Sample records for adult mouse spermatogonial

  1. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  2. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.

  3. Spermatogonial Culture Medium: An Effective and Efficient Nutrient Mixture for Culturing Rat Spermatogonial Stem Cells1

    PubMed Central

    Wu, Zhuoru; Falciatori, Ilaria; Molyneux, Laura A.; Richardson, Timothy E.; Chapman, Karen M.; Hamra, F. Kent

    2009-01-01

    An economical and simplified procedure to derive and propagate fully functional lines of undifferentiated rat spermatogonia in vitro is presented. The procedure is based on the formulation of a new spermatogonial culture medium termed SG medium. The SG medium is composed of a 1:1 mixture of Dulbecco modified Eagle medium:Ham F12 nutrient, 20 ng/ml of GDNF, 25 ng/ml of FGF2, 100 μM 2-mercaptoethanol, 6 mM l-glutamine, and a 1× concentration of B27 Supplement Minus Vitamin A solution. Using SG medium, six individual spermatogonial lines were derived from the testes of six separate Sprague-Dawley rats. After proliferating over a 120-day period in SG medium, stem cells within the spermatogonial cultures effectively regenerated spermatogenesis in testes of busulfan-treated recipient rats, which transmitted the donor cell haplotype to more than 75% of progeny by natural breeding. Subculturing in SG medium did not require protease treatment and was achieved by passaging the loosely bound spermatogonial cultures at 1:3 dilutions onto fresh monolayers of irradiated DR4 mouse fibroblasts every 12 days. Spermatogonial lines derived and propagated using SG medium were characterized as homogeneous populations of ZBTB16+ DAZL+ cells endowed with spermatogonial stem cell potential. PMID:19299316

  4. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    PubMed

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  6. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis.

    PubMed

    Sakai, Mizuki; Masaki, Kaito; Aiba, Shota; Tone, Masaaki; Takashima, Seiji

    2018-04-16

    Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.

  7. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    PubMed

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular

  8. Propagation of human spermatogonial stem cells in vitro.

    PubMed

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and

  9. Peritubular Myoid Cells Participate in Male Mouse Spermatogonial Stem Cell Maintenance

    PubMed Central

    Chen, Liang-Yu; Brown, Paula R.; Willis, William B.

    2014-01-01

    Peritubular myoid (PM) cells surround the seminiferous tubule and together with Sertoli cells form the cellular boundary of the spermatogonial stem cell (SSC) niche. However, it remains unclear what role PM cells have in determining the microenvironment in the niche required for maintenance of the ability of SSCs to undergo self-renewal and differentiation into spermatogonia. Mice with a targeted disruption of the androgen receptor gene (Ar) in PM cells experienced a progressive loss of spermatogonia, suggesting that PM cells require testosterone (T) action to produce factors influencing SSC maintenance in the niche. Other studies showed that glial cell line-derived neurotrophic factor (GDNF) is required for SSC self-renewal and differentiation of SSCs in vitro and in vivo. This led us to hypothesize that T-regulated GDNF expression by PM cells contributes to the maintenance of SSCs. This hypothesis was tested using an adult mouse PM cell primary culture system and germ cell transplantation. We found that T induced GDNF expression at the mRNA and protein levels in PM cells. Furthermore, when thymus cell antigen 1-positive spermatogonia isolated from neonatal mice were cocultured with PM cells with or without T and transplanted to the testes of germ cell-depleted mice, the number and length of transplant-derived colonies was increased considerably by in vitro T treatment. These results support the novel hypothesis that T-dependent regulation of GDNF expression in PM cells has a significant influence on the microenvironment of the niche and SSC maintenance. PMID:25181385

  10. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.

    PubMed

    Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David

    2016-09-01

    Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion.

  11. Somatic ACE regulates self-renewal of mouse spermatogonial stem cells via the MAPK signaling pathway.

    PubMed

    Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan

    2018-05-24

    Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.

  12. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors.

    PubMed

    Lambrot, Romain; Lafleur, Christine; Kimmins, Sarah

    2015-11-01

    Little is known of the fundamental processes governed by epigenetic mechanisms in the supplier cells of spermatogenesis, the spermatogonial stem cells (SSCs). The histone H3 lysine demethylase KDM1A is expressed in spermatogonia. We hypothesized that KDM1A serves in transcriptional regulation of SSCs and fertility. Using a conditional deletion of Kdm1a [conditional knockout (cKO)] in mouse spermatogonia, we determined that Kdm1a is essential for spermatogenesis as adult cKO males completely lack germ cells. Analysis of postnatal testis development revealed that undifferentiated and differentiating spermatogonial populations form in Kdm1a-cKO animals, yet the majority fail to enter meiosis. Loss of germ cells in the cKO was rapid with none remaining by postnatal day (PND) 21. To gain insight into the mechanistic implications of Kdm1a ablation, we isolated PND 6 spermatogonia enriched for SSCs and analyzed their transcriptome by RNA sequencing. Loss of Kdm1a was associated with altered transcription of 1206 genes. Importantly, differentially expressed genes between control and Kdm1a-cKO animals included those that are essential for SSC and progenitor maintenance and spermatogonial differentiation. The complete loss of fertility and failure to establish spermatogenesis indicate that Kdm1a is a master controller of gene transcription in spermatogonia and is required for SSC and progenitor maintenance and differentiation. © FASEB.

  13. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development

    PubMed Central

    Chen, Liang-Yu; Willis, William D.; Eddy, Edward M.

    2016-01-01

    Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo. PMID:26831079

  14. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells.

    PubMed

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.

  15. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor.

    PubMed

    Miura, Takeshi; Ohta, Takashi; Miura, Chiemi I; Yamauchi, Kohei

    2003-12-01

    Spermatogonial mitosis can be subdivided into two processes: spermatogonial stem cell renewal and spermatogonial proliferation toward meiosis. Recently it has been indicated that estrogen, estradiol-17beta, is involved in regulating the renewal of spermatogonial stem cells in eel. To determine the genes that directly regulate this process, we used expression screening to identify genes whose expression is regulated by estradiol-17beta in testes. We detected a previously unidentified cDNA clone that is up-regulated by estradiol-17beta stimulation and named it eel spermatogenesis-related substances 34 (eSRS34) cDNA. Homology searching showed that eSRS34 shares amino acid sequence similarity with human platelet-derived endothelial cell growth factor. We examined the function of eSRS34 using several in vitro systems. Recombinant eSRS34 produced by a baculovirus system induced spermatogonial mitosis in testicular organ culture. Furthermore, the addition of an antibody specific for eSRS34 prevented spermatogonial mitosis induced by estradiol-17beta stimulation in a germ cell/somatic cell coculture system. We therefore conclude that eSRS34 is a "spermatogonial stem cell renewal factor."

  16. Spermatogonial behavior in marmoset: a new generation, their kinetics and niche.

    PubMed

    Caldeira-Brant, A L; Eras-Garcia, L; Alves-Freitas, D; Almeida, F R C L; Chiarini-Garcia, H

    2018-06-01

    Could a more detailed evaluation of marmoset spermatogonial morphology, kinetics and niches using high-resolution light microscopy (HRLM) lead to new findings? Three subtypes of marmoset undifferentiated spermatogonia, which were not evenly distributed in terms of number and position along the basal membrane, and an extra premeiotic cell division not present in humans were identified using HRLM. The seminiferous epithelium cycle (SEC) of marmosets is divided into nine stages when based on the acrosome system, and several spermatogenic stages can usually be recognized within the same tubular cross-section. Three spermatogonial generations have been previously described in marmosets: types Adark, Apale and B spermatogonia. Testes from five adult Callithrix penicillata were fixed by glutaraldehyde perfusion via the cardiac route and embedded in Araldite plastic resin for HRLM evaluation. Semi-thin sections (1 μm) were analyzed morphologically and morphometrically to evaluate spermatogonial morphology and kinetics (number, mitosis and apoptosis), spermatogenesis efficiency and the spermatogonial niche. Shape and nuclear diameter, the presence and distribution of heterochromatin, the granularity of the euchromatin, as well as the number, morphology and degree of nucleolar compaction were observed for morphological characterization. Kinetics analyses were performed for all spermatogonial subtypes and preleptotene spermatocytes, and their mitosis and apoptosis indexes determined across all SEC stages. Spermatogenesis parameters (mitotic, meiotic, Sertoli cell workload and general spermatogenesis efficiency) were determined through the counting of Adark and Apale spermatogonia, preleptotene and pachytene primary spermatocytes, round spermatids, and Sertoli cells at stage IV of the SEC. This is the first time that a study in marmosets demonstrates: the existence of a new spermatogonial generation (B2); the presence of two subtypes of Adark spermatogonia with (AdVac) and

  17. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells.

    PubMed

    Liu, Ying; Giannopoulou, Eugenia G; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C David; Rafii, Shahin; Seandel, Marco

    2016-04-27

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming.

  18. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    PubMed Central

    Liu, Ying; Giannopoulou, Eugenia G.; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C. David; Rafii, Shahin; Seandel, Marco

    2016-01-01

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. PMID:27117588

  19. Spermatogonial stem cell regulation and spermatogenesis

    PubMed Central

    Phillips, Bart T.; Gassei, Kathrin; Orwig, Kyle E.

    2010-01-01

    This article will provide an updated review of spermatogonial stem cells and their role in maintaining the spermatogenic lineage. Experimental tools used to study spermatogonial stem cells (SSCs) will be described, along with research using these tools to enhance our understanding of stem cell biology and spermatogenesis. Increased knowledge about the biology of SSCs improves our capacity to manipulate these cells for practical application. The chapter concludes with a discussion of future directions for fundamental investigation and practical applications of SSCs. PMID:20403877

  20. Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.

    PubMed

    Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H

    1988-05-01

    Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.

  1. Separation of somatic and germ cells is required to establish primate spermatogonial cultures.

    PubMed

    Langenstroth, Daniel; Kossack, Nina; Westernströer, Birgit; Wistuba, Joachim; Behr, Rüdiger; Gromoll, Jörg; Schlatt, Stefan

    2014-09-01

    Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth

  2. High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells.

    PubMed

    Liang, Shenxuan; Yin, Lei; Shengyang Yu, Kevin; Hofmann, Marie-Claude; Yu, Xiaozhong

    2017-01-01

    Bisphenol A (BPA), an endocrine-disrupting compound, was found to be a testicular toxicant in animal models. Bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) were recently introduced to the market as alternatives to BPA. However, toxicological data of these compounds in the male reproductive system are still limited so far. This study developed and validated an automated multi-parametric high-content analysis (HCA) using the C18-4 spermatogonial cell line as a model. We applied these validated HCA, including nuclear morphology, DNA content, cell cycle progression, DNA synthesis, cytoskeleton integrity, and DNA damage responses, to characterize and compare the testicular toxicities of BPA and 3 selected commercial available BPA analogues, BPS, BPAF, and TBBPA. HCA revealed BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS, including dose- and time-dependent alterations in nuclear morphology, cell cycle, DNA damage responses, and perturbation of the cytoskeleton. Our results demonstrated that this specific culture model together with HCA can be utilized for quantitative screening and discriminating of chemical-specific testicular toxicity in spermatogonial cells. It also provides a fast and cost-effective approach for the identification of environmental chemicals that could have detrimental effects on reproduction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal

    PubMed Central

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N.; Trumpp, Andreas; Shinohara, Takashi

    2016-01-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. PMID:28007786

  4. MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4.

    PubMed

    Li, Jiang; Liu, Xiang; Hu, Xiaopeng; Tian, Geng G; Ma, Wenzhi; Pei, Xiuying; Wang, Yanrong; Wu, Ji

    2017-04-01

    MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self-renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR-10b in regulating the self-renewal of mouse SSCs. We showed that miR-10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR-10b significantly increased the apoptosis of SSCs compared with controls. Kruppel-like factor 4 was found to be a target gene of miR-10b in the enhancement of SSC proliferation. These findings further our understanding of the self-renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells.

    PubMed

    Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu

    2016-01-01

    The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.

  6. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.

    PubMed

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi

    2016-12-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.

  7. The Fate of Spermatogonial Stem Cells in the Cryptorchid Testes of RXFP2 Deficient Mice

    PubMed Central

    Ferguson, Lydia; How, Javier J.; Agoulnik, Alexander I.

    2013-01-01

    The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool. PMID:24098584

  8. Cryopreservation of Fish Spermatogonial Cells: The Future of Natural History Collections.

    PubMed

    Hagedorn, Mary M; Daly, Jonathan P; Carter, Virginia L; Cole, Kathleen S; Jaafar, Zeehan; Lager, Claire V A; Parenti, Lynne R

    2018-04-18

    As global biodiversity declines, the value of biological collections increases. Cryopreserved diploid spermatogonial cells meet two goals: to yield high-quality molecular sequence data; and to regenerate new individuals, hence potentially countering species extinction. Cryopreserved spermatogonial cells that allow for such mitigative measures are not currently in natural history museum collections because there are no standard protocols to collect them. Vertebrate specimens, especially fishes, are traditionally formalin-fixed and alcohol-preserved which makes them ideal for morphological studies and as museum vouchers, but inadequate for molecular sequence data. Molecular studies of fishes routinely use tissues preserved in ethanol; yet tissues preserved in this way may yield degraded sequences over time. As an alternative to tissue fixation methods, we assessed and compared previously published cryopreservation methods by gating and counting fish testicular cells with flow cytometry to identify presumptive spermatogonia A-type cells. Here we describe a protocol to cryopreserve tissues that yields a high percentage of viable spermatogonial cells from the testes of Asterropteryx semipunctata, a marine goby. Material cryopreserved using this protocol represents the first frozen and post-thaw viable spermatogonial cells of fishes archived in a natural history museum to provide better quality material for re-derivation of species and DNA preservation and analysis.

  9. Comparative study of spermatogonial survival after X-ray exposure, high LET (HZE) irradiation or spaceflight

    NASA Technical Reports Server (NTRS)

    Sapp, W. J.; Williams, C. S.; Williams, J. W.; Philpott, D. E.; Kato, K.; Miquel, J. M.; Serova, L.

    1992-01-01

    Spermatogonial cell loss has been observed in rats flown on Space Lab 3, Cosmos 1887, Cosmos 2044 and in mice following irradiation with X-ray or with HZE particle beams. Spermatogonial loss is determined by cell counting in maturation stage-6 seminferous tubules. With the exception of iron, laboratory irradiation experiments (with mice) revealed a similar pattern of spermatogonial loss proportional to the radiation dose at levels less than 0.1 Gy. Helium and argon irradiation resulted in a 5-percent loss of spermatogonia after only 0.01 Gy exposure. Significant spermatogonial loss (45 percent) occurred at this radiation level with iron particle beams. The loss of spermatogonia during each spaceflight was less than 10 percent when compared to control (nonflight) animals.

  10. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system.

    PubMed

    Navid, Shadan; Abbasi, Mehdi; Hoshino, Yumi

    2017-10-17

    Melatonin is a pleiotropic hormone with powerful antioxidant activity both in vivo and in vitro. The present study aimed to investigate the effects of melatonin on the proliferation efficiency of neonatal mouse spermatogonial stem cells (SSCs) using a three-dimensional soft agar culture system (SACS) which has the capacity to induce development of SSCs similar to in vivo conditions. SSCs were isolated from testes of neonate mice and their purities were assessed by flow cytometry using PLZF antibody. Isolated testicular cells were cultured in the upper layer of the SACS in αMEM medium in the absence or presence of melatonin extract for 4 weeks. The identity of colonies was confirmed by alkaline phosphatase staining and immunocytochemistry using PLZF and α6 integrin antibodies. The number and diameter of colonies of SSCs in the upper layer were evaluated at days 14 and 28 of culture. The number and diameter of colonies of SSCs were significantly higher in the melatonin group compared with the control group. The levels of expression of ID-4 and Plzf, unlike c-kit, were significantly higher in the melatonin group than in the control group. Results of the present study show that supplementation of the culture medium (SACS) with 100 μM melatonin significantly decreased reactive oxygen species (ROS) production in the treated group compared with the control group, and increased SSC proliferation.

  11. Oct4-GFP expression during transformation of gonocytes into spermatogonial stem cells in the perinatal mouse testis.

    PubMed

    Li, Ruili; Vannitamby, Amanda; Zhang, Jian-Guo; Fehmel, Emma L; Southwell, Bridget R; Hutson, John M

    2015-12-01

    In cryptorchidism perinatal failure to switch off Oct4, a germ cell (GC) marker, may lead to carcinoma in situ. We aimed to analyze Oct4 expression during mouse gonocyte transformation into spermatogonial stem cells (SSC). Testes from OG2 (Oct4-promoter driven eGFP) mice at embryonic day (E) 17 and postnatal day P0-10 underwent immunohistochemistry and immunoblotting. Antibodies against MVH, AMH, Ki67, and c-Kit were visualized by confocal microscopy. Numbers of Oct4-GFP(+) GC and Oct4-GFP(-) GC/tubule were counted using ImageJ. Data were analyzed using nonparametric one-way ANOVA. GC from E17-P4 were Oct4-GFP(+). Numbers of Oct4-GFP(-) GC/tubule increased from P6-10, whereas Oct4-GFP(+) GC/tubule numbers remained similar between P6 and P10. Sertoli cells proliferated from E17-P10, whereas GC only proliferated from P2. Gonocytes (Oct4-GFP(+)/c-Kit(-)) central in tubules migrated to the basement membrane to become prospermatogonia (Oct4-GFP(+)/c-Kit(-)) and then SSC (Oct4-GFP(+)/c-Kit(+)) from day 4 and further developed into Oct4-GFP(-)/c-Kit(+) at P6. In Oct4-GFP mice both centrally located gonocytes and prospermatogonia located at the tubular basement membrane were Oct4-GFP(+)/c-Kit(-) before further developing into SSC (Oct4-GFP(+)/c-Kit(+)). This indicates that Oct4 is important in gonocyte transformation into SSC. Understanding this process will aid GC tumor diagnostics and fertility potential in boys with UDT undergoing orchidopexy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Histone methyltransferase SETDB1 maintains survival of mouse spermatogonial stem/progenitor cells via PTEN/AKT/FOXO1 pathway.

