected by the perfusion technique, fixed and examined under a scanning electron microscope. Schistosomes obtained from the remaining 2 untreated mice served as control. 8 h post-treatment, male and female schistosomes showed focal swelling of the worm body accompanied by extensive swelling, tough junction and fusion of tegumental ridges. Meanwhile, some of the sensory structures showed enlargement and part of them collapsed. 24 h after mefloquine administration, head portion of some male and female worms revealed high swelling accompanied by severe damage to oral sucker. 3 days post-treatment, focal swelling of worm body along the whole worm was universal. In some male and female worms, the damaged tegument fused together to form a large mass protruding from the tegumental surface. In addition, focal or extensive peeling of tegumental ridges was seen or collapse of enlarged sensory structure resulted in formation of hole-like appearance. 7 days post administration, focal swelling of worm body and damage to tegument induced by mefloquine were similar to those aforementioned, but focal peeling, collapse of enlarged sensory structures, and deformation of oral sucker in male and female worms were universal. 14 days post-treatment, individual male worm survived the treatment revealed normal appearance of tegumental ridges in head portion, although light focal swelling of worm body was still observed. Mefloquine causes focal swelling of worm body, extensive and severe damage to the tegument in adult S. japonicum.

  10. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    PubMed

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  11. Immunization of Aged Mice with a Pneumococcal Conjugate Vaccine Combined with an Unmethylated CpG-Containing Oligodeoxynucleotide Restores Defective Immunoglobulin G Antipolysaccharide Responses and Specific CD4+-T-Cell Priming to Young Adult Levels

    DTIC Science & Technology

    2006-04-01

    aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher...sepsis, is significantly elevated in the elderly relative to young adults (37, 60). Defective innate immunity including diminished neutrophil and...young adult recipients (15). Exposure to inflammatory cy- tokines in vivo could restore the defective CD4-T-cell function in aged mice (20). Pn

  12. Enriched environment increases neurogenesis and improves social memory persistence in socially isolated adult mice.

    PubMed

    Monteiro, Brisa M M; Moreira, Fabrício A; Massensini, André R; Moraes, Márcio F D; Pereira, Grace S

    2014-02-01

    Social memory consists of the information necessary to identify and recognize cospecifics and is essential to many forms of social interaction. Social memory persistence is strongly modulated by the animal's experiences. We have shown in previous studies that social isolation (SI) in adulthood impairs social memory persistence and that an enriched environment (EE) prevents this impairment. However, the mechanisms involved in the effects of SI and EE on social memory persistence remain unknown. We hypothesized that the mechanism by which SI and EE affect social memory persistence is through their modulation of neurogenesis. To investigate this hypothesis, adult mice were submitted to 7 days of one of the following conditions: group-housing in a standard (GH) or enriched environment (GH+EE); social isolation in standard (SI) or enriched environment (SI+EE). We observed an increase in the number of newborn neurons in the dentate gyrus of the hippocampus (DG) and glomerular layer of the olfactory bulb (OB) in both GH+EE and SI+EE mice. However, this increase of newborn neurons in the granule cell layer of the OB was restricted to the GH+EE group. Furthermore, both SI and SI+EE groups showed less neurogenesis in the mitral layer of the OB. Interestingly, the performance of the SI mice in the buried food-finding task was inferior to that of the GH mice. To further analyze whether increased neurogenesis is in fact the mechanism by which the EE improves social memory persistence in SI mice, we administered the mitotic inhibitor AraC or saline directly into the lateral ventricles of the SI+EE mice. We found that the AraC treatment decreased cell proliferation in both the DG and OB, and impaired social memory persistence in the SI+EE mice. Taken together, our results strongly suggest that neurogenesis is what supports social memory persistence in socially isolated mice. © 2013 Wiley Periodicals, Inc.

  13. Developmental Exposure of Mice to TCDD Elicits a Similar Uterine Phenotype in Adult Animals as Observed in Women with Endometriosis

    PubMed Central

    Nayyar, Tultul; Bruner-Tran, Kaylon L.; Piestrzeniewicz-Ulanska, Dagmara; Osteen, Kevin G.

    2007-01-01

    Whether environmental toxicants impact an individual woman’s risk for developing endometriosis remains uncertain. Although the growth of endometrial glands and stroma at extra-uterine sites is associated with retrograde menstruation, our studies suggest that reduced responsiveness to progesterone may increase the invasive capacity of endometrial tissue in women with endometriosis. Interestingly, our recent studies using isolated human endometrial cells in short-term culture suggest that experimental exposure to the environmental contaminant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) can alter the expression of progesterone receptor isotypes. Compared to adult exposure, toxicant exposure during development can exert a significantly greater biological impact, potentially affecting the incidence of endometriosis in adults. To address this possibility, we exposed mice to TCDD at critical developmental time points and subsequently examined uterine progesterone receptor expression and steroid responsive transforming growth factor-β2 expression in adult animals. We find that the uterine phenotype of toxicant-exposed mice is markedly similarly to the endometrial phenotype of women with endometriosis. PMID:17056225

  14. T-cell-dependent control of acute Giardia lamblia infections in mice.

    PubMed

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  15. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  16. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    PubMed

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.

  17. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  18. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies.

    PubMed

    Ohtsuka, Masato; Miura, Hiromi; Gurumurthy, Channabasavaiah B; Kimura, Minoru; Inoko, Hidetoshi; Yoshimura, Shinichi; Sato, Masahiro

    2012-11-01

    We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.

  19. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice.

    PubMed

    Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling

    2018-01-01

    Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.

  20. Effectiveness of nurse-led cardiac clinics in adult patients with a diagnosis of coronary heart disease.

    PubMed

    Page, Tamara; Lockwood, Craig; Conroy-Hiller, Tiffany

    2005-02-01

    Background  Coronary heart disease is the major cause of illness and death in Western countries and this is likely to increase as the average age of the population rises. Consumers with established coronary heart disease are at the highest risk of experiencing further coronary events. Lifestyle measures can contribute significantly to a reduction in cardiovascular mortality in established coronary heart disease. Improved management of cardiac risk factors by providing education and referrals as required has been suggested as one way of maintaining quality care in patients with established coronary heart disease. There is a need to ascertain whether or not nurse-led clinics would be an effective adjunct for patients with coronary heart disease to supplement general practitioner advice and care. Objectives  The objective of this review was to present the best available evidence related to nurse-led cardiac clinics. Inclusion criteria  This review considered any randomised controlled trials that evaluated cardiac nurse-led clinics. In the absence of randomised controlled trials, other research designs such as non-randomised controlled trials and before and after studies were considered for inclusion. Participants were adults (18 years and older) with new or existing coronary heart disease. The interventions of interest to the review included education, assessment, consultation, referral and administrative structures. Outcomes measured included adverse event rates, readmissions, admissions, clinical and cost effectiveness, consumer satisfaction and compliance with therapy. Results  Based on the search terms used, 80 papers were initially identified and reviewed for inclusion; full reports of 24 of these papers were retrieved. There were no papers included that addressed cost effectiveness or adverse events; and none addressed the outcome of referrals. A critical appraisal of the 24 remaining papers identified a total of six randomised controlled trials that

  1. Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain.

    PubMed

    Siegel, Jennifer J; Chitwood, Raymond A; Ding, James M; Payne, Clayton; Taylor, William; Gray, Richard; Zemelman, Boris V; Johnston, Daniel

    2017-08-02

    Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain. SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC

  2. Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice.

    PubMed

    Egan, Olivia K; Inglis, Megan A; Anderson, Greg M

    2017-04-05

    The hormone leptin indirectly communicates metabolic information to brain neurons that control reproduction, using GABAergic circuitry. Agouti-related peptide (AgRP) neurons in the arcuate nucleus are GABAergic, express leptin receptors (LepR), and are known to influence reproduction. This study tested whether leptin actions on AgRP neurons are required and sufficient for puberty onset and subsequent fertility. First, Agrp- Cre and Lepr- flox mice were used to target deletion of LepR to AgRP neurons. AgRP-LepR knock-out female mice exhibited mild obesity and adiposity as described previously, as well as a significant delay in the pubertal onset of estrous cycles compared with control animals. No significant differences in male puberty onset or adult fecundity in either sex were observed. Next, mice with a floxed polyadenylation signal causing premature transcriptional termination of the Lepr gene were crossed with AgRP-Cre mice to generate mice with AgRP neuron-specific rescue of LepR. Lepr-null control males and females were morbidly obese and exhibited delayed puberty onset, no evidence of estrous cycles, and minimal fecundity. Remarkably, AgRP-LepR rescue partially or fully restored all of these reproductive attributes to levels similar to those of LepR-intact controls despite minimal rescue of metabolic function. These results indicate that leptin signaling in AgRP neurons is sufficient for puberty onset and normal adult fecundity in both sexes when leptin signaling is absent in all other cells and that in females, the absence of AgRP neuron leptin signaling delays puberty. These actions appear to be independent of leptin's metabolic effects. SIGNIFICANCE STATEMENT Sexual maturation and fertility are dispensable at the individual level but critical for species survival. Conditions such as nutritional imbalance may therefore suppress puberty onset and fertility in an individual. In societies characterized by widespread obesity, the sensitivity of reproduction to

  3. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.

    PubMed

    Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore

    2017-10-01

    Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO 2 max) was also unaffected by maternal WD, but HR had

  4. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice.

    PubMed

    Townsend, Brigitte E; Johnson, Rodney W

    2016-01-01

    Increased neuroinflammation and oxidative stress resulting from heightened microglial activation are associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    PubMed Central

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  6. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function

    PubMed Central

    Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.

    2017-01-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989

  7. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    PubMed

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  8. Impact of nurse-led behavioural counselling to improve metabolic health and physical activity among adults with mental illness.

    PubMed

    Fraser, Sarah J; Brown, Wendy J; Whiteford, Harvey A; Burton, Nicola W

    2018-04-01

    The life expectancy of adults with mental illness is significantly less than that of the general population, and this is largely due to poor physical health. Behavioural counselling can improve physical health indicators among people with non-communicable disease. This repeated-measures, single-group intervention trial evaluated the effects of a 19-week behavioural counselling programme on metabolic health indicators and physical activity levels of outpatient adults with mental illness. Sixteen participants completed the intervention that comprised individual face-to-face counselling sessions with a registered nurse every 3 weeks, and progress reviews with a medical practitioner every 6 weeks. Assessment included self-report and objective measurement of physical activity, and measures of blood pressure and anthropometry. Statistically-significant changes were demonstrated between baseline and post intervention for participants' waist circumference (P = 0.035) and waist-to-height ratio (P = 0.037). Non-significant improvements were demonstrated in weight and physical activity. The findings indicated that adults with mental illness can engage in a nurse-led behavioural counselling intervention, with improvements in some metabolic health measures after 19 weeks. It is recommended that behavioural counselling programmes for adults with mental illness be sustained over time and have an 'open door' policy to allow for attendance interruptions, such as hospitalization. © 2017 Australian College of Mental Health Nurses Inc.

  9. Neurofibromin Modulates Adult Hippocampal Neurogenesis and Behavioral Effects of Antidepressants

    PubMed Central

    Li, Yun; Li, Yanjiao; McKay, Renée M.; Riethmacher, Dieter; Parada, Luis F.

    2012-01-01

    Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment, adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1), a tumor suppressor with RAS-GAP activity,in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and, over time, led to spontaneous antidepressive-like behaviors. Thus, our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis, and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors. PMID:22399775

  10. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  11. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  12. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice.

    PubMed

    Gómez, Olga; Ballester-Lurbe, Begoña; Mesonero, José E; Terrado, José

    2011-10-01

    Peripheral nerve axotomy in adult mice elicits a complex response that includes increased glucose uptake in regenerating nerve cells. This work analyses the expression of the neuronal glucose transporters GLUT3, GLUT4 and GLUT8 in the facial nucleus of adult mice during the first days after facial nerve axotomy. Our results show that whereas GLUT3 levels do not vary, GLUT4 and GLUT8 immunoreactivity increases in the cell body of the injured motoneurons after the lesion. A sharp increase in GLUT4 immunoreactivity was detected 3 days after the nerve injury and levels remained high on Day 8, but to a lesser extent. GLUT8 also increased the levels but later than GLUT4, as they only rose on Day 8 post-lesion. These results indicate that glucose transport is activated in regenerating motoneurons and that GLUT4 plays a main role in this function. These results also suggest that metabolic defects involving impairment of glucose transporters may be principal components of the neurotoxic mechanisms leading to motoneuron death. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  13. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model.

    PubMed

    Vargas, Jessica Y; Fuenzalida, Marco; Inestrosa, Nibaldo C

    2014-02-05

    The role of the Wnt signaling pathway during synaptic development has been well established. In the adult brain, different components of Wnt signaling are expressed, but little is known about its role in mature synapses. Emerging in vitro studies have implicated Wnt signaling in synaptic plasticity. Furthermore, activation of Wnt signaling has shown to protect against amyloid-β-induced synaptic impairment. The present study provides the first evidence that in vivo activation of Wnt signaling improves episodic memory, increases excitatory synaptic transmission, and enhances long-term potentiation in adult wild-type mice. Moreover, the activation of Wnt signaling also rescues memory loss and improves synaptic dysfunction in APP/PS1-transgenic mice that model the amyloid pathology of Alzheimer's diseases. These findings indicate that Wnt signaling modulates cognitive function in the adult brain and could be a novel promising target for Alzheimer's disease therapy.

  14. Enhancement of vision by monocular deprivation in adult mice.

    PubMed

    Prusky, Glen T; Alam, Nazia M; Douglas, Robert M

    2006-11-08

    Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.

  15. Endothelial Depletion of Acvrl1 in Mice Leads to Arteriovenous Malformations Associated with Reduced Endoglin Expression

    PubMed Central

    Allinson, Kathleen R.; Redgrave, Rachael E.; Zhai, Zhenhua; Oh, S. Paul; Fruttiger, Marcus; Arthur, Helen M.

    2014-01-01

    Rare inherited cardiovascular diseases are frequently caused by mutations in genes that are essential for the formation and/or function of the cardiovasculature. Hereditary Haemorrhagic Telangiectasia is a familial disease of this type. The majority of patients carry mutations in either Endoglin (ENG) or ACVRL1 (also known as ALK1) genes, and the disease is characterized by arteriovenous malformations and persistent haemorrhage. ENG and ACVRL1 encode receptors for the TGFβ superfamily of ligands, that are essential for angiogenesis in early development but their roles are not fully understood. Our goal was to examine the role of Acvrl1 in vascular endothelial cells during vascular development and to determine whether loss of endothelial Acvrl1 leads to arteriovenous malformations. Acvrl1 was depleted in endothelial cells either in early postnatal life or in adult mice. Using the neonatal retinal plexus to examine angiogenesis, we observed that loss of endothelial Acvrl1 led to venous enlargement, vascular hyperbranching and arteriovenous malformations. These phenotypes were associated with loss of arterial Jag1 expression, decreased pSmad1/5/8 activity and increased endothelial cell proliferation. We found that Endoglin was markedly down-regulated in Acvrl1-depleted ECs showing endoglin expression to be downstream of Acvrl1 signalling in vivo. Endothelial-specific depletion of Acvrl1 in pups also led to pulmonary haemorrhage, but in adult mice resulted in caecal haemorrhage and fatal anaemia. We conclude that during development, endothelial Acvrl1 plays an essential role to regulate endothelial cell proliferation and arterial identity during angiogenesis, whilst in adult life endothelial Acvrl1 is required to maintain vascular integrity. PMID:24896812

  16. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    PubMed

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  17. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  18. Characterization of a Unique Cell Population Marked by Transgene Expression in the Adult Cochlea of Nestin-CreERT2/tdTomato-Reporter Mice

    PubMed Central

    Chow, Cynthia L.; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P.

    2015-01-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreERT2/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multi-potent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies amongst these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells co-localized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not co-localize with the Schwann cell marker Krox20, spiral ganglion marker NF200, or GFAP-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreERT2/tdTomato mice remains unclear however these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  19. Effect of standardized extract of Bacopa monnieri (CDRI-08) on testicular functions in adult male mice.

    PubMed

    Patel, Shishir Kumar; Singh, Shilpi; Singh, Hemant Kumar; Singh, Shio Kumar

    2017-02-02

    Bacopa monnieri (BM) has been used in India since the time of Rig-Veda for augmentation of learning, memory, brain health etc. The memory augmenting effect of BM is well documented. CDRI-08 is a standardized extract of Bacopa monnieri, but its effect on the male reproductive health has not been investigated. Therefore, the aim of the present study was to examine the effect of CDRI-08 administration on the male reproductive organs with special emphasis on testis in adult mice. CDRI-08, containing at least 55% bacosides (the major constituent of BM), was investigated for its effect on testicular functions in adult Parkes (P) mice. A suspension of CDRI-08 was orally administered in doses of 40 and 80mgkg -1 body weight day -1 for 28 days and various male reproductive end points were evaluated. Compared to control, CDRI-08 treatment caused a significant increase (p<0.05) in spermatogenic cell density (germinal epithelial height: control, 55.03±4.22 vs 40mg, 67.15±2.65 and 80mg, 69.93±3.76; and tubular diameter: control, 206.55±2.62 vs 80mg, 253.23±12.19), PCNA index (control, 59.85±2.09 vs 40mg, 82.17±1.56 and 80mg, 84.05±3.51) and in steroidogenic indices in the testis, and in sperm viability (control, 0.67±0.010 vs 80mg, 0.80±0.04) in cauda epididymidis of the treated mice. On the other hand, however, the same treatment caused a significant decrease (p<0.05) in abnormal sperm morphology (control, 21.72±1.06 vs 40mg, 10.63±1.50 and 80mg, 15.86±0.87) in cauda epididymidis, and in lipid peroxidation level in testis of the treated mice compared to controls. The results suggest that treatment with CDRI-08 extract improves sperm quality, and spermatogenic cell density and steroidogenic indices in the testis of P mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    PubMed

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  2. Plasticity of adipose tissue in response to fasting and refeeding in male mice.

    PubMed

    Tang, Hao-Neng; Tang, Chen-Yi; Man, Xiao-Fei; Tan, Shu-Wen; Guo, Yue; Tang, Jun; Zhou, Ci-La; Zhou, Hou-De

    2017-01-01

    Fasting is the most widely prescribed and self-imposed strategy for treating excessive weight gain and obesity, and has been shown to exert a number of beneficial effects. The aim of the present study was to determine the exact role of fasting and subsequent refeeding on fat distribution in mice. C57/BL6 mice fasted for 24 to 72 h and were then subjected to refeeding for 72 h. At 24, 48 and 72 h of fasting, and 12, 24, 48 and 72 h of refeeding, the mice were sacrificed, and serum and various adipose tissues were collected. Serum biochemical parameters, adipose tissue masses and histomorphological analysis of different depots were detected. MRNA was isolated from various adipose tissues, and the expressions of thermogenesis, visceral signature and lipid metabolism-related genes were examined. The phenotypes of adipose tissues between juvenile and adult mice subjected to fasting and refeeding were also compared. Fasting preferentially consumed mesenteric fat mass and decreased the cell size of mesenteric depots; however, refeeding recovered the mass and morphology of inguinal adipose tissues preferentially compared with visceral depots. Thermogenesis-related gene expression in the inguinal WAT and interscapular BAT were suppressed. Mitochondrial biogenesis was affected by fasting in a depot-specific manner. Furthermore, a short period of fasting led to an increase in visceral signature genes ( Wt1, Tcf21 ) in subcutaneous adipose tissue, while the expression of these genes decreased sharply as the fasting time increased. Additionally, lipogenesis-related markers were enhanced to a greater extent greater in subcutaneous depots compared with those in visceral adipose tissues by refeeding. Although similar phenotypic changes in adipose tissue were observed between juvenile mice and adult mice subjected to fasting and refeeding, the alterations appeared earlier and more sensitively in juvenile mice. Fasting preferentially consumes lipids in visceral adipose tissues

  3. Spatial Discrimination Reversal and Incremental Repeated Acquisition in Adolescent and Adult BALB/c Mice

    PubMed Central

    Shen, Andrew Nathanael; Pope, Derek A.; Hutsell, Blake A.; Newland, M. Christopher

    2015-01-01

    Adolescence is characterized by neural and behavior development that includes increases in novel experiences and impulsive choice. Experimental rodent models can characterize behavior phenotypes that typify adolescence. The present experiment was designed to characterize differences between adolescent (post-natal day (PND) 34 - 60) and adult (PND 70 - 96) BALB/c mice using a response-initiated spatial discrimination reversal (SDR) and incremental repeated acquisition of response chains (IRA) procedures. During SDR, adolescents omitted more trials and were slower to initiate trials than adults, but the age groups did not differ on accuracy and perseveration measures. During IRA, adolescents displayed poorer overall performance (measured by progress quotient), lower accuracy at individual chain links, and completed fewer long response chains (>3 links) than adults. In both procedures (SDR and IRA), the poorer performance of adolescents appeared to be related to the use of a response device that was spatially removed from reinforcer delivery. These results indicate that SDR and IRA performance can be established during the brief rodent adolescent period but that these two age groups’ performances differ. We hypothesize that adolescent behavior is more sensitive than adult behavior to the spatiotemporal distance between response device and location of reinforcer delivery. PMID:26051193

  4. Age-related T2 changes in hindlimb muscles of mdx mice.

    PubMed

    Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A

    2016-01-01

    Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.

  5. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  6. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice.

    PubMed

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Brix, Klaudia; Köhrle, Josef; Moeller, Lars Christian; Zwanziger, Denise; Führer, Dagmar

    2017-12-22

    Sex and age play a role in the prevalence of thyroid dysfunction (TD), but their interrelationship for manifestation of hyper- and hypothyroidism is still not well understood. Using a murine model, we asked whether sex impacts the phenotypes of hyper- and hypothyroidism at two life stages. Hyper- and hypothyroidism were induced by i.p. T4 or MMI/ClO 4 -/LoI treatment over 7 weeks in 12- and 20-months-old female and male C57BL/6N mice. Control animals underwent PBS treatment (n = 7-11 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination and strength) and serum thyroid hormone (TH) status. Distinct sex impact was found in eu- and hyperthyroid mice, while phenotypic traits of hypothyroidism were similar in male and female mice. No sex difference was found in TH status of euthyroid mice; however, T4 treatment resulted in twofold higher TT4, FT4 and FT3 serum concentrations in adult and old females compared to male animals. Hyperthyroid females consistently showed higher locomotor activity and better coordination but more impairment of muscle function by TH excess at adult age. Importantly and in contrast to male mice, adult and old hyperthyroid female mice showed increased body weight. Higher body temperature in female mice was confirmed in all age groups. No sex impact was found on heart rate irrespective of TH status in adult and old mice. By comparison of male and female mice with TD at two life stages, we found that sex modulates TH action in an organ- and function-specific manner. Sex differences were more pronounced under hyperthyroid conditions. Importantly, sex-specific differences in features of TD in adult and old mice were not conclusively explained by serum TH status in mice.

  7. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism.

    PubMed

    Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise

    2015-07-15

    Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Generation of cloned mice from adult neurons by direct nuclear transfer.

    PubMed

    Mizutani, Eiji; Oikawa, Mami; Kassai, Hidetoshi; Inoue, Kimiko; Shiura, Hirosuke; Hirasawa, Ryutaro; Kamimura, Satoshi; Matoba, Shogo; Ogonuki, Narumi; Nagatomo, Hiroaki; Abe, Kuniya; Wakayama, Teruhiko; Aiba, Atsu; Ogura, Atsuo

    2015-03-01

    Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain "unclonable" for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark-dimethylated histone H3 lysine 9 (H3K9me2)-and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos. © 2015 by the Society for the Study of Reproduction, Inc.

  9. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  10. Discrimination and avoidance learning in adult mice following developmental exposure to diisopropylfluorophosphate.

    PubMed

    Levi, Yifat; Kofman, Ora; Schwebel, Margalit; Shaldubina, Alona

    2008-02-01

    Exposure to acetylcholinesterase inhibitors during development was shown in the past to induce sex-dependent changes in locomotion and specific cognitive and emotional tests in rodents. Adult mice that had been treated with 0.5 mg/kg diisopropylfluorphosphate (DFP), on post-natal days 14-20 were tested on active avoidance and a set-shifting task. DFP pre-treatment did not affect the active avoidance task, but impaired performance on the extra-dimensional shift task. DFP-treated females showed more general deficits in the acquisition of simple discrimination, intra-dimensional shift, extra-dimensional shift and reversal learning. These data suggest that pre-weanling exposure to cholinesterase inhibitors may have long-term consequences on attentional capabilities.

  11. Comparison of the effects of bisphenol A alone and in a combination with X-irradiation on sperm count and quality in male adult and pubescent mice.

    PubMed

    Dobrzyńska, Małgorzata M; Jankowska-Steifer, Ewa A; Tyrkiel, Ewa J; Gajowik, Aneta; Radzikowska, Joanna; Pachocki, Krzysztof A

    2014-11-01

    Bisphenol A (BPA) is employed in the manufacturing of epoxy, polyester-styrene, and polycarbonate resins, which are used for the production of baby and water bottles and reusable containers, food and beverage packing, dental fillings and sealants. The study was designed to examine the effects of 8-week exposure (a full cycle of spermatogenesis) to BPA alone and in a combination with X-irradiation on the reproductive organs and germ cells of adult and pubescent male mice. Pzh:Sfis male mice were exposed to BPA (5, 10, and 20 mg/kg) or X-rays (0.05 Gy) or to a combination of both (0.05 Gy + 5 mg/kg bw BPA). The following parameters were examined: sperm count, sperm motility, sperm morphology, and DNA damage in male gametes. Both BPA and X-rays alone diminished sperm quality. BPA exposure significantly reduced sperm count in pubescent males compared to adult mice, with degenerative changes detected in seminiferous epithelium. This may suggest a higher susceptibility of germ cells of younger males to BPA action. Combined BPA with X-ray treatment enhanced the harmful effect induced by BPA alone in male germ cells of adult males, whereas low-dose irradiation showed sometimes protective or additive effects in pubescent mice. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  12. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice

    PubMed Central

    Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.

    2008-01-01

    Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425

  13. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    PubMed Central

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  14. Zika virus-induced acute myelitis and motor deficits in adult interferon αβ/γ receptor knockout mice.

    PubMed

    Zukor, Katherine; Wang, Hong; Siddharthan, Venkatraman; Julander, Justin G; Morrey, John D

    2018-06-01

    Zika virus (ZIKV) has received widespread attention because of its effect on the developing fetus. It is becoming apparent, however, that severe neurological sequelae, such as Guillian-Barrë syndrome (GBS), myelitis, encephalitis, and seizures can occur after infection of adults. This study demonstrates that a contemporary strain of ZIKV can widely infect astrocytes and neurons in the brain and spinal cord of adult, interferon α/β receptor knockout mice (AG129 strain) and cause progressive hindlimb paralysis, as well as severe seizure-like activity during the acute phase of disease. The severity of hindlimb motor deficits correlated with increased numbers of ZIKV-infected lumbosacral spinal motor neurons and decreased numbers of spinal motor neurons. Electrophysiological compound muscle action potential (CMAP) amplitudes in response to stimulation of the lumbosacral spinal cord were reduced when obvious motor deficits were present. ZIKV immunoreactivity was high, intense, and obvious in tissue sections of the brain and spinal cord. Infection in the brain and spinal cord was also associated with astrogliosis as well as T cell and neutrophil infiltration. CMAP and histological analysis indicated that peripheral nerve and muscle functions were intact. Consequently, motor deficits in these circumstances appear to be primarily due to myelitis and possibly encephalitis as opposed to a peripheral neuropathy or a GBS-like syndrome. Thus, acute ZIKV infection of adult AG129 mice may be a useful model for ZIKV-induced myelitis, encephalitis, and seizure activity.

  15. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation.

  16. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  17. Using nursing intervention classification in an advance practice registered nurse-led preventive model for adults aging with developmental disabilities.

    PubMed

    Hahn, Joan Earle

    2014-09-01

    To describe the most frequently reported and the most central nursing interventions in an advance practice registered nurse (APRN)-led in-home preventive intervention model for adults aging with developmental disabilities using the Nursing Intervention Classification (NIC) system. A descriptive data analysis and a market basket analysis were conducted on de-identified nominal nursing intervention data from two home visits conducted by nurse practitioners (NPs) from October 2010 to June 2012 for 80 community-dwelling adults with developmental disabilities, ages 29 to 68 years. The mean number of NIC interventions was 4.7 in the first visit and 6.0 in the second visit and last visit. NPs reported 45 different intervention types as classified using a standardized language, with 376 in Visit One and 470 in Visit Two. Approximately 85% of the sample received the Health education intervention. The market basket analysis revealed common pairs, triples, and quadruple sets of interventions in this preventive model. The NIC nursing interventions that occurred together repeatedly were: Health education, Weight management, Nutrition management, Health screening, and Behavior management. Five NIC interventions form the basis of an APRN-led preventive intervention model for individuals aging with lifelong disability, with health education as the most common intervention, combined with interventions to manage weight and nutrition, promote healthy behaviors, and encourage routine health screening. Less frequently reported NIC interventions suggest the need to tailor prevention to individual needs, whether acute or chronic. APRNs employing prevention among adults aging with developmental disabilities must anticipate the need to focus on health education strategies for health promotion and prevention as well as tailor and target a patient-centered approach to support self-management of health to promote healthy aging in place. These NIC interventions serve not only as a guide for

  18. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice.