    PubMed

    Liu, Tiantian; Chen, Xiaoxu; Li, Tianjiao; Li, Xueliang; Lyu, Yinghua; Fan, Xiaoteng; Zhang, Pengfei; Zeng, Wenxian

    2017-10-01

    Spermatogonial stem cells (SSCs) possess the capacity of self-renewal and differentiation, which are the basis of spermatogenesis. In maintenance of SSC homeostasis, intrinsic/extrinsic factors and various signaling pathways tightly control the fate of SSCs. Methyltransferase SETDB1 (Set domain, bifurcated 1) catalyzes histone H3 lysine 9 (H3K9) trimethylation and represses gene expression. SETDB1 is required for maintaining the survival of spermatogonial stem cells in mice. However, the underlying molecular mechanism remains unclear. In the present study, we found that Setdb1 regulates PTEN/AKT/FOXO1 pathway to inhibit SSC apoptosis. Co-immunoprecipitation and reporter gene assay revealed that SETDB1 interacted and coordinated with AKT to regulate FOXO1 activity and expression of the downstream target genes Bim and Puma. Among the SETDB1-bound genes, the H3K9me3 levels on the promoter regions of Bim and Pten decreased in Setdb1-KD group; in contrast, H3K9me3 status on promoters of Bax and Puma remained unchanged. Therefore, SETDB1 was responsible for regulating the transcription activity of genes in the apoptotic pathway at least in part through modulating H3K9me3. This study replenishes the research on the epigenetic regulation of SSC survival, and provides a new insight for the future study of epigenetic regulation of spermatogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro.

    PubMed

    Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza

    2018-01-01

    Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.

  14. Retinol Improves In Vitro Differentiation of Pre-Pubertal Mouse Spermatogonial Stem Cells into Sperm during the First Wave of Spermatogenesis

    PubMed Central

    Arkoun, Brahim; Dumont, Ludovic; Milazzo, Jean-Pierre; Way, Agathe; Bironneau, Amandine; Wils, Julien; Macé, Bertrand; Rives, Nathalie

    2015-01-01

    Testicular tissue freezing has been proposed for fertility preservation in pre-pubertal boys. Thawed frozen testicular tissue must undergo a maturation process to restore sperm production. The purpose of the current study was to evaluate the ability of retinol to improve the in vitro differentiation of pre-pubertal mouse spermatogonial stem cells into sperm. Testes from pre-pubertal mice, aged 2.5 and 6.5 days post-partum, were cultured on agarose gel at a gas-liquid interphase for 34, 38 and 60 days (D) and for 16, 30 and 36 D respectively. Assessment of basal medium (BM) supplemented with retinol (RE) alone, FSH/LH alone or a combination of both, was performed. Stereological analyses and tissue lesion scoring were performed at the culture time points indicated above. Sperm production was quantified at D30 and D34 after mechanical dissection of the testicular tissues. FSH/LH significantly increased the percentage of round spermatids at D30 and D38, when compared to BM alone. However, RE significantly increased the percentages of round but also elongated spermatids at D30 and D34. Moreover, RE significantly increased the number of spermatozoa per milligram of tissue at D30 and D34 when compared to BM. Therefore, RE improved the in vitro production of spermatids and spermatozoa from pre-pubertal SSCs during the first wave of spermatogenesis. The use of RE could be a useful tool for in vitro spermatogenesis from pre-pubertal human testicular tissue. PMID:25714609

  15. Cellular evidence for selfish spermatogonial selection in aged human testes.

    PubMed

    Maher, G J; Goriely, A; Wilkie, A O M

    2014-05-01

    Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed 'immunopositive tubules', there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self-renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of

  16. Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

    PubMed Central

    Jeon, Hye Lyun; Yi, Jung-Sun; Kim, Tae Sung; Oh, Youkyung; Lee, Hye Jeong; Lee, Minseong; Bang, Jin Seok; Ko, Kinarm; Ahn, Il Young; Ko, Kyungyuk; Kim, Joohwan; Park, Hye-Kyung; Lee, Jong Kwon; Sohn, Soo Jung

    2017-01-01

    Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration (IC50) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity. PMID:28443181

  17. Spermatogonial stem cell transplantation and male infertility: Current status and future directions.

    PubMed

    Forbes, Connor M; Flannigan, Ryan; Schlegel, Peter N

    2018-03-01

    To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.

  18. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro

    PubMed Central

    Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza

    2018-01-01

    Background Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. Objective The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. Methods SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. Results The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. Conclusion The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug. PMID:29849458

  19. Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4

    PubMed Central

    Corbineau, Sébastien; Lassalle, Bruno; Givelet, Maelle; Souissi-Sarahoui, Inès; Firlej, Virginie; Romeo, Paul Henri; Allemand, Isabelle; Riou, Lydia; Fouchet, Pierre

    2017-01-01

    The male germinal lineage, which is defined as unipotent, produces sperm through spermatogenesis. However, embryonic primordial germ cells and postnatal spermatogonial stem cells (SSCs) can change their fate and convert to pluripotency in culture when they are not controlled by the testicular microenvironment. The mechanisms underlying these reprogramming processes are poorly understood. Testicular germ cell tumors, including teratoma, share some molecular characteristics with pluripotent cells, suggesting that cancer could result from an abnormal differentiation of primordial germ cells or from an abnormal conversion of SCCs to pluripotency in the testis. Here, we investigated whether the somatic reprogramming factors Oct3/4, Sox2, Klf4 and c-Myc (OSKM) could play a role in SSCs reprogramming and induce pluripotency using a doxycycline-inducible transgenic Col1a1-4F2A-OSKM mouse model. We showed that, in contrast to somatic cells, SSCs from adult mice are resistant to this reprogramming strategy, even in combination with small molecules, hypoxia, or p53 deficiency, which were previously described to favour the conversion of somatic cells to pluripotency. This finding suggests that adult SSCs have developed specific mechanisms to repress reprogramming by OSKM factors, contributing to circumvent testicular cancer initiation events. PMID:28052023

  20. Reduction of the spermatogonial population in rat testes flown on Space Lab-3

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Stevenson, J.; Corbett, R.; Sapp, W.; Williams, C.

    1985-01-01

    Quantization of the testicular spermatogonial population reduction in six rats is performed 12 hours after their return from seven days aboard Space Lab-3. The observed 7.1 percent organ weight loss, and 7.5 percent stage six spermatogonial cell population reduction in comparison with control rats correlate very well. Accurate dosimetry was not conducted on board, but radiation can not be considered the primary cause of the observed change. The decrease in protein kinase in the heart of these rats indicates that stress from adapting to weightlessness, the final jet flight, or other sources, is an important factor.

  1. Gossypol with methyltestosterone and ethinylestradiol male does not affect rat spermatogonial stem cell differentiation.

    PubMed

    Cui, G; Zheng, W; Sun, Y; Zhang, Q; Deng, X; Chen, X

    2007-01-01

    The purpose of this study was to investigate whether administration of the regimen of gossypol at 12 mg/kg/day combined with methyltestosterone at 20 mg/kg/day and ethinylestradiol at 100 microg/kg/day for a long term of twenty-four weeks could affect the existence and differentiation of rat spermatogonial stem cell. This was assessed by conducting TdT-mediated dUTP nick end-labeling detection, spermatogonial stem cell transplantation and fertility recovery evaluation. Our results showed that spontaneous apoptosis was observed in normal rats' testes from the control group with an apoptotic index (AI) average of 10.24+/-1.52. In the regimen-treated group, the predominant apoptotic cells were spermatocytes and spermatids in the seminiferous tubules. Spermatogonia were not apoptotic (AI averaged 113.42+/-13.24). Two to three months after transplantation of spermatogonial stem cells isolated from regimen-treated rats into recipient nude mice, elongated rat spermatids were identified in the seminiferous tubules of recipient nude mice. Six weeks after withdrawal of the administration, fertility of the regimen-treated rats was recovered compared with that of the control group. The number of litters produced by females mated with regimen-treated males averaged 9.88+/-0.166 matched 10.30+/-0.171 of control group and the litters of the first generation appeared to be normal. These results indicated that the administration of this regimen did not affect the existence and differentiation potential of spermatogonial stem cells of the regimen-treated rats.

  2. The mammalian Doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells

    PubMed Central

    Matson, Clinton K.; Murphy, Mark W.; Griswold, Michael D.; Yoshida, Shosei; Bardwell, Vivian J.; Zarkower, David

    2010-01-01

    Summary The switch from mitosis to meiosis is a unique feature of germ cell development. In mammals, meiotic initiation requires retinoic acid (RA), which activates meiotic inducers including Stra8, but how the switch to meiosis is controlled in male germ cells (spermatogonia) remains poorly understood. Here we examine the role of the Doublesex-related transcription factor DMRT1 in adult spermatogenesis using conditional gene targeting in the mouse. Loss of Dmrt1 causes spermatogonia to precociously exit the spermatogonial program and enter meiosis. Dmrt1 therefore determines whether male germ cells undergo mitosis and spermatogonial differentiation or meiosis. Loss of Dmrt1 in spermatogonia also disrupts cyclical gene expression in Sertoli cells. DMRT1 acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing meiosis and promoting spermatogonial development. By coordinating spermatogonial development and mitotic amplification with meiosis, DMRT1 allows abundant, continuous production of sperm. PMID:20951351

  3. New Insights on the Morphology of Adult Mouse Penis1

    PubMed Central

    Rodriguez, Esequiel; Weiss, Dana A.; Yang, Jennifer H.; Menshenina, Julia; Ferretti, Max; Cunha, Tristan J.; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Cunha, Gerald R.; Baskin, Laurence S.

    2011-01-01

    ABSTRACT The adult mouse penis represents the end point of masculine sex differentiation of the embryonic genital tubercle and contains bone, cartilage, the urethra, erectile bodies, several types of epithelium, and many individual cell types arrayed into specific anatomical structures. Using contemporary high-resolution imaging techniques, we sought to provide new insights to the current description of adult mouse penile morphology to enable understanding of penile abnormalities, including hypospadias. Examination of serial transverse and longitudinal sections, scanning electron microscopy, and three-dimensional (3D) reconstruction provided a new appreciation of the individual structures in the adult mouse penis and their 3D interrelationships. In so doing, we discovered novel paired erectile bodies, the male urogenital mating protuberance (MUMP), and more accurately described the urethral meatus. These morphological observations were quantified by morphometric analysis and now provide accurate morphological end points of sex differentiation of mouse penis that will be the foundation of future studies to identify normal and abnormal penile development. PMID:21918128

  4. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells.

    PubMed

    Liu, Meng-Ling; Wang, Jing-Lei; Wei, Jie; Xu, Lin-Lin; Yu, Mei; Liu, Xiao-Mei; Ruan, Wen-Li; Chen, Jia-Xiang

    2015-02-01

    Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis. © 2015 Society for Reproduction and Fertility.

  5. Production of Macrophage Inhibitory Factor (MIF) by Primary Sertoli Cells; Its Possible Involvement in Migration of Spermatogonial Cells.

    PubMed

    Huleihel, Mahmoud; Abofoul-Azab, Maram; Abarbanel, Yael; Einav, Iris; Levitas, Elyahu; Lunenfeld, Eitan

    2017-10-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional molecule. MIF was originally identified as a T-cell-derived factor responsible for the inhibition of macrophage migration. In testicular tissue of adult rats, MIF is constitutively expressed by Leydig cells under physiological conditions. The aim of this study was to examine MIF levels in testicular homogenates from different aged mice, and the capacity of Sertoli cells to produce it. We also examined MIF involvement in spermatogonial cell migration. Similar levels of MIF protein were detected in testicular homogenates of mice of different ages (1-8-week-old). However, the RNA expression levels of MIF were high in 1-week-old mice and significantly decreased with age compared to 1-week-old mice. MIF was stained in Sertoli, Leydig cells, and developed germ cells in the seminiferous tubules. Isolated Sertoli cells from 1-week-old mice stained to MIF. Cultures of Sertoli cells from 1-week-old mice produced and expressed high levels of MIF which significantly decreased with age. MIF was localized in the cytoplasm and nucleus of Sertoli cell cultures isolated from 1-week-old mice; however, it was localized only in the cytoplasm and branches of cultures isolated from 8-week-old mice. MIFR was detected in GFRα1 and Sertoli cells. MIF could induce migration of spermatogonial cells, and this effect was synergistic with glial cell-line neurotrophic factor. Our results show, for the first time, the capacity of Sertoli cells to produce MIF under normal conditions and that MIFR expressed in GFRα1 and Sertoli cells. We also showed that MIF induced spermatogonial cell migration. J. Cell. Physiol. 232: 2869-2877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A Comprehensive Atlas of the Adult Mouse Penis

    PubMed Central

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  7. Comparative analysis of single-cell RNA sequencing data from mouse spermatogonial and mesenchymal stem cells to identify differentially expressed genes and transcriptional regulators of germline cells.

    PubMed

    Sisakhtnezhad, Sajjad; Heshmati, Parvin

    2018-07-01

    Identifying effective internal factors for regulating germline commitment during development and for maintaining spermatogonial stem cells (SSCs) self-renewal is important to understand the molecular basis of spermatogenesis process, and to develop new protocols for the production of the germline cells from other cell sources. Therefore, this study was designed to investigate single-cell RNA-sequencing data for identification of differentially expressed genes (DEGs) in 12 mouse-derived single SSCs (mSSCs) in compare with 16 mouse-derived single mesenchymal stem cells. We also aimed to find transcriptional regulators of DEGs. Collectively, 1,584 up-regulated DEGs were identified that are associated with 32 biological processes. Moreover, investigation of the expression profiles of genes including in spermatogenesis process revealed that Dazl, Ddx4, Sall4, Fkbp6, Tex15, Tex19.1, Rnf17, Piwil2, Taf7l, Zbtb16, and Cadm1 are presented in the first 30 up-regulated DEGs. We also found 12 basal transcription factors (TFs) and three sequence-specific TFs that control the expression of DEGs. Our findings also indicated that MEIS1, SMC3, TAF1, KAT2A, STAT3, GTF3C2, SIN3A, BDP1, PHC1, and EGR1 are the main central regulators of DEGs in mSSCs. In addition, we collectively detected two significant protein complexes in the protein-protein interactions network for DEGs regulators. Finally, this study introduces the major upstream kinases for the main central regulators of DEGs and the components of core protein complexes. In conclusion, this study provides a molecular blueprint to uncover the molecular mechanisms behind the biology of SSCs and offers a list of candidate factors for cell type conversion approaches and production of germ cells. © 2017 Wiley Periodicals, Inc.

  8. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  9. Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.

    PubMed

    Socorro, Mairobys; Criscimanna, Angela; Riva, Patricia; Tandon, Manuj; Prasadan, Krishna; Guo, Ping; Humar, Abhinav; Husain, Sohail Z; Leach, Steven D; Gittes, George K; Esni, Farzad

    2017-12-13

    Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1 + /CD90 - /Ecad - cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).

  10. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  11. Localization of PPAR isotypes in the adult mouse and human brain.

    PubMed

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B; Mayfield, R Dayne; Harris, R Adron

    2016-06-10

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.

  12. In silico analysis of single-cell RNA sequencing data from 3 and 7 days old mouse spermatogonial stem cells to identify their differentially expressed genes and transcriptional regulators.

    PubMed

    Sisakhtnezhad, Sajjad

    2018-05-11

    Spermatogonial stem cells (SSCs), which are at the basis of spermatogenesis process, are valuable cells with different applications in biotechnology and regenerative medicine. Understanding the molecular basis of SSC self-renewal and differentiation at various developmental stages of the male organism is crucial to find key factors in the SSCs fate and function. Therefore, this study was aimed to use single-cell RNA-sequencing dataset analysis for identification of differentially expressed genes (DEGs) and their regulators in 3 and 7 days old mouse-derived single SSCs (mSSCs). Results showed 68 upregulated and 203 downregulated genes in 7 days old mouse-derived SSCs compared to 3 days old mSSCs, which were associated with 1493 and 3077 biological processes, respectively. It also found that DAZL, FKBP6, PAIP2, DDX4, H3F3B, TEX15, XRN2, MAEL, and SOD1 are important factors with the higher gene expression pattern, which may be pivotal for mSSCs fate and function during development of germ cells. Moreover, NR3C1, RXRA, NCOA, ESR1, PML, ATF2, BMI1, POU5F1, and CHD1 were the main central regulators for the upregulated DEGs, while HNF1A, C/EBPα, and NFATC1 were the master regulators for the downregulated DEGs. In this regard, two significant protein complexes were found in the protein-protein interactions network for the upregulated DEGs regulators. Furthermore, 24 protein kinases detected upstream of the main central regulators of DEGs. In conclusion, this study presents DEGs and their transcriptional regulators that are crucial for inducing and regulating SSCs commitment during development, and for developing efficient protocols to identify and isolate SSCs for different applications. © 2018 Wiley Periodicals, Inc.