    PubMed

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-06-20

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.

  19. Early Life Stress Differentially Modulates Distinct Forms of Brain Plasticity in Young and Adult Mice

    PubMed Central

    Reichardt, Wilfried; Clark, Kristin; Geiger, Julia; Gross, Claus M.; Heyer, Andrea; Neagu, Valentin; Bhatia, Harsharan; Atas, Hasan C.; Fiebich, Bernd L.; Bischofberger, Josef; Haas, Carola A.; Normann, Claus

    2012-01-01

    Background Early life trauma is an important risk factor for many psychiatric and somatic disorders in adulthood. As a growing body of evidence suggests that brain plasticity is disturbed in affective disorders, we examined the short-term and remote effects of early life stress on different forms of brain plasticity. Methodology/Principal Findings Mice were subjected to early deprivation by individually separating pups from their dam in the first two weeks after birth. Distinct forms of brain plasticity were assessed in the hippocampus by longitudinal MR volumetry, immunohistochemistry of neurogenesis, and whole-cell patch-clamp measurements of synaptic plasticity. Depression-related behavior was assessed by the forced swimming test in adult animals. Neuropeptides and their receptors were determined by real-time PCR and immunoassay. Early maternal deprivation caused a loss of hippocampal volume, which returned to normal in adulthood. Adult neurogenesis was unaffected by early life stress. Long-term synaptic potentiation, however, was normal immediately after the end of the stress protocol but was impaired in adult animals. In the forced swimming test, adult animals that had been subjected to early life stress showed increased immobility time. Levels of substance P were increased both in young and adult animals after early deprivation. Conclusion Hippocampal volume was affected by early life stress but recovered in adulthood which corresponded to normal adult neurogenesis. Synaptic plasticity, however, exhibited a delayed impairment. The modulation of synaptic plasticity by early life stress might contribute to affective dysfunction in adulthood. PMID:23071534

  20. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE

    EPA Science Inventory

    REPRODUCTIVE EFFECTS OF THE WATER DISINFECTANT BYPRODUCT BROMOCHLOROACETIC ACID (BCA) IN ADULT AND JUVENILE MALE C57BL/6 MICE.
    JC Rockett, JC Luft, JB Garges and DJ Dix. Reproductive Toxicology Division, USEPA, RTP, NC, USA.
    Sponsor: G Klinefelter
    The development of wate...

  2. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    PubMed

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  3. Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice.

    PubMed

    Nishijima, Takeshi; Llorens-Martín, María; Tejeda, Gonzalo Sanchez; Inoue, Koshiro; Yamamura, Yuhei; Soya, Hideaki; Trejo, José Luis; Torres-Alemán, Ignacio

    2013-05-15

    While increasing evidence demonstrates that physical exercise promotes brain health, little is known on how the reduction of physical activity affects brain function. We investigated whether the cessation of wheel running alters anxiety-like and depression-like behaviors and its impact on adult hippocampal neurogenesis in mice. Male C57BL/6 mice (4 weeks old) were assigned to one of the following groups, and housed until 21 weeks old; (1) no exercise control (noEx), housed in a standard cage; (2) exercise (Ex), housed in a running wheel cage; and (3) exercise-no exercise (Ex-noEx), housed in a running wheel cage for 8 weeks and subsequently in a standard cage. Behavioral evaluations suggested that Ex-noEx mice were more anxious compared to noEx control mice, but no differences were found in depression-like behavior. The number of BrdU-labeled surviving cells in the dentate gyrus was significantly higher in Ex but not in Ex-noEx compared with noEx, indicating that the facilitative effects of exercise on cell survival are reversible. Surprisingly, the ratio of differentiation of BrdU-positive cells to doublecortin-positive immature neurons was significantly lower in Ex-noEx compared to the other groups, suggesting that the cessation of wheel running impairs an important component of hippocampal neurogenesis in mice. These results indicate that hippocampal adaptation to physical inactivity is not simply a return to the conditions present in sedentary mice. As the impaired neurogenesis is predicted to increase a vulnerability to stress-induced mood disorders, the reduction of physical activity may contribute to a greater risk of these disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation

    PubMed Central

    Weiss, Dana A.; Rodriguez, Esequiel; Cunha, Tristan; Menshenina, Julia; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald

    2013-01-01

    Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of “non-traditional” mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms. PMID:21893161

  5. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice.

    PubMed

    Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R; Radden, Taylor; Dunson, David B; Fisher, Simon E; Jarvis, Erich D

    2016-01-01

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  6. Adolescent Social Defeat Induced Alterations in Social Behavior and Cognitive Flexibility in Adult Mice: Effects of Developmental Stage and Social Condition

    PubMed Central

    Zhang, Fan; Yuan, Sanna; Shao, Feng; Wang, Weiwen

    2016-01-01

    Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using “resident-intruder” stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In Experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, postnatal days [PND] 28–37), late adolescence (LA, PND 38–47), and adulthood (ADULT, PND 70–79) and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST), were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning (RL) on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting (EDS) in adulthood but not during adolescence. In Experiment 2, we further examined the effects of social condition (isolation or social housing after stress) on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in Experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive

  7. Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice

    PubMed Central

    Huang, Liang; Hu, Fang; Xie, Xiaoling; Harder, Jeffery; Fernandes, Kimberly; Zeng, Xiang-yun; Libby, Richard; Gan, Lin

    2014-01-01

    Purpose To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs). Methods Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed. Results Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment. Conclusion Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice. PMID:24736625

  8. Phenobarbital Treatment at a Neonatal Age Results in Decreased Efficacy of Omeprazole in Adult Mice

    PubMed Central

    Tien, Yun-Chen; Piekos, Stephanie C.; Pope, Chad

    2017-01-01

    Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters the activity of another drug taken concomitantly. This can lead to decreased drug efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice attempt to avoid potential interactions when multiple drugs are coadministrated; however, there is still a large knowledge gap in understanding how drugs taken in the past can contribute to DDIs in the future. The goal of this study was to investigate the consequence of neonatal drug exposure on efficacy of other drugs administered up through adult life. We selected a mouse model to test phenobarbital exposure at a neonatal age and its impact on efficacy of omeprazole in adult life. The results of our experiment show an observed decrease in omeprazole’s ability to raise gastric pH in adult mice that received single or multiple doses of phenobarbital at a neonatal age. This effect may be associated with the permanent induction of cytochrome P450 enzymes in adult liver after neonatal phenobarbital treatment. Our data indicates that DDIs may result from drugs administered in the past in an animal model and should prompt re-evaluation of how DDIs are viewed and how to avoid long-term DDIs in clinical practice. PMID:28062542

  9. The Adult Livers of Immunodeficient Mice Support Human Hematopoiesis: Evidence for a Hepatic Mast Cell Population that Develops Early in Human Ontogeny

    PubMed Central

    Muench, Marcus O.; Beyer, Ashley I.; Fomin, Marina E.; Thakker, Rahul; Mulvaney, Usha S.; Nakamura, Masato; Suemizu, Hiroshi; Bárcena, Alicia

    2014-01-01

    The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117++CD203c+ mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38−CD34++ and CD133+CD34++ cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver

  10. Adolescent Mice Demonstrate a Distinct Pattern of Injury after Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Berkner, Justin; Mei, Zhengrong; Alcon, Sasha; Hashim, Jumana; Robinson, Shenandoah; Jantzie, Lauren; Meehan, William P.; Qiu, Jianhua

    2017-01-01

    Abstract Recently, there has been increasing interest in outcomes after repetitive mild traumatic brain injury (rmTBI) (e.g., sports concussions). Although most of the scientific attention has focused on elite athlete populations, the sequelae of rmTBI in children and young adults have not been well studied. Prior TBI studies have suggested that developmental differences in response to injury, including differences in excitotoxicity and inflammation, could result in differences in functional and histopathological outcomes after injury. The purpose of this study is to compare outcomes in adolescent (5-week-old) versus adult (4-month-old) mice in a clinically relevant model of rmTBI. We hypothesized that functional and histopathological outcomes after rmTBI would differ in developing adolescent brains compared with mature adult brains. Male adolescent and adult (C57Bl/6) mice were subjected to a weight drop model of rmTBI (n = 10–16/group). Loss of consciousness (LOC) after each injury was measured. Functional outcomes were assessed including tests of balance (rotorod), spatial memory (Morris water maze), and impulsivity (elevated plus maze). After behavioral testing, brains were assessed for histopathological outcomes including microglial immunolabeling and N-methyl-d-aspartate (NMDA) receptor subunit expression. Injured adolescent mice had longer LOC than injured adult mice compared with their respective sham controls. Compared with sham mice, adolescent and adult mice subjected to rmTBI had impaired balance, increased impulsivity, and worse spatial memory that persisted up to 3 months after injury, and the effect of injury was worse in adolescent than in adult mice in terms of spatial memory. Three months after injury, adolescent and adult mice demonstrated increased ionized calcium binding adaptor 1 (IbA1) immunolabeling compared with sham controls. Compared with sham controls, NMDA receptor subtype 2B (NR2B) expression in the hippocampus was reduced by

  11. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo

  12. Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: a RNA sequencing study.

    PubMed

    Zhang, Yong; Liang, Yupu; Levran, Orna; Randesi, Matthew; Yuferov, Vadim; Zhao, Connie; Kreek, Mary Jeanne

    2017-08-01

    Non-medical use of prescription opioids such as the mu opioid receptor (MOP-r) agonist oxycodone is a growing problem in the USA and elsewhere. There is limited information about oxycodone's impact on diverse gene systems in the brain. The current study was designed to examine how chronic oxycodone self-administration (SA) affects gene expression in the terminal areas of the nigrostriatal and mesolimbic dopaminergic pathways in mice. Adult male C57BL/6J mice underwent a 14-day oxycodone self-administration procedure (4 h/day, 0.25 mg/kg/infusion, FR1) and were euthanized 1 h after the last session. The dorsal and ventral striata were dissected, and total RNAs were extracted. Gene expressions were examined using RNA sequencing. We found that oxycodone self-administration exposure led to alterations of expression in numerous genes related to inflammation/immune functions in the dorsal striatum (54 upregulated genes and 1 downregulated gene) and ventral striatum (126 upregulated genes and 15 downregulated genes), with 38 upregulated genes identified in both brain regions. This study reveals novel neurobiological mechanisms underlying some of the effects of a commonly abused prescription opioid. We propose that inflammation/immune gene systems may undergo a major change during chronic self-administration of oxycodone.

  13. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanchun; Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong; Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however,more » the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest

  14. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice.

    PubMed

    Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David

    2017-04-15

    Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693

  15. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li; Wu, Zhou; Baba, Masashi

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, themore » understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in

  16. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    PubMed

    Platt, Thomas R; Zelmer, Derek A

    2016-02-01

    The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable

  17. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice.

    PubMed

    Fetterman, Jessica L; Pompilius, Melissa; Westbrook, David G; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E; Ballinger, Scott W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  18. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    PubMed

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice

    PubMed Central

    Caulfield, Jasmine I.; Caruso, Michael J.; Michael, Kerry C.; Bourne, Rebecca A.; Chirichella, Nicole R.; Klein, Laura C.; Craig, Timothy; Bonneau, Robert H.; August, Avery; Cavigelli, Sonia A.

    2017-01-01

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7–57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) “Airway inflammation only”, allergen exposure 3 times/week, (2) “Labored breathing only”, methacholine exposure once/week, and (3) “Airway inflammation + Labored breathing”, allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ~20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ~30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ~50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. PMID:28284954

  20. Youth-Led Decision Making in Community Development Grants

    ERIC Educational Resources Information Center

    Blanchet-Cohen, Natasha; Manolson, Sarah; Shaw, Katie

    2014-01-01

    This study examines youth-led decision making (YLDM) among groups of youth who are providers or recipients of community development grants. Focus groups, interviews, and participant observation with 14- to 20-year-olds and supporting adults showed youth have a preference for consensus-based decisions. Youth used due process to reach decisions…

  1. Allotype suppression in an adoptive transfer system in adult mice: the specificity and feedback effects of a monoclonal IgG3 anti-(Igh-1b) allotype antibody.

    PubMed Central

    Curling, E M; Dresser, D W

    1984-01-01

    Using an adoptive transfer system in mice, an allotype-specific suppression has been induced by a monoclonal IgG3 anti-Igh-1b (Hyb 5.7) reagent. Suppression was specific for IgG2a (Igh-1b) and led to a compensatory increase of the Igh-1a response in irradiated mice reconstituted with allotype heterozygous (Igha/b) spleen cells. Suppression, which was not antigen-specific, lasted for at least 1 month after anti-allotype treatment. PMID:6365744

  2. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    PubMed

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  3. Phenobarbital Treatment at a Neonatal Age Results in Decreased Efficacy of Omeprazole in Adult Mice.

    PubMed

    Tien, Yun-Chen; Piekos, Stephanie C; Pope, Chad; Zhong, Xiao-Bo

    2017-03-01

    Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters the activity of another drug taken concomitantly. This can lead to decreased drug efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice attempt to avoid potential interactions when multiple drugs are coadministrated; however, there is still a large knowledge gap in understanding how drugs taken in the past can contribute to DDIs in the future. The goal of this study was to investigate the consequence of neonatal drug exposure on efficacy of other drugs administered up through adult life. We selected a mouse model to test phenobarbital exposure at a neonatal age and its impact on efficacy of omeprazole in adult life. The results of our experiment show an observed decrease in omeprazole's ability to raise gastric pH in adult mice that received single or multiple doses of phenobarbital at a neonatal age. This effect may be associated with the permanent induction of cytochrome P450 enzymes in adult liver after neonatal phenobarbital treatment. Our data indicates that DDIs may result from drugs administered in the past in an animal model and should prompt re-evaluation of how DDIs are viewed and how to avoid long-term DDIs in clinical practice. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  5. Induction of Protective Immune Responses Against Schistosomiasis haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    PubMed Central

    Tallima, Hatem; Dalton, John P.; El Ridi, Rashika

    2015-01-01

    One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P < 0.005) reduction of >50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8–10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1- and type 2-related cytokines and antibody responses. PMID:25852696

  6. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice

    PubMed Central

    Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.

    2016-01-01

    Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans. PMID:27812326

  7. The expression of Fc and complement receptors in young, adult and aged mice.

    PubMed Central

    Vĕtvicka, V; Fornůsek, L; Zídková, J

    1985-01-01

    Age-dependent changes in the expression of Fc receptors (FcR) for different isotypes of immunoglobulins and receptors for C3b, C5b and C3bi fragments of complement on the membranes of peritoneal macrophages were studied with mice of different ages. An age-related increase in expression of Fc receptors for IgM, IgE, IgA, IgG2b and IgG3, and a decrease in the expression of Fc receptors for IgG1 was observed. The expression of FcR on macrophages of donors of different ages corresponded with Fc-receptor mediated phagocytosis. The highest number of C3b-binding macrophages was found in aged mice, in contrast to low numbers of C3bi-binding macrophages at this age. The percentage of C5b-binding macrophages was lowest in adult animals. We also observed effective inhibition of binding of the C3b component of complement by preincubation of macrophages with aggregated IgG and vice versa. These observations suggest that fluctuation in expression of Fc but not C receptors may be important to the generalized changes that occur in macrophage function during development and ageing. PMID:2931351

  8. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males.

    PubMed

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2015-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.

  9. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males

    PubMed Central

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2016-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549

  10. Improving outcomes in adults with epilepsy and intellectual disability (EpAID) using a nurse-led intervention: study protocol for a cluster randomised controlled trial.

    PubMed

    Ring, Howard; Gilbert, Nakita; Hook, Roxanne; Platt, Adam; Smith, Christopher; Irvine, Fiona; Donaldson, Cam; Jones, Elizabeth; Kelly, Joanna; Mander, Adrian; Murphy, Caroline; Pennington, Mark; Pullen, Angela; Redley, Marcus; Rowe, Simon; Wason, James

    2016-06-24

    In adults with intellectual disability (ID) and epilepsy there are suggestions that improvements in management may follow introduction of epilepsy nurse-led care. However, this has not been tested in a definitive clinical trial and results cannot be generalised from general population studies as epilepsy tends to be more severe and to involve additional clinical comorbidities in adults with ID. This trial investigates whether nurses with expertise in epilepsy and ID, working proactively to a clinically defined role, can improve clinical and quality of life outcomes in the management of epilepsy within this population, compared to treatment as usual. The trial also aims to establish whether any perceived benefits represent good value for money. The EpAID clinical trial is a two-arm cluster randomised controlled trial of nurse-led epilepsy management versus treatment as usual. This trial aims to obtain follow-up data from 320 participants with ID and drug-resistant epilepsy. Participants are randomly assigned either to a 'treatment as usual' control or a 'defined epilepsy nurse role' active arm, according to the cluster site at which they are treated. The active intervention utilises the recently developed Learning Disability Epilepsy Specialist Nurse Competency Framework for adults with ID. Participants undergo 4 weeks of baseline data collection, followed by a minimum of 20 weeks intervention (novel treatment or treatment as usual), followed by 4 weeks of follow-up data collection. The primary outcome is seizure severity, including associated injuries and the level of distress manifest by the patient in the preceding 4 weeks. Secondary outcomes include cost-utility analysis, carer strain, seizure frequency and side effects. Descriptive measures include demographic and clinical descriptors of participants and clinical services in which they receive their epilepsy management. Qualitative study of clinical interactions and semi-structured interviews with

  11. Differential effects of social isolation in adolescent and adult mice on behavior and cortical gene expression.

    PubMed

    Lander, Sharon S; Linder-Shacham, Donna; Gaisler-Salomon, Inna

    2017-01-01

    Intact function of the medial prefrontal cortex (mPFC) function relies on proper development of excitatory and inhibitory neuronal populations and on integral myelination processes. Social isolation (SI) affects behavior and brain circuitry in adulthood, but previous rodent studies typically induced prolonged (post-weaning) exposure and failed to directly compare between the effects of SI in adolescent and adulthood. Here, we assessed the impact of a 3-week SI period, starting in mid-adolescence (around the onset of puberty) or adulthood, on a wide range of behaviors in adult male mice. Additionally, we asked whether adolescent SI would differentially affect the expression of excitatory and inhibitory neuronal markers and myelin-related genes in mPFC. Our findings indicate that mid-adolescent or adult SI increase anxiogenic behavior and locomotor activity. However, SI in adolescence uniquely affects the response to the psychotomimetic drug amphetamine, social and novelty exploration and performance in reversal and attentional set shifting tasks. Furthermore, adolescent but not adult SI increased the expression of glutamate markers in the adult mPFC. Our results imply that adolescent social deprivation is detrimental for normal development and may be particularly relevant to the investigation of developmental psychopathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of chronic social defeat stress on behavior and choline acetyltransferase, 78-kDa glucose-regulated protein, and CCAAT/enhancer-binding protein (C/EBP) homologous protein in adult mice.

    PubMed

    Zhao, Tong; Huang, Guang-Biao; Muna, Sushma Shrestha; Bagalkot, Tarique Rajasaheb; Jin, Hong-Mei; Chae, Han-Jung; Chung, Young-Chul

    2013-07-01

    Social defeat stress induces physiological and behavioral symptoms, including anxiety, anhedonia, immune deficits, and altered expression of key brain genes. The present study investigated the effects of social defeat stress on the behaviors and expressions of Chat, Grp78, and chop in the brains of adult mice. Adult mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. In experiment 1, behavioral tests were conducted, and brains were processed for Western blotting at day 27 after stress. In experiment 2, social avoidance tests were conducted, and brains were processed for Western blotting at day 12 after stress. The results indicate decreased and increased locomotion and anxiety behavior in all defeated mice. Decrease in social interaction, increased immobility, and impaired memory performance were only observed in susceptible mice. A decrease in the Chat level at days 12 and 27 was noted in the prefrontal cortex (PFC), amygdala (Amyg), and dorsal hippocampus (HIP) in defeated mice. The expression levels of Grp78 and chop measured on days 12 and 27 were significantly greater in the Amyg of susceptible mice. In the PFC and HIP, defeated mice displayed different patterns in the levels of Grp78 and chop expressions measured on days 12 and 27. The present study demonstrated that chronic social defeat stress in mice produces stress-related behaviors. Different response patterns were noted for Grp78 and chop expression among the groups in terms of brain regions and time-course effects.

  13. Release of endogenous amino acids from the hippocampus and brain stem from developing and adult mice in ischemia.

    PubMed

    Oja, Simo S; Saransaari, Pirjo

    2009-09-01

    The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K(+)-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, L-glutamate and L-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active L-glutamine, L-alanine, L-threonine and L-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K(+) stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.

  14. The bumetanide prodrug BUM5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice.

    PubMed

    Erker, Thomas; Brandt, Claudia; Töllner, Kathrin; Schreppel, Philipp; Twele, Friederike; Schidlitzki, Alina; Löscher, Wolfgang

    2016-05-01

    The loop diuretic bumetanide has been reported to potentiate the antiseizure activity of phenobarbital in rodent models of neonatal seizures, most likely as a result of inhibition of the chloride importer Na-K-Cl cotransporter isoform 1 (NKCC1) in the brain. In view of the intractability of neonatal seizures, the preclinical findings prompted a clinical trial in neonates on bumetanide as an add-on to phenobarbital, which, however, had to be terminated because of ototoxicity and lack of efficacy. We have recently shown that bumetanide penetrates only poorly into the brain, so that we developed lipophilic prodrugs such as BUM5, the N,N-dimethylaminoethylester of bumetanide, which penetrate more easily into the brain and are converted to bumetanide. In the present study, we used a new strategy to test whether BUM5 is more potent than bumetanide in potentiating the antiseizure effect of phenobarbital. Adult mice were made epileptic by pilocarpine, and the antiseizure effects of bumetanide, BUM5, and phenobarbital alone or in combination were determined by the maximal electroshock seizure threshold test. In nonepileptic mice, only phenobarbital exerted seizure threshold-increasing activity, and this was not potentiated by the NKCC1 inhibitors. In contrast, a marked potentiation of phenobarbital by BUM5, but not bumetanide, was determined in epileptic mice. Thus, bumetanide is not capable of potentiating phenobarbital's antiseizure effect in an adult mouse model, which, however, can be overcome by using the prodrug BUM5. These data substantiate that BUM5 is a promising tool compound for target validation and proof-of-concept studies on the role of NKCC1 in brain diseases. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  15. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12.

    PubMed

    Hall, Mark A; Curtis, David J; Metcalf, Donald; Elefanty, Andrew G; Sourris, K; Robb, Lorraine; Gothert, Joachim R; Jane, Stephen M; Begley, C Glenn

    2003-02-04

    Gene targeting studies have shown that the transcription factor SCL is critically important for embryonic hematopoiesis, but the early lethality of SCL null mice has precluded the genetic analysis of its function in the adult. We have now generated a conditional knockout of SCL by using CreLox technology and an IFN-inducible Cre transgenic mouse. Deletion of SCL in adult mice perturbed megakaryopoiesis and erythropoiesis with the loss of early progenitor cells in both lineages. This led to a blunted response to the hematopoietic stress induced by polyinosinic-polycytidylic acid, with a persistently low platelet count and hematocrit compared with controls. In contrast, progenitors of granulocyte and macrophage lineages were not affected, even in the setting of stress. Immature progenitor cells (day 12 colony-forming unit spleen) with multilineage capacity were still present in the SCL null bone marrow, but these progenitors had lost the capacity to generate erythroid and megakaryocyte cells, and colonies were composed of only myeloid cells. These results suggest that SCL is critical for megakaryopoiesis and erythropoiesis, but is dispensable for production of myeloid cells during adult hematopoiesis.

  16. Skin photorejuvenation effects of light-emitting diodes (LEDs): a comparative study of yellow and red LEDs in vitro and in vivo.

    PubMed

    Kim, S K; You, H R; Kim, S H; Yun, S J; Lee, S C; Lee, J B

    2016-10-01

    Red-coloured light-emitting diodes (LEDs) can improve skin photorejuvenation and regeneration by increasing cellular metabolic activity. To evaluate the effectiveness of visible LEDs with specific wavelengths for skin photorejuvenation in vitro and in vivo. Normal human dermal fibroblasts (HDFs) from neonatal foreskin were cultured and irradiated in vitro by LEDs at different wavelengths (410-850 nm) and doses (0-10 J/cm(2) ). In vivo experiments were performed on the skin of hairless mice. Expression of collagen (COL) and matrix metalloproteinases (MMPs) was evaluated by semi-quantitative reverse transcription PCR (semi-qRT-PCR), western blotting and a procollagen type I C-peptide enzyme immunoassay (EIA). Haematoxylin and eosin and Masson trichrome stains were performed to evaluate histological changes. In HDFs, COL I was upregulated and MMP-1 was downregulated in response to LED irradiation at 595 ± 2 and 630 ± 8 nm. In the EIA, a peak result was achieved at a dose of 5 J/cm(2) with LED at 595 ± 2 nm. In vivo, COL I synthesis was upregulated in a dose-dependent manner to both 595 and 630 nm LED irradiation, and this effect was prolonged to 21 days after a single irradiation with a dose of 100 J/cm(2) . These histological changes were consistent with the results of semi-qRT-PCR and western blots. Specific LED treatment with 595 ± 2 and 630 ± 8 nm irradiation was able to modulate COL and MMPs in skin, with the effects persisting for at least 21 days after irradiation. These findings suggest that yellow and red LEDs might be useful tools for skin photorejuvenation. © 2016 British Association of Dermatologists.

  17. Wnt Protein-mediated Satellite Cell Conversion in Adult and Aged Mice Following Voluntary Wheel Running

    PubMed Central

    Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2014-01-01

    Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7+Myf5+ and Pax7+ MyoD+ cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle. PMID:24482229

  18. Recruitment of Mobility Limited Older Adults Into a Facility-Led Exercise-Nutrition Study: The Effect of Social Involvement.

    PubMed

    Corcoran, Michael P; Nelson, Miriam E; Sacheck, Jennifer M; Reid, Kieran F; Kirn, Dylan; Fielding, Roger A; Folta, Sara C

    2016-08-01

    Older adults are among the most challenging population groups to enroll into health-related research. This article describes two methods used by investigators to recruit mobility limited older adults residing at assisted living or senior housing (SH) facilities into a facility-led exercise-nutrition research study. Sedentary older adults were recruited from 42 different assisted living facilities (ALFs) or SH communities. Two different recruitment approaches were used: At 22 sites, investigators conducted heavily advertised informational sessions to recruit participants (Info only). At 20 locations, these sessions were preceded by attendance of a study team member at various activities offered by the facility over the preceding 2 weeks (activity attendance). Population reach, enrollment, personnel cost, and time required to recruit at least five participants at each facility was measured. Reasons for declining participation and withdrawal rate were also measured. Sixty percent more residents elected to be screened for eligibility when study personnel attended an activity offered by the facility. Activity attendance resulted in significantly less time, costs, and participant withdrawals compared with facilities with no activity attendance. Study team member attendance at activities offered by senior living facilities reduces cost and duration of recruitment and improves study retention. Interventions targeting this demographic are likely to benefit from deliberately building trust and familiarity among the resident population at senior living communities as part of the recruitment process. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.

    PubMed

    Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten

    2012-06-01

    Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive

  20. The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice.

    PubMed

    Morgan, Julie A; Singhal, Gaurav; Corrigan, Frances; Jaehne, Emily J; Jawahar, Magdalene C; Baune, Bernhard T

    2018-01-30

    Preclinical studies have demonstrated exercise improves various types of behaviours such as anxiety-like, depression-like, and cognition-like behaviours. However, these findings were largely conducted in studies utilising short-term exercise protocols, and the effects of lifetime exercise on these behaviours remain unknown. This study investigates the behavioural effects of lifetime exercise in normal healthy ageing C57BL/6 mice over the adult lifespan. 12 week-old C57BL/6 mice were randomly assigned to voluntary wheel running or non-exercise (control) groups. Exercise commenced at aged 3 months and behaviours were assessed in young adult (Y), early middle age (M), and old (O) mice (n=11-17/group). The open field and elevated zero maze examined anxiety-like behaviours, depression-like behaviours were quantified with the forced swim test, and the Y maze and Barnes maze investigated cognition-like behaviours. The effects of lifetime exercise were not simply an extension of the effects of chronic exercise on anxiety-like, depression-like, and cognition-like behaviours. Exercise tended to reduce overt anxiety-like behaviours with ageing, and improved recognition memory and spatial learning in M mice as was expected. However, exercise also increased anxiety behaviours including greater freezing behaviour that extended spatial learning latencies in Y female mice in particular, while reduced distances travelled contributed to longer spatial memory and cognitive flexibility latencies in Y and O mice. Lifetime exercise may increase neurogenesis-associated anxiety. This could be an evolutionary conserved adaptation that nevertheless has adverse impacts on cognition-like function, with particularly pronounced effects in Y female mice with intact sex hormones. These issues require careful investigation in future rodent studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. HTLV-1 Infection and Neuropathogenesis in the Context of Rag1-/-γc-/- (RAG1-Hu) and BLT Mice.