  13. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreasesmore » significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.« less

  14. Spermatogonial stem cells as a therapeutic alternative for fertility preservation of prepubertal boys

    PubMed Central

    Galuppo, Andrea Giannotti

    2015-01-01

    ABSTRACT Spermatogonial stem cells, which exist in the testicles since birth, are progenitors cells of male gametes. These cells are critical for the process of spermatogenesis, and not able to produce mature sperm cells before puberty due to their dependency of hormonal stimuli. This characteristic of the reproductive system limits the preservation of fertility only to males who are able to produce an ejaculate. This fact puts some light on the increase in survival rates of childhood cancer over the past decades because of improvements in the diagnosis and effective treatment in pediatric cancer patients. Therefore, we highlight one of the most important challenges concerning male fertility preservation that is the toxic effect of cancer therapy on reproductive function, especially the spermatogenesis. Currently, the experimental alternative for fertility preservation of prepubertal boys is the testicular tissue cryopreservationfor, for future isolation and spermatogonial stem cells transplantation, in order to restore the spermatogenesis. We present a brief review on isolation, characterization and culture conditions for the in vitro proliferation of spermatogonial stem cells, as well as the future perspectives as an alternative for fertility preservation in prepubertal boys. The possibility of restoring male fertility constitutes a research tool with an huge potential in basic and applied science. The development of these techniques may be a hope for the future of fertility preservation in cases that no other options exist, e.g, pediatric cancer patients. PMID:26761559

  15. Ultrasound guided transplantation of enriched and cryopreserved spermatogonial cell suspension in goats.

    PubMed

    Kaul, G; Kaur, J; Rafeeqi, T A

    2010-12-01

    Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.

  16. Expression Profile of NOTCH3 in Mouse Spermatogonia.

    PubMed

    Okada, Ryu; Fujimagari, Megumi; Koya, Eri; Hirose, Yoshikazu; Sato, Tomomi; Nishina, Yukio

    2017-01-01

    Stable and sustainable spermatogenesis is supported by the strict regulation of self-renewal and differentiation of spermatogonial stem cells (SSC), which are a rare population of undifferentiated spermatogonia. It has been revealed that some signaling factors regulate the self-renewal of SSC; however, the molecular mechanism of SSC maintenance is still not completely understood. Notch signaling is an evolutionarily conserved juxtacrine signaling that plays important roles in the cell fate determination of various tissue stem cells. Recently, analyses of loss- and gain-of-function suggested that Notch signaling was necessary for normal spermatogenesis. However, the expression of Notch signal components in spermatogonia is still unclear. Here, we analyzed the distribution of NOTCH3-expressing spermatogonia and the target genes. Double immunostaining with differentiation markers revealed that NOTCH3 was expressed in some undifferentiated and differentiated spermatogonia in mouse testes. To define the target gene of Notch3 signaling in spermatogonia, we analyzed the mRNA expression pattern of Hes and Hey family genes during testis development. Hes1 abundance was decreased during testis development, suggesting that spermatogonia may express Hes1. Immunohistochemical analysis showed that HES1 was expressed in prepubertal spermatogonia, whereas it was expressed predominantly in adult Sertoli cells and weakly in adult spermatogonia. Furthermore, NOTCH3-HES1 double-positive spermatogonia were in pup and adult testes. These results suggest that Notch3 signaling in spermatogonia could promote Hes1 expression. © 2017 S. Karger AG, Basel.

  17. Estrogenic Exposure Alters the Spermatogonial Stem Cells in the Developing Testis, Permanently Reducing Crossover Levels in the Adult

    PubMed Central

    Vrooman, Lisa A.; Oatley, Jon M.; Griswold, Jodi E.; Hassold, Terry J.; Hunt, Patricia A.

    2015-01-01

    Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male. PMID:25615633

  18. Spermatogonial stem cells from domestic animals: progress and prospects.

    PubMed

    Zheng, Yi; Zhang, Yaqing; Qu, Rongfeng; He, Ying; Tian, Xiue; Zeng, Wenxian

    2014-03-01

    Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.

  19. Isolation and gene expression analysis of single potential human spermatogonial stem cells.

    PubMed

    von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N

    2016-04-01

    It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT

  20. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins

    PubMed Central

    Chen, Jian; Cai, Tanxi; Zheng, Chunwei; Lin, Xiwen; Wang, Guojun; Liao, Shangying; Wang, Xiuxia; Gan, Haiyun; Zhang, Daoqin; Hu, Xiangjing; Wang, Si; Li, Zhen; Feng, Yanmin

    2017-01-01

    Abstract miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified. PMID:27998933

  1. A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model

    PubMed Central

    Lacerda, Samyra M. S. N.; Batlouni, Sergio R.; Costa, Guilherme M. J.; Segatelli, Tânia M.; Quirino, Bruno R.; Queiroz, Bruno M.; Kalapothakis, Evanguedes; França, Luiz R.

    2010-01-01

    Background Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. Methodology/Principal Findings Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. Conclusion Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve endangered fish species. PMID:20505774

  2. Trivial role for NSMCE2 during in vitro proliferation and differentiation of male germline stem cells.

    PubMed

    Zheng, Yi; Jongejan, Aldo; Mulder, Callista L; Mastenbroek, Sebastiaan; Repping, Sjoerd; Wang, Yinghua; Li, Jinsong; Hamer, Geert

    2017-09-01

    Spermatogenesis, starting with spermatogonial differentiation, is characterized by ongoing and dramatic alterations in composition and function of chromatin. Failure to maintain proper chromatin dynamics during spermatogenesis may lead to mutations, chromosomal aberrations or aneuploidies. When transmitted to the offspring, these can cause infertility or congenital malformations. The structural maintenance of chromosomes (SMC) 5/6 protein complex has recently been described to function in chromatin modeling and genomic integrity maintenance during spermatogonial differentiation and meiosis. Among the subunits of the SMC5/6 complex, non-SMC element 2 (NSMCE2) is an important small ubiquitin-related modifier (SUMO) ligase. NSMCE2 has been reported to be essential for mouse development, prevention of cancer and aging in adult mice and topological stress relief in human somatic cells. By using in vitro cultured primary mouse spermatogonial stem cells (SSCs), referred to as male germline stem (GS) cells, we investigated the function of NSMCE2 during spermatogonial proliferation and differentiation. We first optimized a protocol to generate genetically modified GS cell lines using CRISPR-Cas9 and generated an Nsmce2 -/- GS cell line. Using this Nsmce2 -/- GS cell line, we found that NSMCE2 was dispensable for proliferation, differentiation and topological stress relief in mouse GS cells. Moreover, RNA sequencing analysis demonstrated that the transcriptome was only minimally affected by the absence of NSMCE2. Only differential expression of Sgsm1 appeared highly significant, but with SGSM1 protein levels being unaffected without NSMCE2. Hence, despite the essential roles of NSMCE2 in somatic cells, chromatin integrity maintenance seems differentially regulated in the germline. © 2017 Society for Reproduction and Fertility.

  3. Midbrain stimulation-evoked lumbar spinal activity in the adult decerebrate mouse.

    PubMed

    Stecina, Katinka

    2017-08-15

    Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  5. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  6. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data

    PubMed Central

    Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin

    2005-01-01

    We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030

  7. Selfish Spermatogonial Selection: Evidence from an Immunohistochemical Screen in Testes of Elderly Men

    PubMed Central

    Turner, Gareth D. H.; Dudka-Ruszkowska, Wioleta; Taylor, Stephen; Meyts, Ewa Rajpert-De; Goriely, Anne; Wilkie, Andrew O. M.

    2012-01-01

    The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia–caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively–represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level. Using a panel of antibodies optimised for the detection of spermatocytic seminoma, a rare tumour of spermatogonial origin, we demonstrate that putative clonal events are frequent within normal testes of elderly men (mean age: 73.3 yrs) and can be classed into two broad categories. We found numerous small (less than 200 cells) cellular aggregations with distinct immunohistochemical characteristics, localised to a portion of the seminiferous tubule, which are of uncertain significance. However more infrequently we identified additional regions where entire seminiferous tubules had a circumferentially altered immunohistochemical appearance that extended through multiple serial sections that were physically contiguous (up to 1 mm in length), and exhibited enhanced staining for antibodies both to FGFR3 and a marker of downstream signal activation, pAKT. These findings support the concept that populations of spermatogonia in individual seminiferous tubules in the testes of older men are clonal mosaics with regard to their signalling properties and activation, thus fulfilling one of the

  8. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation

    PubMed Central

    Yango, Pamela; Altman, Eran; Smith, James F.; Klatsky, Peter C.; Tran, Nam D.

    2015-01-01

    Objective To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. Design In vitro human testicular tissues. Setting Academic research unit. Patients Adult testicular tissues (n = 4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n = 3). Intervention(s) Testicular tissue vs. single cell suspension cryopreservation. Main Outcome Measures Cell viability, total cell recovery per milligram of tissue, as well as, viable and SSEA-4+ cell recovery. Results Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Conclusions Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient age, type of samples cryopreserved, and end points of therapeutic applications. PMID:25241367

  9. Skin test sensitivity to mouse predicts allergic symptoms to nasal challenge in urban adults.

    PubMed

    Chong, Laura K; Ong, Mary Jane; Curtin-Brosnan, Jean; Matsui, Elizabeth C

    2010-01-01

    Epidemiologic studies have shown an association between mouse allergen exposure and asthma morbidity among urban populations, but confirmatory challenge studies in community populations have not been performed. This study was designed to examine the clinical relevance of mouse sensitization using a nasal challenge model. Forty-nine urban adults with asthma underwent skin-prick testing (SPT) and intradermal testing (IDT) with mouse epithelia extract. A positive SPT was defined as a net wheal size ≥3 mm and a positive IDT was defined as a net wheal size ≥6 mm using a 1:100 dilution of extract (1:10 w/v was obtained from Greer Laboratories (Lenoir, NC) as a single lot [Mus m 1 concentration = 2130 ng/mL]). Mouse-specific IgE (m-IgE) was measured by ImmunoCAP (Phadia, Uppsala, Sweden). Nasal challenge was performed with increasing concentrations of mouse epithelia extract and symptoms were assessed by visual analog scale. A positive challenge was defined as a 20-mm increase in the scale. The age range of the 49 participants was 18-50 years; 41% were men and 86% were black. Fourteen participants were SPT(+) to mouse, 15 participants were SPT(-) but (IDT(+)), and 20 participants were negative on both SPT(-) and IDT(-) (SPT(-)/IDT(-)). Sixty-four percent of the SPT(+) group, 40% of the IDT(+) group, and 20% of the SPT(-)/IDT(-) group had a positive nasal challenge. Sixty-seven percent (10/15) of those who were either SPT(+) or m-IgE(+) had a positive nasal challenge. SPT or the combination of SPT plus m-IgE performed best in diagnosing mouse allergy. The great majority of mouse-sensitized urban adults with asthma appear to have clinically relevant sensitization. Urban adults with asthma should be evaluated for mouse sensitization using SPT or SPT plus m-IgE testing.

  10. Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus

    PubMed Central

    Walker, Tara L.; Vukovic, Jana; Koudijs, Margaretha M.; Blackmore, Daniel G.; Mackay, Eirinn W.; Sykes, Alex M.; Overall, Rupert W.; Hamlin, Adam S.; Bartlett, Perry F.

    2012-01-01

    In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL) can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80%) in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory. PMID:22973440

  11. Differentiation of Bovine Spermatogonial Stem Cells into Osteoblasts

    PubMed Central

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-01-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining. PMID:23408761

  12. Differentiation of bovine spermatogonial stem cells into osteoblasts.

    PubMed

    Qasemi-Panahi, Babak; Tajik, Parviz; Movahedin, Mansoureh; Moghaddam, Gholamali; Barzgar, Younes; Heidari-Vala, Hamed

    2011-07-01

    Spermatogonial Stem Cell (SSC) technologies provide multiple opportunities for research in the field of biotechnology and regenerative medicine. The therapeutic use of Embryonic Stem Cells (ESCs) is restricted due to severe ethical and immunological concerns. Therefore, we need a new pluripotent cell type. Despite well-known role of germ cells in the gametogenesis, some facts apparently show their multipotentiality. In the present study, bovine SSCs were co-cultured with Sertoli cell for 7 days. Sertoli cells and SSCs were identified by Vimentin and Oct-4 immunocytochemical staining method, respectively. In order to differentiate SSCs into osteoblasts, we used consecutive inducer media without separation of the colonies. We characterized osteoblasts using Alizarin red staining.

  13. Niche players

    PubMed Central

    Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V.; Kim, Jiyeon; James, Daylon; Rafii, Shahin

    2010-01-01

    The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines. PMID:18256534

  14. Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing.

    PubMed

    Kim, Ki-Jung; Lee, Yong-An; Kim, Bang-Jin; Kim, Yong-Hee; Kim, Byung-Gak; Kang, Hyun-Gu; Jung, Sang-Eun; Choi, Sun-Ho; Schmidt, Jonathan A; Ryu, Buom-Yong

    2015-04-01

    Development of techniques for the preservation of mammalian spermatogonial stem cells (SSCs) is a critical step in commercial application of SSC based technologies, including species preservation, amplification of agriculturally valuable germ lines, and human fertility preservations. The objective of this study was to develop an efficient cryopreservation protocol for preservation of bovine SSCs using a slow freezing technique. To maximize the efficiency of SSC cryopreservation, the effects of various methods (tissue vs. cell freezing) and cryoprotective agents (trehalose, sucrose, and polyethylene glycol [PEG]) were tested. Following thawing, cells were enriched for undifferentiated spermatogonia by differential plating and evaluated for recovery rate, proliferation capacity, and apoptosis. Additionally, putative stem cell activity was assessed using SSC xenotransplantation. The recovery rate, and proliferation capacity of undifferentiated spermatogonia were significantly greater for germ cells frozen using tissue freezing methods compared to cell freezing methods. Cryopreservation in the presence of 200 mM trehalose resulted in significantly greater recovery rate, proliferation capacity, and apoptosis of germ cells compared to control. Furthermore, cryopreservation using the tissue freezing method in the presence of 200 mM trehalose resulted in the production of colonies of donor-derived germ cells after xenotransplantation into recipient mouse testes, indicating putative stem cell function. Collectively, these data indicate that cryopreservation using tissue freezing methods in the presence of 200 mM trehalose is an efficient cryopreservation protocol for bovine SSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside

    PubMed Central

    2014-01-01

    Male infertility management has made significant progress during the past three decades, especially after the introduction of intracytoplasmic sperm injection in 1992. However, many boys and men still suffer from primary testicular failure due to acquired or genetic causes. New and novel treatments are needed to address these issues. Spermatogenesis originates from spermatogonial stem cells (SSCs) that reside in the testis. Many of these men lack SSCs or have lost SSCs over time as a result of specific medical conditions or toxic exposures. Loss of SSCs is critical in prepubertal boys who suffer from cancer and are going through gonadotoxic cancer treatments, as there is no option of sperm cryopresrvation due to sexual immaturity. The development of SSC transplantation in a mouse model to repopulate spermatozoa in depleted testes has opened new avenues of research in other animal models, including non-human primates. Recent advances in cryopreservation and in vitro propagation of human SSCs offer promise for human SSC autotransplantation in the near future. Ongoing research is focusing on safety and technical issues of human SSC autotransplantation. This is the time to counsel parents and boys at risk of infertility on the possibility of cryopreserving and banking a small amount of testis tissue for potential future use in SSC transplantation. PMID:25157677

  16. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  17. Dissection of complex adult traits in a mouse synthetic population.

    PubMed

    Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T

    2012-08-01

    Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.

  18. Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear

    PubMed Central

    Campbell, Sean; Taylor, Ruth R.; Forge, Andrew; Hume, Clifford R.

    2007-01-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear. PMID:18157569

  19. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    PubMed Central

    Das, Joydeep; Kang, Min-Hee; Kim, Eunsu; Kwon, Deug-Nam; Choi, Yun-Jung; Kim, Jin-Hoi

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs. PMID:26355036

  20. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  1. Upregulation of Integrin-α6 and Integrin-β1 Gene Expressions in Mouse Spermatogonial Stem Cells after Continues and Pulsed Low Intensity Ultrasound Stimulation

    PubMed Central

    Mohaqiq, Mahdi; Movahedin, Mansoureh; Mokhtari Dizaji, Manijhe; Mazaheri, Zohreh

    2018-01-01

    Objective low intensity ultrasound (continues and pulsed) is a form of energy. Spermatogonial stem cells (SSCs) are at the base of male fertility. This study investigated the effects of low intensity ultrasound stimulation (LIUS) and low intensity pulsed ultrasound stimulation (LIUPS) on the expression of germ cell-specific and pluripotency genes in SSCs in vitro. Materials and Methods In this experimental study, isolated SSCs from neonatal male mice were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS). In addition, to confirm identification of SSCs, PLZF protein was detected positively in SSCs derived colonies. SSCs were stimulated by LIUS and LIUPS for 5 days, followed by assessment of expression of integrin-α6 (Itga6) and β1 (Itgβ1), as two germ cell-specific genes, and Oct- 4, as a pluripotency gene, on day 21st by quantitive reverse transcriptase-polymerase chain reaction (qRT-PCR). To investigate the proliferation rate and colonization of SSCs in different groups, counting whole number of the cells and colonies as well as analysis of the respective diameters were performed on days 7th, 14th and 21st. Data was analyzed by ANOVA test. Results LIUS and LIUPS treatment of mouse SSCs increased expression of Itga6 and Itgβ1 genes in the experimental groups, compared to the control group (P<0.05), whereas there was no significant difference between the groups, regarding the expression of Oct-4 gene. These treatments maintained survival rate, while they increased proliferation rate and colonization of SSCs during the first week of culture. However, within the second week, proliferation rate and colonization were decreased in the experimental groups. Conclusion These results suggested that LIUS and LIUPS treatment had good effect on SSCs proliferation and colonization, based on the gene-specific marker expression during 21 days culture in vitro. PMID:29105399

  2. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    PubMed

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. In search of an improved injection technique for the clinical application of spermatogonial stem cell transplantation.

    PubMed

    Faes, Katrien; Lahoutte, Tony; Hoorens, Anne; Tournaye, Herman; Goossens, Ellen

    2017-03-01

    When fertility is impaired by anticancer treatment, spermatogonial stem cell transplantation (SSCT) could be used as a fertility restoration technique later on in life. Previously, we have demonstrated that a testicular cell suspension could be injected into a human cadaver testis, however, leakage to the interstitium was observed. In this study, injection of mouse testicular cells at an injection height of 50 cm (hydrostatic pressure) or via an automated injection pump (1400 µl, 2600 µl and 3000 µl) was evaluated. Significant difference in the filled radioactive volume was reached between the group in which 1400 µl was injected with an infusion pump and the groups in which 2600 µl (P = 0.019) or 3000 µl (P = 0.010) was injected. In all experimental groups green fluorescent protein positive (GFP + ) cells were observed in the seminiferous tubules. In conclusion, a lower injection height did not resolve the leakage of the injected cells to the interstitium. Using the infusion pump resulted in more efficient filling of the seminiferous tubules with lower interexperimental variability. Although leakage to the interstitium was still observed, with further optimisation, the use of an infusion pump for clinical application is advantageous. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes.

    PubMed

    Ogawa, T; Dobrinski, I; Avarbock, M R; Brinster, R L

    1999-02-01

    It was recently demonstrated that rat spermatogenesis can occur in the seminiferous tubules of an immunodeficient recipient mouse after transplantation of testis cells from a donor rat. In the present study, hamster donor testis cells were transplanted to mice to determine whether xenogeneic spermatogenesis would result. The hamster diverged at least 16 million years ago from the mouse and produces spermatozoa that are larger than, and have a shape distinctly different from, those of the mouse. In four separate experiments with a total of 13 recipient mice, hamster spermatogenesis was identified in the testes of each mouse. Approximately 6% of the tubules examined demonstrated xenogeneic spermatogenesis. In addition, cryopreserved hamster testis cells generated spermatogenesis in recipients. However, abnormalities were noted in hamster spermatids and acrosomes in seminiferous tubules of recipient mice. Hamster spermatozoa were also found in the epididymis of recipient animals, but these spermatozoa generally lacked acrosomes, and heads and tails were separated. Thus, defects in spermiogenesis occur in hamster spermatogenesis in the mouse, which may reflect a limited ability of endogenous mouse Sertoli cells to support fully the larger and evolutionarily distant hamster germ cell. The generation of spermatogenesis from frozen hamster cells now adds this species to the mouse and rat, in which spermatogonial stem cells also can be cryopreserved. This finding has immediate application to valuable animals of many species, because the cells could be stored until suitable recipients are identified or culture techniques devised to expand the stem cell population.

  5. Spermatogonial Stem Cell Niche and Spermatogonial Stem Cell Transplantation in Zebrafish

    PubMed Central

    Nóbrega, Rafael Henrique; Greebe, Caaj Douwe; van de Kant, Henk; Bogerd, Jan; de França, Luiz Renato; Schulz, Rüdiger W.

    2010-01-01

    Background Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate. Methodology/Principal Findings Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish. Conclusions/Significance We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs. PMID:20862221

  6. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis ofmore » testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.« less

  7. UTF1, a Putative Marker for Spermatogonial Stem Cells in Stallions

    PubMed Central

    Jung, Heejun; Roser, Janet F.; Yoon, Minjung

    2014-01-01

    Spermatogonial stem cells (SSCs) continuously undergo self-renewal and differentiation to sustain spermatogenesis throughout adulthood in males. In stallions, SSCs may be used for the production of progeny from geldings after cryopreservation and therapy for infertile and subfertile stallions. Undifferentiated cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans and rats. The main purposes of this study are to determine the following: 1) changes in the expression pattern of UTF1 at various reproductive stages of stallions, 2) subpopulations of spermatogonia that express UTF1. Testicular samples were collected and categorized based on the age of the horses as follows: pre-pubertal (<1 yr), pubertal (1–1.5 yr), post-pubertal (2–3 yr), and adult (4–8 yr). Western blot analysis was utilized to determine the cross-activity of the UTF1 antibody to horse testes tissues. Immunohistochemistry was conducted to investigate the UTF1 expression pattern in germ cells at different reproductive stages. Whole mount staining was applied to determine the subpopulation of UTF1-positive spermatogonia. Immunohistological analysis showed that most germ cells in the pre-pubertal and pubertal stages were immunolabeled with UTF1, whereas only a few germ cells in the basal compartment of the seminiferous tubule cross-sections of post-pubertal and adult tissues were UTF1-positive. No staining was observed in the Sertoli or Leydig cells at any reproductive stages. Whole mount staining showed that As, Apr, and chains of 4, 8, 16 Aal spermatogonia were immunolabeled with UTF1 in the post-pubertal stallion tubule. Isolated single germ cells were also immunolabeled with UTF1. In conclusion, UTF1 is expressed in undifferentiated spermatogonia, and its antibody can be used as a putative marker for SSCs in stallions. PMID:25272017

  8. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.

    PubMed

    Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin

    2013-11-01

    Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age. Copyright © 2013 AlphaMed Press.

  9. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  10. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.

    PubMed

    Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M

    2007-08-10

    Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve

  11. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells.

    PubMed

    Ha, Seung-Jung; Kim, Byung-Gak; Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.

  12. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation.

    PubMed

    Mei, Xing-Xing; Wang, Jian; Wu, Ji

    2015-01-01

    Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s) remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.

  13. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  14. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'.

    PubMed

    Borg, Claire L; Wolski, Katja M; Gibbs, Gerard M; O'Bryan, Moira K

    2010-01-01

    Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the 'non-reproductive biologist' to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.

  15. 5-aza-2'-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases.

    PubMed

    Song, Ning; Endo, Daisuke; Song, Bin; Shibata, Yasuaki; Koji, Takehiko

    2016-06-15

    Mammalian spermatogenesis is a progressive process comprising spermatogonial proliferation, spermatocytic meiosis, and later spermiogenesis, which is considered to be under the regulation of epigenetic parameters. To gain insights into the significance of DNA methylation in early spermatogenesis, 5-azadC was used as a molecular biological tool to mimic the level of DNA methylation in vivo. Since the drug is incorporated into DNA during the S-phase, spermatogonia and spermatocytes would be affected primarily in mouse spermatogenesis. Adult male ICR mice were intraperitoneally injected with 5-azadC at a dose of 0.25mg/kg/day for 10 consecutive days, allowing us to examine its maximum effect on the kinetics of spermatogonia and spermatocytes. In this short-term protocol, 5-azadC induced significant histological abnormalities, such as a marked increase in apoptosis of spermatogonia and spermatocytes, followed by severe loss of spermatids, while after termination of 5-azadC treatment, normal histology was restored in the testis within 35days. Quantification of the methylation level of CCGG sites as well as whole DNA showed spermatogonial hypomethylation, which correlated with increased apoptosis of spermatogonia. Interestingly, the hypomethylated cells were simultaneously positive for tri-methylated histone H3 at K4. On the other hand, no changes in methylation level were found in spermatocytes, but PCNA staining clearly showed disordered accumulation of S-phase spermatocytes, which increased their apoptosis in stage XII. In addition, different immunohistochemical staining pattern was found for DNA methyltransferases (DNMTs); DNMT1was expressed in the majority of all germ cells, but DNMT3a and b were only expressed in spermatogonia. Our results indicate that 5-azadC caused DNA hypomethylation in spermatogonia, but induced prolongation of S-phase in spermatocytes, resulting in the induction of apoptosis in both cases. Thus, 5-azadC affects spermatogenesis at more than

  16. Substance P analogs displace sigma binding differentially in the brain and spinal cord of the adult mouse.

    PubMed

    Mousseau, D D; Larson, A A

    1994-09-01

    We have previously observed similarities in the behavioral effects produced by the NH2-terminus of the undecapeptide substance P (SP) and by 1,3-di(2-tolyl)-guanidine (DTG) in the adult mouse. The present series of experiments indicate differences in the rank-order of potency of sigma ligands [DTG; haloperidol (HAL)], SP analogs [SP; SP(1-7); SP(5-11); [D-Pro2, D-Phe7]-SP(1-7) (D-SP(1-7))] and miscellaneous compounds [morphine (MOR), naloxone (NAL)] at competing for [3H]-DTG binding sites in the mouse brain and spinal cord in vitro: Brain; DTG = HAL > SP = MOR = NAL > SP(1-7) > D-SP(1-7) > SP(5-11): Spinal cord; DTG = HAL > SP(1-7) = MOR = NAL > SP > D-SP(1-7) = SP(5-11). The observed difference in the rank-order potencies of the displacing ligands at these same binding sites supports the notion of two distinct populations of sigma binding sites in these tissues in the adult mouse. Given the low (micromolar) potency of SP analogs at displacing [3H]-DTG binding in the present series of experiments, it is unlikely that the similar behavioral effects we have previously observed elicited by SP(1-7) and DTG in the adult mouse are a result of a direct action of SP(1-7) at the sigma binding site.

  17. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris.

    PubMed

    Schulze, Katja; Galichet, Arnaud; Sayar, Beyza S; Scothern, Anthea; Howald, Denise; Zymann, Hillard; Siffert, Myriam; Zenhäusern, Denise; Bolli, Reinhard; Koch, Peter J; Garrod, David; Suter, Maja M; Müller, Eliane J

    2012-02-01

    Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may have a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice that have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we developed a model with passive transfer of AK23 (a mouse monoclonal pathogenic anti-Dsg3 antibody) into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer, we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion, and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies.

  18. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  19. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  20. Parental desire and acceptability of spermatogonial stem cell cryopreservation in boys with cancer.

    PubMed

    van den Berg, H; Repping, S; van der Veen, F

    2007-02-01

    In the near future, a substantial proportion of adults will be childhood cancer survivors. The cryopreservation and transplantation of spermatogonial stem cells (SSCs) is currently successful in animals; application in humans seems likely in the near future. Cryopreserving SSCs might become an important issue in childhood cancer. Because this might require testicular biopsies or hemicastration, parental desire/acceptability for SSC collection was enquired for. Three hundred eighteen parents of boys surviving at least 2 years after the diagnosis of cancer were asked about collecting SSCs by biopsy or hemicastration and collecting sperm by masturbation or electrostimulation. Opinions were assessed as if at the time of diagnosis and at the present time. Sixty-three per cent of parents responded. At diagnosis, SSC collection by means of biopsy was approved by 61%, hemicastration by 33% and collecting sperm by 70% (P < 0.013). The acceptability of performing hemicastration was significantly lower than all other forms of SSC/sperm collection. No differences were observed between parents' present opinion and opinion at diagnosis. No differences related to treatment intensity, presumed negative fertility effects and pubertal state were found. Infertility is a major topic for parents. For prepubertal boys, the collection of SSCs might be a great relief in respect of the fertility issue. Collecting SSCs by biopsy is desired and accepted by the majority of parents; hemicastration is accepted by one-third of parents. The translation of SSC cryopreservation and transplantation from animal models to humans is eagerly awaited.

  1. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells

    PubMed Central

    Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male’s lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media. PMID:27548381

  2. Effects of lithium chloride as a potential radioprotective agent on radiation response of DNA synthesis in mouse germinal cells.

    PubMed

    Bhattacharjee, D; Rajan, R; Krishnamoorthy, L; Singh, B B

    1997-06-01

    Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to gamma-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05-0.25 Gy, whereas at doses of 0.5-6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia.

  3. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  4. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    PubMed

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  5. A robust method for RNA extraction and purification from a single adult mouse tendon.

    PubMed

    Grinstein, Mor; Dingwall, Heather L; Shah, Rishita R; Capellini, Terence D; Galloway, Jenna L

    2018-01-01

    Mechanistic understanding of tendon molecular and cellular biology is crucial toward furthering our abilities to design new therapies for tendon and ligament injuries and disease. Recent transcriptomic and epigenomic studies in the field have harnessed the power of mouse genetics to reveal new insights into tendon biology. However, many mouse studies pool tendon tissues or use amplification methods to perform RNA analysis, which can significantly increase the experimental costs and limit the ability to detect changes in expression of low copy transcripts. Single Achilles tendons were harvested from uninjured, contralateral injured, and wild type mice between three and five months of age, and RNA was extracted. RNA Integrity Number (RIN) and concentration were determined, and RT-qPCR gene expression analysis was performed. After testing several RNA extraction approaches on single adult mouse Achilles tendons, we developed a protocol that was successful at obtaining high RIN and sufficient concentrations suitable for RNA analysis. We found that the RNA quality was sensitive to the time between tendon harvest and homogenization, and the RNA quality and concentration was dependent on the duration of homogenization. Using this method, we demonstrate that analysis of Scx gene expression in single mouse tendons reduces the biological variation caused by pooling tendons from multiple mice. We also show successful use of this approach to analyze Sox9 and Col1a2 gene expression changes in injured compared with uninjured control tendons. Our work presents a robust, cost-effective, and straightforward method to extract high quality RNA from a single adult mouse Achilles tendon at sufficient amounts for RT-qPCR as well as RNA-seq. We show this can reduce variation and decrease the overall costs associated with experiments. This approach can also be applied to other skeletal tissues, as well as precious human samples.

  6. Hormone suppression with GnRH antagonist promotes spermatogenic recovery from transplanted spermatogonial stem cells in irradiated cynomolgus monkeys.

    PubMed

    Shetty, G; Uthamanthil, R K; Zhou, W; Shao, S H; Weng, C C; Tailor, R C; Hermann, B P; Orwig, K E; Meistrich, M L

    2013-11-01

    Hormone suppression given before or after cytotoxic treatment stimulates the recovery of spermatogenesis from endogenous and transplanted spermatogonial stem cells (SSC) and restores fertility in rodents. To test whether the combination of hormone suppression and transplantation could enhance the recovery of spermatogenesis in primates, we irradiated (7 Gy) the testes of 12 adult cynomolgus monkeys and treated six of them with gonadotropin-releasing hormone antagonist (GnRH-ant) for 8 weeks. At the end of this treatment, we transfected cryopreserved testicular cells with green fluorescent protein-lentivirus and autologously transplanted them back into one of the testes. The only significant effect of GnRH-ant treatment on endogenous spermatogenesis was an increase in the percentage of tubules containing differentiated germ cells (tubule differentiation index; TDI) in the sham-transplanted testes of GnRH-ant-treated monkeys compared with radiation-only monkeys at 24 weeks after irradiation. Although transplantation alone after irradiation did not significantly increase the TDI, detection of lentiviral DNA in the spermatozoa of one radiation-only monkey indicated that some transplanted cells colonized the testis. However, the combination of transplantation and GnRH-ant clearly stimulated spermatogenic recovery as evidenced by several observations in the GnRH-ant-treated monkeys receiving transplantation: (i) significant increases (~20%) in the volume and weight of the testes compared with the contralateral sham-transplanted testes and/or to the transplanted testes of the radiation-only monkeys; (ii) increases in TDI compared to the transplanted testes of radiation-only monkeys at 24 weeks (9.6% vs. 2.9%; p = 0.05) and 44 weeks (16.5% vs. 6.1%, p = 0.055); (iii) detection of lentiviral sequences in the spermatozoa or testes of five of the GnRH-ant-treated monkeys and (iv) significantly higher sperm counts than in the radiation-only monkeys. Thus hormone

  7. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion.