    PubMed

    Ginwala, Rashida; Caruso, Breanna; Khan, Zafar K; Pattekar, Ajinkya; Chew, Glen M; Corley, Michael J; Loonawat, Ronak; Jacobson, Steven; Sreedhar, Sreesha; Ndhlovu, Lishomwa C; Jain, Pooja

    2017-09-01

    To date, the lack of a suitable small animal model has hindered our understanding of Human T-cell lymphotropic virus (HTLV)-1 chronic infection and associated neuropathogenesis defined as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The host immune response plays a critical role in the outcome of HTLV-1 infection, which could be better tested in the context of humanized (hu) mice. Thus, we employ here the Balb/c-Rag1 -/- γc -/- or Rag1 as well as Bone marrow-Liver-Thymic (BLT) mouse models for engraftment of human CD34 + hematopoietic stem cells. Flow cytometry and histological analyses confirmed reconstitution of Rag1 and BLT mice with human immune cells. Following HTLV-1 infection, proviral load (PVL) was detected in the blood of Rag-1 and BLT hu-mice as early as 2 weeks post-infection (wpi) with sustained elevation in the subsequent weeks followed by Tax expression. Additionally, infection was compared between adult and neonatal Rag1 mice with both PVL and Tax expression considerably higher in the adult Rag1 mice as compared to the neonates. Establishment of peripheral infection led to lymphocytic infiltration with concomitant Tax expression and resulting myelin disruption within the central nervous system of infected mice. In addition, up-regulation in the expression of several immune checkpoint mediators such as programmed cell death-1 (PD-1), T-cell Ig and ITIM domain (TIGIT), and T cell Ig and mucin domain-3 protein (Tim-3) were observed on CD8 + T cells in various organs including the CNS of infected hu-mice. Collectively, these studies represent the first attempt to establish HTLV-1 neuropathogenesis in the context of Rag-1 and BLT hu-mice as potential novel tools for understanding HTLV-1 neuropathogenesis and testing of novel therapies such as immune checkpoint blockade in the amelioration of chronic HTLV-1 infection.

  2. Effective recruitment of minority populations through community-led strategies.

    PubMed

    Horowitz, Carol R; Brenner, Barbara L; Lachapelle, Susanne; Amara, Duna A; Arniella, Guedy

    2009-12-01

    Traditional research approaches frequently fail to yield representative numbers of people of color in research. Community-based participatory research (CBPR) may be an important strategy for partnering with and reaching populations that bear a greater burden of illness but have been historically difficult to engage. The Community Action Board, consisting of 20 East Harlem residents, leaders, and advocates, used CBPR to compare the effectiveness of various strategies in recruiting and enrolling adults with prediabetes into a peer-led, diabetes prevention intervention. The board created five recruitment strategies: recruiting through clinicians; recruiting at large public events such as farmers markets; organizing special local recruitment events; recruiting at local organizations; and recruiting through a partner-led approach, in which community partners developed and managed the recruitment efforts at their sites. In 3 months, 555 local adults were approached; 249 were appropriate candidates for further evaluation (overweight, nonpregnant, East Harlem residents without known diabetes); 179 consented and returned in a fasting state for 1/2 day of prediabetes testing; 99 had prediabetes and enrolled in a pilot randomized trial. The partner-led approach was highly successful, recruiting 68% of those enrolled. This strategy was also the most efficient; 34% of those approached through partners were ultimately enrolled, versus 0%-17% enrolled through the other four strategies. Participants were predominantly low-income, uninsured, undereducated, Spanish-speaking women. This CBPR approach highlights the value of partner-led recruitment to identify, reach out to, and motivate a vulnerable population into participation in research, using techniques that may be unfamiliar to researchers but are nevertheless rigorous and effective.

  3. Using affordable LED arrays for photo-stimulation of neurons.

    PubMed

    Valley, Matthew; Wagner, Sebastian; Gallarda, Benjamin W; Lledo, Pierre-Marie

    2011-11-15

    Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations(1,2). With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channel rhodopsin-2 (ChR2) allows researchers to activate neurons with light(3,4). By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.

  4. ADAM10 regulates Notch function in intestinal stem cells of mice.

    PubMed

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. ADAM10 Regulates Notch Function in Intestinal Stem Cells of Mice

    PubMed Central

    Tsai, Yu-Hwai; VanDussen, Kelli L.; Sawey, Eric T.; Wade, Alex W.; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G.; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C.; Samuelson, Linda C.; Dempsey, Peter J.

    2014-01-01

    BACKGROUND & AIMS ADAM10 is a cell surface sheddase that regulates physiological processes including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10f/f mice) and conditional (Vil-CreER;Adam10f/f and Lgr5-CreER;Adam10f/f mice) deletion of ADAM10. We performed cell lineage tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26NICD) or mice with intestine-specific disruption of Notch (Rosa26DN-MAML), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26NICD and Rosa26DN-MAML mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage tracing experiments showed that ADAM10 is required for survival of Lgr5+ crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. PMID:25038433

  6. Knockout of Foxp2 disrupts vocal development in mice

    PubMed Central

    Castellucci, Gregg A.; McGinley, Matthew J.; McCormick, David A.

    2016-01-01

    The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/−) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/− mice. In comparison to their WT littermates, Foxp2+/− mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/− song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene’s role in general vocal motor control. PMID:26980647

  7. Knockout of Foxp2 disrupts vocal development in mice.

    PubMed

    Castellucci, Gregg A; McGinley, Matthew J; McCormick, David A

    2016-03-16

    The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/-) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/- mice. In comparison to their WT littermates, Foxp2+/- mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/- song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene's role in general vocal motor control.

  8. Evaluation of a Peer-Led Drug Abuse Risk Reduction Project for Runaway/Homeless Youths.

    ERIC Educational Resources Information Center

    Fors, Stuart W.; Jarvis, Sara

    1995-01-01

    Evaluates the Drug Prevention in Youth risk reduction program that was implemented in shelters for runaway/homeless youths in the southeastern United States. An evaluation strategy was developed allowing for comparisons between peer-led, adult-led and nonintervention groups. Well-trained and motivated peer/near-peer leaders made particularly…

  9. Neonatal transection of the corpus callosum affects paw preference lateralization of adult Swiss mice.

    PubMed

    Manhães, Alex C; Krahe, Thomas E; Caparelli-Dáquer, Egas; Ribeiro-Carvalho, Anderson; Schmidt, Sergio L; Filgueiras, Cláudio C

    2003-09-11

    In the present work, the hypothesis that the ontogenetic development of the corpus callosum (CC) affects the establishment of behavioral lateralization was tested by studying paw preference performance in adult Swiss mice that were subjected to mid-sagittal transection of the CC on the first postnatal day. Magnitude and direction of laterality were evaluated independently. No significant differences between groups were found for the magnitude of paw preference. On the other hand, the transected group presented a significant populational bias favoring the left paw that was not present in the control groups. These results lend support to the hypothesis that the development of the CC plays a role in the establishment of the normal pattern of behavioral lateralization.

  10. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington's Disease Mice.

    PubMed

    Berggren, Kiersten L; Lu, Zhen; Fox, Julia A; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H

    2016-01-01

    Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington's disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363-74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Female neonatal mice were supplemented daily from days 10-17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later.

  11. Adolescent intake of caffeinated energy drinks does not affect adult alcohol consumption in C57BL/6 and BALB/c mice.

    PubMed

    Robins, Meridith T; DeFriel, Julia N; van Rijn, Richard M

    2016-08-01

    The rise in marketing and mass consumption of energy drink products by adolescents poses a largely unknown risk on adolescent development and drug reward. Yet, with increasing reports of acute health issues present in young adults who ingest large quantities of energy drinks alone or in combination with alcohol, the need to elucidate these potential risks is pressing. Energy drinks contain high levels of caffeine and sucrose; therefore, exposure to energy drinks may lead to changes in drug-related behaviors since caffeine and sucrose consumption activates similar brain pathways engaged by substances of abuse. With a recent study observing that adolescent caffeine consumption increased cocaine sensitivity, we sought to investigate how prolonged energy drink exposure in adolescence alters alcohol use and preference in adulthood. To do so, we utilized three different energy drink exposure paradigms and two strains of male mice (C57BL/6 and BALB/c) to monitor the effect of caffeine exposure via energy drinks in adolescence on adult alcohol intake. These paradigms included two models of volitional consumption of energy drinks or energy drink-like substances and one model of forced consumption of sucrose solutions with different caffeine concentrations. Following adolescent exposure to these solutions, alcohol intake was monitored in a limited-access, two-bottle choice between water and increasing concentrations of alcohol during adulthood. In none of the three models or two strains of mice did we observe that adolescent 'energy drink' consumption or exposure was correlated with changes in adult alcohol intake or preference. While our current preclinical results suggest that exposure to large amounts of caffeine does not alter future alcohol intake, differences in caffeine metabolism between mice and humans need to be considered before translating these results to humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. On-ground housing in “Mice Drawer System” (MDS) cage affects locomotor behaviour but not anxiety in male mice

    NASA Astrophysics Data System (ADS)

    Simone, Luciano; Bartolomucci, Alessandro; Palanza, Paola; Parmigiani, Stefano

    2008-03-01

    In the present study adult male mice were housed for 21 days in a housing modules of the Mice Drawer System (MDS). MDS is the facility that will support the research on board the International Space Station (ISS). Our investigation focused on: circadian rhythmicity of wide behavioural categories such as locomotor activity, food intake/drinking and resting; emotionality in the elevated plus maze (EPM); body weight. Housing in the MDS determined a strong up-regulation of activity and feeding behaviour and a concomitant decrease in inactivity. Importantly, housing in the MDS disrupted circadian rhythmicity in mice and also determined a decrease in body weight. Finally, when mice were tested in the EPM a clear hyperactivity (i.e. increased total transitions) was found, while no evidence for altered anxiety was detected. In conclusion, housing adult male mice in the MDS housing modules may affect their behaviour, circadian rhythmicity while having no effect on anxiety. It is suggested that to allow adaptation to the peculiar housing allowed by MDS a longer housing duration is needed.

  13. Induction of IL-1, in the testes of adult mice, following subcutaneous administration of turpentine.

    PubMed

    Elhija, Mahmoud Abu; Lunenfeld, Eitan; Huleihel, Mahmoud

    2006-02-01

    Interleukin-1 family is present in the testicular homogenates and its cellular compartments. It has been suggested that IL-1 is involved in physiological and pathological functions of the testicular tissues. In the present study we examined the effect of acute mostly localized inflammation, using turpentine, on the expression levels of testicular IL-1 system. Mice were subcutaneously injected with steam-distilled turpentine or saline (control). Three hours to 10 days following the injection, mice were killed and testis and spleen were homogenized and examined for interleukin (IL)-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) levels by enzyme-linked immunosorbent assay and polymerase chain reaction. Subcutaneous injection of turpentine induced mice systemic inflammation, as indicated by significant increase in serum IL-1beta levels, and IL-1alpha, IL-1beta and IL-1ra in spleen homogenates. The levels of IL-1alpha, IL-1beta and IL-1ra were significantly induced in testicular homogenates of adult mice following subcutaneous injection of turpentine. The significant induction of testicular IL-1alpha was detected after 3-24 hr of turpentine injection and decreased later (after 3-10 days) to levels similar to the control. However, significant induction of testicular IL-1beta was detected only after 3-10 days of turpentine injection, and for testicular IL-1ra levels was detected after 3 hr to 6 days of turpentine injection, and after 10 days the levels were similar to the control. These results were also confirmed by mRNA expression of these factors. Our results demonstrate for the first time the distant effect of acute localized inflammation on testicular IL-1 levels. Thus, transient inflammatory response to infectious/inflammatory agents at non-testicular sites that elicit systemic IL-1 response should be considered during clinical treatment as a possible factor of male infertility.

  14. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice

    PubMed Central

    Stephenson, Erin J.; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R.; Parvathareddy, Jyothi; Peloquin, Matthew J.; Saravia, Jordy; Han, Joan C.; Cormier, Stephania A.

    2016-01-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle. PMID:27117006

  15. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice.

    PubMed

    Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R; Parvathareddy, Jyothi; Peloquin, Matthew J; Saravia, Jordy; Han, Joan C; Cormier, Stephania A; Bridges, Dave

    2016-06-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle. Copyright © 2016 the American Physiological Society.

  16. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice.

    PubMed

    Sakabe, Tomoya; Sakai, Keiko; Maeda, Toru; Sunaga, Ataru; Furuta, Nao; Schweitzer, Ronen; Sasaki, Takako; Sakai, Takao

    2018-04-20

    Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP -tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor β (TGF-β) signaling. scx -deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx -null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro , and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx -null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body. © 2018 Sakabe et al.

  17. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    NASA Technical Reports Server (NTRS)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  18. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    PubMed

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The importance of basonuclin 2 in adult mice and its relation to basonuclin 1.

    PubMed

    Vanhoutteghem, Amandine; Delhomme, Brigitte; Hervé, Françoise; Nondier, Isabelle; Petit, Jean-Maurice; Araki, Masatake; Araki, Kimi; Djian, Philippe

    2016-05-01

    BNC2 is an extremely conserved zinc finger protein with important functions in the development of craniofacial bones and male germ cells. Because disruption of the Bnc2 gene in mice causes neonatal lethality, the function of the protein in adult animals has not been studied. Until now BNC2 was considered to have a wider tissue distribution than its paralog, BNC1, but the precise cell types expressing Bnc2 are largely unknown. We identify here the cell types containing BNC2 in the mouse and we show the unexpected presence of BNC1 in many BNC2-containing cells. BNC1 and BNC2 are colocalized in male and female germ cells, ovarian epithelial cells, sensory neurons, hair follicle keratinocytes and connective cells of organ capsules. In many cell lineages, the two basonuclins appear and disappear synchronously. Within the male germ cell lineage, BNC1 and BNC2 are found in prospermatogonia and undifferentiated spermatogonia, and disappear abruptly from differentiating spermatogonia. During oogenesis, the two basonuclins accumulate specifically in maturing oocytes. During the development of hair follicles, BNC1 and BNC2 concentrate in the primary hair germs. As follicle morphogenesis proceeds, cells possessing BNC1 and BNC2 invade the dermis and surround the papilla. During anagen, BNC1 and BNC2 are largely restricted to the basal layer of the outer root sheath and the matrix. During catagen, the compartment of cells possessing BNC1 and BNC2 regresses, and in telogen, the two basonuclins are confined to the secondary hair germ. During the next anagen, the BNC1/BNC2-containing cell population regenerates the hair follicle. By examining Bnc2(-/-) mice that have escaped the neonatal lethality usually associated with lack of BNC2, we demonstrate that BNC2 possesses important functions in many of the cell types where it resides. Hair follicles of postnatal Bnc2(-/-) mice do not fully develop during the first cycle and thereafter remain blocked in telogen. It is concluded that

  20. Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice

    PubMed Central

    Yun, Sanghee; Donovan, Michael H.; Ross, Michele N.; Richardson, Devon R.; Reister, Robin; Farnbauch, Laure A.; Fischer, Stephanie J.; Riethmacher, Dieter; Gershenfeld, Howard K.; Lagace, Diane C.; Eisch, Amelia J.

    2016-01-01

    Depression and anxiety involve hippocampal dysfunction, but the specific relationship between these mood disorders and adult hippocampal dentate gyrus neurogenesis remains unclear. In both humans with MDD and rodent models of depression, administration of antidepressants increases DG progenitor and granule cell number, yet rodents with induced ablation of DG neurogenesis typically do not demonstrate depressive- or anxiety-like behaviors. The conflicting data may be explained by the varied duration and degree to which adult neurogenesis is reduced in different rodent neurogenesis ablation models. In order to test this hypothesis we examined how a transient–rather than permanent–inducible reduction in neurogenesis would alter depressive- and anxiety-like behaviors. Transgenic Nestin-CreERT2/floxed diphtheria toxin fragment A (DTA) mice (Cre+DTA+) and littermates (Cre+DTA-; control) were given tamoxifen (TAM) to induce recombination and decrease nestin-expressing stem cells and their progeny. The decreased neurogenesis was transient: 12 days post-TAM Cre+DTA+ mice had fewer DG proliferating Ki67+ cells and fewer DCX+ neuroblasts/immature neurons relative to control, but 30 days post-TAM Cre+DTA+ mice had the same DCX+ cell number as control. This ability of DG neurogenesis to recover after partial ablation also correlated with changes in behavior. Relative to control, Cre+DTA+ mice tested between 12–30 days post-TAM displayed indices of a stress-induced anxiety phenotype–longer latency to consume highly palatable food in the unfamiliar cage in the novelty-induced hypophagia test, and a depression phenotype–longer time of immobility in the tail suspension test, but Cre+DTA+ mice tested after 30 days post-TAM did not. These findings suggest a functional association between adult neurogenesis and stress induced anxiety- and depressive-like behaviors, where induced reduction in DCX+ cells at the time of behavioral testing is coupled with stress-induced anxiety

  1. A randomized controlled trial of a nurse-led case management programme for hospital-discharged older adults with co-morbidities

    PubMed Central

    Chow, Susan Ka Yee; Wong, Frances Kam Yuet

    2014-01-01

    Aim To examine the effects of a nurse-led case management programme for hospital-discharged older adults with co-morbidities. Background The most significant chronic conditions today involve diseases of the cardiovascular, respiratory, endocrine and renal systems. Previous studies have suggested that a nurse-led case management approach using either telephone follow-ups or home visits was able to improve clinical and patient outcomes for patients having a single, chronic disease, while the effects for older patients having at least two long-term conditions are unknown. A self-help programme using motivation and empowerment approaches is the framework of care in the study. Design Randomized controlled trial. Method The study was conducted from 2010–2012. Older patients having at least two chronic diseases were included for analysis. The participants were randomized into three arms: two study groups and one control group. Data were collected at baseline and at 4 and 12 weeks later. Results Two hundred and eighty-one patients completed the study. The interventions demonstrated significant differences in hospital readmission rates within 84 days post discharge. The two intervention groups had lower readmission rates than the control group. Patients in the two study arms had significantly better self-rated health and self-efficacy. There was significant difference between the groups in the physical composite score, but no significant difference in mental component score in SF-36 scale. Conclusion The postdischarge interventions led by the nurse case managers on self-management of disease using the empowerment approach were able to provide effective clinical and patient outcomes for older patients having co-morbidities. PMID:24617755

  2. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    PubMed Central

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  3. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.

    PubMed

    Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.

  4. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice.

    PubMed

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2017-02-01

    Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238-245; http://dx.doi.org/10.1289/EHP378.

  5. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress.

    PubMed

    Culig, Luka; Surget, Alexandre; Bourdey, Marlene; Khemissi, Wahid; Le Guisquet, Anne-Marie; Vogel, Elise; Sahay, Amar; Hen, René; Belzung, Catherine

    2017-11-01

    Major depression is hypothesized to be associated with dysregulations of the hypothalamic-pituitary-adrenal (HPA) axis and impairments in adult hippocampal neurogenesis. Adult-born hippocampal neurons are required for several effects of antidepressants and increasing the rate of adult hippocampal neurogenesis (AHN) before exposure to chronic corticosterone is sufficient to protect against its harmful effects on behavior. However, it is an open question if increasing AHN after the onset of chronic stress exposure would be able to rescue behavioral deficits and which mechanisms might be involved in recovery. We investigated this question by using a 10-week unpredictable chronic mild stress (UCMS) model on a transgenic mouse line (iBax mice), in which the pro-apoptotic gene Bax can be inducibly ablated in neural stem cells following Tamoxifen injection, therefore enhancing the survival of newborn neurons in the adult brain. We did not observe any effect of our treatment in non-stress conditions, but we did find that increasing AHN after 2 weeks of UCMS is sufficient to counteract the effects of UCMS on certain behaviors (splash test and changes in coat state) and endocrine levels and thus to display some antidepressant-like effects. We observed that increasing AHN lowered the elevated basal corticosterone levels in mice exposed to UCMS. This was accompanied by a tamoxifen-induced reversal of the lack of stress-induced decrease in neuronal activation in the anteromedial division of the bed nucleus of the stria terminalis (BSTMA) after intrahippocampal dexamethasone infusion, pointing to a possible mechanism through which adult-born neurons might have exerted their effects. Our results contribute to the neurogenesis hypothesis of depression by suggesting that increasing AHN may be beneficial not just before, but also after exposure to stress by counteracting several of its effects, in part through regulating the HPA axis. Copyright © 2017 Elsevier Ltd. All rights

  6. Neuroinflammation and cognitive function in aged mice following minor surgery

    PubMed Central

    Rosczyk, H.A.; Sparkman, N. L.; Johnson, R.W.

    2009-01-01

    Following surgery, elderly patients often suffer from postoperative cognitive dysfunction (POCD) which can persist long after physical recovery. It is known that surgery-induced tissue damage activates the peripheral innate immune system resulting in the release of inflammatory mediators. Compared to adults, aged animals demonstrate increased neuroinflammation and microglial priming that leads to an exaggerated proinflammatory cytokine response following activation of the peripheral immune system. Therefore, we sought to determine if the immune response to surgical trauma results in increased neuroinflammation and cognitive impairment in aged mice. Adult and aged mice underwent minor abdominal surgery and 24 h later hippocampal cytokines were measured and working memory was assessed in a reversal learning version of the Morris water maze. While adult mice showed no signs of neuroinflammation following surgery, aged mice had significantly increased levels of IL-1β mRNA in the hippocampus. Minor surgery did not result in severe cognitive impairment although aged mice that underwent surgery did tend to perseverate in the old target during reversal testing suggesting reduced cognitive flexibility. Overall these results suggest that minor surgery leads to an exaggerated neuroinflammatory response in aged mice but does not result in significantly impaired performance in the Morris water maze. PMID:18602982

  7. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    PubMed Central

    Fetterman, Jessica L.; Pompilius, Melissa; Westbrook, David G.; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis. PMID:23825571

  8. Severe Leukopenia and Dysregulated Erythropoiesis in SCID Mice Persistently Infected with the Parvovirus Minute Virus of Mice

    PubMed Central

    Segovia, José C.; Gallego, Jesús M.; Bueren, Juan A.; Almendral, José M.

    1999-01-01

    Parvovirus minute virus of mice strain i (MVMi) infects committed granulocyte-macrophage CFU and erythroid burst-forming unit (CFU-GM and BFU-E, respectively) and pluripotent (CFU-S) mouse hematopoietic progenitors in vitro. To study the effects of MVMi infection on mouse hemopoiesis in the absence of a specific immune response, adult SCID mice were inoculated by the natural intranasal route of infection and monitored for hematopoietic and viral multiplication parameters. Infected animals developed a very severe viral-dose-dependent leukopenia by 30 days postinfection (d.p.i.) that led to death within 100 days, even though the number of circulating platelets and erythrocytes remained unaltered throughout the disease. In the bone marrow of every lethally inoculated mouse, a deep suppression of CFU-GM and BFU-E clonogenic progenitors occurring during the 20- to 35-d.p.i. interval corresponded with the maximal MVMi production, as determined by the accumulation of virus DNA replicative intermediates and the yield of infectious virus. Viral productive infection was limited to a small subset of primitive cells expressing the major replicative viral antigen (NS-1 protein), the numbers of which declined with the disease. However, the infection induced a sharp and lasting unbalance of the marrow hemopoiesis, denoted by a marked depletion of granulomacrophagic cells (GR-1+ and MAC-1+) concomitant with a twofold absolute increase in erythroid cells (TER-119+). A stimulated definitive erythropoiesis in the infected mice was further evidenced by a 12-fold increase per femur of recognizable proerythroblasts, a quantitative apoptosis confined to uninfected TER-119+ cells, as well as by a 4-fold elevation in the number of circulating reticulocytes. Therefore, MVMi targets and suppresses primitive hemopoietic progenitors leading to a very severe leukopenia, but compensatory mechanisms are mounted specifically by the erythroid lineage that maintain an effective erythropoiesis. The

  9. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice.

    PubMed

    Subbanna, Shivakumar; Nagre, Nagaraja N; Umapathy, Nagavedi S; Pace, Betty S; Basavarajappa, Balapal S

    2014-10-31

    Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting.

    PubMed

    Fujikawa, Takahisa; Hirose, Tetsuro; Fujii, Hideaki; Oe, Shoshiro; Yasuchika, Kentaro; Azuma, Hisaya; Yamaoka, Yoshio

    2003-08-01

    Recent advances in stem cell research have revealed that hepatic stem/progenitor cells may play an important role in liver development and regeneration. However, a lack of detectable definitive markers in viable cells has hindered their primary culture from adult livers. Enzymatically dissociated liver cells from green fluorescent protein (GFP)-transgenic mice, which express GFP highly in liver endodermal cells, were sorted by GFP expression using a fluorescence-activated cell sorter. Sorted cells were characterized, and also low-density cultured for extended periods to determine their proliferation and clonal differentiation capacities. When CD45(-)TER119(-) side-scatter(low) GFP(high) cells were sorted, alpha-fetoprotein-positive immature endoderm-characterized cells, having high growth potential, were present in this population. Clonal analysis and electron microscopic evaluation revealed that each single cell of this population could differentiate not only into hepatocytes, but also into biliary epithelial cells, showing their bilineage differentiation activity. When surface markers were analyzed, they were positive for Integrin-alpha6 and -beta1, but negative for c-Kit and Thy1.1. Combination of GFP-transgenic mice and fluorescence-activated cell sorting enabled purification of hepatic progenitor cells from adult mouse liver. Further analysis of this population may lead to purification of their human correspondence that would be an ideal cell-source candidate for regenerative medicine.

  11. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    PubMed

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  12. Pharmacist-led medication assessment and deprescribing intervention for older adults with cancer and polypharmacy: a pilot study.

    PubMed

    Whitman, Andrew; DeGregory, Kathlene; Morris, Amy; Mohile, Supriya; Ramsdale, Erika

    2018-06-04

    The aims of this study were to compare the application of three geriatric medication screening tools to the Beers Criteria alone for potentially inappropriate medication quantification and to determine feasibility of a pharmacist-led polypharmacy assessment in a geriatric oncology clinic. Adult patients with cancer aged 65 and older underwent a comprehensive geriatric assessment. A polypharmacy assessment was completed by a pharmacist and included a review of all drug therapies. Potentially inappropriate medications were screened using the Beers Criteria, Screening Tool to Alert doctors to Right Treatment/Screening Tool of Older Persons' Prescriptions, and the Medication Appropriateness Index. Deprescribing occurred after discussion with the pharmacist, geriatric oncologist, patient, and caregiver. Data were collected for 26 patients. The mean number of medications was 12. The Beers Criteria alone identified 38 potentially inappropriate medications compared to 119 potentially inappropriate medications with the three-tool assessment; a mean of 5 potentially inappropriate medications were identified per patient. After the application of the three-tool assessment, 73% of potentially inappropriate medications identified were deprescribed, resulting in a mean of 3 medications deprescribed per patient. Approximately two thirds of patients reported a reduction in symptoms after the deprescribing intervention. Healthcare expenditures of $4282.27 per patient were potentially avoided as a result of deprescribing. Our three-tool assessment identified three times more potentially inappropriate medications than the Beers Criteria alone. Pharmacist-led deprescribing interventions are feasible and may lead to improved patient outcomes and cost savings. This three-tool assessment process should be incorporated into interdisciplinary assessments of older patients with cancer and validated in future studies.

  13. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  14. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  15. A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice.

    PubMed

    Chapnik, Nava; Solomon, Gili; Genzer, Yoni; Miskin, Ruth; Gertler, Arieh; Froy, Oren

    2013-06-01

    Transgenic alpha murine urokinase-type plasminogen activator (αMUPA) mice are resistant to obesity and their locomotor activity is altered. As these mice have high leptin levels, our objective was to test whether leptin is responsible for these characteristics. αMUPA, their genetic background control (FVB/N), and C57BL mice were injected s.c. every other day with 20  mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA) for 6 weeks. We tested the effect of PEG-SMLA on body weight, locomotion, and bone health. The antagonist led to a rapid increase in body weight and subsequent insulin resistance in all treated mice. Food intake of PEG-SMLA-injected animals increased during the initial period of the experiment but then declined to a similar level to that of the control animals. Interestingly, αMUPA mice were found to have reduced bone volume (BV) than FVB/N mice, although PEG-SMLA increased bone mass in both strains. In addition, PEG-SMLA led to disrupted locomotor activity and increased corticosterone levels in C57BL but decreased levels in αMUPA or FVB/N mice. These results suggest that leptin is responsible for the lean phenotype and reduced BV in αMUPA mice; leptin affects corticosterone levels in mice in a strain-specific manner; and leptin alters locomotor activity, a behavior determined by the central circadian clock.

  16. α-Lipoic acid attenuates transplacental nicotine-induced germ cell and oxidative DNA damage in adult mice.