    PubMed

    Eckardt, D; Theis, M; Degen, J; Ott, T; van Rijen, H V M; Kirchhoff, S; Kim, J-S; de Bakker, J M T; Willecke, K

    2004-01-01

    The gap junction protein Connexin43 (Cx43) is expressed in various cell types during embryonic development and in adult mice. Cx43 null mice (Cx43-/-) die perinatally due to cardiac malformation. In order to define the major functional role of Cx43 gap junction channels in adult mice and to circumvent perinatal death as well as direct or indirect compensation of Cx43 deficiency during development, we established a novel conditional Cx43 mouse mutant. To ablate Cx43 in adult mice in all cells that express Cx43 at a certain time, we targeted the 4-hydroxytamoxifen inducible Cre recombinase, Cre-ER(T), into the endogenous Cx43 locus. This approach left only one Cx43 coding region to be deleted upon induction of Cre-ER(T) activity. Highly efficient inducible ablation of Cx43 was shown in an embryonic stem cell test system and in adult mice. Although Cx43 protein was decreased in different tissues after induction of Cre-ER(T)-mediated recombination, cardiac abnormalities most likely account for death of those mice. Surface and telemetric ECG recordings revealed significant delay of ventricular activation and death during periods of bradyarrhythmia preceded by tachycardias. This novel approach of inducible ablation of Cx43 highlights the functional importance of normal activation of ventricular cardiomyocytes mediated by Cx43 gap junction channels in adult mouse heart to prevent initiation of fatal arrhythmias. The new mouse model should be useful for further analyses of molecular changes initiated by acute loss of Cx43 expression in various cell types.

  8. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1.

    PubMed

    He, Zuping; Jiang, Jiji; Kokkinaki, Maria; Tang, Lin; Zeng, Wenxian; Gallicano, Ian; Dobrinski, Ina; Dym, Martin

    2013-10-01

    Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. © AlphaMed Press.

  9. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  10. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene.

    PubMed

    Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B

    2006-10-01

    Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.

  11. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  12. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    PubMed

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Epigenetic Transgenerational Inheritance of Vinclozolin Induced Mouse Adult Onset Disease and Associated Sperm Epigenome Biomarkers

    PubMed Central

    Guerrero-Bosagna, Carlos; Covert, Trevor R.; Haque, Md. M.; Settles, Matthew; Nilsson, Eric E.; Anway, Matthew D.; Skinner, Michael K.

    2012-01-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. PMID:23041264

  14. A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Nonmyocytes From the Adult Mouse Heart

    PubMed Central

    Ackers-Johnson, Matthew; Li, Peter Yiqing; Holmes, Andrew P.; O’Brien, Sian-Marie; Pavlovic, Davor; Foo, Roger S.

    2018-01-01

    Rationale Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics, and transgenics offer ever-greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialized Langendorff apparatus, which poses considerable logistical and technical barriers to researchers and demands extensive training investment. Objective To identify and optimize a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment. Methods and Results Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic free, with retained organized contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation, and electric pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation, and coculture of myocyte and nonmyocyte cardiac populations. Conclusions We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and nonmyocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology. PMID:27502479

  15. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    PubMed Central

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  16. Arc restores juvenile plasticity in adult mouse visual cortex

    PubMed Central

    Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.

    2017-01-01

    The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183

  17. Cryoprotective effects of low-density lipoproteins, trehalose and soybean lecithin on murine spermatogonial stem cells.

    PubMed

    Wang, Peng; Li, Ying; Hu, Xiao-Chen; Cai, Xiao-Li; Hou, Li-Peng; Wang, Yan-Feng; Hu, Jian-Hong; Li, Qing-Wang; Suo, Li-Juan; Fan, Zhi-Guo; Zhang, Bo

    2014-05-01

    Spermatogonial stem cells (SSCs) have the ability to self-renew and offer a pathway for genetic engineering of the male germ line. Cryopreservation of SSCs has potential value for the treatment of male infertility, spermatogonial transplantation, and so on. In order to investigate the cryopreservation effects of different cryoprotectants on murine SSCs, 0.2 M of low-density lipoproteins (LDL), trehalose and soybean lecithin were added to the cryoprotective medium, respectively, and the murine SSCs were frozen at -80°C or -196°C. The results indicated that the optimal recovery rates of murine SSCs in the cryoprotective medium supplemented with LDL, trehalose and soybean lecithin were 92.53, 76.35 and 75.48% at -80°C, respectively. Compared with freezing at -196°C, the optimum temperature for improvement of recovery rates of frozen murine SSCs, cryopreservation in three different cryoprotectants at -80°C, were 17.11, 6.68 and 10.44% respectively. The recovery rates of murine SSCs in the cryoprotective medium supplemented with 0.2 M LDL were significantly higher than that of other cryoprotectants (P < 0.05). Moreover, the recovery rates were demonstrated to be greater at -80°C compared with at -196°C (P < 0.05). In conclusion, 0.2 M of LDL could significantly protect murine SSCs at -80°C. In the freezing-thawing process, LDL is responsible for the cryopreservation of murine SSCs because it can form a protective film at the surface of membranes. However, more research is needed to evaluate and understand the precise role of LDL during the freezing-thawing of SSCs.

  18. A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man

    PubMed Central

    Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.

    1985-01-01

    A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762

  19. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and

  20. Huntingtin Acts Non Cell-Autonomously on Hippocampal Neurogenesis and Controls Anxiety-Related Behaviors in Adult Mouse

    PubMed Central

    Pla, Patrick; Orvoen, Sophie; Benstaali, Caroline; Dodier, Sophie; Gardier, Alain M.; David, Denis J.; Humbert, Sandrine; Saudou, Frédéric

    2013-01-01

    Huntington’s disease (HD) is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin (HTT) protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreERT2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders. PMID:24019939

  1. [Fertility preservation in boys: spermatogonial stem cell transplantation and testicular grafting].

    PubMed

    Goossens, E; Tournaye, H

    2013-09-01

    Spermatogonial stem cells (SSC) are the founder cells of spermatogenesis and are responsible for the lifelong production of spermatozoa. The cryopreservation and transplantation of these cells has been proposed as a fertility preservation strategy for young boys at risk for stem cell loss, i.e. patients undergoing chemotherapy for cancer or as a conditioning treatment for bone marrow transplantation. To prevent lifelong sterility in boys, two fertility restoration strategies are being developed: the injection of SSC and the grafting of testicular tissue containing SSC. Depending on the disease of the patient one of these two approaches will be applicable. Grafting has the advantage that SSC can reside within their natural niche, preserving the interactions between germ cells and their supporting cells and may therefore be regarded as the first choice strategy. However, in cases where the risk for malignant contamination of the testicular tissue is real, e.g. leukemia, transplantation of SSC by injection is preferable over grafting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis.

    PubMed

    Berl, Sabina; Karram, Khalad; Scheller, Anja; Jungblut, Melanie; Kirchhoff, Frank; Waisman, Ari

    2017-05-01

    Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases. Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads. Enrichment by FACS sorting of eYFP positive neurons results in a population of 62.4% NeuN positive living neurons. qPCR data shows a 3-5fold upregulation of neuronal markers. The isolation of neurons based on depletion of non-neuronal cells using the Miltenyi Neuron Isolation Kit, reaches a purity of up to 86.5%. qPCR data of these isolated neurons shows an increase in neuronal markers and an absence of glial markers, proving pure neuronal RNA isolation. Former data related to neuronal gene expression are mainly based on histology, which does not allow for high-throughput transcriptome analysis to examine differential gene expression. These protocols can be used to study cell type specific gene expression of neurons to unravel their function in the process of damage to the CNS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  4. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  5. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  6. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections

    PubMed Central

    Turco, Anne E.; Gottschalk, Adam; Halberg, Richard B.; Guo, Jinjin; McMahon, Jill A.; McMahon, Andrew P.

    2017-01-01

    Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available. PMID:29145476

  7. Ablation of Mouse Adult Neurogenesis Alters Olfactory Bulb Structure and Olfactory Fear Conditioning

    PubMed Central

    Valley, Matthew T.; Mullen, Tanner R.; Schultz, Lucy C.; Sagdullaev, Botir T.; Firestein, Stuart

    2009-01-01

    Adult neurogenesis replenishes olfactory bulb (OB) interneurons throughout the life of most mammals, yet during this constant flux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the sub-ventricular zone (SVZ). Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs) born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral deficit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local field potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB. PMID:20582278

  8. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  9. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  10. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    PubMed

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  11. Function of GATA Factors in the Adult Mouse Liver

    PubMed Central

    Zheng, Rena; Rebolledo-Jaramillo, Boris; Zong, Yiwei; Wang, Liqing; Russo, Pierre; Hancock, Wayne; Stanger, Ben Z.; Hardison, Ross C.; Blobel, Gerd A.

    2013-01-01

    GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function. PMID:24367609

  12. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    PubMed

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  13. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear

    PubMed Central

    Kilpatrick, Lauren A.; Li, Qian; Yang, John; Goddard, John C; Fekete, Donna M.; Lang, Hainan

    2010-01-01

    Murine models are ideal for studying cochlear gene transfer as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, due to its small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAV) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear and allows for near-complete preservation of low and middle frequency hearing. In the present study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6, and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus (CMV) promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells (IHCs) were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness. PMID:21209625

  14. Whole-Mount Adult Ear Skin Imaging Reveals Defective Neuro-Vascular Branching Morphogenesis in Obese and Type 2 Diabetic Mouse Models.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke

    2018-01-11

    Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.

  15. Targeted Disruption of miR-17-92 Impairs Mouse Spermatogenesis by Activating mTOR Signaling Pathway.

    PubMed

    Xie, Raoying; Lin, Xiaolin; Du, Tao; Xu, Kang; Shen, Hongfen; Wei, Fang; Hao, Weichao; Lin, Taoyan; Lin, Xia; Qin, Yujuan; Wang, Huiyan; Chen, Lin; Yang, Sheng; Yang, Jie; Rong, Xiaoxiang; Yao, Kaitai; Xiao, Dong; Jia, Junshuang; Sun, Yan

    2016-02-01

    The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice.

  16. p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs).

    PubMed

    Niu, Zhiwei; Mu, Hailong; Zhu, Haijing; Wu, Jiang; Hua, Jinlian

    2017-02-01

    Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal. © 2016 John Wiley & Sons Ltd.

  17. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex.

    PubMed

    Zemmar, Ajmal; Chen, Chia-Chien; Weinmann, Oliver; Kast, Brigitt; Vajda, Flora; Bozeman, James; Isaad, Noel; Zuo, Yi; Schwab, Martin E

    2018-06-01

    Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.

  18. Spermatogonial stem cells in the testis of an endangered bovid: Indian black buck (Antilope cervicapra L.).

    PubMed

    Goel, Sandeep; Reddy, Niranjan; Mahla, Ranjeet Singh; Suman, Sanjay Kumar; Pawar, Rahul Mohanchandra

    2011-07-01

    Numerous wild bovids are facing threat of extinction owing to the loss of habitat and various other reasons. Spermatogonial stem cells (SSCs) represent the only germline stem cells in adult body that are capable of self-renewal and that can undergo differentiation to produce haploid germ cells. SSCs can, therefore, serve as a useful resource for preservation of germplasm of threatened and endangered mammals. The Indian black buck (Antilope cervicapra L.) is a small Indian antelope that is listed as endangered by the Indian Wildlife Protection Act, 1972. Immunohistochemical analysis of testes tissues of black buck revealed the presence of spermatogonia that were specifically stained by lectin-Dolichos biflorus agglutinin (DBA). The expression of pluripotent cell-specific markers, NANOG and stage-specific embryonic antigen-1 (SSEA-1), was detected in spermatogonia. Interestingly, the expression of POU5F1 (OCT3/4) was absent from spermatogonia, however, it was detected in differentiating cells such as spermatocytes and round spermatids but not in elongated spermatids. The expression of NANOG protein was also present in spermatocytes but absent in round and elongated spermatids. Using the testis transplantation assay, stem cell potential of black buck spermatogonia was confirmed as indicated by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. The findings from this study suggest the presence of SSCs in the testis of an endangered bovid for the first time and open new possibility to explore the use of SSCs in conservation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  20. Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain

    PubMed Central

    Ford, E. C.; Achanta, P.; Purger, D.; Armour, M.; Reyes, J.; Fong, J.; Kleinberg, L.; Redmond, K.; Wong, J.; Jang, M. H.; Jun, H.; Song, H-J.; Quinones-Hinojosa, A.

    2011-01-01

    Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis. PMID:21449714

  1. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  2. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  3. C/EBPα and C/EBPβ Are Required for Sebocyte Differentiation and Stratified Squamous Differentiation in Adult Mouse Skin

    PubMed Central

    House, John S.; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C.

    2010-01-01

    C/EBPα and C/EBPβ are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPα and C/EBPβ in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPα or C/EBPβ alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPα and C/EBPβ in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPα and C/EBPβ in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPα and C/EBPβ are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal. PMID:20352127

  4. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin.

    PubMed

    House, John S; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C

    2010-03-23

    C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.

  5. “Selfish spermatogonial selection”: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders

    PubMed Central

    Goriely, Anne; McGrath, John J.; Hultman, Christina M.; Wilkie, Andrew O.M.; Malaspina, Dolores

    2014-01-01

    Objectives There is robust evidence from epidemiological studies that the offspring of older fathers have an increased risk of neurodevelopmental disorders such as schizophrenia and autism. Here we present a novel mechanism that may contribute to this association. Methods Narrative review. Results Because the male germ cell undergoes many more cell divisions across the reproductive age range, copy-errors taking place in the paternal germline are associated with de novo mutations in the offspring of older men. Recently it has been recognized that somatic mutations in male germ cells that modify proliferation via dysregulation of the RAS pathway can lead to within-testis expansion of mutant clonal lines. First identified in association with rare paternal age-effect disorders (e.g. Apert syndrome, achondroplasia), this process is known as ‘selfish spermatogonial selection’. This mechanism will (a) favor propagation of germ cells carrying pathogenic mutations, (b) increasingly skew the mutational profile of sperm as men age, and (c) result in an enrichment of de novo mutations in the offspring of older fathers that preferentially impact on specific cellular signaling pathways. This mechanism offers a parsimonious explanation not only for the association between advanced paternal age and various neurodevelopmental disorders, but also provides insights into the genetic architecture (role of de novo mutations), neurobiological correlates (altered cell cycle) and some epidemiological features of these disorders. We outline hypotheses to test this model. Conclusions In light of our current understanding of the genetic networks involved in neurocognitive disorders and the principles of selfish spermatogonial selection, we speculate that some pathogenic mutations associated with these disorders are the consequence of a selfish mechanism originating in the aging testis. Given the secular changes for delayed parenthood in most societies, this hypothesis has important public

  6. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li; Wu, Zhou; Baba, Masashi

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, themore » understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in

  7. Bisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang

    Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials, therefore, human exposure to BPA is ubiquitous. We found that low concentrations of BPA stimulate the spermatogonial GC-1 cells proliferation by G protein-coupled receptor 30 (GPR30)-mediated epidermal growth factor receptor (EGFR)-extracellular regulated kinase (ERK)-c-Fos pathway. However, through the same pathway GPR30 expression has been shown to be induced by EGF, an EGFR ligand. Thus, we want to know if low concentrations of BPA are able to induce the GPR30 expression and the possible mechanism(s) in GC-1 cells. By transient transfection with expression plasmids, 10{sup −9} M BPAmore » significantly transactivates the Gpr30-5′-flanking region through activating the GPR30, cGMP-dependent protein kinase (PKG), estrogen receptor-α (ER-α), and EFGR-ERK pathways. Furthermore, an activator protein-1 (AP-1) site located within this region is found to be responsible for the transactivation of BPA. Expectedly, through the same pathways, BPA significantly induces the gene and protein expression of GPR30. c-Fos is further observed to be strongly recruited to the AP-1 site in a chromatin immunoprecipitation assay and its dysfunction on the AP-1 site markedly suppresses the expression of GPR30, p-ERK1/2, p-Ser118-ER-α and cell proliferation by BPA. Our results demonstrate that a low-concentration BPA induces GPR30 expression through the GPR30-EFGR-ERK-c-Fos, ER-α, and PKG pathways, presumably boosting the cells proliferation via a regulatory loop. The present study provides a novel insight into the potential role of GPR30 in the initiation and progression of male germ cell cancer induced by environmentally relevant BPA. - Highlights: ► Low concentrations of BPA activate the PKG and GPR30-EFGR-ERK-ER-α pathways. ► Low concentrations of BPA activate the AP-1 site of Gpr30-5′-flanking region. ► Low concentrations of BPA induce the expression of GPR30 gene and protein. ► Low

  8. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro.

    PubMed

    Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam

    2015-11-01

    Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.

  9. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.

  11. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  12. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  13. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    PubMed

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    2003-01-01

    Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.

  15. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    PubMed

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  16. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris

    PubMed Central

    Schulze, Katja; Galichet, Arnaud; Sayar, Beyza S.; Scothern, Anthea; Howald, Denise; Zymann, Hillard; Siffert, Myriam; Zenhäusern, Denise; Bolli, Reinhard; Koch, Peter J.; Garrod, David; Suter, Maja M.; Müller, Eliane J.