    PubMed

    Anto, Santo K; Koyada, Naresh; Khan, Sabbir; Jena, Gopabandhu

    2016-11-01

    Smoking during pregnancy is associated with numerous fetal and developmental complications and reproductive dysfunctions in the offspring. Nicotine is one of the key chemicals of tobacco responsible for addiction. The present study was aimed to investigate the protective role of α-lipoic acid (ALA) during the transplacental nicotine-induced germ cell and DNA damage in the offspring of Swiss mice. Pregnant mice were treated with nicotine (20 mg/kg/day) in drinking water from 10 to 20 days of gestation period, and ALA (120 mg/kg/day) was administered orally for the same period. Endpoint of evaluation includes general observations at delivery and throughout the study, litter weight and size, sperm count and sperm head morphology, while structural damages and protein expression were assessed by histology and immunohistochemistry, respectively. Maternal nicotine exposure led to decreased growth rate, litter and testicular weight, testosterone level, 3β-HSD expression and sperm count as well as increased sperm head abnormalities, micronucleus frequency and 8-oxo-dG positive cells, and the effects have been restored by ALA supplementation. The present study clearly demonstrated that ALA ameliorates nicotine-associated oxidative stress, DNA damage and testicular toxicity in the offspring by improving steroidogenesis, spermatogenesis and sperm count.

  17. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    PubMed

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  18. Serotonin signaling in the brain of adult female mice is required for sexual preference

    PubMed Central

    Zhang, Shasha; Liu, Yan; Rao, Yi

    2013-01-01

    A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female–female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference. PMID:23716677

  19. Recent advancements in understanding endogenous heart regeneration—insights from adult zebrafish and neonatal mice

    PubMed Central

    Rubin, Nicole; Harrison, Michael R.; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-01-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models. PMID:27132022

  20. Stimulation-evoked Ca2+ signals in astrocytic processes at hippocampal CA3-CA1 synapses of adult mice are modulated by glutamate and ATP.

    PubMed

    Tang, Wannan; Szokol, Karolina; Jensen, Vidar; Enger, Rune; Trivedi, Chintan A; Hvalby, Øivind; Helm, P Johannes; Looger, Loren L; Sprengel, Rolf; Nagelhus, Erlend A

    2015-02-18

    To date, it has been difficult to reveal physiological Ca(2+) events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca(2+) signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca(2+) indicator GCaMP5E driven by the glial fibrillary acidic protein promoter. Two-photon imaging revealed global stimulation-evoked astrocytic Ca(2+) signals with distinct latencies, rise rates, and amplitudes in fine processes and somata. Specifically, the Ca(2+) signals in the processes were faster and of higher amplitude than those in the somata. A combination of P2 purinergic and group I/II metabotropic glutamate receptor (mGluR) antagonists reduced the amplitude of the Ca(2+) transients by 30-40% in both astrocytic compartments. Blockage of the mGluRs alone only modestly reduced the magnitude of the stimulation-evoked Ca(2+) signals in processes and failed to affect the somatic Ca(2+) response. Local application of group I or I/II mGluR agonists or adenosine triphosphate (ATP) elicited global astrocytic Ca(2+) signals that mimicked the stimulation-evoked astrocytic Ca(2+) responses. We conclude that stimulation-evoked Ca(2+) signals in astrocytic processes at CA3-CA1 synapses of adult mice (1) differ from those in astrocytic somata and (2) are modulated by glutamate and ATP. Copyright © 2015 the authors 0270-6474/15/353016-06$15.00/0.

  1. Subchronic cadmium exposure upregulates the mRNA level of genes associated to hepatic lipid metabolism in adult female CD1 mice.

    PubMed

    Zhang, Jun; Wang, Yan; Fu, Lin; Feng, Yu-Jie; Ji, Yan-Li; Wang, Hua; Xu, De-Xiang

    2018-07-01

    Cadmium (Cd) is a persistent environmental and occupational contaminant that accumulates in humans and shows adverse effects on health. Accumulating evidence reveals that environmental Cd exposure is associated with hepatic lipid accumulation and metabolic alterations in adult male mice. However, whether Cd exposure induces hepatic lipid accumulation and metabolic alterations in female mice remains poorly understood. In the present study, we aimed to investigate the effects of Cd exposure on insulin resistance, hepatic lipid accumulation and associated metabolic pathways. Female CD1 mice were administrated with CdCl 2 (10 and 100 mg l -1 ) by drinking water. We found that Cd exposure did not induce obesity, insulin resistance and hepatic lipid accumulation. By contrary, mice in the Cd-100 mg l -1 group presented a significant reduction of the glucose area under the curve during the glucose tolerance test. However, there was a significant elevation in the mRNA level of Fasn and Scd-1, which were critical genes during hepatic fatty acid synthesis. Moreover, hepatic Fabp1 and Fabp4, two genes for hepatic fatty acid uptake were upregulated in Cd-treated mice. Of interest, Lpl, a key gene for hepatic lipoprotein lysis, was also upregulated in Cd-treated mice. Collectively, our results suggest that Cd exposure upregulated mRNA level of genes related to hepatic lipid metabolism although there was no insulin resistance and hepatic lipid accumulation shown in the present study. Copyright © 2018 John Wiley & Sons, Ltd.

  2. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice.

    PubMed

    Smith, Bryon M; Yao, Xinyue; Chen, Kelly S; Kirby, Elizabeth D

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.

  3. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice

    PubMed Central

    Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345

  4. [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel.

    PubMed

    Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-12-01

    [6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mobile optogenetic modules for mice

    NASA Astrophysics Data System (ADS)

    Rusakov, Konstantin; Radzewicz, Czesław; Czajkowski, Rafał; Konopka, Witold; Chilczuk, Joanna

    2017-08-01

    We present a set of novel optogenetic devices for mice freely moving in cages. The purpose of the devices is to stimulate specific brain regions using light. The devices we have constructed consist of an electrical connector, cannula and micro- LED chip operating at 470 nm as light source for delivering light into the stimulated region of the mouse brain. We have also demonstrated light conversion from 470 nm to 590 nm by applying a silicate orange phosphor directly to the LED chip. The measured conversion efficiency is approximately 80% for ZIP595I phosphor. We discuss the properties of various forms of implant needles with respect to the ease of LED attachment and experimental validation of the constructed optogenetic implants.

  6. Effects of Curcumin (Curcuma longa) on Learning and Spatial Memory as Well as Cell Proliferation and Neuroblast Differentiation in Adult and Aged Mice by Upregulating Brain-Derived Neurotrophic Factor and CREB Signaling

    PubMed Central

    Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Yoo, Miyoung; Lee, Sanghee; Kim, Chul Jung; Yoon, Yeo Sung

    2014-01-01

    Abstract Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus. PMID:24712702

  7. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling.

    PubMed

    Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Yoo, Miyoung; Lee, Sanghee; Kim, Chul Jung; Yoon, Yeo Sung; Hwang, In Koo

    2014-06-01

    Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.

  8. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice.

    PubMed

    Kirkpatrick, Meg; Benoit, Janina; Everett, Wyll; Gibson, Jennifer; Rist, Michael; Fredette, Nicholas

    2015-09-01

    Methylmercury (MeHg) is a widely distributed environmental neurotoxin with established effects on locomotor behaviors and cognition in both human populations and animal models. Despite well-described neurobehavioral effects, the mechanisms of MeHg toxicity are not completely understood. Previous research supports a role for oxidative stress in the toxic effects of MeHg. However, comparing findings across studies has been challenging due to differences in species, methodologies (in vivo or in vitro studies), dosing regimens (acute vs. long-term) and developmental life stage. The current studies assess the behavioral effects of MeHg in adult mice in conjunction with biochemical and cellular indicators of oxidative stress using a consistent dosing regimen. In Experiment 1, adult male C57/BL6 mice were orally administered 5 mg/kg/day MeHg or the vehicle for 28 days. Impact of MeHg exposure was assessed on inverted screen and Rotor-Rod behaviors as well as on biomarkers of oxidative stress (thioredoxin reductase (TrxR), glutathione reductase (GR) and glutathione peroxidase (GPx)) in brain and liver. In Experiment 2, brain tissue was immunohistochemically labeled for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidation and an indicator of oxidative stress, following the same dosing regimen. 8-OHdG immunoreactivity was measured in the motor cortex, the magnocellular red nucleus (RMC) and the accessory oculomotor nucleus (MA3). Significant impairments were observed in MeHg-treated animals on locomotor behaviors. TrxR and GPx was significantly inhibited in brain and liver, whereas GR activity decreased in liver and increased in brain tissue of MeHg-treated animals. Significant MeHg-induced alterations in DNA oxidation were observed in the motor cortex, the RMC and the MA3. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    PubMed

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  10. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations.

    PubMed

    Alam, Mohammad S; Costales, Matthew; Cavanaugh, Christopher; Pereira, Marion; Gaines, Dennis; Williams, Kristina

    2016-10-01

    Foodborne Listeria monocytogenes (LM) is a cause of serious illness and death in the US. The case-fatality rate of invasive LM infection in the elderly population is >50%. The goal of this study is to establish a murine model of oral LM infection that can be used as a surrogate for human foodborne listeriosis in the geriatric population. Adult C57BL/6 (wild-type, WT) and adult or old IL17R-KO (knock-out) mice were gavaged with a murinized LM strain (Lmo-InlA m ) and monitored for body-weight loss and survivability. Tissues were collected and assayed for bacterial burden, histology, and cytokine responses. When compared to WT mice, adult IL17R-KO mice are more susceptible to LM infection and showed increased LM burden and tissue pathology and a higher mortality rate. Older LM-infected KO-mice lost significantly (p < 0.02, ANOVA) more body-weight and had a higher bacterial burden in the liver (p = 0.03) and spleen as compared to adult mice. Uninfected, aged KO-mice showed a higher baseline pro-inflammatory response when compared to uninfected adult-KO mice. After infection, the pro-inflammatory cytokine, IFN-γ, mRNA in the liver was higher in the adult mice as compared to the old mice. The anti-inflammatory cytokine, IL-10, mRNA and regulatory T-cells (CD4 + CD25 +h or CD4 + Foxp3 + ) cells in the aged mice increased significantly after infection as compared to adult mice. Expression of the T-cell activation marker, CD25 (IL-2Rα) in the aged mice did not increase significantly over baseline. These data suggest that aged IL17R-KO mice can be used as an in vivo model to study oral listeriosis and that aged mice are more susceptible to LM infection due to dysregulation of pro- and anti-inflammatory responses compared to adult mice, resulting in a protracted clearance of the infection. Published by Elsevier Ltd.

  11. Nurse-led versus doctor-led care for bronchiectasis.

    PubMed

    Lawton, Kathryn; Royals, Karen; Carson-Chahhoud, Kristin V; Campbell, Fiona; Smith, Brian J

    2018-06-20

    Specialist nursing roles to manage stable disease populations are being used to meet the needs of both patients and health services. With increasing cost pressures on health departments, alternative models such as nurse-led care are gaining momentum as a substitute for traditional doctor-led care. This review evaluates the safety, effectiveness, and health outcomes of nurses practising in autonomous roles while using advanced practice skills, within the context of bronchiectasis management in subacute, ambulatory, and/or community care. To compare the effectiveness of nurse-led care versus doctor-led care in the management of stable bronchiectasis. We searched the Cochrane Airways Group Specialised Register and bibliographies of selected papers in addition to grey literature such as electronic clinical trials registries. Searches were current as of March 2018. Randomised controlled trials were eligible for inclusion in the review. Two reviewers extracted and entered data from included studies. Primary outcomes were numbers of exacerbations requiring treatment with antibiotics, hospital admissions, and emergency department attendances. We included one United Kingdom (UK) study in the review. In this randomised controlled trial, a total of 80 participants, with a mean age of 58 years, were treated for 12 months by a specialist nurse or doctor, then were crossed over to the other clinician for the next 12 months. Two participants died during the study period. Six participants failed to cross over to nurse-led care because of unstable bronchiectasis. Overall, the level of study completion was high.Data show no difference in the numbers of exacerbations requiring treatment with antibiotics (rate ratio 1.09, 95% confidence interval (CI) 0.91 to 1.30, 80 participants, moderate-certainty evidence). Investigators reported more hospital admissions in the nurse-led care group (rate ratio 1.52, 95% CI 1.04 to 2.23, 80 participants, moderate-certainty evidence) and did not

  12. A randomised controlled trial of peer-adult-led intervention on improvement of knowledge, attitudes and behaviour of university students regarding HIV/AIDS in Malaysia.

    PubMed

    Jahanfar, S; Lye, M S; Rampal, L

    2009-02-01

    The aim of this study was to investigate the knowledge, attitudes and behaviour of university students regarding acquired immunodeficiency syndrome (AIDS) and the human immunodeficiency virus (HIV). A randomised controlled trial of 530 university students was done using peer-adult facilitators. Participants completed a questionnaire before and after the intervention, which was a four-hour group session. A prevention programme was developed by local experts, health educators and peer facilitators. The peer-adult-led programme was designed to provide a conceptual model of HIV risk reduction through information, motivational and behavioural skills, a harm reduction module and health promotion theme. The main outcome measured was the level of knowledge, attitudes and behaviour scores. The results suggest that relative to the control group, participants in the intervention group had higher levels of knowledge (30.37 vs. 25.40; p-value is 0.001) and a better attitude (12.27 vs. 10.84; p-value is 0.001). However, there was no difference in the behavioural score (9.47 vs. 9.41; p-value is 0.530). The correlation between the level of knowledge and age and the level of education was found in the intervention group, but not in the control group (p-value is 0.01). Attitude and gender were found to be correlated in the intervention group only (p-value is 0.01). Our programme was successful in increasing knowledge and improving attitudes towards AIDS and HIV. However, it did not improve risk-taking behaviour. Peer-adult-led educational programmes for youth using various interactional activities, such as small group discussions, poster activity and empathy exercises, can be successful in changing the prevailing youth perceptions of AIDS and HIV.

  13. The effect of early-life stress on airway inflammation in adult mice.

    PubMed

    Vig, Rattanjeet; Gordon, John R; Thébaud, Bernard; Befus, A Dean; Vliagoftis, Harissios

    2010-01-01

    Neonatal stress induces permanent physiological changes that may influence the immune system. Early-life stress increases asthma disease severity in children. We investigated the effects of early-life stress on allergic airway inflammation using a murine model of asthma coupled to maternal separation as an early-life stress stimulus. Maternally separated (MS) and unseparated control (CON) mice were sensitized with ovalbumin (OVA) beginning at day 31 after birth. Challenging mice with OVA increased airway hyperresponsiveness (AHR) and the number of inflammatory cells recovered in the bronchoalveolar lavage (BAL), compared to saline-challenged mice. Challenging MS mice with OVA resulted in less total inflammatory cells, eosinophils, interferon-gamma, and interleukin-4 in BAL compared to CON mice. However, MS mice challenged with OVA exhibited AHR similar to CON mice challenged with OVA. In contrast, an enhanced stress protocol (MS+) involving removal of pups from their home cages following the removal of the dam resulted in inflammatory cell accumulation and cytokine levels in the BAL similar to CON mice and higher than MS mice. These findings indicate that the effect of early-life psychological factors on the development of airway inflammatory diseases such as asthma is very complex and depends on the quality of the psychological stress stimulus.

  14. Vitamin A Deprivation Affects the Progression of the Spermatogenic Wave and Initial Formation of the Blood-testis Barrier, Resulting in Irreversible Testicular Degeneration in Mice

    PubMed Central

    CHIHARA, Masataka; OTSUKA, Saori; ICHII, Osamu; KON, Yasuhiro

    2013-01-01

    Abstract The blood testis-barrier (BTB) is essential for maintaining homeostasis in the seminiferous epithelium. Although many studies have reported that vitamin A (VA) is required for the maintenance of spermatogenesis, the relationships between the BTB, spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet from the prepubertal period to adulthood. During the prepubertal period, no changes were observed in the initiation and progression of the first spermatogenic wave in mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes derived from the second spermatogenic wave onwards were decreased, and initial BTB formation was also delayed, as evidenced by the decreased expression of mRNAs encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the BTB, and dramatically decreased testis size. Furthermore, vacuolization and calcification were observed in the seminiferous epithelium of adult mice fed the VAD diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD diet rescued BTB assembly after when the second spermatogenic wave initiated from the arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These results suggested that BTB integrity was regulated by VA metabolism with meiotic progression and that the impermeable BTB was required for persistent spermatogenesis rather than meiotic initiation. In conclusion, consumption of the VAD diet led to critical defects in spermatogenesis progression and altered the dynamics of BTB assembly. PMID:23934320

  15. Caenorhabditis elegans as a model to study the impact of exposure to light emitting diode (LED) domestic lighting.

    PubMed

    Abdel-Rahman, Fawzia; Okeremgbo, Bethel; Alhamadah, Fatimah; Jamadar, Sakha; Anthony, Kevin; Saleh, Mahmoud A

    2017-04-16

    This study aimed to investigate the biological impact of exposure on domestic light emitting diodes (LED) lighting using the free-living nematode Caenorhabditis elegans as a model. Nematodes were separately exposed to white LED light covering the range of 380-750 nm, blue light at 450 nm and black light at 380-420 nm for one life cycle (egg to adult) with dark exposure as the control. Each light range induced stress to the nematode C. elegans such as reducing the number of the hatched eggs and/or delayed the maturation of the hatched eggs to the adult stage. In addition, it lowered or prevented the ability of adults to lay eggs and impaired the locomotion in the exposed worms. The observed type of biological stress was also associated with the production of reactive oxygen species (ROS) as compared to nematodes grown in the dark. It is concluded that the blue light component of white LED light may cause health problems, and further investigation is required to test commercial brands of white LEDs that emit different amounts of blue light.

  16. Similarity of Bisphenol A Pharmacokinetics in Rhesus Monkeys and Mice: Relevance for Human Exposure

    PubMed Central

    Taylor, Julia A.; vom Saal, Frederick S.; Welshons, Wade V.; Drury, Bertram; Rottinghaus, George; Hunt, Patricia A.; Toutain, Pierre-Louis; Laffont, Céline M.; VandeVoort, Catherine A.

    2011-01-01

    Objective Daily adult human exposure to bisphenol A (BPA) has been estimated at < 1 μg/kg, with virtually complete first-pass conjugation in the liver in primates but not in mice. We measured unconjugated and conjugated BPA levels in serum from adult female rhesus monkeys and adult female mice after oral administration of BPA and compared findings in mice and monkeys with prior published data in women. Methods Eleven adult female rhesus macaques were fed 400 μg/kg deuterated BPA (dBPA) daily for 7 days. Levels of serum dBPA were analyzed by isotope-dilution liquid chromatography–mass spectrometry (0.2 ng/mL limit of quantitation) over 24 hr on day 1 and on day 7. The same dose of BPA was fed to adult female CD-1 mice; other female mice were administered 3H-BPA at doses ranging from 2 to 100,000 μg/kg. Results In monkeys, the maximum unconjugated serum dBPA concentration of 4 ng/mL was reached 1 hr after feeding and declined to low levels by 24 hr, with no significant bioaccumulation after seven daily doses. Mice and monkeys cleared unconjugated serum BPA at virtually identical rates. We observed a linear (proportional) relationship between administered dose and serum BPA in mice. Conclusions BPA pharmacokinetics in women, female monkeys, and mice is very similar. By comparison with approximately 2 ng/mL unconjugated serum BPA reported in multiple human studies, the average 24-hr unconjugated serum BPA concentration of 0.5 ng/mL in both monkeys and mice after a 400 μg/kg oral dose suggests that total daily human exposure is via multiple routes and is much higher than previously assumed. PMID:20855240

  17. Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington’s Disease Mice

    PubMed Central

    Berggren, Kiersten L.; Lu, Zhen; Fox, Julia A.; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H.

    2016-01-01

    Background: Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington’s disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363–74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. Objective: To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Methods: Female neonatal mice were supplemented daily from days 10–17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Results: Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Conclusions: Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later. PMID:27079948

  18. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid

    PubMed Central

    Juliandi, Berry; Tanemura, Kentaro; Igarashi, Katsuhide; Tominaga, Takashi; Furukawa, Yusuke; Otsuka, Maky; Moriyama, Noriko; Ikegami, Daigo; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Narita, Minoru; Kanno, Jun; Nakashima, Kinichi

    2015-01-01

    Summary Prenatal exposure to valproic acid (VPA), an established antiepileptic drug, has been reported to impair postnatal cognitive function in children born to VPA-treated epileptic mothers. However, how these defects arise and how they can be overcome remain unknown. Using mice, we found that comparable postnatal cognitive functional impairment is very likely correlated to the untimely enhancement of embryonic neurogenesis, which led to depletion of the neural precursor cell pool and consequently a decreased level of adult neurogenesis in the hippocampus. Moreover, hippocampal neurons in the offspring of VPA-treated mice showed abnormal morphology and activity. Surprisingly, these impairments could be ameliorated by voluntary running. Our study suggests that although prenatal exposure to antiepileptic drugs such as VPA may have detrimental effects that persist until adulthood, these effects may be offset by a simple physical activity such as running. PMID:26677766

  19. The thymus of the hairless rhino-j (hr/hr-j) mice

    PubMed Central

    SAN JOSE, I.; GARCÍA-SUÁREZ, O.; HANNESTAD, J.; CABO, R.; GAUNA, L.; REPRESA, J.; VEGA, J. A.

    2001-01-01

    The hairless (hr) gene is expressed in a large number of tissues, primarily the skin, and a mutation in the hr gene is responsible for the typical cutaneous phenotype of hairless mice. Mutant hr mouse strains show immune defects involving especially T cells and macrophages, as well as an age-related immunodeficiency and an accelerated atrophy of the thymus. These data suggest that the hr mutation causes a defect of this organ, although hr transcripts have not been detected in fetal or adult mice thymus. The present study analyses the thymus of young (3 mo) and adult (9 mo) homozygous hr-rh-j mice (a strain of hairless mice) by means of structural techniques and immunohistochemistry to selectively identify thymic epithelial cells, dendritic cells, and macrophages. There were structural alterations in the thymus of both young and adult rh-rh-j mice, which were more severe in older animals. These alterations consisted of relative cortical atrophy, enlargement of blood vessels, proliferation of perivascular connective tissue, and the appearance of cysts. hr-rh-j mice also showed a decrease in the number of epithelial and dendritic cells, and macrophages. Taken together, present results strongly suggest degeneration and accelerated age-dependent regression of the thymus in hr-rh-j mice, which could explain at least in part the immune defects reported in hairless mouse strains. PMID:11327202

  20. Estrogen receptor 1 modulates circadian rhythms in adult female mice.

    PubMed

    Blattner, Margaret S; Mahoney, Megan M

    2014-06-01

    Estradiol influences the level and distribution of daily activity, the duration of the free-running period, and the behavioral phase response to light pulses. However, the mechanisms by which estradiol regulates daily and circadian rhythms are not fully understood. We tested the hypothesis that estrogens modulate daily activity patterns via both classical and "non-classical" actions at the estrogen receptor subtype 1 (ESR1). We used female transgenic mice with mutations in their estrogen response pathways; ESR1 knock-out (ERKO) mice and "non-classical" estrogen receptor knock-in (NERKI) mice. NERKI mice have an ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing only actions via "non-classical" genomic and second messenger pathways. Ovariectomized female NERKI, ERKO, and wildtype (WT) mice were given a subcutaneous capsule with low- or high-dose estradiol and compared with counterparts with no hormone replacement. We measured wheel-running activity in a light:dark cycle and constant darkness, and the behavioral phase response to light pulses given at different points during the subjective day and night. Estradiol increased average daily wheel-running, consolidated activity to the dark phase, and shortened the endogenous period in WT, but not NERKI and ERKO mice. The timing of activity onset during entrainment was advanced in all estradiol-treated animals regardless of genotype suggesting an ESR1-independent mechanism. We propose that estradiol modifies period, activity level, and distribution of activity via classical actions of ESR1 whereas an ESR1 independent mechanism regulates the phase of rhythms.

  1. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment in vitro and in vivo.

    PubMed

    Nakajima, Kohei; Kimura, Toshihiro; Takakura, Hideo; Yoshikawa, Yasuo; Kameda, Atsushi; Shindo, Takayuki; Sato, Kazuhide; Kobayashi, Hisataka; Ogawa, Mikako

    2018-04-13

    The aim of this study was to develop and assess a novel implantable, wireless-powered, light-emitting diode (LED) for near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a recently developed cancer therapy that uses NIR light and antibody-photosensitizer conjugates and is able to induce cancer-specific cell death. Due to limited light penetration depth it is currently unable to treat tumors in deep tissues. Use of implanted LED might potentially overcome this limitation. The wireless LED system was able to emit NIR light up to a distance of 20 cm from the transmitter coil by using low magnetic fields as compliant with limits for use in humans. Results indicated that the LED system was able to kill tumor cells in vitro and to suppress tumor growth in implanted tumor-bearing mice. Results indicated that the proposed implantable wireless LED system was able to suppress tumor growth in vivo . These results are encouraging as wireless LED systems such as the one here developed might be a possible solution to treat tumors in deep regions in humans. Further research in this area would be important. An implantable LED system was developed. It consisted of a LED capsule including two LED sources and a receiver coil coupled with an external coil and power source. Wireless power transmission was guaranteed by using electromagnetic induction. The system was tested in vitro by using EGFR-expressing cells and HER2-expressing cells. The system was also tested in vivo in tumor-bearing mice.

  2. Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure.

    PubMed

    Liu, Jie; Xie, Yaxiong; Ducharme, Danica M K; Shen, Jun; Diwan, Bhalchandra A; Merrick, B Alex; Grissom, Sherry F; Tucker, Charles J; Paules, Richard S; Tennant, Raymond; Waalkes, Michael P

    2006-03-01

    Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase-polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation-related genes, stress proteins, and insulin-like growth factors and genes involved in cell-cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.

  3. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  4. Protocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans

    PubMed Central

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061

  5. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    PubMed

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  6. Differential replication of foot-and-mouth disease viruses in mice determine lethality

    USDA-ARS?s Scientific Manuscript database

    Adult C57BL/6J mice have been used to study foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a let...

  7. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice.

    PubMed

    Roberts, Megan N; Wallace, Marita A; Tomilov, Alexey A; Zhou, Zeyu; Marcotte, George R; Tran, Dianna; Perez, Gabriella; Gutierrez-Casado, Elena; Koike, Shinichiro; Knotts, Trina A; Imai, Denise M; Griffey, Stephen M; Kim, Kyoungmi; Hagopian, Kevork; McMackin, Marissa Z; Haj, Fawaz G; Baar, Keith; Cortopassi, Gino A; Ramsey, Jon J; Lopez-Dominguez, Jose Alberto

    2017-09-05

    Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ageist attitudes block young adults' ability for compassion toward incapacitated older adults.

    PubMed

    Bergman, Yoav S; Bodner, Ehud

    2015-09-01

    Upon encountering older adults, individuals display varying degrees of prosocial attitudes and behaviors. While some display compassion and empathy, others draw away and wish to maintain their distance from them. The current study examined if and how ageist attitudes influence the association between the sight of physical incapacity in older age and compassionate reactions toward them. We predicted that ageist attitudes would interfere with the ability to respond to them with compassion. Young adults (N = 149, ages 19-29) were randomly distributed into two experimental conditions, each viewing a short video portraying different aspects of older adult physicality; one group viewed older adults displaying incapacitated behavior, and the other viewed fit behavior. Participants subsequently filled out scales assessing aging anxieties, and ageist and compassionate attitudes. Ageism was associated with reduced compassion toward the figures. Moreover, viewing incapacitated older adults led to increased concern toward them and perceived efficacy in helping them. However, significant interactions proved that higher scores of ageism in response to the videos led to increased need for distance and reduced efficacy toward incapacitated adults, an effect not observed among subjects with lower ageism scores. Ageism seems to be a factor which disengages individuals from older adults displaying fragility, leading them to disregard social norms which dictate compassion. The results are discussed from the framework of terror management theory, as increased mortality salience and death-related thoughts could have led to the activation of negative attitudes which, in turn, reduce compassion.

  9. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    PubMed

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  10. The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age.

    PubMed

    Ceylani, Taha; Jakubowska-Doğru, Ewa; Gurbanov, Rafig; Teker, Hikmet Taner; Gozen, Ayse Gul

    2018-06-01

    Recent studies carried on germ -free (GF) animal models suggest that the gut microbiota (GM) may play a role in the regulation of anxiety, mood, and cognitive abilities such as memory and learning processes. Consistently, any treatment disturbing the gut microbiota, including the overuse of antibiotics, may influence the brain functions and impact behavior. In the present study, to address this issue, two wide-spectrum antibiotics (ampicillin and cefoperazone, 1 g/l) were repeatedly applied throughout a 6-week period to initially 21-day-old male BALB/c mice. Antibiotics were administered separately or in a mixed fashion. On the completion of the antibiotic treatment, all mice were subjected to the behavioral tests. The serum levels of corticosterone and brain-derived neurotropic factor (BDNF) were assessed. Gut microbiota profiles were obtained by using denaturing gradient gel electrophoresis system, DGGE, from fecal samples. Ampicillin had a greater impact on both, gut microbiota composition and mice behavior compared to cefoperazone. All antibiotic-treated groups manifested a decrease in the locomotor activity and reduced recognition memory. However, the ampicillin-treated groups showed a higher anxiety level as assessed by the open field and the elevated plus maze tests and an increased immobility (behavioral despair) in the forced swim test. Obtained results evidently show that in mice, a repeated antibiotic treatment applied during adolescence, parallel to the changes in GM, affects locomotor activity, affective behavior and cognitive skills in young adults with ampicillin specifically enhancing anxiety- and depressive-like responses. Lower levels of serum BDNF were not associated with cognitive impairment but with changes in affective-like behaviors. Repeated administration of neither ampicillin nor cefoperazone affected basal serum corticosterone levels. This is one of the few studies demonstrating changes in a behavioral phenotype of young-adult subjects

  11. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice

    PubMed Central

    Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal

  12. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis.

    PubMed

    Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd

    2015-03-01

    Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL. Copyright © 2014. Published by Elsevier Inc.

  13. Postnatal exposure to N-ethyl-N-nitrosurea disrupts the subventricular zone in adult rodents.

    PubMed

    Capilla-Gonzalez, V; Gil-Perotin, S; Garcia-Verdugo, J M

    2010-12-01

    N-ethyl-N-nitrosurea (ENU), a type of N-nitrous compound (NOC), has been used as inductor for brain tumours due to its mutagenic effect on the rodent embryo. ENU also affected adult neurogenesis when administered during pregnancy. However, no studies have investigated the effect of ENU when exposured during adulthood. For this purpose, three experimental groups of adult mice were injected with ENU at different doses and killed shortly after exposure. When administered in adult mice, ENU did not form brain tumours but led to a disruption of the subventricular zone (SVZ), an adult neurogenic region. Analyses of the samples revealed a reduction in the numbers of neural progenitors compared with control animals, and morphological changes in ependymal cells. A significant decrease in proliferation was tested in vivo with 5-bromo-2-deoxyuridine administration and confirmed in vitro with a neurosphere assay. Cell death, assessed as active-caspase-3 reactivity, was more prominent in treated animals and cell death-related populations increased in parallel. Two additional groups were maintained for 45 and 120 days after five doses of ENU to study the potential regeneration of the SVZ, but only partial recovery was detected. In conclusion, exposure to ENU alters the organization of the SVZ and causes partial exhaustion of the neurogenic niche. The functional repercussion of these changes remains unknown, but exposure to NOCs implies a potential risk that needs further evaluation. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    PubMed

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  15. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    PubMed

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  16. Vestibular Evoked Myogenic Potentials in Normal Mice and Phex Mice With Spontaneous Endolymphatic Hydrops

    PubMed Central

    Sheykholeslami, Kianoush; Megerian, Cliff A.; Zheng, Qing Y.

    2010-01-01

    Objective and Background Vestibular evoked myogenic potentials (VEMPs) have been recorded from the neck musculature and the cervical spinal cord in humans and a limited number of laboratory animals in response to loud sound. However, the mouse VEMP has yet to be described. Evaluation of the sacculocollic pathway via VEMPs in mice can set the stage for future evaluations of mutant mice that now play an important role in research regarding human auditory and vestibular dysfunction. Materials and Methods Sound-evoked potentials were recorded from the neck extensor muscles and the cervical spinal cord in normal adult mice and in circling PhexHyp-Duk/y mice with known vestibular abnormalities, including endolymphatic hydrops (ELH). Results Biphasic potentials were recorded from all normal animals. The mean threshold of the VEMP response in normal adult mice was 60 dB normal hearing level with a mean peak latency of 6.25 ± 0.46 and 7.95 ± 0.42 milliseconds for p1 and n1 peaks, respectively. At the maximum sound intensity used (100 dB normal hearing level), 4 of 5 Phex mice did not exhibit VEMP responses, and 1 showed an elevated threshold, but normal response, with regard to peak latency and amplitude. The histologic findings in all of these Phex mice were consistent with distended membranous labyrinth, displaced Reissner membrane, ganglion cell loss, and ELH. Conclusion This is the first report of VEMP recordings in mice and the first report of abnormal VEMPs in a mouse model with ELH. The characteristics of these potentials such as higher response threshold in comparison to auditory brainstem response, myogenic nature of the response, and latency correlation with the cervical recording (accessory nerve nucleus) were similar to those of VEMPs in humans, guinea pigs, cats, and rats, suggesting that the mouse may be used as an animal model in the study of VEMPs. The simplicity and reliability of these recordings make the VEMP a uniquely informative test for assessing

  17. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR

    PubMed Central

    Hammock, Elizabeth A.D.; Law, Caitlin S.; Levitt, Pat

    2014-01-01

    Summary V1aR has a well established role in the neural regulation of adult mammalian social behavior. The role of V1aR in developmentally emerging social behavior is less well understood. We mapped V1aR at post-natal day 8 (P8) and demonstrate developmentally-specific expression in the neocortex and hippocampus. We tested the ability of male and female C57BL/6J mice to show orienting bias to a familiar odor at this age. We demonstrate that females, but not males, show an orienting bias for odors previously paired with the mother, which is eliminated by V1aR signaling. Arginine-vasopressin (AVP) and the vasopressin V1a receptor (V1aR) acting within the forebrain are involved in social behavior in adult animals. Much less is known about the function of V1aR in neurobehavioral development. In the present study, at post-natal day 8 (P8) in neonatal C57BL/6J mice, we map V1aR and use an olfactory exposure paradigm to assess a role for V1aR on olfactory preferences. In addition to V1aR in the lateral septum and ventral tegmental area, we observe V1aR in the neocortex and hippocampus, not typically observed in adult mice, implicating a developmental sensitive period for V1aR to modulate these brain areas in an experience-dependent manner. Males and females were tested on P8 for orienting preferences after exposure to a non-social odor, presented either when the mother was in the home cage (contingent) or when the mother had been removed from the home cage (not contingent). Wild-type female mice show a selective orienting bias toward the exposed odor, but only in the contingent condition. Males did not show orienting bias after either training condition. Female Avpr1a-/- mice showed strong familiar odor bias, regardless of the training condition. This finding led us to test the ability of AVP to diminish odor bias in females. Central application of AVP eliminated odor bias in Avpr1a+/+, but not Avpr1a-/- female mice. Together, these data indicate that AVP acting at V1a

  18. Retinoid-related orphan receptor γ (RORγ) adult induced knockout mice develop lymphoblastic lymphoma.

    PubMed

    Liljevald, Maria; Rehnberg, Maria; Söderberg, Magnus; Ramnegård, Marie; Börjesson, Jenny; Luciani, Donatella; Krutrök, Nina; Brändén, Lena; Johansson, Camilla; Xu, Xiufeng; Bjursell, Mikael; Sjögren, Anna-Karin; Hornberg, Jorrit; Andersson, Ulf; Keeling, David; Jirholt, Johan

    2016-11-01

    RORγ is a nuclear hormone receptor which controls polarization of naive CD4 + T-cells into proinflammatory Th17 cells. Pharmacological antagonism of RORγ has therapeutic potential for autoimmune diseases; however, this mechanism may potentially carry target-related safety risks, as mice deficient in Rorc, the gene encoding RORγ, develop T-cell lymphoma with 50% frequency. Due to the requirement of RORγ during development, the Rorc knockout (KO) animals lack secondary lymphoid organs and have a dysregulation in the generation of CD4+ and CD8+ T cells. We wanted to extend the evaluation of RORγ deficiency to address the question whether lymphomas, similar to those observed in the Rorc KO, would develop in an animal with an otherwise intact adult immune system. Accordingly, we designed a conditional RORγ knockout mouse (Rorc CKO) where the Rorc locus could be deleted in adult animals. Based on these studies we can confirm that these animals also develop lymphoma in a similar time frame as embryonic Rorc knockouts. This study also suggests that in animals where the gene deletion is incomplete, the thymus undergoes a rapid selection process replacing Rorc deficient cells with remnant thymocytes carrying a functional Rorc locus and that subsequently, these animals do not develop lymphoblastic lymphoma. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Nicotine pretreatment reduced cocaine-induced CPP and its reinstatement in a sex- and dose-related manner in adult C57BL/6J mice.

    PubMed

    Singh, Prableen K; Lutfy, Kabirullah

    2017-08-01

    Previous preclinical studies have shown that nicotine pretreatment during adolescence increases the reinforcing actions of cocaine. However, little is known about the effect of prior nicotine administration on cocaine-induced conditioned place preference (CPP) and its reinstatement in adult mice. Besides, little information is available regarding the role of sex in this cross-talk between nicotine and cocaine. Thus, we examined if nicotine administration during adulthood would differentially alter cocaine-induced CPP, its extinction and reinstatement in male versus female mice and if the dose of nicotine was important in this regard. To this end, mice were pretreated with saline or nicotine (0.25 or 1mg/kg; twice daily for seven days) and then tested for place preference before and after single and repeated conditioning with cocaine (15mg/kg). Mice were then exposed to extinction training and tested for reinstatement of CPP. Our results showed that male and female mice pretreated with saline and conditioned with cocaine each exhibited a robust CPP after a single cocaine conditioning. However, this response was blunted in mice pretreated with the lower but not higher dose of nicotine. Female mice pretreated with the lower dose nicotine also failed to show CPP after repeated conditioning. Reinstatement of cocaine-induced CPP was also blunted in these mice compared to their respective controls. Together, these results suggest that nicotine administration during adulthood exerts differential effects on cocaine-induced CPP and its reinstatement in male and female mice and the dose of nicotine is important in this regard. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A nurse-led education and cognitive behaviour therapy-based intervention among adults with uncontrolled type 2 diabetes: A randomised controlled trial.

    PubMed

    Whitehead, Lisa C; Crowe, Marie T; Carter, Janet D; Maskill, Virginia R; Carlyle, Dave; Bugge, Carol; Frampton, Chris M A

    2017-08-01

    Diabetes mellitus is associated with significant morbidity, mortality, and escalating health care costs. Research has consistently demonstrated the importance of glycaemic control in delaying the onset, and decreasing the incidence, of both the short-term and long-term complications of diabetes. Although glycaemic control is difficult to achieve and challenging to maintain, it is key to reducing negative disease outcomes. The aim of this study was to determine whether a nurse-led educational intervention alone or a nurse-led intervention using education and acceptance and commitment therapy (ACT) was effective in reducing hemoglobin A 1c (HbA 1c ) in people living with uncontrolled type 2 diabetes compared to usual care. Adults over the age of 18 years, with a confirmed diagnosis of type 2 diabetes and HbA 1c outside of the recommended range (4%-7%, 20-53 mmol/mol) for 12 months or more, were eligible to participate. Participants were randomised to either a nurse-led education intervention, a nurse-led education plus ACT intervention, or a usual care. One hundred and eighteen participants completed baseline data collection (N = 34 education group, N = 39 education plus ACT, N = 45 control group). An intention to treat analysis was used. A statistically significant reduction in HbA 1c in the education intervention group was found (P = .011 [7.48, 8.14]). At 6 months, HbA 1c was reduced in both intervention groups (education group -0.21 and education and ACT group -0.04) and increased in the control group (+0.32). A positive change in HbA 1c (HbA 1c reduced) was noted in 50 participants overall. Twice as many participants in the intervention groups demonstrated an improvement as compared to the control group (56% of the education group, 51% education plus ACT, and 24% control group. At 6 months post intervention, HbA 1c was reduced in both intervention groups with a greater reduction noted in the nurse-led education intervention. © 2017 John Wiley

  1. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    PubMed

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  2. Gestational Lead Exposure Selectively Decreases Retinal Dopamine Amacrine Cells and Dopamine Content in Adult Mice

    PubMed Central

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O’Callaghan, James P.

    2011-01-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤1, ≤10, ~25 and ~40 µg/dL, respectively, on PN10 and by PN30 all were ≤1 µg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. PMID:21703292

  3. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    PubMed

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  4. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion.

    PubMed

    Gaub, S; Fisher, S E; Ehret, G

    2016-02-01

    Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice.

    PubMed

    Yu, Q; Teixeira, C M; Mahadevia, D; Huang, Y; Balsam, D; Mann, J J; Gingrich, J A; Ansorge, M S

    2014-06-01

    Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypoactivity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (>P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction.

  6. POLD3 is haploinsufficient for DNA replication in mice

    PubMed Central

    Murga, Matilde; Lecona, Emilio; Kamileri, Irene; Díaz, Marcos; Lugli, Natalia; Sotiriou, Sotirios K.; Anton, Marta E.; Méndez, Juan; Halazonetis, Thanos D.; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologues are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizzosaccharomyces pombe orthologue is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3+/- mice were born at sub-Mendelian ratios and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency. PMID:27524497

  7. Age and isolation influence steroids release and chemical signaling in male mice.

    PubMed

    Mucignat-Caretta, Carla; Cavaggioni, Andrea; Redaelli, Marco; Da Dalt, Laura; Zagotto, Giuseppe; Gabai, Gianfranco

    2014-05-01

    Social interactions in mice involve olfactory signals, which convey information about the emitter. In turn, the mouse social and physiological status may modify the release of chemical cues. In this study, the influences of age and social isolation on the endocrine response and the release of chemical signals were investigated in male CD1 mice, allocated into four groups: Young Isolated (from weaning till 60days; N=6), Adult Isolated (till 180days; N=6), Young Grouped (6 mice/cage; till 60days; N=18), Adult Grouped (6 mice/cage; till 180days; N=18). Mice were transferred in a clean cage to observe the micturition pattern and then sacrificed. Body and organs weights, serum testosterone, dehydroepiandrosterone, corticosterone and the ratio Major Urinary Protein/creatinine were measured. Urinary volatile molecules potentially involved in pheromonal communication were identified. Androgen secretion was greater in isolated mice (P<0.05), suggesting a greater reactivity of the Hypothalamic-Pituitary-Gonadal axis. Grouped mice presented a higher degree of adrenal activity, and young mice showed a higher serum corticosterone (P<0.05) suggesting a greater stimulation of the Hypothalamic-Pituitary-Adrenal axis. The micturition pattern typical of dominant male, consisting in voiding numerous droplets, was observed in Young Isolated mice only, which showed a higher protein/creatinine ratio (P<0.05). Urinary 2-s-butyl-thiazoline was higher in both Young and Adult Isolated mice (P<0.005). Young Isolated mice showed the most prominent difference in both micturition pattern and potentially active substance emission, while long term isolation resulted in a less extreme phenotype; therefore social isolation had a higher impact on young mice hormone and pheromone release. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Selective Ablation of Ctip2/Bcl11b in Epidermal Keratinocytes Triggers Atopic Dermatitis-Like Skin Inflammatory Responses in Adult Mice

    PubMed Central

    Guha, Gunjan; Li, Shan; Kyrylkova, Kateryna; Kioussi, Chrissa; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2012-01-01

    Background Ctip2 is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Selective ablation of Ctip2 in epidermis leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation, terminal differentiation, as well as altered lipid composition during development. However, little is known about the role of Ctip2 in skin homeostasis in adult mice. Methodology/Principal Findings To study the role of Ctip2 in adult skin homeostasis, we utilized Ctip2ep−/− mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. Measurement of TEWL, followed by histological, immunohistochemical, and RT-qPCR analyses revealed an important role of Ctip2 in barrier maintenance and in regulating adult skin homeostasis. We demonstrated that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as extensive infiltration of immune cells including T lymphocytes, mast cells, and eosinophils. We observed increased expression of T-helper 2 (Th2)-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression was significantly upregulated in the mutant epidermis as early as postnatal day 1 and ChIP assay revealed that TSLP is likely a direct transcriptional target of Ctip2 in epidermal keratinocytes. Conclusions/Significance Our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult mice skin. We discovered a crucial non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines. It is likely that the epidermal hyperproliferation in the Ctip2-lacking epidermis may be secondary to the compensatory response of the adult epidermis that is defective in

  9. Smallpox subunit vaccine produced in planta confers protection in mice

    PubMed Central

    Golovkin, Maxim; Spitsin, Sergei; Andrianov, Vyacheslav; Smirnov, Yuriy; Xiao, Yuhong; Pogrebnyak, Natalia; Markley, Karen; Brodzik, Robert; Gleba, Yuri; Isaacs, Stuart N.; Koprowski, Hilary

    2007-01-01

    We report here the in planta production of the recombinant vaccinia virus B5 antigenic domain (pB5), an attractive component of a subunit vaccine against smallpox. The antigenic domain was expressed by using efficient transient and constitutive plant expression systems and tested by various immunization routes in two animal models. Whereas oral administration in mice or the minipig with collard-derived insoluble pB5 did not generate an anti-B5 immune response, intranasal administration of soluble pB5 led to a rise of B5-specific immunoglobulins, and parenteral immunization led to a strong anti-B5 immune response in both mice and the minipig. Mice immunized i.m. with pB5 generated an antibody response that reduced virus spread in vitro and conferred protection from challenge with a lethal dose of vaccinia virus. These results indicate the feasibility of producing safe and inexpensive subunit vaccines by using plant production systems. PMID:17428917

  10. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice

    PubMed Central

    Bucks, Stephanie A; Cox, Brandon C; Vlosich, Brittany A; Manning, James P; Nguyen, Tot B; Stone, Jennifer S

    2017-01-01

    Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury. DOI: http://dx.doi.org/10.7554/eLife.18128.001 PMID:28263708

  11. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2016-01-01

    Background: Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. Objectives: The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Methods: Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. Results: BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Conclusions: Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238–245; http://dx.doi.org/10.1289/EHP378 PMID:27384531

  12. High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice.

    PubMed

    Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Marie; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert

    2018-03-14

    Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.

  13. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    PubMed

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  14. The Intrauterine and Nursing Period Is a Window of Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in Min/+ Mice as Adults

    PubMed Central

    Ngo, Ha Thi; Hetland, Ragna Bogen; Steffensen, Inger-Lise

    2015-01-01

    We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia)/+ mice. The mice were given a 10% fat diet throughout life (negative control) or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+) or 23 weeks for obesogenic effect (wild-type). Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development. PMID:25874125

  15. No evidence of persisting unrepaired nuclear DNA single strand breaks in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

    PubMed

    Korr, Hubert; Angstman, Nicholas B; Born, Tatjana B; Bosse, Kerstin; Brauns, Birka; Demmler, Martin; Fueller, Katja; Kántor, Orsolya; Kever, Barbara M; Rahimyar, Navida; Salimi, Sepideh; Silny, Jiri; Schmitz, Christoph

    2014-01-01

    It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

  16. Increased Sensitivity to Alcohol Induced Changes in ERK Map Kinase Phosphorylation and Memory Disruption in Adolescent as Compared to Adult C57BL/6J Mice

    PubMed Central

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3 g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1 g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1 g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3 g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1 g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the

  17. An Essential Physiological Role for MCT8 in Bone in Male Mice

    PubMed Central

    Leitch, Victoria D.; Di Cosmo, Caterina; Liao, Xiao-Hui; O’Boy, Sam; Galliford, Thomas M.; Evans, Holly; Croucher, Peter I.; Boyde, Alan; Dumitrescu, Alexandra; Weiss, Roy E.; Refetoff, Samuel; Williams, Graham R.

    2017-01-01

    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance. PMID:28637283

  18. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    PubMed

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  19. AGED DOMINANT NEGATIVE p38α MAPK MICE ARE RESISTANT TO AGE-DEPENDENT DECLINE IN ADULT-NEUROGENESIS AND CONTEXT DISCRIMINATION FEAR CONDITIONING

    PubMed Central

    Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2018-01-01

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672

  20. Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.

    PubMed

    Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2017-03-30

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    PubMed

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.

  2. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice.

    PubMed

    Wu, Shuhui; Gao, Qiang; Zhao, Pei; Gao, Yuan; Xi, Yanjie; Wang, Xiaoting; Liang, Ying; Shi, Haishui; Ma, Yuxia

    2016-03-15

    Increasing evidence suggests that depression is accompanied by dysregulation of neuroimmune system. Sulforaphane (SFN) is a natural compound with antioxidative, anti-inflammatory and neuroprotective activities. The present study aims to investigate the effects of SFN on depressive- and anxiety-like behaviors as well as potential neuroimmune mechanisms in mice. Repeated SFN administration (10mg/kg, i.p.) significantly decreased the immobility time in the forced swimming test (FST), tail suspension test (TST), and latency time to feeding in the novelty suppressed feeding test (NSF), and increased the time in the central zone in the open field test (OPT). Using the chronic mild stress (CMS) paradigm, we confirmed that repeated SFN (10mg/kg, i.p.) administration significantly increased sucrose preference in the sucrose preference test (SPT), and immobility time in the FST and TST of mice subjected to CMS. Also, SFN treatment significantly reversed anxiety-like behaviors (assessed by the OPT and NSF) of chronically stressed mice. Finally, ELISA analysis showed that SFN administration blocked the increase in the serum levels of corticosterone (CORT), adrenocorticotropic hormone (ACTH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in chronically stressed mice. In summary, these findings demonstrated that SFN has antidepressant- and anxiolytic-like activities in stressed mice model of depression, which likely occurs by inhibiting the hypothalamic-pituitary-adrenal (HPA) axis and inflammatory response to stress. These data support further exploration for developing SFN as a novel agent to treat depression and anxiety disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    PubMed

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    PubMed

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  5. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    PubMed Central

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  6. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    PubMed

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  7. Tumors and proliferative lesions in adult offspring after maternal exposure to methylarsonous acid during gestation in CD1 mice.

    PubMed

    Tokar, Erik J; Diwan, Bhalchandra A; Thomas, David J; Waalkes, Michael P

    2012-06-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5, or 25 parts per million (ppm) from gestational days 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to 2 years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas, two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood.

  8. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Thomas, David J.; Waalkes, Michael P.

    2012-01-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5 or 25 parts per million (ppm) from gestational day 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to two years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas and two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood. PMID:22398986

  9. Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period.

    PubMed

    Philippot, Gaëtan; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2017-10-01

    Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used drugs and is considered the first-choice treatment for pain and/or fever. Recent findings in both human and animal studies have shown associations between paracetamol intake during brain development and adverse behavioral outcomes later in life. The present study was undertaken to investigate if the induction of these effects depend on when the exposure occurs during a critical period of brain development and if male and female mice are equally affected. Mice of both sexes were exposed to two doses of paracetamol (30 + 30 mg kg -1 , 4 h apart) on postnatal days (PND) 3, 10 or 19. Spontaneous behavior, when introduced to a new home environment, was observed at the age of 2 months. We show that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on PND 3 and 10, but not when exposed on PND 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans, supporting existing human data. Considering that paracetamol is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for future research and, ultimately, for clinical practice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    PubMed Central

    2012-01-01

    The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293

  11. Comparison of instructor-led versus peer-led debriefing in nursing students.

    PubMed

    Roh, Young Sook; Kelly, Michelle; Ha, Eun Ho

    2016-06-01

    Despite its widespread support, the most effective simulation-based debriefing method has little evidence to support its efficacy. In this study, we compared the effect of peer-led and instructor-led debriefing among nursing students. The study was conducted with a non-equivalent control group using a pretest-post-test design. A convenience sample of third-year nursing students was used for the study, where 65 students enrolled in a 2-week clinical placement rotation were randomly assigned to the instructor-led group or peer-led group. The quality of cardiopulmonary resuscitation skills, satisfaction with simulation, and quality of debriefing in the peer-led group were compared to those in the instructor-led group. Group differences at each testing interval were analyzed using independent t-test. Nursing students in the instructor-led debriefing group showed better subsequent cardiopulmonary resuscitation performance, more satisfaction with simulation experience, and higher debriefing scores compared to the peer-led group. From our study, instructor-led debriefing is an effective method in improving skills performance, inducing favorable satisfaction, and providing better quality of debriefing among nursing students. © 2016 John Wiley & Sons Australia, Ltd.

  12. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  13. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE PAGES

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong; ...

    2017-02-03

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  14. Relatively high rates of G:C → A:T transitions at CpG sites were observed in certain epithelial tissues including pancreas and submaxillary gland of adult big blue® mice.

    PubMed

    Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A

    2014-01-01

    With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known. Copyright © 2013 Wiley Periodicals, Inc.

  15. Analysis of the Effect of Estrogen/Androgen Perturbation on Penile Development in Transgenic and Diethylstilbestrol-Treated Mice

    PubMed Central

    BLASCHKO, SARAH D.; MAHAWONG, PHITSANU; FERRETTI, MAX; CUNHA, TRISTAN J.; SINCLAIR, ADRIANE; WANG, HONG; SCHLOMER, BRUCE J.; RISBRIDGER, GAIL; BASKIN, LAURENCE S.; CUNHA, GERALD R.

    2013-01-01

    Because both androgens and estrogens have been implicated in penile morphogenesis, we evaluated penile morphology in transgenic mice with known imbalance of androgen and estrogen signaling using scanning electron microscopy (SEM), histology, and immunohistochemistry of androgen and estrogen receptors α/β. Penises of adult wild-type, estrogen receptor-α knockout (αERKO), estrogen receptor-β knockout (βERKO), aromatase knockout (Arom-KO), and aromatase overexpression (Arom+) mice were evaluated, as well as adult mice treated with diethylstilbestrol (DES) from birth to day 10. Adult penises were examined because the adult pattern is the endpoint of development. The urethral orifice is formed by fusion of the MUMP (male urogenital mating protuberance) with the MUMP ridge, which consists of several processes fused to each other and to the MUMP. Similarly, the internal prepuce is completed ventrally by fusion of a ventral cleft. In adult murine penises the stromal processes that form the MUMP ridge are separated from their neighbors by clefts. αERKO, βERKO, and Arom-KO mice have penises with a MUMP ridge clefting pattern similar to that of wild-type mice. In contrast, Arom+ mice and neonatally DES-treated mice exhibit profound malformations of the MUMP, MUMP ridge clefting pattern, and internal prepuce. Abnormalities observed in Arom+ and neonatally DES-treated mice correlate with the expression of estrogen receptor-beta (ERβ) in the affected structures. This study demonstrates that formation of the urethal orifice and internal prepuce is due to fusion of separate epithelial-surfaced mesenchymal elements, a process dependent upon both androgen and estrogen signaling, in which ERβ signaling is strongly implicated. PMID:23653160

  16. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis

    PubMed Central

    Ladrón de Guevara-Miranda, David; Millón, Carmelo; Rosell-Valle, Cristina; Pérez-Fernández, Mercedes; Missiroli, Michele; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Martínez-Losa, Magdalena; Álvarez-Dolado, Manuel; Santín, Luis J.

    2017-01-01

    ABSTRACT Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal. PMID:28138095

  17. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice

    PubMed Central

    Heine, Shannon J.; Franco-Mahecha, Olga L.; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C.; van Roosmalen, Maarten L.; Leenhouts, Kees; Picking, Wendy L.; Pasetti, Marcela F.

    2015-01-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of non-living, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis. PMID:25776843

  18. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation induced myeloproliferative disease

    PubMed Central

    Iskander, Karim; Barrios, Roberto J.; Jaiswal, Anil K.

    2008-01-01

    NAD(P)H:quinone oxidoreductase1-null (NQO1-/-) mice exposed to 3 grays of γ-radiation demonstrated an increase in neutrophils, bone marrow hypercellularity, and enlarged lymph nodes and spleen. The spleen showed disrupted follicular structure, loss of red pulp, and granulocyte and megakarocyte invasion. Blood and histological analysis did not show any sign of infection in mice. These results suggested that exposure of NQO1-/- mice to γ-radiation led to myeloproliferative disease. Radiation-induced myeloproliferative disease was observed in 74% of NQO1-/- mice as compared to none in wild type mice. NQO1-/- mice exposed to γ-radiation also demonstrated tissues lymphoma (32%) and lung adenocarcinoma (84%). In contrast, only 11% wild type mice showed lymphoma and none showed lung adenocarcinoma. Exposure of NQO1-/- mice to γ-radiation resulted in reduced apoptosis in granulocytes and lack of induction of p53, p21, and Bax. NQO1-/- mice also demonstrated increased expression of myeloid differentiation factors C/EBPα and Pu.1. Intriguingly, exposure of NQO1-/- mice to γ-radiation failed to induce C/EBPα and Pu.1, as was observed in wild type mice. These results suggest that decreased p53/apoptosis and increased Pu.1 and C/EBPα led to myeloid hyperplasia in NQO1-/- mice. The lack of induction of apoptosis and differentiation contributed to radiation-induced myeloproliferative disease in NQO1-/- mice. PMID:18829548

  19. Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice.

    PubMed

    Ba, Qian; Li, Mian; Chen, Peizhan; Huang, Chao; Duan, Xiaohua; Lu, Lijun; Li, Jingquan; Chu, Ruiai; Xie, Dong; Song, Haiyun; Wu, Yongning; Ying, Hao; Jia, Xudong; Wang, Hui

    2017-03-01

    Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear. We investigated the effects of early exposure to cadmium, at an environmentally relevant dosage, on adult metabolism and the mechanism of action. We established mouse models with low-dose cadmium (LDC) exposure in early life to examine the long-term metabolic consequences. Intestinal flora measurement by 16S rDNA sequencing, microbial ecological analyses, and fecal microbiota transplant was conducted to explore the potential underlying mechanisms. Early LDC exposure (100 nM) led to fat accumulation in adult male mice. Hepatic genes profiling revealed that fatty acid and lipid metabolic processes were elevated. Gut microbiota were perturbed by LDC to cause diversity reduction and compositional alteration. Time-series studies indicated that the gut flora at early-life stages, especially at 8 weeks, were vulnerable to LDC and that an alteration during this period could contribute to the adult adiposity, even if the microbiota recovered later. The importance of intestinal bacteria in LDC-induced fat accumulation was further confirmed through microbiota transplantation and removal experiments. Moreover, the metabolic effects of LDC were observed only in male, but not female, mice. An environmental dose of cadmium at early stages of life causes gut microbiota alterations, accelerates hepatic lipid metabolism, and leads to life-long metabolic consequences in a sex-dependent manner. These findings provide a better understanding of the health risk of cadmium in the environment. Citation: Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, Wu Y, Ying H, Jia X, Wang H. 2017. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125:437-446; http://dx.doi.org/10.1289/EHP360.