    2011-01-01

    Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may play a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice which have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we here developed a model with passive transfer of the monospecific pathogenic Dsg3 antibody AK23 into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies. PMID:21956125

  17. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries

    PubMed Central

    Woods, Dori C; Tilly, Jonathan L

    2017-01-01

    Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell–specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo. PMID:23598447

  18. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Comprehensive interactome of Otx2 in the adult mouse neural retina.

    PubMed

    Fant, Bruno; Samuel, Alexander; Audebert, Stéphane; Couzon, Agnès; El Nagar, Salsabiel; Billon, Nathalie; Lamonerie, Thomas

    2015-11-01

    The Otx2 homeodomain transcription factor exerts multiple functions in specific developmental contexts, probably through the regulation of different sets of genes. Protein partners of Otx2 have been shown to modulate its activity. Therefore, the Otx2 interactome may play a key role in selecting a precise target-gene repertoire, hence determining its function in a specific tissue. To address the nature of Otx2 interactome, we generated a new recombinant Otx2(CTAP-tag) mouse line, designed for protein complexes purification. We validated this mouse line by establishing the Otx2 interactome in the adult neural retina. In this tissue, Otx2 is thought to have overlapping function with its paralog Crx. Our analysis revealed that, in contrary to Crx, Otx2 did not develop interactions with proteins that are known to regulate phototransduction genes but showed specific partnership with factors associated with retinal development. The relationship between Otx2 and Crx in the neural retina should therefore be considered as complementarity rather than redundancy. Furthermore, study of the Otx2 interactome revealed strong associations with RNA processing and translation machineries, suggesting unexpected roles for Otx2 in the regulation of selected target genes all along the transcription/translation pathway. The Otx2(CTAP-tag) line, therefore, appears suitable for a systematic approach to Otx2 protein-protein interactions. genesis 53:685-694, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro

    PubMed Central

    Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam

    2015-01-01

    Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment. PMID:26730242

  1. Downregulation of Col1a1 induces differentiation in mouse spermatogonia

    PubMed Central

    Chen, Sun-Hong; Li, Ding; Xu, Chen

    2012-01-01

    Col1a1 (one of the subunit of collagen type I) is a collagen, which belongs to a family of extracellular matrix (ECM) proteins that play an important role in cellular proliferation and differentiation. However, the role of Col1a1 in spermatogenesis, especially in the control of proliferation and differentiation of spermatogonial stem cells (SSCs), remains unknown. In this study, we explored effects of downregulation of Col1a1 on differentiation and proliferation of mouse spermatogonia. Loss-of-function study revealed that Oct4 and Plzf, markers of SSC self-renewal, were significantly decreased, whereas the expression of c-kit and haprin, hallmarks of SSC differentiation, was enhanced after Col1a1 knockdown. Cell cycle analyses indicated that two-thirds of spermatogonia were arrested in S phase after Col1a1 knockdown. In vivo experiments, DNA injection and electroporation of the testes showed that spermatogonia self-renewal ability was impaired remarkably with the loss-of-function of Col1a1. Our data suggest that silencing of Col1a1 can suppress spermatogonia self-renewal and promote spermatogonia differentiation. PMID:23064687

  2. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  3. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Hajian, M; Hosseini, S E; Vahdati, A; Baharvand, H; Nasr-Esfahani, Mohammad H

    2012-01-01

    To investigate the effect of serum supplementing on short-term culture, fate determination and gene expression of goat spermatogonial stem cells (SSCs). Crude testicular cells were plated over Datura-Stramonium Agglutinin (DSA) for 1 h, and non-adhering cells were cultured in the presence of different serum concentrations (1, 5, 10, and 15%) for 7 days in a highly enriched medium initially developed in mice. Colonies developed in each group were used for the assessment of morphology, immunocytochemistry, and gene expression. Brief incubation of testicular cells with DSA resulted in a significant increase in the number of cells that expressed the germ cell marker (VASA). The expression of THY1, a specific marker of undifferentiated spermatogonia, was significantly higher in colonies developed in the presence of 1% rather than 5, 10 and 15% serum. Goat SSCs could proliferate and maintain in SSC culture media for 1 week at serum concentrations as low as 1%, while higher concentrations had detrimental effects on SSC culture/expansion.

  4. Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone.

    PubMed

    Kawai, Hiroki; Kawaguchi, Daichi; Kuebrich, Benjamin D; Kitamoto, Takeo; Yamaguchi, Masahiro; Gotoh, Yukiko; Furutachi, Shohei

    2017-12-06

    In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner. SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator

  5. Computer mouse movement patterns: A potential marker of mild cognitive impairment.

    PubMed

    Seelye, Adriana; Hagler, Stuart; Mattek, Nora; Howieson, Diane B; Wild, Katherine; Dodge, Hiroko H; Kaye, Jeffrey A

    2015-12-01

    Subtle changes in cognitively demanding activities occur in MCI but are difficult to assess with conventional methods. In an exploratory study, we examined whether patterns of computer mouse movements obtained from routine home computer use discriminated between older adults with and without MCI. Participants were 42 cognitively intact and 20 older adults with MCI enrolled in a longitudinal study of in-home monitoring technologies. Mouse pointer movement variables were computed during one week of routine home computer use using algorithms that identified and characterized mouse movements within each computer use session. MCI was associated with making significantly fewer total mouse moves ( p <.01), and making mouse movements that were more variable, less efficient, and with longer pauses between movements ( p <.05). Mouse movement measures were significantly associated with several cognitive domains ( p 's<.01-.05). Remotely monitored computer mouse movement patterns are a potential early marker of real-world cognitive changes in MCI.

  6. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.

  7. Role of the testis interstitial compartment in spermatogonial stem cell function

    PubMed Central

    Potter, Sarah J.; DeFalco, Tony

    2017-01-01

    Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580

  8. Purification of Oogonial Stem Cells From Adult Mouse and Human Ovaries: An Assessment of the Literature and a View Toward the Future

    PubMed Central

    Woods, Dori C.; White, Yvonne A. R.; Tilly, Jonathan L.

    2013-01-01

    Contemporary claims that mitotically active female germ line or oogonial stem cells (OSCs) exist and support oogenesis during postnatal life in mammals have been debated in the field of reproductive biology since March 2004, when a mouse study posed the first serious challenge to the dogma of a fixed pool of oocytes being endowed at birth in more than 50 years. Other studies have since been put forth that further question the validity of this dogma, including the isolation of OSCs from neonatal and adult mouse ovaries by 4 independent groups using multiple strategies. Two of these groups also reported that isolated mouse OSCs, once transplanted back into ovaries of adult female mice, differentiate into fully functional eggs that ovulate, fertilize, and produce healthy embryos and offspring. Arguably, one of the most significant advances in this emerging field was provided by a new research study published this year, which reported the successful isolation and functional characterization of OSCs from ovaries of reproductive age women. Two commentaries on this latest work, one cautiously supportive and one highly skeptical, were published soon afterward. This article evaluates the current literature regarding postnatal oogenesis in mammals and discusses important next steps for future work on OSC biology and function. PMID:23024060

  9. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future.

    PubMed

    Woods, Dori C; White, Yvonne A R; Tilly, Jonathan L

    2013-01-01

    Contemporary claims that mitotically active female germ line or oogonial stem cells (OSCs) exist and support oogenesis during postnatal life in mammals have been debated in the field of reproductive biology since March 2004, when a mouse study posed the first serious challenge to the dogma of a fixed pool of oocytes being endowed at birth in more than 50 years. Other studies have since been put forth that further question the validity of this dogma, including the isolation of OSCs from neonatal and adult mouse ovaries by 4 independent groups using multiple strategies. Two of these groups also reported that isolated mouse OSCs, once transplanted back into ovaries of adult female mice, differentiate into fully functional eggs that ovulate, fertilize, and produce healthy embryos and offspring. Arguably, one of the most significant advances in this emerging field was provided by a new research study published this year, which reported the successful isolation and functional characterization of OSCs from ovaries of reproductive age women. Two commentaries on this latest work, one cautiously supportive and one highly skeptical, were published soon afterward. This article evaluates the current literature regarding postnatal oogenesis in mammals and discusses important next steps for future work on OSC biology and function.

  10. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  11. Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters.

    PubMed

    Contreras, Laura; Urbieta, Almudena; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2010-04-01

    The mitochondrial aspartate-glutamate carriers (AGC) aralar (SLC25A12) and citrin (SLC25A13) are components of the malate aspartate shuttle (MAS), a major intracellular pathway to transfer reducing equivalents from NADH to the mitochondrial matrix. Aralar is the main AGC isoform present in the adult brain, and it is expressed mainly in neurons. To search for the other AGC isoform, citrin, in brain glial cells, we used a citrin knockout mouse in which the lacZ gene was inserted into the citrin locus as reporter gene. In agreement with the low citrin levels known to be present in the adult mouse brain, beta-galactosidase expression was very low. Surprisingly, unlike the case with astroglial cultures that express citrin, no beta-galactosidase was found in brain glial cells. It was confined to neuronal cells within discrete neuronal clusters. Double-immunolabelling experiments showed that beta-galactosidase colocalized not with glial cell markers but with the pan-neuronal marker NeuN. The deep cerebellar nuclei and a few midbrain nuclei (reticular tegmental pontine nuclei; magnocellular red nuclei) were the regions where beta-galactosidase expression was highest, and it was up-regulated in fasted mice, as was also the case for liver beta-galactosidase. The results support the notion that glial cells have much lower AGC levels and MAS activity than neurons. (c) 2009 Wiley-Liss, Inc.

  12. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas

    PubMed Central

    Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.

    2009-01-01

    The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761

  13. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  14. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  15. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development.

    PubMed

    Kasowitz, Seth D; Ma, Jun; Anderson, Stephen J; Leu, N Adrian; Xu, Yang; Gregory, Brian D; Schultz, Richard M; Wang, P Jeremy

    2018-05-25

    The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3' UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3' UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3' end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development.

  16. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint.

    PubMed

    Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng

    2017-06-29

    ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.

  17. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    PubMed Central

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  18. Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility*

    PubMed Central

    Mok, Ka-Wai; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan

    2011-01-01

    The blood-testis barrier (BTB) is a unique ultrastructure in the testis which creates a specialized microenvironment in the seminiferous epithelium for post-meiotic germ cell development and to maintain an immunological barrier. In this report, we have demonstrated unequivocally that a functional and intact BTB is crucial for initiation of spermatogenesis in particular differentiation of spermatogonial stem cells (SSCs). It was shown that adult rats (~300 gm body weight, b.w.) treated with adjudin at 50 (low-dose) or 250 (high-dose) mg/kg b.w. by gavage led to germ cell depletion from the seminiferous tubules and >98% of the tubules were devoid of germ cells by ~2-week and rats became infertile in both groups after the sperm reserve in the epididymis was exhausted. While the population of SSC/spermatogonia in the seminiferous tubules from both groups was similar to normal rats, only rats from the low-dose group were capable of re-initiating spermatogenesis by 20-week and by 30-week, greater than 75% of the tubules displayed normal spermatogenesis and the fertility of these rats rebounded. Detailed analysis by dual-labeled immunofluorescence analysis and a functional BTB integrity assay revealed that in both treatment groups, the BTB was disrupted from 6- to 12-week. However, the disrupted BTB “resealed” in the low, but not in the high, dose group. Our findings illustrate that that SSC/spermatogonia failed to differentiate into spermatocytes beyond Aaligned spermatogonia in the high-dose group with a disrupted BTB. In short, these findings illustrate the critical significance of BTB for re-initiation of spermatogenesis besides SSC and spermatogonia. PMID:21696392

  19. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals.

    PubMed

    Sahare, Mahesh G; Suyatno; Imai, Hiroshi

    2018-04-01

    Spermatogonial stem cells (SSCs) in the mammalian testis are unipotent stem cells for spermatozoa. They show unique cell characteristics as stem cells and germ cells after being isolated from the testis and cultured in vitro. This review introduces recent progress in the development of culture systems for the establishment of SSC lines in mammalian species, including humans. Based on the published reports, the isolation and purification of SSCs, identification and characteristics of SSCs, and culture system for mice, humans, and domestic animals have been summarized. In mice, cell lines from SSCs are established and can be reprogrammed to show pluripotent stem cell potency that is similar to embryonic stem cells. However, it is difficult to establish cell lines for animals other than mice because of the dearth of understanding about species-specific requirements for growth factors and mechanisms supporting the self-renewal of cultured SSCs. Among the factors that are associated with the development of culture systems, the enrichment of SSCs that are isolated from the testis and the combination of growth factors are essential. Providing an example of SSC culture in cattle, a rational consideration was made about how it can be possible to establish cell lines from neonatal and immature testes.

  20. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

    PubMed Central

    Draper, Julia E.; Sroczynska, Patrycja; Tsoulaki, Olga; Leong, Hui Sun; Fadlullah, Muhammad Z. H.; Miller, Crispin; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to

  1. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    PubMed

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  2. Irradiation at Different Fetal Stages Results in Different Translocation Frequencies in Adult Mouse Thyroid Cells

    DOE PAGES

    Hamasaki, K.; Landes, R. D.; Noda, A.; ...

    2016-10-01

    While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The

  3. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    PubMed Central

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death. PMID:25422633

  4. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    PubMed Central

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687

  5. Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells.

    PubMed

    Pihlaja, Rea; Takkinen, Jatta; Eskola, Olli; Vasara, Jenni; López-Picón, Francisco R; Haaparanta-Solin, Merja; Rinne, Juha O

    2015-04-28

    Recently, the role of monoacylglycerol lipase (MAGL) as the principal regulator of simultaneous prostaglandin synthesis and endocannabinoid receptor activation in the CNS was demonstrated. To expand upon previously published research in the field, we observed the effect of the MAGL inhibitor JZL184 during the early-stage proinflammatory response and formation of beta-amyloid (Aβ) in the Alzheimer's disease mouse model APdE9. We also investigated its effects in proinflammatory agent - induced astrocytes and microglia isolated from adult mice. Transgenic APdE9 mice (5 months old) were treated with JZL184 (40 mg/kg) or vehicle every day for 1 month. In vivo binding of the neuroinflammation-related, microglia-specific translocator protein (TSPO) targeting radioligand [(18) F]GE-180 decreased slightly but statistically non-significantly in multiple brain areas compared to vehicle-treated mice. JZL184 treatment induced a significant decrease in expression levels of inflammation-induced, Iba1-immunoreactive microglia in the hippocampus (P < 0.01) and temporal and parietal (P < 0.05) cortices. JZL184 also induced a marked decrease in total Aβ burden in the temporal (P < 0.001) and parietal (P < 0.01) cortices and, to some extent, in the hippocampus. Adult microglial and astrocyte cultures pre-treated with JZL184 and then exposed to the neuroinflammation-inducing agents lipopolysaccharide (LPS), interferon-gamma (IFN-γ), and Aβ42 had significantly reduced proinflammatory responses compared to cells without JZL184 treatment. JZL184 decreased the proinflammatory reactions of microglia and reduced the total Aβ burden and its precursors in the APdE9 mouse model. It also reduced the proinflammatory responses of microglia and astrocytes isolated from adult mice.

  6. Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma

    PubMed Central

    Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.

    2011-01-01

    Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421

  7. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse.

    PubMed

    Nordenankar, Karin; Bergfors, Assar; Wallén-Mackenzie, Åsa

    2015-01-01

    Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans.

  8. Origin and Properties of Prostatic Stem Cells

    DTIC Science & Technology

    2007-02-01

    Brinster RL. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999;96(10):5504-9. 14. Tsujimura ...G. R., Donjacour, A. A., Cooke, P. S., Mee, S., Bigsby, R. M., Higgins, S. J. & Sugimura, Y. (1987) Endocr. Rev. 8, 338–362. 9. Tsujimura , A...90. 4 Tsujimura A, Koikawa Y, Salm S et al. Proximal location of mouse prostate epithelial stem cells: A model of prostatic homeostasis. J Cell Biol

  9. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse.

    PubMed

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.

  10. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse

    PubMed Central

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872

  11. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary.

    PubMed

    Parvari, Soraya; Abbasi, Mehdi; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-06-19

    An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.

  12. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  13. Porcine spermatogonial stem cells self-renew effectively in a three dimensional culture microenvironment.

    PubMed

    Park, Ji Eun; Park, Min Hee; Kim, Min Seong; Park, Yeo Reum; Yun, Jung Im; Cheong, Hee Tae; Kim, Minseok; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae

    2017-12-01

    Generally, self-renewal of spermatogonial stem cells (SSCs) is maintained in vivo in a three-dimensional (3D) microenvironment consisting of the seminiferous tubule basement membrane, indicating the importance of the 3D microenvironment for in vitro culture of SSCs. Here, we report a 3D culture microenvironment that effectively maintains porcine SSC self-renewal during culture. Porcine SSCs were cultured in an agarose-based 3D hydrogel and in 2D culture plates either with or without feeder cells. Subsequently, the effects of 3D culture on the maintenance of undifferentiated SSCs were identified by analyzing cell colony formation and morphology, AP activity, and transcriptional and translational regulation of self-renewal-related genes and the effects on proliferation by analyzing cell viability and single cell-derived colony number. The 3D culture microenvironment constructed using a 0.2% (w/v) agarose-based 3D hydrogel showed the strongest maintenance of porcine SSC self-renewal and induced significant improvements in proliferation compared with 2D culture microenvironments. These results demonstrate that self-renewal of porcine SSCs can be maintained more effectively in a 3D than in a 2D culture microenvironment. Moreover, this will play a significant role in developing novel culture systems for SSCs derived from diverse species in the future, which will contribute to SSC-related research. © 2017 International Federation for Cell Biology.