  20. Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice

    PubMed Central

    Ba, Qian; Li, Mian; Chen, Peizhan; Huang, Chao; Duan, Xiaohua; Lu, Lijun; Li, Jingquan; Chu, Ruiai; Xie, Dong; Song, Haiyun; Wu, Yongning; Ying, Hao; Jia, Xudong; Wang, Hui

    2016-01-01

    Background: Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear. Objectives: We investigated the effects of early exposure to cadmium, at an environmentally relevant dosage, on adult metabolism and the mechanism of action. Methods: We established mouse models with low-dose cadmium (LDC) exposure in early life to examine the long-term metabolic consequences. Intestinal flora measurement by 16S rDNA sequencing, microbial ecological analyses, and fecal microbiota transplant was conducted to explore the potential underlying mechanisms. Results: Early LDC exposure (100 nM) led to fat accumulation in adult male mice. Hepatic genes profiling revealed that fatty acid and lipid metabolic processes were elevated. Gut microbiota were perturbed by LDC to cause diversity reduction and compositional alteration. Time-series studies indicated that the gut flora at early-life stages, especially at 8 weeks, were vulnerable to LDC and that an alteration during this period could contribute to the adult adiposity, even if the microbiota recovered later. The importance of intestinal bacteria in LDC-induced fat accumulation was further confirmed through microbiota transplantation and removal experiments. Moreover, the metabolic effects of LDC were observed only in male, but not female, mice. Conclusions: An environmental dose of cadmium at early stages of life causes gut microbiota alterations, accelerates hepatic lipid metabolism, and leads to life-long metabolic consequences in a sex-dependent manner. These findings provide a better understanding of the health risk of cadmium in the environment. Citation: Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, Wu Y, Ying H, Jia X, Wang H. 2017. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health

  1. Identification of genetic loci that modulate cell proliferation in the adult rostral migratory stream using the expanded panel of BXD mice.

    PubMed

    Poon, Anna; Goldowitz, Daniel

    2014-03-19

    Adult neurogenesis, which is the continual production of new neurons in the mature brain, demonstrates the strikingly plastic nature of the nervous system. Adult neural stem cells and their neural precursors, collectively referred to as neural progenitor cells (NPCs), are present in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ), and rostral migratory stream (RMS). In order to harness the potential of NPCs to treat neurodegenerative diseases and brain injuries, it will be important to understand the molecules that regulate NPCs in the adult brain. The genetic basis underlying NPC proliferation is still not fully understood. From our previous quantitative trait locus (QTL) analysis, we had success in using a relatively small reference population of recombinant inbred strains of mice (AXBXA) to identify a genetic region that is significantly correlated with NPC proliferation in the RMS. In this study, we expanded our initial QTL mapping of RMS proliferation to a far richer genetic resource, the BXD RI mouse strains. A 3-fold difference in the number of proliferative, bromodeoxyuridine (BrdU)-labeled cells was quantified in the adult RMS of 61 BXD RI strains. RMS cell proliferation is highly dependent on the genetic background of the mice with an estimated heritability of 0.58. Genome-wide mapping revealed a significant QTL on chromosome (Chr) 6 and a suggestive QTL on Chr 11 regulating the number of NPCs in the RMS. Composite interval analysis further revealed secondary QTLs on Chr 14 and Chr 18. The loci regulating RMS cell proliferation did not overlap with the suggestive loci modulating cell proliferation in the SGZ. These mapped loci serve as starting points to identify genes important for this process. A subset of candidate genes in this region is associated with cell proliferation and neurogenesis. Interconnectivity of these candidate genes was demonstrated using pathway and transcriptional covariance analyses. Differences in RMS

  2. Ralstonia pickettii-Induced Ataxia in Immunodeficient Mice

    PubMed Central

    Berard, Marion; Medaille, Christine; Simon, Meredith; Serre, Stéphanie; Pritchett-Corning, Kathleen; Dangles-Marie, Virginie

    2009-01-01

    We report here the characterization of an asymmetric ataxia syndrome (head tilt and circling, with death in the most severe cases) demonstrated by profoundly immunodeficient mice housed at the Institut Curie SPF facility. The immune system of the affected mice had been genetically modified so that they were deficient in both B and T cells. Extensive bacteriologic, parasitic, serologic, and histopathologic analysis of the affected animals and their healthy controls led us to identify Ralstonia pickettii as the causative agent of the ataxic syndrome. The outbreak was managed through a test-and-cull process. Even though they also carried Ralstonia pickettii, immunocompetent mice that were kept in the same facility, did not show any of the signs that were expressed by their immunodeficient counterparts. This case highlights the difficulty of maintaining immunocompetent and immunodeficient mice in the same microbiologic unit and the importance of enlarging the spectrum of health monitoring to opportunistic agents when investigating clinical cases in populations of immunocompromised rodents. PMID:19389312

  3. THE ANABOLIC STEROIDS TESTOSTERONE PROPIONATE AND NANDROLONE, BUT NOT 17α-METHYLTESTOSTERONE, INDUCE CONDITIONED PLACE PREFERENCE IN ADULT MICE

    PubMed Central

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Melanis; Barreto-Estrada, Jennifer L.

    2009-01-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17α-methyltestosterone (17α-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17α-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory based-anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17α-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism. PMID:19028026

  4. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice.

    PubMed

    Parrilla-Carrero, Jeffrey; Figueroa, Orialis; Lugo, Alejandro; García-Sosa, Rebecca; Brito-Vargas, Paul; Cruz, Beatriz; Rivera, Mélanis; Barreto-Estrada, Jennifer L

    2009-02-01

    Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.

  5. CDKL5 deficiency entails sleep apneas in mice.

    PubMed

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  6. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    PubMed Central

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  7. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    USDA-ARS?s Scientific Manuscript database

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice spe...

  8. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  9. Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice

    PubMed Central

    Seney, Marianne L.; Walsh, Christopher; Stolakis, Ryan; Sibille, Etienne

    2012-01-01

    Major depressive disorder (MDD) is a debilitating disorder of altered mood regulation. Despite well established sex differences in MDD prevalence, the mechanism underlying the increased female vulnerability remains unknown. Although evidence suggests an influence of adult circulating hormone levels on mood (i.e. activational effects of hormones), MDD prevalence is consistently higher in women across life stages (and therefore hormonal states), suggesting that additional underlying structural or biological differences place women at higher risk. Studies in human subjects and in rodent models suggest a developmental origin for mood disorders, and interestingly, a developmental process also establishes sex differences in the brain. Hence, based on these parallel developmental trajectories, we hypothesized that a proportion of the female higher vulnerability to MDD may originate from the differential organization of mood regulatory neural networks early in life (i.e. organizational effects of hormones). To test this hypothesis in a rodent system, we took advantage of a well-established technique used in the field of sexual differentiation (neonatal injection with testosterone) to masculinize sexually dimorphic brain regions in female mice. We then investigated adult behavioral consequences relating to emotionality by comparing neonatal testosterone-treated females to normal males and females. Under baseline/trait conditions, neonatal testosterone treatment of female mice did not influence adult emotionality, but masculinized adult locomotor activity, as revealed by the activational actions of hormones. Conversely, the increased vulnerability of female mice to develop high emotionality following unpredictable chronic mild stress (UCMS) was partially masculinized by neonatal testosterone exposure, with no effect on post-UCMS locomotion. The elevated female UCMS-induced vulnerability did not differ between adult hormone treated groups. These results demonstrate that sex

  10. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice

    PubMed Central

    Holguin, Nilsson; Brodt, Michael D; Silva, Matthew J

    2017-01-01

    Aging diminishes bone formation engendered by mechanical loads, but the mechanism for this impairment remains unclear. Because Wnt signaling is required for optimal loading-induced bone formation, we hypothesized that aging impairs the load-induced activation of Wnt signaling. We analyzed dynamic histomorphometry of 5-month-old, 12-month-old, and 22-month-old C57Bl/6JN mice subjected to multiple days of tibial compression and corroborated an age-related decline in the periosteal loading response on day 5. Similarly, 1 day of loading increased periosteal and endocortical bone formation in young-adult (5-month-old) mice, but old (22-month-old) mice were unresponsive. These findings corroborated mRNA expression of genes related to bone formation and the Wnt pathway in tibias after loading. Multiple bouts (3 to 5 days) of loading upregulated bone formation–related genes, e.g., Osx and Col1a1, but older mice were significantly less responsive. Expression of Wnt negative regulators, Sost and Dkk1, was suppressed with a single day of loading in all mice, but suppression was sustained only in young-adult mice. Moreover, multiple days of loading repeatedly suppressed Sost and Dkk1 in young-adult, but not in old tibias. The age-dependent response to loading was further assessed by osteocyte staining for Sclerostin and LacZ in tibia of TOPGAL mice. After 1 day of loading, fewer osteocytes were Sclerostin-positive and, corroboratively, more osteocytes were LacZ-positive (Wnt active) in both 5-month-old and 12-month-old mice. However, although these changes were sustained after multiple days of loading in 5-month-old mice, they were not sustained in 12-month-old mice. Last, Wnt1 and Wnt7b were the most load-responsive of the 19 Wnt ligands. However, 4 hours after a single bout of loading, although their expression was upregulated threefold to 10-fold in young-adult mice, it was not altered in old mice. In conclusion, the reduced bone formation response of aged mice to loading

  11. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice

    PubMed Central

    Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.

    2014-01-01

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831

  12. Fall-Related Injuries in a Cohort of Community-Dwelling Older Adults Attending Peer-Led Fall Prevention Exercise Classes.

    PubMed

    Wurzer, Birgit; Waters, Debra Lynn; Hale, Leigh Anne

    2016-01-01

    To investigate reported injuries and circumstances and to estimate the costs related to falls experienced by older adults participating in Steady As You Go (SAYGO) peer-led fall prevention exercise classes. A 12-month prospective cohort study of 207 participants attending community-based SAYGO classes in Dunedin, New Zealand. Types and costs of medical treatment for injuries and circumstances of falls were obtained via standardized fall event questionnaires and phone-administered questionnaires. Eighty-four percent completed the study (160 females, 14 males, mean age = 77.5 [standard deviation = 6.5] years). More than a third of the total falls (55/148 total falls, 37%) did not result in any injuries. Most injuries (45%, n = 67) were sprains, grazes, and bruises. Medical attention was sought 26 times (18%), out of which 6 participants (4%) reported fractures (none femoral). The majority of falls occurred while walking. More falls and injuries occurred outdoors (n = 55). The number of times medical treatment was sought correlated with the number of falls in the previous year (r = 0.50, P = .02). The total number of years attending SAYGO was a significant predictor of lower total number of injuries (stepwise regression β = -0.157, t = -1.99, P = .048). The total cost of medical treatment across all reported injurious falls was estimated at NZ$6946 (US$5415). Older adults participating in SAYGO appear to sustain less severe injuries following a fall than previously reported. More falls and injuries occurred outdoors, suggesting better overall health of these participants. The role of long-term participation in fall prevention exercise classes on injurious falls warrants further investigation.

  13. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    PubMed

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  14. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze.

    PubMed

    Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, Rene; Segu, Louis; Buhot, Marie-Christine

    2003-01-01

    Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.

  15. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice

    PubMed Central

    Maier, Jennifer A.; Harfe, Brian D.

    2011-01-01

    Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629

  16. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice.

    PubMed

    Samaddar, Sreyashi; Vazquez, Kizzy; Ponkia, Dipen; Toruno, Pedro; Sahbani, Karim; Begum, Sultana; Abouelela, Ahmed; Mekhael, Wagdy; Ahmed, Zaghloul

    2017-02-01

    Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a

  17. Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice

    PubMed Central

    Golden, Sam A.; Aleyasin, Hossein; Heins, Robert; Flanigan, Meghan; Heshmati, Mitra; Takahashi, Aki; Russo, Scott J.; Shaham, Yavin

    2016-01-01

    We recently developed a conditioned place preference (CPP) procedure, commonly used to study rewarding drug effects, to demonstrate that dominant sexually-experienced CD-1 male mice form CPP to contexts previously associated with defeating subordinate male C57BL/6J mice. Here we further characterized conditioned and unconditioned aggression behavior in CD-1 mice. In Exp. 1 we used CD-1 mice that displayed a variable spectrum of unconditioned aggressive behavior toward younger subordinate C57BL/6J intruder mice. We then trained the CD-1 mice in the CPP procedure where one context was intruder-paired, while a different context was not. We then tested for aggression CPP 1 day after training. In Exp. 2, we tested CD-1 mice for aggression CPP 1 day and 18 days after training. In Exp. 3–4, we trained the CD-1 mice to lever-press for palatable food and tested them for footshock punishment-induced suppression of food-reinforced responding. In Exp. 5, we characterized unconditioned aggression in hybrid CD-1xC57BL/6J D1-Cre or D2-Cre F1 generation crosses. Persistent aggression CPP was observed in CD-1 mice that either immediately attacked C57BL/6J mice during all screening sessions or mice that gradually developed aggressive behavior during the screening phase. In contrast, CD-1 mice that did not attack the C57BL/6J mice during screening didn’t develop CPP to contexts previously paired with C57BL/6J mice. The aggressive phenotype did not predict resistance to punishment-induced suppression of food-reinforced responding. CD-1xD1-Cre or D2-Cre F1 transgenic mice showed strong unconditioned aggression. Our study demonstrates that aggression experience causes persistent CPP and introduces transgenic mice for circuit studies of aggression. PMID:27457669

  18. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia

    PubMed Central

    May, A.J.; Chatzeli, L.; Proctor, G.B.; Tucker, A.S.

    2017-01-01

    Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia. PMID:26321752

  19. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia.

    PubMed

    May, A J; Chatzeli, L; Proctor, G B; Tucker, A S

    2015-01-01

    Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia.

  20. Aortic Sca-1+ Progenitor Cells Arise from the Somitic Mesoderm Lineage in Mice.

    PubMed

    Steinbach, Sarah K; Wang, Tao; Carruthers, Martha H; Li, Angela; Besla, Rickvinder; Johnston, Adam P; Robbins, Clinton S; Husain, Mansoor

    2018-05-31

    Sca-1 + progenitor cells in the adult mouse aorta are known to generate vascular smooth muscle cells (VSMCs), but their embryological origins and temporal abundance are not known. Using tamoxifen-inducible Myf5-Cre ER mice, we demonstrate that Sca-1 + adult aortic cells arise from the somitic mesoderm beginning at E8.5 and continue throughout somitogenesis. Myf5 lineage-derived Sca-1 + cells greatly expand in situ, starting at 4 weeks of age, and become a major source of aortic Sca-1 + cells by 6 weeks of age. Myf5-derived adult aortic cells are capable of forming multicellular sphere-like structures in vitro and express the pluripotency marker Sox2. Exposure to transforming growth factor-β3 induces these spheres to differentiate into calponin-expressing VSMCs. Pulse-chase experiments using tamoxifen-inducible Sox2-Cre ERT2 mice at 8 weeks of age demonstrate that ∼35% of all adult aortic Sca-1 + cells are derived from Sox2 + cells. The present study demonstrates that aortic Sca-1 + progenitor cells are derived from the somitic mesoderm formed at the earliest stages of somitogenesis and from Sox2-expressing progenitors in adult mice.

  1. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor.

    PubMed

    Holick, Kerri A; Lee, Daniel C; Hen, René; Dulawa, Stephanie C

    2008-01-01

    We previously reported that chronic, but not subchronic, treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine altered behavior in the forced swimming test (FST) in BALB/cJ mice. We now use this model to investigate mechanisms underlying the delayed onset of the behavioral response to antidepressants, specifically (1) adult hippocampal neurogenesis and (2) expression of the 5-HT1A receptor. Here, we show data validating this model of chronic antidepressant action. We found the FST to be selectively responsive to chronic administration of the SSRI fluoxetine (18 mg/kg/day) and the tricyclic antidepressant desipramine (20 mg/kg/day), but not to the antipsychotic haloperidol (1 mg/kg/day) in BALB/cJ mice. The behavioral effects of fluoxetine emerged by 12 days of treatment, and were affected neither by ablation of progenitor cells of the hippocampus nor by genetic deletion of the 5-HT1A receptor. The effect of fluoxetine in the BALB/cJ mice was also neurogenesis-independent in the novelty-induced hypophagia test. We also found that chronic fluoxetine does not induce an increase in cell proliferation or the number of young neurons as measured by BrdU and doublecortin immunolabeling, respectively, in BALB/cJ mice. These data are in contrast to our previous report using a different strain of mice (129SvEvTac). In conclusion, we find that BALB/cJ mice show a robust response to chronic SSRI treatment in the FST, which is not mediated by an increase in new neurons in the hippocampus, and does not require the 5-HT1A receptor. These findings suggest that SSRIs can produce antidepressant-like effects via distinct mechanisms in different mouse strains.

  2. Heterozygous Vangl2Looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

    PubMed Central

    Poobalasingam, Thanushiyan; Yates, Laura L.; Walker, Simone A.; Pereira, Miguel; Gross, Nina Y.; Ali, Akmol; Kolatsi-Joannou, Maria; Jarvelin, Marjo-Riitta; Pekkanen, Juha; Papakrivopoulou, Eugenia; Long, David A.; Griffiths, Mark; Wagner, Darcy; Königshoff, Melanie; Hind, Matthew; Minelli, Cosetta; Lloyd, Clare M.

    2017-01-01

    ABSTRACT Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung

  3. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    PubMed

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  4. Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice.

    PubMed

    Jiang, Shan; Miao, Bei; Chen, Ying

    2017-05-03

    Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.

  5. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    PubMed Central

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575

  6. Phototaxis of Propsilocerus akamusi (Diptera: Chironomidae) From a Shallow Eutrophic Lake in Response to Led Lamps.

    PubMed

    Hirabayashi, Kimio; Nagai, Yoshinari; Mushya, Tetsuya; Higashino, Makoto; Taniguchi, Yoshio

    2017-06-01

    A study on the attraction of adult Propsilocerus akamusi midges to different-colored light traps was carried out from October 21 to November 15, 2013. The 6 colored lights used in light-emitting diode (LED) lamps were white, green, red, blue, amber, and ultraviolet (UV). The UV lamp attracted the most P. akamusi, followed by green, white, blue, amber, and red. A white pulsed LED light attracted only half the number of midges as did a continuous-emission white LED light. The result indicated that manipulation of light color, considering that the red LED light and/or pulsed LED light are not as attractive as the other colors, may be appropriate for the development of an overall integrated strategy to control nuisance P. akamusi in the Lake Suwa area.

  7. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Filipov, Nikolay M

    2016-04-01

    Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  9. Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice.

    PubMed

    Iismaa, Siiri E; Li, Ming; Kesteven, Scott; Wu, Jianxin; Chan, Andrea Y; Holman, Sara R; Calvert, John W; Haq, Ahtesham Ul; Nicks, Amy M; Naqvi, Nawazish; Husain, Ahsan; Feneley, Michael P; Graham, Robert M

    2018-04-17

    We have previously demonstrated that adult transgenic C57BL/6J mice with CM-restricted overexpression of the dominant negative W v mutant protein (dn-c-kit-Tg) respond to pressure overload with robust cardiomyocyte (CM) cell cycle entry. Here, we tested if outcomes after myocardial infarction (MI) due to coronary artery ligation are improved in this transgenic model. Compared to non-transgenic littermates (NTLs), adult male dn-c-kit-Tg mice displayed CM hypertrophy and concentric left ventricular (LV) hypertrophy in the absence of an increase in workload. Stroke volume and cardiac output were preserved and LV wall stress was markedly lower than that in NTLs, leading to a more energy-efficient heart. In response to MI, infarct size in adult (16-week old) dn-c-kit-Tg hearts was similar to that of NTL after 24 h but was half that in NTL hearts 12 weeks post-MI. Cumulative CM cell cycle entry was only modestly increased in dn-c-kit-Tg hearts. However, dn-c-kit-Tg mice were more resistant to infarct expansion, adverse LV remodelling and contractile dysfunction, and suffered no early death from LV rupture, relative to NTL mice. Thus, pre-existing cardiac hypertrophy lowers wall stress in dn-c-kit-Tg hearts, limits infarct expansion and prevents death from myocardial rupture.

  10. STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection.

    PubMed

    Srinivasa, Bharat T; Restori, Katherine H; Shan, Jichuan; Cyr, Louis; Xing, Li; Lee, Soojin; Ward, Brian J; Fixman, Elizabeth D

    2017-02-01

    Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development. © Society for Leukocyte Biology.

  11. The effect of neonatal N-methyl-D-aspartate receptor blockade on exploratory and anxiety-like behaviors in adult BALB/c and C57BL/6 mice.

    PubMed

    Akillioglu, Kubra; Binokay, Secil; Kocahan, Sayad

    2012-07-15

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. In our study, we evaluated the effects of neonatal NMDA receptor blockade on exploratory locomotion and anxiety-like behaviors of adult BALB/c and C57BL/6 mice. In this study, NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in BALB/c and C57BL/6 mice (0.25mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF) and elevated plus maze (EPM) tests were used to evaluate exploratory locomotion and anxiety-like behaviors. In the OF, BALB/c mice spent less time in the center of the field (p<0.05) and had less vertical locomotor activity (p<0.01) compared to C57BL/6 mice. In BALB/c mice, MK-801 caused a decrease in vertical and horizontal locomotor activity in the OF test, compared to the control group (p<0.05). In C57BL/6 mice, MK-801 treatment increased horizontal locomotor activity and decreased time spent in the center in the OF test (p<0.05). In the EPM, the number of open-arm entries, the percentage of open-arm time (p<0.01) and total arm entries (p<0.05) were lower in BALB/c mice compared to C57BL/6 mice. In BALB/c mice, MK-801 caused an increase in the percentage of open-arm time compared to the control group (p<0.05). In C57BL/6 mice, MK-801 caused a decrease in the percentage of open-arm time compared to the control group (p<0.05). MK-801 decreased exploratory and anxiety-like behaviors in BALB/c mice. In contrast, MK-801 increased exploratory and anxiety-like behaviors in C57BL/6 mice. In conclusion, hereditary factors may play an important role in neonatal NMDA receptor blockade-induced responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  13. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  14. We're All Adults Here: Clarifying and Maintaining Boundaries with Adult Learners

    ERIC Educational Resources Information Center

    Booth, Melanie; Schwartz, Harriet L.

    2012-01-01

    Working with adult learners presents a unique set of interpersonal boundary questions. In this chapter, the authors discuss the characteristics of working with adult learners that have led them to explore questions about boundaries between them and their students. They then identify how they might define, set, maintain, adjust, and work close to…

  15. Influence of Sex and Age on Natural Resistance to St. Louis Encephalitis Virus Infection in Mice

    PubMed Central

    Andersen, Arthur A.; Hanson, Robert P.

    1974-01-01

    A difference was observed in susceptibility of adult male and female mice to St. Louis encephalitis (SLE) virus as measured by the death rate after intravenous challenge. Female mice that had susceptibility similar to that of males at 2 months of age had increased resistance to SLE virus at 3 and 4 months of age. The increased resistance occurred after sexual maturity, indicating that the resistance factor possibly was related to an aging process in the female. The susceptibility of male mice remained unchanged over the 2- to 4-month period. Neither pregnancy nor castration had any effect on resistance of adult mice to St. Louis encephalitis virus. PMID:4857422

  16. Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice.

    PubMed

    Golden, S A; Aleyasin, H; Heins, R; Flanigan, M; Heshmati, M; Takahashi, A; Russo, S J; Shaham, Y

    2017-01-01

    We recently developed a conditioned place preference (CPP) procedure, commonly used to study rewarding drug effects, to demonstrate that dominant sexually-experienced CD-1 male mice form CPP to contexts previously associated with defeating subordinate male C57BL/6J mice. Here we further characterized conditioned and unconditioned aggression behavior in CD-1 mice. In Exp. 1 we used CD-1 mice that displayed a variable spectrum of unconditioned aggressive behavior toward younger subordinate C57BL/6J intruder mice. We then trained the CD-1 mice in the CPP procedure where one context was intruder-paired, while a different context was not. We then tested for aggression CPP 1 day after training. In Exp. 2, we tested CD-1 mice for aggression CPP 1 day and 18 days after training. In Exp. 3-4, we trained the CD-1 mice to lever-press for palatable food and tested them for footshock punishment-induced suppression of food-reinforced responding. In Exp. 5, we characterized unconditioned aggression in hybrid CD-1 × C57BL/6J D1-Cre or D2-Cre F1 generation crosses. Persistent aggression CPP was observed in CD-1 mice that either immediately attacked C57BL/6J mice during all screening sessions or mice that gradually developed aggressive behavior during the screening phase. In contrast, CD-1 mice that did not attack the C57BL/6J mice during screening did not develop CPP to contexts previously paired with C57BL/6J mice. The aggressive phenotype did not predict resistance to punishment-induced suppression of food-reinforced responding. CD-1 × D1-Cre or D2-Cre F1 transgenic mice showed strong unconditioned aggression. Our study demonstrates that aggression experience causes persistent CPP and introduces transgenic mice for circuit studies of aggression. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    PubMed Central

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  18. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action.

    PubMed

    Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-01

    The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The pharmacokinetics of commonly used antiepileptic drugs in immature CD1 mice

    PubMed Central

    Markowitz, Geoffrey J.; Kadam, Shilpa D.; Boothe, Dawn M.; Irving, Natasha D.; Comi, Anne M.

    2010-01-01

    Rodents eliminate antiepileptic drugs (AEDs) faster than humans, creating challenges for designing clinically-relevant protocols. Half-lives of AEDs in immature mice are unknown. The pharmacokinetics of commonly-used AEDs were examined in CD1 mice using a single-dose protocol at post-natal day 19. Following intraperitoneal therapeutic dosing, blood serum concentrations spanning 1–48 hours post-administration and corresponding brain tissue concentrations at 4 hours were analyzed. Half-lives of valproate, phenobarbital, diazepam (and metabolites), phenytoin, and levetiracetam were 2.6, 15.8, 22.3, 16.3, and 3.2 hours respectively, compared to 0.8, 7.5, 7.7, 16.0, and 1.5 hours reported for adult mice. Brain-to-blood ratios were comparable to adult ratios. AEDs tested had longer half-lives and maintained therapeutic plasma concentrations longer than reported in mature mice, making clinically-relevant protocols feasible. PMID:20848732

  20. Long-Term Effects of Neonatal Methamphetamine Exposure on Cognitive Function in Adolescent Mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2011-01-01

    Exposure to methamphetamine during brain development impairs cognition in children and adult rodents. In mice, these impairments are greater in females than males. Adult female, but not male, mice show impairments in novel location recognition following methamphetamine exposure during brain development. In contrast to adulthood, little is known about the potential effects of methamphetamine exposure on cognition in adolescent mice. As adolescence is an important time of development and is relatively understudied, the aim of the current study was to examine potential long-term effects of neonatal methamphetamine exposure on behavior and cognition during adolescence. Male and female mice were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20, the period of rodent hippocampal development. Behavioral and cognitive function was assessed during adolescence beginning on postnatal day 30. During the injection period, methamphetamine-exposed mice gained less weight on average compared to saline-exposed mice. In both male and female mice, methamphetamine exposure significantly impaired novel object recognition and there was a trend towards impaired novel location recognition. Anxiety-like behavior, sensorimotor gating, and contextual and cued fear conditioning were not affected by methamphetamine exposure. Thus, neonatal methamphetamine exposure affects cognition in adolescence and unlike in adulthood equally affects male and female mice. PMID:21238498

  1. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice.

    PubMed

    Kelley, Christy M; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2014-04-15

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. Copyright © 2013 Wiley Periodicals, Inc.

  2. Voluntary Running in Young Adult Mice Reduces Anxiety-Like Behavior and Increases the Accumulation of Bioactive Lipids in the Cerebral Cortex

    PubMed Central

    Santos-Soto, Iván J.; Chorna, Nataliya; Carballeira, Néstor M.; Vélez-Bartolomei, José G.; Méndez-Merced, Ana T.; Chornyy, Anatoliy P.; de Ortiz, Sandra Peña

    2013-01-01

    Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by

  3. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  4. Differential regulation of cell proliferation in neurogenic zones in mice lacking cystine transport by xCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Richard R.; Brown, Craig E.; Brain Research Center, University of British Columbia, Vancouver, BC, V6T 1Z3

    2007-12-21

    The cystine/glutamate exchanger (xCT) supplies intracellular cyst(e)ine for the production of glutathione, a major cellular anti-oxidant. xCT is enriched in brain regions associated with neurogenesis. Previous studies have shown that the malfunction of this protein greatly attenuates cell proliferation in vitro and is associated with brain atrophy in vivo. Using mice that are homozygous for a function-blocking deletion in xCT (Sut mice), we examined in vivo the role of xCT in cell proliferation in neurogenic regions of the subventricular zone (SVZ) and denate gyrus (DG) in the adult brain. Our results indicate that a high level of cellular proliferation inmore » the adult brain persists even in the absence of functional xCT. Furthermore, in both young adult and middle-aged mice (3 and 11 months old), rates of SVZ cell proliferation were comparable between Sut and wild-type controls, although there was trend towards reduced proliferation in Sut mice (12% and 9% reduction, respectively). To our surprise, rates of cell proliferation in the DG were elevated in both 3- and 11-month-old Sut mice relative to controls (22% and 28% increase, respectively). These results demonstrate that xCT expression plays a role in regulating cellular proliferation in the DG, but not the SVZ of adult mice. Furthermore, unlike previous in vitro studies, our in vivo observations clearly indicate that xCT is not essential for ongoing cellular proliferation.« less

  5. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice

    PubMed Central

    Ohba, Kenji; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel

    2016-01-01

    Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609

  6. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water

    PubMed Central

    Saritha, Krishna; Celia, Dodd A.; Shahryar, Hekmatyar K.; Nikolay, Filipov M.