  14. Polycystin-2 Expression and Function in Adult Mouse Lacrimal Acinar Cells

    PubMed Central

    Hilgenberg, Jill D.; Rybalchenko, Volodymyr; Medina-Ortiz, Wanda E.; Gregg, Elaine V.; Koulen, Peter

    2011-01-01

    Purpose. Lacrimal glands regulate the production and secretion of tear fluid. Dysfunction of lacrimal gland acinar cells can ultimately result in ocular surface disorders, such as dry eye disease. Ca2+ homeostasis is tightly regulated in the cellular environment, and secretion from the acinar cells of the lacrimal gland is regulated by both cholinergic and adrenergic stimuli, which both result in changes in the cytosolic Ca2+ concentration. We have previously described the detailed intracellular distribution of inositol-1,4,5-trisphosphate receptors (IP3Rs), and ryanodine receptors (RyRs) in lacrimal acinar cells, however, little is known regarding the expression and distribution of the third major class of intracellular Ca2+ release channels, transient receptor potential polycystin family (TRPP) channels. Methods. Studies were performed in adult lacrimal gland tissue of Swiss-Webster mice. Expression, localization, and intracellular distribution of TRPP Ca2+ channels were investigated using immunocytochemistry, immunohistochemistry, and electron microscopy. The biophysical properties of single polycystin-2 channels were investigated using a planar lipid bilayer electrophysiology system. Results. All channel-forming isoforms of TRPP channels (polycystin-2, polycystin-L, and polycystin-2L2) were expressed in adult mouse lacrimal gland. Subcellular analysis of immunogold labeling revealed strongest polycystin-2 expression on the membranes of the endoplasmic reticulum, Golgi, and nucleus. Biophysical properties of lacrimal gland polycystin-2 channels were similar to those described for other tissues. Conclusions. The expression of TRPP channels in lacrimal acinar cells suggests a functional role of the proteins in the regulation of lacrimal fluid secretion under physiological and disease conditions, and provides the basis for future studies focusing on physiology and pharmacology. PMID:21508103

  15. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  16. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development

    PubMed Central

    Leu, N. Adrian; Xu, Yang; Schultz, Richard M.

    2018-01-01

    The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3’ UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3’ UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3’ end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development. PMID:29799838

  17. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.

    PubMed

    Chen, Jiayin; Or, Calvin

    2017-11-01

    This study assessed the use of an immersive virtual reality (VR), a mouse and a touchscreen for one-directional pointing, multi-directional pointing, and dragging-and-dropping tasks involving targets of smaller and larger widths by young (n = 18; 18-30 years), middle-aged (n = 18; 40-55 years) and older adults (n = 18; 65-75 years). A three-way, mixed-factorial design was used for data collection. The dependent variables were the movement time required and the error rate. Our main findings were that the participants took more time and made more errors in using the VR input interface than in using the mouse or the touchscreen. This pattern applied in all three age groups in all tasks, except for multi-directional pointing with a larger target width among the older group. Overall, older adults took longer to complete the tasks and made more errors than young or middle-aged adults. Larger target widths yielded shorter movement times and lower error rates in pointing tasks, but larger targets yielded higher rates of error in dragging-and-dropping tasks. Our study indicated that any other virtual environments that are similar to those we tested may be more suitable for displaying scenes than for manipulating objects that are small and require fine control. Although interacting with VR is relatively difficult, especially for older adults, there is still potential for older adults to adapt to that interface. Furthermore, adjusting the width of objects according to the type of manipulation required might be an effective way to promote performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology.

    PubMed

    Kim, Hyunjeong; Kim, Eosu; Park, Minsun; Lee, Eun; Namkoong, Kee

    2013-03-05

    One of the most significant barriers towards translational neuropsychiatry would be an unavailability of living brain tissues. Although organotypic brain tissue culture could be a useful alternative enabling observation of temporal changes induced by various drugs in living brain tissues, a proper method to establish a stable organotypic brain slice culture system using adult (rather than neonatal) hippocampus has been still elusive. In this study, we evaluated our simple method using the serum-free culture medium for successful adult organotypic hippocampal slice culture. Several tens of hippocampal slices from a single adult mouse (3-5 months old) were cultured in serum-free versus serum-containing conventional culture medium for 30 days and underwent various experiments to validate the effects of the existence of serum in the culture medium. Neither the excessive regression of neuronal viability nor metabolic deficiency was observed in the serum-free medium culture in contrast to the serum-containing medium culture. Despite such viability, newly generated immature neurons were scarcely detected in the serum-free culture, suggesting that the original neurons in the brain slice persist rather than being replaced by neurogenesis. Key structural features of in vivo neural tissue constituting astrocytes, neural processes, and pre- and post-synapses were also well preserved in the serum-free culture. In conclusion, using the serum-free culture medium, the adult hippocampal slice culture system will serve as a promising ex vivo tool for various fields of neuroscience, especially for studies on aging-related neuropsychiatric disorders or for high throughput screening of potential agents working against such disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  20. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  1. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain.

    PubMed

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here, we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (Ndp(AP)). In the CNS, Ndp(AP) expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of Ndp(AP) expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, Ndp(AP) expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain

    PubMed Central

    Ye, Xin; Smallwood, Philip; Nathans, Jeremy

    2011-01-01

    The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (NdpAP). In the CNS, NdpAP expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of NdpAP expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, NdpAP expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea. PMID:21055480

  3. The Thoc1 Encoded Ribonucleoprotein Is Required for Myeloid Progenitor Cell Homeostasis in the Adult Mouse

    PubMed Central

    Chinnam, Meenalakshmi; Povinelli, Benjamin J.; Fisher, Daniel T.; Golding, Michelle; Appenheimer, Michelle M.; Nemeth, Michael J.; Evans, Sharon; Goodrich, David W.

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover. PMID:24830368

  4. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    PubMed

    Pitzonka, Laura; Ullas, Sumana; Chinnam, Meenalakshmi; Povinelli, Benjamin J; Fisher, Daniel T; Golding, Michelle; Appenheimer, Michelle M; Nemeth, Michael J; Evans, Sharon; Goodrich, David W

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  5. Experiment K-6-16. Morphological examination of rat testes. The effect of Cosmos 1887 flight on spermatogonial population and testosterone level in rat testes

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Kato, K.; Stevenson, J.; Vasques, M.; Sapp, W.; Williams, C.; Popova, I. A.; Serova, L. V.

    1990-01-01

    Testes from rats flown on Cosmos 1887 for twelve and a half days were compared to basal control, synchronous control and vivarium maintained rats. When the mean weights of flight testes, normalized for weight/100 gms, were compared to the vivarium controls they were 6.7 percent lighter. Although the flight testes were lighter than the synchronous, the difference is not significant. Counts of spermatogonial cells from 5 animals in each group revealed a 4 percent decrease in flight compared to vivarium controls. In both cases the t-Test significance was less than 0.02. The serum testosterone levels of all animals (flight, synchronous and vivarium) were significantly below the basal controls.

  6. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  7. Vestibular dysfunction in the adult CBA/CaJ mouse after lead and cadmium treatment

    PubMed Central

    Klimpel, Katarina E. M.; Lee, Min Young; King, W. Michael; Raphael, Yehoash; Schacht, Jochen; Neitzel, Richard L.

    2017-01-01

    OBJECTIVES The vestibular system allows the perception of position and motion and its dysfunction presents as motion impairment, vertigo and balance abnormalities, leading to debilitating psychological discomfort and difficulty performing daily tasks. Although declines and deficits in vestibular function have been noted in rats exposed to lead (Pb) and in humans exposed to Pb and cadmium (Cd), no studies have directly examined the pathological and pathophysiological effects upon the vestibular apparatus of the inner ear. METHODS Eighteen young adult mice were exposed through their drinking water (3 mM Pb, 300 μM Cd, or a control treatment) for 10 weeks. Before and after treatment, they underwent a vestibular assessment, consisting of a rotarod performance test and a novel head stability test to measure the vestibulocolic reflex. At the conclusion of the study, the utricles were analyzed immunohistologically for condition of hair cells and nerve fibers. RESULTS Increased levels of Pb exposure correlated with decreased head stability in space; no significant decline in performance on rotarod test was found. No damage to the hair cells or the nerve fibers of the utricle was observed in histology. CONCLUSIONS The young adult CBA/CaJ mouse is able to tolerate occupationally-relevant Pb and Cd exposure well, but the correlation between Pb exposure and reduced head stability suggests that Pb exposure causes a decline in vestibular function. PMID:27257108

  8. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  9. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    PubMed Central

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  10. MiR-34a Regulates Axonal Growth of Dorsal Root Ganglia Neurons by Targeting FOXP2 and VAT1 in Postnatal and Adult Mouse.

    PubMed

    Jia, Longfei; Chopp, Michael; Wang, Lei; Lu, Xuerong; Zhang, Yi; Szalad, Alexandra; Zhang, Zheng Gang

    2018-04-10

    Hyperglycemia impairs nerve fibers of dorsal root ganglia (DRG) neurons, leading to diabetic peripheral neuropathy (DPN). However, the molecular mechanisms underlying DPN are not fully understood. Using a mouse model of type II diabetes (db/db mouse), we found that microRNA-34a (miR-34a) was over-expressed in DRG, sciatic nerve, and foot pad tissues of db/db mice. In vitro, high glucose significantly upregulated miR-34a in postnatal and adult DRG neurons, which was associated with inhibition of axonal growth. Overexpression and attenuation of miR-34a in postnatal and adult DRG neurons suppressed and promoted, respectively, axonal growth. Bioinformatic analysis suggested that miR-34a putatively targets forkhead box protein P2 (FOXP2) and vesicle amine transport 1 (VAT1), which were decreased in diabetic tissues and in cultured DRG neurons under high glucose conditions. Dual-luciferase assay showed that miR-34a downregulated FOXP2 and VAT1 expression by targeting their 3' UTR. Gain-of- and loss-of-function analysis showed an inverse relation between augmentation of miR-34a and reduction of FOXP2 and VAT1 proteins in postnatal and adult DRG neurons. Knockdown of FOXP2 and VAT1 reduced axonal growth. Together, these findings suggest that miR-34a and its target genes of FOXP2 and VAT1 are involved in DRG neuron damage under hyperglycemia.

  11. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  12. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    PubMed

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  13. The mouse-human anatomy ontology mapping project.

    PubMed

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  14. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  15. Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury

    PubMed Central

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-01-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840

  16. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog.

    PubMed

    Kim, Yeunhee; Turner, Danielle; Nelson, Jacquelyn; Dobrinski, Ina; McEntee, Margaret; Travis, Alexander J

    2008-12-01

    Spermatogonial stem cell transplantation (SSCT) offers unique approaches to investigate SSC and to manipulate the male germline. We report here the first successful performance of this technique in the dog, which is an important model of human diseases. First, we investigated an irradiation protocol to deplete endogenous male germ cells in recipient testes. Histologic examination confirmed >95% depletion of endogenous spermatogenesis, but retention of normal testis architecture. Then, 5-month-old recipient dogs (n=5) were focally irradiated on their testes prior to transplantation with mixed seminiferous tubule cells (fresh (n=2) or after 2 weeks of culture (n=3)). The dogs receiving cultured cells showed an immediate allergic response, which subsided quickly with palliative treatment. No such response was seen in the dogs receiving fresh cells, for which a different injection medium was used. Twelve months post-injection recipients were castrated and sperm was collected from epididymides. We performed microsatellite analysis comparing DNA from the epididymal sperm with genomic DNA from both the recipients and the donors. We used six markers to demonstrate the presence of donor alleles in the sperm from one recipient of fresh mixed tubule cells. No evidence of donor alleles was detected in sperm from the other recipients. Using quantitative PCR based on single nucleotide polymorphisms (SNPs), about 19.5% of sperm were shown to be donor derived in the recipient. Our results demonstrate the first successful completion of SSCT in the dog, an important step toward transgenesis through the male germline in this valuable biomedical model.

  17. The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.

    PubMed

    Chartier, Stephane R; Mitchell, Stefanie A T; Majuta, Lisa A; Mantyh, Patrick W

    2018-02-10

    Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Palm is expressed in both developing and adult mouse lens and retina

    PubMed Central

    Castellini, Meryl; Wolf, Louise V; Chauhan, Bharesh K; Galileo, Deni S; Kilimann, Manfred W; Cvekl, Ales; Duncan, Melinda K

    2005-01-01

    Background Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive membrane and process formation in neurons. Earlier studies have shown brain preferred Palm expression, although this protein is a major water insoluble protein in chicken lens fiber cells and the Palm gene may be regulated by Pax6. Methods The expression profile of Palm protein in the embryonic, newborn and adult mouse eye as well as dissociated retinal neurons was determined by confocal immunofluorescence. The relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina were determined by real time rt-PCR. Results In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm expression transiently upregulates during the formation of optic nerve as well as in the formation of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA was found at much higher levels relative to Palm2 or PalmD in both the retina and lens. Conclusion Palm is the major paralemmin family member expressed in the retina and lens and its expression in the retina transiently upregulates during active neurite outgrowth. The expression pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial for the increase in membrane formation during lens fiber cell differentiation. PMID:15969763

  19. Regional localization of activin-βA, activin-βC, follistatin, proliferation, and apoptosis in adult and developing mouse prostate ducts.

    PubMed

    Gold, Elspeth; Zellhuber-McMillan, Sylvia; Risbridger, Gail; Marino, Francesco Elia

    2017-01-01

    Activins and inhibins, members of the TGF-β superfamily, are growth and differentiation factors involved in the regulation of several biological processes, including reproduction, development, and fertility. Previous studies have shown that the activin-β A subunit plays a pivotal role in prostate development. Activin-A inhibits branching morphogenesis in the developing prostate, and its expression is associated with increased apoptosis in the adult prostate. Follistatin, a structurally unrelated protein to activins, is an antagonist of activin-A. A balance between endogenous activin-A and follistatin is required to maintain prostatic branching morphogenesis. Deregulation of this balance leads to branching inhibition or excessive branching and increased maturation of the stroma surrounding the differentiating epithelial ducts. Recent work identified another member of the TGF-β superfamily, the activin-β C subunit, as a novel antagonist of activin-A. Over-expression of activin-C (β C -β C ) alters prostate homeostasis, by interfering with the activin-A signaling. The current study characterized the spatiotemporal localization of activin-A, activin-C and follistatin in the adult and developing mouse prostate using immunohistochemical analysis. Results showed activin-C and follistatin are differentially expressed during prostate development and suggested that the antagonistic property of follistatin is secondary to the action of activin-C. In conclusion, the present study provides evidence to support a role of activin-C in prostate development and provides new insights in the spatiotemporal localization of activins and their antagonists during mouse prostate development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus.

    PubMed

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-02-26

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of approximately 40 min of training). The hippocampus was dissected bilaterally from each mouse (N = 7 in each group) and profiling of 585 miRNAs (microRNAs) was carried out using multiplex RT-PCR (reverse transcription-PCR) plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P = 0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor), CAMK2b (calcium/calmodulin-dependent protein kinase IIβ), CREB1 (cAMP-response-element-binding protein 1) and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila)-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  1. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.

    Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less

  2. Genomic structure, promoter identification, and chromosomal mapping of a mouse nuclear orphan receptor expressed in embryos and adult testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Wei, Li-Na; Copeland, N.G.

    We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hpmore » upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.« less

  3. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  4. Preservation of chromosomal integrity in murine spermatozoa derived from gonocytes and spermatogonial stem cells surviving prenatal and postnatal exposure to γ-rays in mice.