    2013-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e. mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) level, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure. PMID:23832297

  7. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Hekmatyar, Shahryar K; Filipov, Nikolay M

    2014-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.

  8. Evaluation of a volunteer-led in-home exercise program for home-bound older adults.

    PubMed

    Stolee, Paul; Zaza, Christine; Schuehlein, Sheila

    2012-01-01

    Exercise programs have been found to have substantial benefits for older persons, but implementing these programs with frail homebound seniors is challenging. The project team aimed to evaluate an in-home exercise program for older adults--the Victorian Order of Nurses' for Canada's SMART (Seniors Maintaining Active Roles Together)® (VON SMART®) In-Home Exercise Program- in which the exercises are led by trained volunteers. The majority of volunteers were females who exercise regularly. Over half of the volunteers were 60 years of age or older, and over half had had prior health or fitness training. Volunteers reported receiving multiple benefits from performing their role as an exercise leader. From January to August, 2009, a total of 59 volunteers, seven Site Coordinators, and 33 home-bound older (mean age: 80 years; SD: 8.8) clients from eight VON sites and one partner organization participated in the evaluation. Data collection included pre-post quantitative measures of participants' physical function, satisfaction surveys of participants, follow up semi-structured interviews of participants, feedback surveys of volunteers and site coordinators, and a focus group interview of site coordinators. The Chair Stand test (p<0.001), the Reaching Forward test (p=0.028), the Activities Balance Confidence Scale (p=0.02), as well as measures of activities of daily living (ADL) inside the home (p=0.001) and outside the home (p=0.009) showed significant improvement. This evaluation showed that the exercises improved participants' strength, flexibility, balance, and ability to perform ADL. This study provides additional evidence of the benefits of in-home exercise for frail seniors, and supports a role for volunteers in delivering these programs. The volunteers reported receiving social benefits of meeting new people, being able to see the difference they helped make in others, as well as personal physical benefits from exercising more.

  9. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice.

    PubMed

    Foglesong, Grant D; Huang, Wei; Liu, Xianglan; Slater, Andrew M; Siu, Jason; Yildiz, Vedat; Salton, Stephen R J; Cao, Lei

    2016-03-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF.

  10. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice

    PubMed Central

    Foglesong, Grant D.; Huang, Wei; Liu, Xianglan; Slater, Andrew M.; Siu, Jason; Yildiz, Vedat; Salton, Stephen R. J.

    2016-01-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF. PMID:26730934

  11. Impaired antibody response against T-dependent antigens in rhino mice.

    PubMed

    Takaoki, M; Kawaji, H

    1980-05-01

    The antibody response in rhino mice, which carry a mutant gene hrrh, to thymus-dependent (TD) or thymus-independent (TI) antigens was compared with that of phenotypically normal littermates. The magnitude of antibody response to TD antigens in rhino mice decreased as they grew up, whereas the antibody response to TI antigens in rhino mice was indistinguishable from that of littermates. A transfer of thymus cells from littermates to rhino mice resulted in the partial restoration of the responsiveness to TD antigens. The experiments employing adoptive transfer of spleen cells from rhino mice to the irradiated normal mice suggested that the hyporesponsiveness of TD antigens of adult rhino mice was mainly due to the defect in the T helper cell activities rather than either the increase of the suppressor cells or defects in other cell types.

  12. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  13. Vocal development and auditory perception in CBA/CaJ mice

    NASA Astrophysics Data System (ADS)

    Radziwon, Kelly E.

    Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly

  14. Consuming a Diet Supplemented with Resveratrol Reduced Infection-Related Neuroinflammation and Deficits in Working Memory in Aged Mice

    PubMed Central

    Abraham, Jayne

    2009-01-01

    Abstract Aged mice treated peripherally with lipopolysaccharide (LPS) show an exaggerated neuroinflammatory response and cognitive deficits compared to adults. Considerable evidence suggests resveratrol, a polyphenol found in red grapes, has potent antiinflammatory effects in the periphery, but its effects on the central inflammatory response and cognitive behavior are unknown. Therefore, the current study investigated if resveratrol dietary supplementation would inhibit neuroinflammation as well as behavioral and cognitive deficits in aged mice given LPS to mimic a peripheral infection. In initial studies, adult (3–6 months) and aged (22–24 months) mice were provided control or resveratrol-supplemented diet for 4 weeks and then injected intraperitoneally (i.p.) with saline or LPS, and locomotor activity and spatial working memory were assessed. As anticipated, deficits in locomotor activity and spatial working memory indicated aged mice are more sensitive to LPS compared to adults. More importantly, the LPS-induced deficits in aged animals were mitigated by dietary supplementation of resveratrol. In addition, resveratrol consumption reduced LPS-induced interleukin-1β (IL-1β) in plasma and the IL-1β mRNA in the hippocampus of aged mice. Finally, pretreatment of BV-2 microglial cells with resveratrol potently inhibited LPS-induced IL-1β production. These data show that aged mice are more sensitive than adult mice to both the inflammatory and cognitive effects of peripheral immune stimulation and suggest that resveratrol may be useful for attenuating acute cognitive disorders in elderly individuals with an infection. PMID:20041738

  15. Regulation of Lipid Metabolism by Dicer Revealed through SILAC Mice

    PubMed Central

    Huang, Tai-Chung; Saharabuddhe, Nandini A.; Kim, Min-Sik; Getnet, Derese; Yang, Yi; Peterson, Jonathan M.; Ghosh, Bidyut; Chaerkady, Raghothama; Leach, Steven D.; Marchionni, Luigi; Wong, G. William; Pandey, Akhilesh

    2012-01-01

    Dicer is a ribonuclease whose major role is to generate mature microRNAs although additional functions have been proposed. Deletion of Dicer leads to embryonic lethality in mice. To study the role of Dicer in adults, we generated mice in which administration of tamoxifen induces deletion of Dicer. Surprisingly, disruption of Dicer in adult mice induced lipid accumulation in the small intestine. To dissect the underlying mechanisms, we carried out miRNA, mRNA and proteomic profiling of small intestine. The proteomic analysis was done using mice metabolically labeled with heavy lysine (SILAC mice) for an in vivo readout. We identified 646 proteins of which 80 were upregulated >2-fold and 75 were downregulated. Consistent with the accumulation of lipids, Dicer disruption caused a marked decrease of microsomal triglyceride transfer protein, long-chain fatty acyl-CoA ligase 5, fatty acid binding protein, and very-long-chain fatty acyl-CoA dehydrogenase, among others. We validated these results using multiple reaction monitoring (MRM) experiments by targeting proteotypic peptides. Our data reveal a previously unappreciated role of Dicer in lipid metabolism. These studies demonstrate a systems biology approach by integrating mouse models, metabolic labeling, gene expression profiling and quantitative proteomics can be a powerful tool for understanding complex biological systems. PMID:22313051

  16. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy

    PubMed Central

    Naviaux, J C; Schuchbauer, M A; Li, K; Wang, L; Risbrough, V B; Powell, S B; Naviaux, R K

    2014-01-01

    Autism spectrum disorders (ASDs) now affect 1–2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg−1 intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl−1 (±0.50) and 5.15 pmol mg−1 (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults. PMID:24937094

  17. Broadband Radiometric LED Measurements

    PubMed Central

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  18. Broadband radiometric LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  19. Broadband Radiometric LED Measurements.

    PubMed

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  20. White LED performance

    NASA Astrophysics Data System (ADS)

    Gu, Yimin; Narendran, Nadarajah; Freyssinier, Jean Paul

    2004-10-01

    Two life tests were conducted to compare the effects of drive current and ambient temperature on the degradation rate of 5 mm and high-flux white LEDs. Tests of 5 mm white LED arrays showed that junction temperature increases produced by drive current had a greater effect on the rate of light output degradation than junction temperature increases from ambient heat. A preliminary test of high-flux white LEDs showed the opposite effect, with junction temperature increases from ambient heat leading to a faster depreciation. However, a second life test is necessary to verify this finding. The dissimilarity in temperature effect among 5 mm and high-flux LEDs is likely caused by packaging differences between the two device types.

  1. Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice.

    PubMed

    Seney, Marianne L; Walsh, Christopher; Stolakis, Ryan; Sibille, Etienne

    2012-05-01

    Major depressive disorder (MDD) is a debilitating disorder of altered mood regulation. Despite well established sex differences in MDD prevalence, the mechanism underlying the increased female vulnerability remains unknown. Although evidence suggests an influence of adult circulating hormone levels on mood (i.e. activational effects of hormones), MDD prevalence is consistently higher in women across life stages (and therefore hormonal states), suggesting that additional underlying structural or biological differences place women at higher risk. Studies in human subjects and in rodent models suggest a developmental origin for mood disorders, and interestingly, a developmental process also establishes sex differences in the brain. Hence, based on these parallel developmental trajectories, we hypothesized that a proportion of the female higher vulnerability to MDD may originate from the differential organization of mood regulatory neural networks early in life (i.e. organizational effects of hormones). To test this hypothesis in a rodent system, we took advantage of a well-established technique used in the field of sexual differentiation (neonatal injection with testosterone) to masculinize sexually dimorphic brain regions in female mice. We then investigated adult behavioral consequences relating to emotionality by comparing neonatal testosterone-treated females to normal males and females. Under baseline/trait conditions, neonatal testosterone treatment of female mice did not influence adult emotionality, but masculinized adult locomotor activity, as revealed by the activational actions of hormones. Conversely, the increased vulnerability of female mice to develop high emotionality following unpredictable chronic mild stress (UCMS) was partially masculinized by neonatal testosterone exposure, with no effect on post-UCMS locomotion. The elevated female UCMS-induced vulnerability did not differ between adult hormone treated groups. These results demonstrate that sex

  2. Are nurse-led chemotherapy clinics really nurse-led? An ethnographic study.

    PubMed

    Farrell, Carole; Walshe, Catherine; Molassiotis, Alex

    2017-04-01

    The number of patients requiring ambulatory chemotherapy is increasing year on year, creating problems with capacity in outpatient clinics and chemotherapy units. Although nurse-led chemotherapy clinics have been set up to address this, there is a lack of evaluation of their effectiveness. Despite a rapid expansion in the development of nursing roles and responsibilities in oncology, there is little understanding of the operational aspects of nurses' roles in nurse-led clinics. To explore nurses' roles within nurse-led chemotherapy clinics. A focused ethnographic study of nurses' roles in nurse-led chemotherapy clinics, including semi-structured interviews with nurses. Four chemotherapy units/cancer centres in the UK PARTICIPANTS: Purposive sampling was used to select four cancer centres/units in different geographical areas within the UK operating nurse-led chemotherapy clinics. Participants were 13 nurses working within nurse-led chemotherapy clinics at the chosen locations. Non-participant observation of nurse-led chemotherapy clinics, semi-structured interviews with nurse participants, review of clinic protocols and associated documentation. 61 nurse-patient consultations were observed with 13 nurses; of these 13, interviews were conducted with 11 nurses. Despite similarities in clinical skills training and prescribing, there were great disparities between clinics run by chemotherapy nurses and those run by advanced nurse practitioners. This included the number of patients seen within each clinic, operational aspects, nurses' autonomy, scope of practice and clinical decision-making abilities. The differences highlighted four different levels of nurse-led chemotherapy clinics, based on nurses' autonomy and scope of clinical practice. However, this was heavily influenced by medical consultants. Several nurses perceived they were undertaking holistic assessments, however they were using medical models/consultation styles, indicating medicalization of nurses' roles

  3. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice

    PubMed Central

    Harrison, F. E.; May, J. M.; McDonald, M. P.

    2010-01-01

    Vitamin C is a powerful antioxidant and its levels are decreased in Alzheimer's patients. Even sub-clinical vitamin C deficiency could impact disease development. To investigate this principle we crossed APP/PSEN1 transgenic mice with Gulo knockout mice unable to synthesize their own vitamin C. Experimental mice were maintained from 6 weeks of age on standard (0.33 g/L) or reduced (0.099 g/L) levels of vitamin C and then assessed for changes in behavior and neuropathology. APP/PSEN1 mice showed impaired spatial learning in the Barnes maze and water maze that was not further impacted by vitamin C level. However, long-term decreased vitamin C levels led to hyperactivity in transgenic mice, with altered locomotor habituation and increased omission errors in the Barnes maze. Decreased vitamin C also led to increased oxidative stress. Transgenic mice were more susceptible to the activity-enhancing effects of scopolamine and low vitamin C attenuated these effects in both genotypes. These data indicate an interaction between the cholinergic system and vitamin C that could be important given the cholinergic degeneration associated with Alzheimer's disease. PMID:19941887

  4. EVALUATION OF PERFLUOROOCTANOIC ACID IMMUNOTOXICITY IN ADULT MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used in the manufacture of fluoropolymers and may be formed by metabolism or degradation of other perfluoroalkyl acids. Safety concerns led the U.S. EPA to conduct a risk assessment of PFOA and related compounds due to their environmental persist...

  5. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Polytrauma Increases Susceptibility to Pseudomonas Pneumonia in Mature Mice.

    PubMed

    Turnbull, Isaiah R; Ghosh, Sarbani; Fuchs, Anja; Hilliard, Julia; Davis, Christopher G; Bochicchio, Grant V; Southard, Robert E

    2016-05-01

    Pneumonia is the most common complication observed in patients with severe injuries. Although the average age of injured patients is 47 years, existing studies of the effect of injury on the susceptibility to infectious complications have focused on young animals, equivalent to a late adolescent human. We hypothesized that mature adult animals are more susceptible to infection after injury than younger counterparts. To test this hypothesis, we challenged 6 to 8-month-old mature mice to a polytrauma injury followed by Pseudomonas aeruginosa pneumonia and compared them to young (8-10-week-old) animals. We demonstrate that polytrauma injury increases mortality from pneumonia in mature animals (sham-pneumonia 21% vs. polytrauma-pneumonia 62%) but not younger counterparts. After polytrauma, pneumonia in mature mice is associated with higher bacterial burden in lung, increased incidence of bacteremia, and elevated levels of bacteria in the blood, demonstrating that injury decreases the ability to control the infectious challenge. We further find that polytrauma did not induce elevations in circulating cytokine levels (TNF-alpha, IL-6, KC, and IL-10) 24  h after injury. However, mature mice subjected to polytrauma demonstrated an exaggerated circulating inflammatory cytokine response to subsequent Pseudomonas pneumonia. Additionally, whereas prior injury increases LPS-stimulated IL-6 production by peripheral blood leukocytes from young (8-10-week-old) mice, injury does not prime IL-6 production by cell from mature adult mice. We conclude that in mature mice polytrauma results in increased susceptibility to Pseudomonas pneumonia while priming an exaggerated but ineffective inflammatory response.

  7. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  8. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice.

    PubMed

    Akers, Katherine G; Kushner, Steven A; Leslie, Ana T; Clarke, Laura; van der Kooy, Derek; Lerch, Jason P; Frankland, Paul W

    2011-07-07

    Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.

  9. Supplementation with quercetin attenuates 4-nitrophenol-induced testicular toxicity in adult male mice.

    PubMed

    Mi, Yuling; Tu, Longlong; Wang, Huimin; Zeng, Weidong; Zhang, Caiqiao

    2013-10-01

    The beneficial effects of quercetin on reproductive damage elicited by 4-nitrophenol (PNP) were studied in adult male mice. A six-week treatment of weekly intraperitoneal injections of PNP (50 mg/kg) resulted in severe damage to the seminiferous tubules, a remarkable increase in both hydroxyl radical and malondiadehyde production, and notably decreased glutathione peroxidase and superoxide dismutase activities. Moreover, PNP treatment induced germ cell apoptosis, inhibited Bcl-xl expression, and then activated Bax expression and the caspase-3 enzyme. Exposure to PNP also increased XBP-1 and HO-1 mRNAs levels. However, simultaneous supplementation with quercetin (75 mg/kg) attenuated the toxicity induced by PNP through renewal of the antioxidant enzyme's status, alleviating apoptosis by regulating the expressions of Bax and Bcl-xl, XBP-1 and HO-1mRNAs, and the regulation of caspase-3 activity. Taken together, these findings indicated that the antioxidant quercetin displays a potential preventive effect on PNP-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity from environmental toxicants in order to ensure reproductive health and sperm production. Copyright © 2013 Wiley Periodicals, Inc.

  10. A Peer-Led Electronic Mental Health Recovery App in an Adult Mental Health Service: Study Protocol for a Pilot Trial.

    PubMed

    Gulliver, Amelia; Banfield, Michelle; Reynolds, Julia; Miller, Sarah; Galati, Connie; Morse, Alyssa R

    2017-12-07

    There is growing demand for peer workers (people who use their own lived experience to support others in their recovery) to work alongside consumers to improve outcomes and recovery. Augmenting the workforce with peer workers has strong capacity to enhance mental health and recovery outcomes and make a positive contribution to the workforce within mental health systems and to the peer workers themselves. Technology-based applications are highly engaging and desirable methods of service delivery. This project is an exploratory proof-of-concept study, which aims to determine if a peer worker-led electronic mental (e-mental) health recovery program is a feasible, acceptable, and effective adjunct to usual treatment for people with moderate to severe mental illness. The study design comprises a recovery app intervention delivered by a peer worker to individual consumers at an adult mental health service. Evaluation measures will be conducted at post-intervention. To further inform the acceptability and feasibility of the model, consumers will be invited to participate in a focus group to discuss the program. The peer worker, peer supervisor, and key staff at the mental health service will also be individually interviewed to further evaluate the feasibility of the program within the health service and further inform its future development. The program will be delivered over a period of approximately 4 months, commencing June 2017. If the peer worker-led recovery app is found to be feasible, acceptable, and effective, it could be used to improve recovery in mental health service consumers. ©Amelia Gulliver, Michelle Banfield, Julia Reynolds, Sarah Miller, Connie Galati, Alyssa R Morse. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 07.12.2017.

  11. The Effect of Gentle Handling on Depressive-Like Behavior in Adult Male Mice: Considerations for Human and Rodent Interactions in the Laboratory

    PubMed Central

    Lane, Christina; Torres, Julio; Flinn, Jane

    2018-01-01

    Environmental factors play a significant role in well-being of laboratory animals. Regulations and guidelines recommend, if not require, that stressors such as bright lighting, smells, and noises are eliminated or reduced to maximize animal well-being. A factor that is often overlooked is handling and how researchers interact with their animals. Researchers, lab assistants, and husbandry staff in animal facilities may use inconsistent handling methods when interacting with rodents, but humans should be considered a part of the animal's social environment. This study examined the effects of different handling techniques on depressive-like behavior, measured by the Porsolt forced swim test, in adult C57BL/6J male mice. The same two researchers handled the mice in a gentle, aggressive, or minimal (control) fashion over approximately two weeks prior to testing. The results demonstrated a beneficial effect of gentle handling: gentle handling reduced swimming immobility in the forced swim test compared to mice that were aggressively or minimally handled. We argue that gentle handling, rather than methodical handling, can foster a better relationship between the handlers and rodents. Although handling is not standardized across labs, consistent gentle handling allows for less challenging behavioral testing, better data collection, and overall improved animal welfare. PMID:29692869

  12. The Effect of Gentle Handling on Depressive-Like Behavior in Adult Male Mice: Considerations for Human and Rodent Interactions in the Laboratory.

    PubMed

    Neely, Caroline; Lane, Christina; Torres, Julio; Flinn, Jane

    2018-01-01

    Environmental factors play a significant role in well-being of laboratory animals. Regulations and guidelines recommend, if not require, that stressors such as bright lighting, smells, and noises are eliminated or reduced to maximize animal well-being. A factor that is often overlooked is handling and how researchers interact with their animals. Researchers, lab assistants, and husbandry staff in animal facilities may use inconsistent handling methods when interacting with rodents, but humans should be considered a part of the animal's social environment. This study examined the effects of different handling techniques on depressive-like behavior, measured by the Porsolt forced swim test, in adult C57BL/6J male mice. The same two researchers handled the mice in a gentle, aggressive, or minimal (control) fashion over approximately two weeks prior to testing. The results demonstrated a beneficial effect of gentle handling: gentle handling reduced swimming immobility in the forced swim test compared to mice that were aggressively or minimally handled. We argue that gentle handling, rather than methodical handling, can foster a better relationship between the handlers and rodents. Although handling is not standardized across labs, consistent gentle handling allows for less challenging behavioral testing, better data collection, and overall improved animal welfare.

  13. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice

    PubMed Central

    Zombeck, Jonathan A.; Lewicki, Aaron D.; Patel, Kevin; Gupta, Tripta; Rhodes, Justin S.

    2009-01-01

    Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (PN 30–35) and young adult (PN 69–74) C57BL/6J mice were administered an intraperitoneal injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 minutes later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal and lateral caudate where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult

  14. Blue LED induced thermal effects in wound healing: experimental evidence in an in vivo model of superficial abrasions

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Cicchi, Riccardo; Magni, Giada; Tatini, Francesca; Bacci, Stefano; Paroli, Gaia; Alfieri, Domenico; Tripodi, Cristina; De Siena, Gaetano; Pavone, Francesco S.; Pini, Roberto

    2017-02-01

    A faster healing process was observed in superficial skin wounds after irradiation with a blue LED (EmoLED) photocoagulator. EmoLED is a compact handheld device, used to induce a thermal effect and thus coagulation in superficial abrasions. We present the results of an in vivo study, conducted in a mouse model, to analyze the induced wound healing. Two superficial abrasions were produced on the back of the mice: one area was treated with EmoLED (1.4 W/cm2, 30 s treatment time), while the other one was left naturally recovering. During the treatment, a temperature around 40-45°C was induced on the abrasion surface. Mice back healthy skin was used as a control. The animals underwent a follow up study and were sacrificed at 0, 1, 3, 6, 9, 12, 18, 21, 24 hours p.o. and 6 days p.o.. Samples from the two abraded areas were harvested and examined by histopathological and immunofluorescence analysis, SHG imaging and confocal microscopy. The aim of the study was to investigate the inflammatory infiltrate, mastocyte population, macrophage subpopulation, fibroblasts and myofibroblasts. Our results show that soon after the treatment, both the inflammatory infiltrate and the M1 macrophage subpopulation appear earlier in the treated, compared to a delayed appearance in the untreated samples. There was no alteration in collagen morphology in the recovered wound. This study confirms the preliminary results obtained in a previous study on a rat model: the selective photothermal effect we used for inducing immediate coagulation in superficial wounds seems to be associated to a faster and improved healing process.

  15. Running exercise alleviates trabecular bone loss and osteopenia in hemizygous β-globin knockout thalassemic mice.

    PubMed

    Thongchote, Kanogwun; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2014-06-15

    A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1-2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia. Copyright © 2014 the American Physiological Society.

  16. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation.

    PubMed

    López-Armas, Gabriela; Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Jave-Suarez, Luis Felipe; Soto-Rodríguez, Sofía; Rusanova, Iryna; Acuña-Castroviejo, Dario; González-Perez, Oscar; González-Castañeda, Rocío Elizabeth

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

  17. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation

    PubMed Central

    Flores-Soto, Mario Eduardo; Chaparro-Huerta, Verónica; Soto-Rodríguez, Sofía; González-Perez, Oscar

    2016-01-01

    Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD. PMID:27579149

  18. Potential Role for ADAM15 in Pathological Neovascularization in Mice

    PubMed Central

    Horiuchi, Keisuke; Weskamp, Gisela; Lum, Lawrence; Hammes, Hans-Peter; Cai, Hui; Brodie, Thomas A.; Ludwig, Thomas; Chiusaroli, Riccardo; Baron, Roland; Preissner, Klaus T.; Manova, Katia; Blobel, Carl P.

    2003-01-01

    ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15−/− mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15−/− mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15−/− mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15−/− mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization. PMID:12897135

  19. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals

    PubMed Central

    Wu, Fan; Stark, Eran; Ku, Pei-Cheng; Wise, Kensall D.; Buzsáki, György; Yoon, Euisik

    2015-01-01

    SUMMARY We report a scalable method to monolithically integrate microscopic light emitting diodes (μLEDs) and recording sites onto silicon neural probes for optogenetic applications in neuroscience. Each μLED and recording site has dimensions similar to a pyramidal neuron soma, providing confined emission and electrophysiological recording of action potentials and local field activity. We fabricated and implanted the four-shank probes, each integrated with 12 μLEDs and 32 recording sites, into the CA1 pyramidal layer of anesthetized and freely moving mice. Spikes were robustly induced by 60 nW light power, and fast population oscillations were induced at the microwatt range. To demonstrate the spatiotemporal precision of parallel stimulation and recording, we achieved independent control of distinct cells ~50 μm apart and of differential somatodendritic compartments of single neurons. The scalability and spatiotemporal resolution of this monolithic optogenetic tool provides versatility and precision for cellular-level circuit analysis in deep structures of intact, freely moving animals. PMID:26627311

  20. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity.

    PubMed

    Chen, Chung-Ming; Hwang, Jaulang; Chou, Hsiu-Chu; Shiah, Her-Shyong

    2018-06-01

    Prolonged hyperoxia exposure leads to inflammation and acute lung injury. Since hyperoxia activates nuclear factor kappa B (NF-κB) and proinflammatory mediators in lung fibroblasts and murine lungs, and proinflammatory cytokines upregulate Tn (N-acetyl-d-galactosamine-O-serine/threonine) expression in human gingival fibroblasts. We hypothesized connections exist between Tn expression and inflammation regulation. Thus, we immunized adult mice with Tn antigen to examine whether Tn vaccine can protect against hyperoxia-induced lung injury by inhibiting NF-κB activity and cytokine expression through the action of anti-Tn antibodies. Five-week-old female C57BL/6NCrlBltw mice were subcutaneously immunized with Tn antigen four times at biweekly intervals, and one additional immunization was performed at 1 week after the fourth immunization. Four days after the last immunization, mice were exposed to room air (RA) or hyperoxia (100% O 2 ) for up to 96 h. Four study groups were examined: carrier protein + RA (n = 6), Tn vaccine + RA (n = 6), carrier protein + O 2 (n = 6), and Tn vaccine + O 2 (n = 5). We observed that hyperoxia exposure reduced body weight, increased alveolar protein and cytokine (interleukin-6 and tumor necrosis factor-α) levels, increased mean linear intercept (MLI) values and lung injury scores, and increased lung NF-κB activity. By contrast, Tn immunization increased serum anti-Tn antibody titers and reduced the cytokine levels, MLI values, and lung injury scores. Furthermore, the alleviation of lung injury was accompanied by a reduction in NF-κB activity. Therefore, we proposed that Tn immunization attenuates hyperoxia-induced lung injury in adult mice by inhibiting the NF-κB activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice.

    PubMed

    Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo

    2018-01-01

    Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.

  2. Long-term voluntary running improves diet-induced adiposity in young adult mice

    USDA-ARS?s Scientific Manuscript database

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  3. Rib fractures and death from deletion of osteoblast βcatenin in adult mice is rescued by corticosteroids.

    PubMed

    Duan, JinZhu; Lee, Yueh; Jania, Corey; Gong, Jucheng; Rojas, Mauricio; Burk, Laurel; Willis, Monte; Homeister, Jonathon; Tilley, Stephen; Rubin, Janet; Deb, Arjun

    2013-01-01

    Ribs are primarily made of cortical bone and are necessary for chest expansion and ventilation. Rib fractures represent the most common type of non-traumatic fractures in the elderly yet few studies have focused on the biology of rib fragility. Here, we show that deletion of βcatenin in Col1a2 expressing osteoblasts of adult mice leads to aggressive osteoclastogenesis with increased serum levels of the osteoclastogenic cytokine RANKL, extensive rib resorption, multiple spontaneous rib fractures and chest wall deformities. Within days of osteoblast specific βcatenin deletion, animals die from respiratory failure with a vanishing rib cage that is unable to sustain ventilation. Increased bone resorption is also observed in the vertebrae and femur. Treatment with the bisphosphonate pamidronate delayed but did not prevent death or associated rib fractures. In contrast, administration of the glucocorticoid dexamethasone decreased serum RANKL and slowed osteoclastogenesis. Dexamethasone preserved rib structure, prevented respiratory compromise and strikingly increased survival. Our findings provide a novel model of accelerated osteoclastogenesis, where deletion of osteoblast βcatenin in adults leads to rapid development of destructive rib fractures. We demonstrate the role of βcatenin dependent mechanisms in rib fractures and suggest that glucocorticoids, by suppressing RANKL, may have a role in treating bone loss due to aggressive osteoclastogenesis.

  4. Rib Fractures and Death from Deletion of Osteoblast βcatenin in Adult Mice Is Rescued by Corticosteroids

    PubMed Central

    Duan, JinZhu; Lee, Yueh; Jania, Corey; Gong, Jucheng; Rojas, Mauricio; Burk, Laurel; Willis, Monte; Homeister, Jonathon; Tilley, Stephen; Rubin, Janet; Deb, Arjun

    2013-01-01

    Ribs are primarily made of cortical bone and are necessary for chest expansion and ventilation. Rib fractures represent the most common type of non-traumatic fractures in the elderly yet few studies have focused on the biology of rib fragility. Here, we show that deletion of βcatenin in Col1a2 expressing osteoblasts of adult mice leads to aggressive osteoclastogenesis with increased serum levels of the osteoclastogenic cytokine RANKL, extensive rib resorption, multiple spontaneous rib fractures and chest wall deformities. Within days of osteoblast specific βcatenin deletion, animals die from respiratory failure with a vanishing rib cage that is unable to sustain ventilation. Increased bone resorption is also observed in the vertebrae and femur. Treatment with the bisphosphonate pamidronate delayed but did not prevent death or associated rib fractures. In contrast, administration of the glucocorticoid dexamethasone decreased serum RANKL and slowed osteoclastogenesis. Dexamethasone preserved rib structure, prevented respiratory compromise and strikingly increased survival. Our findings provide a novel model of accelerated osteoclastogenesis, where deletion of osteoblast βcatenin in adults leads to rapid development of destructive rib fractures. We demonstrate the role of βcatenin dependent mechanisms in rib fractures and suggest that glucocorticoids, by suppressing RANKL, may have a role in treating bone loss due to aggressive osteoclastogenesis. PMID:23393600

  5. Transforming growth factor-β1 receptor inhibition preserves glomerulotubular integrity during ureteral obstruction in adults but worsens injury in neonatal mice

    PubMed Central

    Galarreta, Carolina I.; Thornhill, Barbara A.; Forbes, Michael S.; Simpkins, Lauren N.; Kim, Dae-Kee

    2013-01-01

    Unilateral ureteral obstruction (UUO), a widely used model of chronic kidney disease and congenital obstructive uropathy, causes proximal tubular injury and formation of atubular glomeruli. Because transforming growth factor-β1 (TGF-β1) is a central regulator of renal injury, neonatal and adult mice were subjected to complete UUO while under general anesthesia and treated with vehicle or ALK5 TGF-β1 receptor inhibitor (IN-1130, 30 mg·kg−1·day−1). After 14 days, glomerulotubular integrity and proximal tubular mass were determined by morphometry of Lotus tetragonolobus lectin distribution, and the fraction of atubular glomeruli was determined by serial section analysis of randomly selected individual glomeruli. Glomerular area, macrophage infiltration, fibronectin distribution, and interstitial collagen were measured by morphometry. Compared with placebo, inhibition of TGF-β1 by IN-1130 decreased apoptosis and formation of atubular glomeruli, prevented parenchymal loss, increased glomerular area and glomerulotubular integrity, and increased proximal tubule fraction of the adult obstructed kidney parenchyma from 17 to 30% (P < 0.05, respectively). IN-1130 decreased macrophage infiltration and fibronectin and collagen deposition in the adult obstructed kidney by ∼50% (P < 0.05, respectively). In contrast to these salutary effects in the adult, IN-1130 caused widespread necrosis in obstructed neonatal kidneys. We conclude that whereas IN-1130 reduces obstructive injury in adult kidneys through preservation of glomerulotubular integrity and proximal tubular mass, TGF-β1 inhibition aggravates obstructive injury in neonates. These results indicate that while caution is necessary in treating congenital uropathies, ALK5 inhibitors may prevent nephron loss due to adult kidney disease. PMID:23303407

  6. Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice.

    PubMed

    Spencer, Nick J

    2013-01-01

    It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35°C. In wild type mice, the NOS inhibitor, L-NA (100 μM) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS.

  7. Comparing Smoking Cessation Outcomes in Nurse-Led and Physician-Led Primary Care Visits.

    PubMed

    Byers, Marcia A; Wright, Patricia; Tilford, John Mick; Nemeth, Lynne S; Matthews, Ellyn; Mitchell, Anita

    Smoking is a significant public health concern in the United States, yet 50% of patients do not receive recommended tobacco use screening and counseling. This project compared smoking cessation rates in newly reimbursable nurse-led wellness visits with rates in physician-led visits. Although the findings were not statistically significant, they suggested that smoking cessation is at least equivalent in patients who attend nurse-led visits compared with physician-led visits and may be higher.

  8. LED lamp

    DOEpatents

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  9. Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility

    PubMed Central

    Wu, Qi; Whiddon, Benjamin B.; Palmiter, Richard D.

    2012-01-01

    Leptin-deficient (Lepob/ob) mice are obese, diabetic, and infertile. Ablation of neurons that make agouti-related protein (AgRP) in moderately obese adult Lepob/ob mice caused severe anorexia. The mice stopped eating for 2 wk and then gradually recovered. Their body weight fell to within a normal range for WT mice, at which point food intake and glucose tolerance were restored to that of WT mice. Remarkably, both male and female Lepob/ob mice became fertile. Ablation of neurons that express melanin-concentrating hormone (MCH) in adult Lepob/ob mice had no effect on food intake, body weight, or fertility, but resulted in improved glucose tolerance. We conclude that AgRP-expressing neurons play a critical role in mediating the metabolic syndrome and infertility of Lepob/ob mice, whereas MCH-expressing neurons have only a minor role. PMID:22232663

  10. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    PubMed

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  11. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  12. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior.

    PubMed

    Botton, Paulo Henrique S; Pochmann, Daniela; Rocha, Andreia S; Nunes, Fernanda; Almeida, Amanda S; Marques, Daniela M; Porciúncula, Lisiane O

    2017-03-01

    Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A 1 and A 2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A 2A receptors increased with aging, both GFAP and adenosine A 1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A 2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice.

    PubMed

    Xu, Hang; Wang, Jiesi; Zhang, Ke; Zhao, Mei; Ellenbroek, Bart; Shao, Feng; Wang, Weiwen

    2018-02-01

    Adolescent social stress (ASS) can increase susceptibility to depression in adulthood. However, the underlying psychological and neural mechanisms remain unclear. Cortically mediated cognitive dysfunctions are increasingly recognized as an independent and important risk factor of depression. Using social defeat stress, a classical animal model of depression, our previous studies found that mice subjected to this form of stress during early adolescence displayed cognitive inflexibility (CI) in adulthood. This change was accompanied by a down-regulation of Bdnf gene expression in the medial prefrontal cortex (mPFC); this gene encodes a key molecule involved in depression and antidepressant action. In the present paper, we identified epigenetic modification of Bdnf as a possible mechanism underlying the behavioral and molecular changes. ASS induced a set of depressive phenotypes, including increased social avoidance and CI, as well as reduced levels of total Bdnf and isoform IV but not isoform I or VI transcripts in the mPFC. In parallel with changes in Bdnf gene expression, previously stressed adult mice showed increased levels of dimethylation of histone H3 at lysine K9 (H3K9me2) immediately downstream of the Bdnf IV promoter. On the other hand, no differences were found in trimethylation of histone H3 at lysine K4 (H3K4me3) or in acetylation of histone H3 at lysine K9 (H3K9ac) or at K4 (H3K4ac) in the Bdnf IV promoter. Likewise, no alterations were found in DNA methylation of the Bdnf IV promoter. Additionally, treatment with the chronic antidepressant tranylcypromine reversed Bdnf epigenetic changes and related gene transcription while also reversing CI, but not social avoidance, in previously stressed adult mice. These results suggest that epigenetic changes to the Bdnf gene in the mPFC after adolescent social adversity may be involved in the regulation of cognitive dysfunction in depression and antidepressant action in adulthood. Copyright © 2017 Elsevier Ltd

  14. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α

    PubMed Central

    Kabir, ZD; Che, A; Fischer, DK; Rice, RC; Rizzo, BK; Byrne, M; Glass, MJ; De Marco Garcia, NV; Rajadhyaksha, AM

    2018-01-01

    CACNA1C, encoding the Cav1.2 subunit of L-type Ca2+ channels, has emerged as one of the most prominent and highly replicable susceptibility genes for several neuropsychiatric disorders. Cav1.2 channels play a crucial role in calcium-mediated processes involved in brain development and neuronal function. Within the CACNA1C gene, disease-associated single-nucleotide polymorphisms have been associated with impaired social and cognitive processing and altered prefrontal cortical (PFC) structure and activity. These findings suggest that aberrant Cav1.2 signaling may contribute to neuropsychiatric-related disease symptoms via impaired PFC function. Here, we show that mice harboring loss of cacna1c in excitatory glutamatergic neurons of the forebrain (fbKO) that we have previously reported to exhibit anxiety-like behavior, displayed a social behavioral deficit and impaired learning and memory. Furthermore, focal knockdown of cacna1c in the adult PFC recapitulated the social deficit and elevated anxiety-like behavior, but not the deficits in learning and memory. Electrophysiological and molecular studies in the PFC of cacna1c fbKO mice revealed higher E/I ratio in layer 5 pyramidal neurons and lower general protein synthesis. This was concurrent with reduced activity of mTORC1 and its downstream mRNA translation initiation factors eIF4B and 4EBP1, as well as elevated phosphorylation of eIF2α, an inhibitor of mRNA translation. Remarkably, systemic treatment with ISRIB, a small molecule inhibitor that suppresses the effects of phosphorylated eIF2α on mRNA translation, was sufficient to reverse the social deficit and elevated anxiety-like behavior in adult cacna1c fbKO mice. ISRIB additionally normalized the lower protein synthesis and higher E/I ratio in the PFC. Thus this study identifies a novel Cav1.2 mechanism in neuropsychiatric-related endophenotypes and a potential future therapeutic target to explore. PMID:28584287

  15. Age-dependent differences in nicotine reward and withdrawal in female mice.

    PubMed

    Kota, D; Martin, B R; Damaj, M I

    2008-06-01

    Adolescent smoking is an increasing epidemic in the US. Research has shown that the commencement of smoking at a young age increases addiction and decreases the probability of successful cessation; however, limited work has focused on nicotine dependence in the female. The goal of the present study was to identify the biological and behavioral factors that may contribute to nicotine's increased abuse liability in female adolescents using animal models of nicotine dependence. Early adolescent (PND 28) and adult (PND 70) female mice were compared in various aspects of nicotine dependence using reward and withdrawal models following sub-chronic nicotine exposure. Furthermore, in vivo acute sensitivity and tolerance to nicotine were examined. In the conditioned place preference model, adolescents demonstrated a significant preference at 0.5 mg/kg nicotine, an inactive dose in adults. Adults found higher doses (0.7 and 1.0 mg/kg) of nicotine to elicit rewarding effects. Furthermore, adolescents displayed increased physical, but not affective, withdrawal signs in three models. Upon acute exposure to nicotine, adolescent mice showed increased sensitivity in an analgesic measure as well as hypothermia. After chronic nicotine exposure, both adults and adolescents displayed tolerance to nicotine with adolescents having a lower degree of tolerance to changes in body temperature. These data indicate that differences in nicotine's rewarding and aversive effects may contribute to variations in certain components of nicotine dependence between adult and adolescent female mice. Furthermore, this implies that smoking cessation therapies may not be equally effective across all ages.

  16. Nfib hemizygous mice are protected from hyperoxic lung injury and death.

    PubMed

    Kumar, Vasantha H S; Chaker El Khoury, Joseph; Gronostajski, Richard; Wang, Huamei; Nielsen, Lori; Ryan, Rita M

    2017-08-01

    Nuclear Factor I ( Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O 2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia ( P  < 0.003). LD 50 was 80 h in the Wt group versus 89 h in the hemizygous group. There were no differences in BAL cell counts between the groups. Among the cytokines studied, MIP-2 was significantly lower in hemizygous mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice.

    PubMed

    Zencak, Dusan; Crippa, Sylvain V; Tekaya, Meriem; Tanger, Ellen; Schorderet, Daniel E; Munier, Francis L; van Lohuizen, Maarten; Arsenijevic, Yvan

    2006-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of genetic disorders leading to blindness, which remain untreatable at present. Rd1 mice represent a recognized model of RP, and so far only GDNF treatment provided a slight delay in the retinal degeneration in these mice. Bmi1, a transcriptional repressor, has recently been shown to be essential for neural stem cell (NSC) renewal in the brain, with an increased appearance of glial cells in vivo in Bmi1 knockout (Bmi1-/-) mice. One of the roles of glial cells is to sustain neuronal function and survival. In the view of a role of the retinal Miller glia as a source of neural protection in the retina, the increased astrocytic population in the Bmi1-/- brain led us to investigate the effect of Bmi1 loss in Rd1 mice. We observed an increase of Müller glial cells in Rd1-Bmi1-/- retinas compared to Rd1. Moreover, Rd1-Bmi1-/- mice showed 7-8 rows of photoreceptors at 30 days of age (P30), while in Rd1 littermates there was a complete disruption of the outer nuclear layer (ONL). Preliminary ERG results showed a responsiveness of Rd1-Bmi1-/- mice in scotopic vision at P35. In conclusion, Bmi1 loss prevented, or rescued, photoreceptors from degeneration to an unanticipated extent in Rd1 mice. In this chapter, we will first provide a brief review of our work on the cortical NSCs and introduce the Bmi1 oncogene, thus offering a rational to our observations on the retina.

  18. A miniature mechanical ventilator for newborn mice.

    PubMed

    Kolandaivelu, K; Poon, C S

    1998-02-01

    Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.

  19. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    PubMed

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  20. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice.

    PubMed

    Lopez, Marcelo F; Doremus-Fitzwater, Tamara L; Becker, Howard C

    2011-06-01

    Experience with stress situations during early development can have long-lasting effects on stress- and anxiety-related behaviors. Importantly, this can also favor drug self-administration. These studies examined the effects of chronic social isolation and/or variable stress experiences during early development on subsequent voluntary ethanol intake in adult male and female C57BL/6J mice. The experiments were conducted to evaluate the effect of chronic isolation between weaning and adulthood (Experiment 1), chronic isolation during adulthood (Experiment 2), and chronic variable stress (CVS) alone or in combination with chronic social isolation between weaning and adulthood (Experiment 3) on subsequent voluntary ethanol intake. Mice were born in our facility and were separated into two housing conditions: isolate housed (one mouse/cage) or group housed (four mice/cage) according to sex. Separate groups were isolated for 40 days starting either at time of weaning postnatal day 21 (PD 21) (early isolation, Experiments 1 and 3) or at adulthood (PD 60: late isolation, Experiment 2). The effects of housing condition on subsequent ethanol intake were assessed starting at around PD 65 in Experiments 1 and 3 or PD 105 days in Experiment 2. In Experiment 3, starting at PD 32, isolate-housed and group-housed mice were either subjected to CVS or left undisturbed. CVS groups experienced random presentations of mild stressors for 14 days, including exposure to an unfamiliar open field, restraint, physical shaking, and forced swim, among others. All mice were tested for ethanol intake for 14 days using a two-bottle choice (ethanol 15% vol/vol vs. water) for a 2-h limited access procedure. Early social isolation resulted in greater ethanol intake compared with the corresponding group-housed mice (Experiment 1). In contrast, social isolation during adulthood (late isolation) did not increase subsequent ethanol intake compared with the corresponding group-housed mice (Experiment 2

  1. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  2. Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice

    PubMed Central

    Cliffe, Laura J.; Bancroft, Alison J.; Forman, Simon P.; Thompson, Seona; Booth, Cath

    2017-01-01

    Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant. PMID:28650985

  3. Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice.

    PubMed

    Hayes, Kelly S; Cliffe, Laura J; Bancroft, Alison J; Forman, Simon P; Thompson, Seona; Booth, Cath; Grencis, Richard K

    2017-06-01

    Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant.

  4. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice.

    PubMed

    Wang, Jiapeng; Li, Zhaomin; He, Yongzheng; Pan, Feng; Chen, Shi; Rhodes, Steven; Nguyen, Lihn; Yuan, Jin; Jiang, Li; Yang, Xianlin; Weeks, Ophelia; Liu, Ziyue; Zhou, Jiehao; Ni, Hongyu; Cai, Chen-Leng; Xu, Mingjiang; Yang, Feng-Chun

    2014-01-23

    ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.

  6. Neonatal Sleep Restriction Increases Nociceptive Sensitivity in Adolescent Mice.

    PubMed

    Araujo, Paula; Coelho, Cesar A; Oliveira, Maria G; Tufik, Sergio; Andersen, Monica L

    2018-03-01

    Sleep loss in infants may have a negative effect on the functional and structural development of the nociceptive system. We tested the hypothesis that neonatal sleep restriction induces a long-term increase of pain-related behaviors in mice and that this hypersensitivity occurs due to changes in the neuronal activity of nociceptive pathways. We aim to investigate the effects of sleep loss in neonatal mice on pain behaviors of adolescent and adult mice in a sex-dependent manner. We also analyzed neuroanatomical and functional changes in pain pathways associated with behavioral changes. An experimental animal study. A basic sleep research laboratory at Universidade Federal de São Paulo in Brazil. Neonatal mice at postnatal day (PND) 12 were randomly assigned to either control (CTRL), maternal separation (MS), or sleep restriction (SR) groups. MS and SR were performed 2 hours a day for 10 days (PND 12 until PND 21). The gentle handling method was used to prevent sleep. At PND 21, PND 35, or PND 90, the mice were tested for pain-related behaviors. Their brains were harvested and immunohistochemically stained for c-Fos protein in the anterior cingulate cortex, primary somatosensory cortex, and periaqueductal gray (PAG). Neonatal SR significantly increased nociceptive sensitivity in the hot plate test in adolescent mice (-23.5% of pain threshold). This alteration in nociceptive response was accompanied by a decrease in c-Fos expression in PAG (-40% of c-Fos positive cells compared to the CTRL group). The hypersensitivity found in adolescent mice was not present in adult animals, and all mice showed a comparable nociceptive response. Even using a mild manipulation method, in which a minimal amount of handling was applied to maintain wakefulness, sleep deprivation was a stressful event evidenced by higher corticosterone levels. Repeated exposures to sleep loss during early life were able to induce changes in the nociceptive response associated with alterations in neural

  7. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice.

    PubMed

    He, Qionger; Arroyo, Erica D; Smukowski, Samuel N; Xu, Jian; Piochon, Claire; Savas, Jeffrey N; Portera-Cailliau, Carlos; Contractor, Anis

    2018-04-27

    Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABA A receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.

  8. Sensitivity to cocaine in adult mice is due to interplay between genetic makeup, early environment and later experience.

    PubMed

    Di Segni, Matteo; Andolina, Diego; Coassin, Alessandra; Accoto, Alessandra; Luchetti, Alessandra; Pascucci, Tiziana; Luzi, Carla; Lizzi, Anna Rita; D'Amato, Francesca R; Ventura, Rossella

    2017-10-01

    Although early aversive postnatal events are known to increase the risk to develop psychiatric disorders later in life, rarely they determine alone the nature and outcome of the psychopathology, indicating that interaction with genetic factors is crucial for expression of psychopathologies in adulthood. Moreover, it has been suggested that early life experiences could have negative consequences or confer adaptive value in different individuals. Here we suggest that resilience or vulnerability to adult cocaine sensitivity depends on a "triple interaction" between genetic makeup x early environment x later experience. We have recently showed that Repeated Cross Fostering (RCF; RCF pups were fostered by four adoptive mothers from postnatal day 1 to postnatal day 4. Pups were left with the last adoptive mother until weaning) experienced by pups affected the response to a negative experience in adulthood in opposite direction in two genotypes leading DBA2/J, but not C57BL/6J mice, toward an "anhedonia-like" phenotype. Here we investigate whether exposure to a rewarding stimulus, instead of a negative one, in adulthood induces an opposite behavioral outcome. To test this hypothesis, we investigated the long-lasting effects of RCF on cocaine sensitivity in C57 and DBA female mice by evaluating conditioned place preference induced by different cocaine doses and catecholamine prefrontal-accumbal response to cocaine using a "dual probe" in vivo microdialysis procedure. Moreover, cocaine-induced c-Fos activity was assessed in different brain regions involved in processing of rewarding stimuli. Finally, cocaine-induced spine changes were evaluated in the prefrontal-accumbal system. RCF experience strongly affected the behavioral, neurochemical and morphological responses to cocaine in adulthood in opposite direction in the two genotypes increasing and reducing, respectively, the sensitivity to cocaine in C57 and DBA mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mice cloned from skin cells.

    PubMed

    Li, Jinsong; Greco, Valentina; Guasch, Géraldine; Fuchs, Elaine; Mombaerts, Peter

    2007-02-20

    Adult stem cells represent unique populations of undifferentiated cells with self-renewal capacity. In many tissues, stem cells divide less often than their progeny. It has been widely speculated, but largely untested, that their undifferentiated and quiescent state may make stem cells more efficient as donors for cloning by nuclear transfer (NT). Here, we report the use of nuclei from hair follicle stem cells and other skin keratinocytes as NT donors. When keratinocyte stem cells (KSCs) were used as NT donors, 19 liveborn mice were obtained, 9 of which survived to adulthood. Embryonic keratinocytes and cumulus cells also gave rise to cloned mice. Although cloning efficiencies were similar (<6% per transferred blastocyst), success rates were consistently higher for males than for females. Adult keratinocyte stem cells were better NT donors than so-called transit amplifying (TA) keratinocytes in both sexes (1.6% vs. 0% in females and 5.4% vs. 2.8% in males). Our findings reveal skin as a source of readily accessible stem cells, the nuclei of which can be reprogrammed to the pluripotent state by exposure to the cytoplasm of unfertilized oocytes.

  10. Stereotype threat can both enhance and impair older adults' memory.

    PubMed

    Barber, Sarah J; Mather, Mara

    2013-12-01

    Negative stereotypes about aging can impair older adults' memory via stereotype threat; however, the mechanisms underlying this phenomenon are unclear. In two experiments, we tested competing predictions derived from two theoretical accounts of stereotype threat: executive-control interference and regulatory fit. Older adults completed a working memory test either under stereotype threat about age-related memory declines or not under such threat. Monetary incentives were manipulated such that recall led to gains or forgetting led to losses. The executive-control-interference account predicts that stereotype threat decreases the availability of executive-control resources and hence should impair working memory performance. The regulatory-fit account predicts that threat induces a prevention focus, which should impair performance when gains are emphasized but improve performance when losses are emphasized. Results were consistent only with the regulatory-fit account. Although stereotype threat significantly impaired older adults' working memory performance when remembering led to gains, it significantly improved performance when forgetting led to losses.

  11. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    PubMed Central

    2011-01-01

    Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737

  12. Baby-Led Introduction to SolidS (BLISS) study: a randomised controlled trial of a baby-led approach to complementary feeding.

    PubMed

    Daniels, Lisa; Heath, Anne-Louise M; Williams, Sheila M; Cameron, Sonya L; Fleming, Elizabeth A; Taylor, Barry J; Wheeler, Ben J; Gibson, Rosalind S; Taylor, Rachael W

    2015-11-12

    In 2002, the World Health Organization recommended that the age for starting complementary feeding should be changed from 4 to 6 months of age to 6 months. Although this change in age has generated substantial debate, surprisingly little attention has been paid to whether advice on how to introduce complementary foods should also be changed. It has been proposed that by 6 months of age most infants will have developed sufficient motor skills to be able to feed themselves rather than needing to be spoon-fed by an adult. This has the potential to predispose infants to better growth by fostering better energy self-regulation, however no randomised controlled trials have been conducted to determine the benefits and risks of such a "baby-led" approach to complementary feeding. This is of particular interest given the widespread use of "Baby-Led Weaning" by parents internationally. The Baby-Led Introduction to SolidS (BLISS) study aims to assess the efficacy and acceptability of a modified version of Baby-Led Weaning that has been altered to address potential concerns with iron status, choking and growth faltering. The BLISS study will recruit 200 families from Dunedin, New Zealand, who book into the region's only maternity hospital. Parents will be randomised into an intervention (BLISS) or control group for a 12-month intervention with further follow-up at 24 months of age. Both groups will receive the standard Well Child care provided to all parents in New Zealand. The intervention group will receive additional parent contacts (n = 8) for support and education on BLISS from before birth to 12 months of age. Outcomes of interest include body mass index at 12 months of age (primary outcome), energy self-regulation, iron and zinc intake and status, diet quality, choking, growth faltering and acceptability to parents. This study is expected to provide insight into the feasibility of a baby-led approach to complementary feeding and the extent to which this method of

  13. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice

    PubMed Central

    Ai, Ding; Baez, Juan M.; Jiang, Hongfeng; Conlon, Donna M.; Hernandez-Ono, Antonio; Frank-Kamenetsky, Maria; Milstein, Stuart; Fitzgerald, Kevin; Murphy, Andrew J.; Woo, Connie W.; Strong, Alanna; Ginsberg, Henry N.; Tabas, Ira; Rader, Daniel J.; Tall, Alan R.

    2012-01-01

    Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease. PMID:22466652

  14. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  15. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides

    PubMed Central

    Girard, Beatrice; Peterson, Abbey; Malley, Susan; Vizzard, Margaret A.

    2016-01-01

    The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2= 0.996–0.998; p ≤ 0.01) increases in Sub and CGRP expression in the urothelium and significantly (p ≤ 0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1 μg/ml), significantly (p ≤ 0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder

  16. The long-term consequences of the exposure to increasing gravity levels on the muscular, vestibular and cognitive functions in adult mice.

    PubMed

    Bojados, Mickael; Jamon, Marc

    2014-05-01

    Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  18. Dose-response and relative biological effectiveness of fast neutrons: induction of apoptosis and inhibition of neurogenesis in the hippocampus of adult mice.

    PubMed

    Yang, Miyoung; Kim, Joong-Sun; Song, Myoung-Sub; Kim, Jong-Choon; Shin, Taekyun; Lee, Seung-Sook; Kim, Sung-Ho; Moon, Changjong

    2010-06-01

    Our study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis and reduction of neurogenesis in the hippocampus of adult ICR mice with those of low-LET (60)Co gamma-rays, to evaluate the relative biological effectiveness (RBE) of fast neutrons in the adult hippocampal dentate gyrus (DG). The mice were exposed to 35 MeV fast neutrons or (60)Co gamma-rays. We evaluated acutely the incidence of apoptosis and expression of Ki-67 (a protein marker for cell proliferation originally defined by the monoclonal antibody Kiel-67) and doublecortin (DCX: an immature progenitor neuron marker) in the hippocampus after a single whole-body irradiation. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labelling (TUNEL)-positive apoptotic nuclei in the DG increased and both Ki-67- and DCX-positive cells declined in a dose-dependent pattern, with fast neutrons or gamma-rays. In the hippocampus, which showed an apoptosis frequency between 2 and 8 per DG, the RBE of fast neutrons was approximately 1.9. Additionally, the inhibitory effects of fast neutrons on the expression frequencies of Ki-67 (4-8) and DCX (8-32) were approximately 3.2 and 2.5 times, respectively, the effects of gamma-rays at the same dose. Increased apoptotic cell death and decreased neurogenesis in the hippocampal DG were seen in a dose-dependent pattern after exposure to fast neutrons and gamma-rays. In addition, the different rate of hippocampal neurogenesis between different radiation qualities may be an index of RBE.

  19. A single intraperitoneal injection of ketamine does not affect spatial working, reference memory or neurodegeneration in adult mice: An animal study.

    PubMed

    Ribeiro, Patrícia O; Rodrigues, Paula C; Valentim, Ana M; Antunes, Luís M

    2013-10-01

    Ketamine is an anaesthetic and analgesic drug used in research and clinical practice. Little is known about the effects of different doses of this drug on memory and brain cellular death. To study the effects of different doses of ketamine on working and reference memory, and neurodegeneration in adult mice. A randomised study. The study was carried out in a basic science laboratory, between March 2011 and August 2012. Forty-eight 7-month-old, male C57BL/6 mice were used. Animals received a single intraperitoneal injection of physiological saline solution or one of three doses of ketamine (25, 75 or 150 mg kg(-1)). Each group consisted of 12 animals (seven animals for behavioural tests and five animals for histopathological and immunohistochemical studies). The animals used for histopathology studies were sacrificed 3 h after anaesthesia. Working and reference memories were assessed using the radial-maze test over 12 consecutive days. The equilibrium was tested using the vertical pole (4 and 24 h after injection), whereas locomotion was assessed using the open field (24, 48 and 72 h after injection). Histopathological (haematoxylin-eosin staining) and immunohistochemical analyses (procaspase-3 and activated caspase-3 detections) were performed 3 h after injection to assess neurodegeneration in the retrosplenial and visual cortices, pyramidal cell layer of the cornu Ammonis 1 and cornu Ammonis 3 areas of the hippocampus, in the granular layer of the dentate gyrus, in the laterodorsal thalamic nucleus, striatum and accumbens nucleus. No significant differences were observed between the groups regarding the number of dead cells and cells showing positive immune-reactivity in the different regions of the brain studied. The performance in the vertical pole test and the number of reference and working memory errors in the radial-maze were similar in all groups. Nevertheless, the animals treated with ketamine 75 mg kg(-1) were transiently more active, walking a greater

  20. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724