    PubMed

    Watanabe, Hiroyuki; Kohda, Atsushi; Komura, Jun-Ichiro; Tateno, Hiroyuki

    2017-07-01

    Pre- and postnatal male mice were acutely (659-690 mGy/min) and continuously (0.303 mGy/min) exposed to 2 Gy γ-rays to evaluate spermatogenic potential and chromosome damage in their germ cells as adults. Acute irradiation on Days 15.5, 16.5, and 17.5 post-coitus affected testicular development, as a result of massive quiescent gonocyte loss; the majority of the seminiferous tubules in these testes were devoid of germ cells. Acute irradiation on Days 18.5 and 19.5 post-coitus had less effect on testicular development and spermatogenesis, even though germ cells were quiescent gonocytes on these days. Adverse effects on testicular development and spermatogenesis were observed following continuous irradiation between Days 14.5 and 19.5 post-coitus. Exposure to acute and continuous postnatal irradiation after the differentiation of spermatogonial stem cells and spermatogonia resulted in nearly all of the seminiferous tubules exhibiting spermatogenesis. Neither acute nor continuous irradiation was responsible for the increased number of multivalent chromosomes in primary-spermatocyte descendents of the exposed gonocytes. In contrast, a significant increase in cells with multivalent chromosomes was observed following acute irradiation on Days 4 and 11 post-partum. No significant increases in unstable structural chromosomal aberrations or aneuploidy in spermatozoa were observed, regardless of cell stage at irradiation or the radiation dose-rate. Thus, murine germ cells that survive prenatal and postnatal irradiation can restore spermatogenesis and produce viable spermatozoa without chromosome damage. These findings may provide a better understanding of reproductive potential following accidental, environmental, or therapeutic irradiation during the prenatal and postnatal periods in humans. © 2017 Wiley Periodicals, Inc.

  5. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex

    PubMed Central

    Vierci, Gabriela; Pannunzio, Bruno; Bornia, Natalia; Rossi, Francesco M.

    2016-01-01

    Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3–AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment). We found that AcH3–AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3–AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3–AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3–H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC. PMID:27891053

  6. c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation

    PubMed Central

    2013-01-01

    Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026

  7. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Velazquez, Ramon; Ash, Jessica A.; Powers, Brian E.; Kelley, Christy M.; Strawderman, Myla; Luscher, Zoe I.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.

    2014-01-01

    In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer’s disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS. PMID:23643842

  8. Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect.

    PubMed

    Köse, Sevil; Yersal, Nilgün; Önen, Selin; Korkusuz, Petek

    2018-06-08

    Recent advances require a dual evaluation of germ and somatic stem cell niches with a regenerative medicine perspective. For a better point of view of the niche concept, it is needed to compare the microenvironments of those niches in respect to several components. The cellular environment of spermatogonial stem cells' niche consists of Sertoli cells, Leydig cells, vascular endothelial cells, epididymal fat cells, peritubular myoid cells while hematopoietic stem cells have mesenchymal stem cells, osteoblasts, osteoclasts, megacaryocytes, macrophages, vascular endothelial cells, pericytes and adipocytes in their microenvironment. Not only those cells', but also the effect of the other factors such as hormones, growth factors, chemokines, cytokines, extracellular matrix components, biomechanical forces (like shear stress, tension or compression) and physical environmental elements such as temperature, oxygen level and pH will be clarified during the chapter. Because it is known that the microenvironment has an important role in the stem cell homeostasis and disease conditions, it is crucial to understand the details of the microenvironment and to be able to compare the niche concepts of the different types of stem cells from each other, for the regenerative interventions. Indeed, the purpose of this chapter is to point out the usage of niche engineering within the further studies in the regenerative medicine field. Decellularized, synthetic or non-synthetic scaffolds may help to mimic the stem cell niche. However, the shared or different characteristics of germ and somatic stem cell microenvironments are necessary to constitute a proper niche model. When considered from this aspect, it is possible to produce some strategies on the personalized medicine by using those artificial models of stem cell microenvironment.

  9. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy

    PubMed Central

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.

    2017-01-01

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746

  10. Paternal Age Effect Mutations and Selfish Spermatogonial Selection: Causes and Consequences for Human Disease

    PubMed Central

    Goriely, Anne; Wilkie, Andrew O.M.

    2012-01-01

    Advanced paternal age has been associated with an increased risk for spontaneous congenital disorders and common complex diseases (such as some cancers, schizophrenia, and autism), but the mechanisms that mediate this effect have been poorly understood. A small group of disorders, including Apert syndrome (caused by FGFR2 mutations), achondroplasia, and thanatophoric dysplasia (FGFR3), and Costello syndrome (HRAS), which we collectively term “paternal age effect” (PAE) disorders, provides a good model to study the biological and molecular basis of this phenomenon. Recent evidence from direct quantification of PAE mutations in sperm and testes suggests that the common factor in the paternal age effect lies in the dysregulation of spermatogonial cell behavior, an effect mediated molecularly through the growth factor receptor-RAS signal transduction pathway. The data show that PAE mutations, although arising rarely, are positively selected and expand clonally in normal testes through a process akin to oncogenesis. This clonal expansion, which is likely to take place in the testes of all men, leads to the relative enrichment of mutant sperm over time—explaining the observed paternal age effect associated with these disorders—and in rare cases to the formation of testicular tumors. As regulation of RAS and other mediators of cellular proliferation and survival is important in many different biological contexts, for example during tumorigenesis, organ homeostasis and neurogenesis, the consequences of selfish mutations that hijack this process within the testis are likely to extend far beyond congenital skeletal disorders to include complex diseases, such as neurocognitive disorders and cancer predisposition. PMID:22325359

  11. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro.

    PubMed

    Anand, Sandhya; Patel, Hiren; Bhartiya, Deepa

    2015-04-18

    Extensive research is ongoing to empower cancer survivors to have biological parenthood. For this, sperm are cryopreserved prior to therapy and in younger children testicular biopsies are cryopreserved with a hope to mature the germ cells into sperm later on for assisted reproduction. In addition, lot of hope was bestowed on pluripotent embryonic and induced pluripotent stem cells to differentiate into sperm and oocytes. However, obtaining functional gametes from pluripotent stem cells still remains a distant dream and major bottle-neck appears to be their inefficient differentiation into primordial germ cells (PGCs). There exists yet another population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) in adult body organs including gonads. We have earlier reported that busulphan (25 mg/Kg) treatment to 4 weeks old mice destroys actively dividing cells and sperm but VSELs survive and differentiate into sperm when a healthy niche is provided in vivo. Mouse testicular VSELs that survived busulphan treatment were cultured for 3 weeks. A mix of surviving cells in seminiferous tubules (VSELs, possibly few spermatogonial stem cells and Sertoli cells) were cultured using Sertoli cells conditioned medium containing fetal bovine serum, follicle stimulating hormone and with no additional growth factors. Stem cells underwent proliferation and clonal expansion in culture and spontaneously differentiated into sperm whereas Sertoli cells attached and provided a somatic support. Transcripts specific for various stages of spermatogenesis were up-regulated by qRT-PCR studies on day 7 suggesting VSELs (Sca1) and SSCs (Gfra) proliferate (Pcna), undergo spermatogenesis (spermatocyte specific marker prohibitin), meiosis (Scp3) and differentiate into sperm (post-meiotic marker protamine). Process of spermatogenesis and spermiogenesis was replicated in vitro starting with testicular cells that survived busulphan treatment. We have earlier reported similar

  12. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver.

    PubMed

    Grimm, Dirk; Wang, Lora; Lee, Joyce S; Schürmann, Nina; Gu, Shuo; Börner, Kathleen; Storm, Theresa A; Kay, Mark A

    2010-09-01

    shRNA overexpression from viral gene therapy vectors can trigger cytotoxicity leading to organ failure and lethality in mice and rats. This process likely involves saturation of endogenous cellular RNAi factors including exportin-5 (Xpo-5). Here, we have shown that Xpo-5 overexpression enhanced shRNA efficiency in the liver of adult mice but increased hepatotoxicity. We identified the 4 members of the human Argonaute (Ago) protein family as downstream factors involved in saturation of endogenous cellular RNAi, all of which were able to interact with shRNAs in cells and mice. In Ago/shRNA coexpression studies, Ago-2 (Slicer) was the primary rate-limiting determinant of both in vitro and in vivo RNAi efficacy, toxicity, and persistence. In adult mice, vector-based Ago-2/Xpo-5 coexpression enhanced U6-driven shRNA silencing of exogenous and endogenous hepatic targets, reduced hepatotoxicity, and extended RNAi stability by more than 3 months. Use of weaker RNA polymerase III promoters to minimize shRNA expression likewise alleviated in vivo toxicity and permitted greater than 95% persistent knockdown of hepatitis B virus and other transgenes in mouse liver for more than 1 year. Our studies substantiate that abundant small RNAs can overload the endogenous RNAi pathway and reveal possible strategies for reducing hepatotoxicity of short- and long-term clinical gene silencing in humans.

  13. Effect of human alpha 2HS glycoprotein on mouse macrophage function.

    PubMed Central

    Lewis, J G; André, C M

    1980-01-01

    alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929

  14. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea.

    PubMed

    Iyer, Harini; Collins, James J; Newmark, Phillip A

    2016-06-01

    Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis.

  15. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  16. Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder.

    PubMed

    Zhu, Shanshan; Cordner, Zachary A; Xiong, Jiali; Chiu, Chi-Tso; Artola, Arabiye; Zuo, Yanning; Nelson, Andrew D; Kim, Tae-Yeon; Zaika, Natalya; Woolums, Brian M; Hess, Evan J; Wang, Xiaofang; Chuang, De-Maw; Pletnikov, Mikhail M; Jenkins, Paul M; Tamashiro, Kellie L; Ross, Christopher A

    2017-09-26

    Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.

  17. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    PubMed Central

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  18. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  19. Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse β-glucuronidase

    PubMed Central

    Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2006-01-01

    Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

  20. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  1. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Velazquez, Ramon; Ash, Jessica A; Powers, Brian E; Kelley, Christy M; Strawderman, Myla; Luscher, Zoe I; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2013-10-01

    In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    PubMed

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  3. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  4. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  5. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease.

    PubMed

    Donovan, Michael H; Yazdani, Umar; Norris, Rebekah D; Games, Dora; German, Dwight C; Eisch, Amelia J

    2006-03-01

    Abnormal subgranular zone (SGZ) neurogenesis is proposed to contribute to Alzheimer's disease (AD)-related decreases in hippocampal function. Our goal was to examine hippocampal neurogenesis in the PDAPP mouse, a model of AD with age-dependent accumulation of amyloid-beta(42) (Abeta(42))-containing plaques that is well studied with regard to AD therapies. A secondary goal was to determine whether altered neurogenesis in the PDAPP mouse is associated with abnormal maturation or number of mature cells. A tertiary goal was to provide insight into why hippocampal neurogenesis appears to be increased in AD post-mortem tissue and decreased in most AD mouse models. We report an age-dependent decrease in SGZ proliferation in homozygous PDAPP mice. At 1 year of age, PDAPP mice also had new dentate gyrus granule neurons with abnormal maturation and fewer dying cells relative to control mice. In contrast to decreased SGZ cell birth, PDAPP mice had increased birth of immature neurons in the outer portion of the granule cell layer (oGCL), providing insight into why some studies link AD with increased neurogenesis. However, these ectopic oGCL cells were still rare compared with SGZ proliferating cells, emphasizing that the primary characteristic of PDAPP mice is decreased neurogenesis. The decrease in SGZ neurogenesis was not associated with an age-dependent loss of dentate granule neurons. The altered neurogenesis in the PDAPP mouse may contribute to the age-related cognitive deficits reported in this model of AD and may be a useful adjunct target for assessing the impact of AD therapies. J. Comp. Neurol. 495:70-83, 2006. (c) 2006 Wiley-Liss, Inc.

  6. Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.

    PubMed

    Feigenspan, Andreas; Babai, Norbert Zsolt

    2017-01-27

    Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.

  7. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  8. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. First evidence of molecular characterization of rohu carp Sox2 gene being expressed in proliferating spermatogonial cells.

    PubMed

    Patra, Swagat Kumar; Chakrapani, Vemulawada; Panda, Rudra Prasanna; Mohapatra, Chinmayee; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2015-07-15

    Because little is known about the function of Sox2 (Sry-related box-2) in teleosts, the objective of this study was to clone and characterize Sox2 complementary DNA (cDNA) from the testis of Indian major carp, Labeo rohita (rohu). The full-length cDNA contained an open reading frame of 936 nucleotides bearing the typical structural features. Phylogenetically, Sox2 of L rohita was most closely related to freshwater counterparts than marine water. The sequence information of cDNA and genomic DNA together revealed that the Sox2 gene is encoded by an uninterrupted exon. Furthermore, comparative mRNA expression profile in various organs including proliferating spermatogonial stem cells (SSCs) suggested about the participatory role of Sox2 during fish male germ cell development and maintenance of stem cells. In support, we have also provided evidence that Sox2 protein is indeed present in rohu SSCs by Western blot analysis. The evolutionarily conserved high-mobility group box domain indicated its possible involvement in common networking pathways for stem cell maintenance and pluripotency between mammals and nonmammals. Our findings could be the first step toward the use of Sox2 as a potential biomarker for proliferating SSCs and understanding the transcriptional regulatory network involved during male germ cell development and maintenance in fish species. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage.

    PubMed

    Nayak, Guruprasad; Honguntikar, Sachin D; Kalthur, Sneha Guruprasad; D'Souza, Antony Sylvan; Mutalik, Srinivas; Setty, Manjunath M; Kalyankumar, Raksha; Krishnamurthy, Hanumanthappa; Kalthur, Guruprasad; Adiga, Satish Kumar

    2016-04-22

    Moringa oleifera Lam. is widely cultivated in Asian and African countries for its medicinal and dietary significance. The leaves are highly nutritious and are known to possess various biological activities. Pre-pubertal Swiss albino male mice were injected with single dose of cyclophosphamide (CP, 200mg/kg body weight) or ethanolic extract of Moringa oleifera leaves (MOE, 100mg/kg body weight) intraperitoneally. In combination group, MOE was administered 24h prior to CP injection. CP induced a significant decrease in testicular weight (p<0.01) and depletion of germ cells (p<0.001) and higher level of DNA damage (p<0.001) compared to control. The expression of P53, Bax, Cytochrome C (Cyt C) was increased while there was a decrease in the expression of Bcl2, c-Kit and Oct4. Administration of MOE 24h prior to CP treatment ameliorated the depletion (p<0.001), DNA damage (p<0.001) and apoptosis (p<0.01) of germ cells induced by CP. The mitigating effect of MOE appears to be mediated by up-regulating the expression of c-Kit and Oct4 transcripts in P53-independent manner. MOE protects the spermatogonial cells from CP-induced damage by modulating the apoptotic response elicited by CP and therefore can be considered as an efficient method of male fertility preservation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressedmore » in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.« less

  12. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse.

    PubMed

    Duysen, Ellen G; Stribley, Judith A; Fry, Debra L; Hinrichs, Steven H; Lockridge, Oksana

    2002-07-30

    Acetylcholinesterase (AChE, EC3.1.1.7) functions in nerve impulse transmission, and possibly as a cell adhesion factor during neurite outgrowth. These functions predicted that a mouse with zero AChE activity would be unable to live. It was a surprise to find that AChE -/- mice were born alive and survived an average of 14 days. The emaciated appearance of AChE -/- mice suggested an inability to obtain sufficient nutrition and experiments were undertaken to increase caloric intake. Pregnant and lactating dams (+/-) were fed 11% high fat chow supplemented with liquid Ensure. AChE -/- pups were weaned early, on day 15, and fed liquid Ensure. Although nullizygous animals showed slow but steady weight gain with survival over 1 year (average 100 days), they remained small at all ages compared to littermates. They demonstrated delays in temperature regulation (day 22 vs. 15), eye opening (day 13 vs. 12), righting reflex (day 18 vs. 12), descent of testes (week 7-8 vs. 4), and estrous (week 15-16 vs. 6-7). Significant physical findings in adult AChE -/- mice included body tremors, abnormal gait and posture, absent grip strength, inability to eat solid food, pinpoint pupils, decreased pain response, vocalization, and early death caused by seizures or gastrointestinal tract ileus. Behavioral deficits included urination and defecation in the nest, lack of aggression, reduced pain perception, and sexual dysfunction. These findings support the classical role for AChE in nerve impulse conduction and further suggest that AChE is essential for timely physical development and higher brain function. Copyright 2002 Elsevier Science B.V.

  13. [Expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain].

    PubMed

    Zhang, Wei; Fan, Li-mei; Li, Lin-lin; Peng, Zheng-yu

    2014-01-01

    To investigate the expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain. Brain samples were collected from mice with different developmental stages: 9, 12, 14 d before birth (E9, E12, E14) and 1 d, 3 weeks and 3 months after birth. The expression of NSSR1 in mouse brain at different developmental stages was detected by Western blot and the distribution of NSSR1 was analyzed by immunohistochemical staining. The expression and distribution of NSSR1 in mouse brain were compared among embryos, neonatal and adult animals. During embryogenesis, the expression of NSSR1 proteins increases significantly from 0.186(E9) to 0.445(E14) and reached a high level after birth. Immunohistochemical analysis showed that in E12 embryos, NSSR1 was specifically distributed in the marginal and mantle layers. The expression of NSSR1 in hippocampus was very low in neonatal animals but stronger in adults. In cerebellar cortex, NSSR1 was widely expressed in purkinje and granule cells of adult animals, but mainly expressed in Purkinje cells in neonates. The expression of NSSR1 is regulated by the development of mouse brain and presents dynamic changes.

  14. Morphological phenotyping of mouse hearts using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  15. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  16. Fetal DNA does not induce preeclampsia-like symptoms when delivered in late pregnancy in the mouse.

    PubMed

    Čonka, Jozef; Konečná, Barbora; Lauková, Lucia; Vlková, Barbora; Celec, Peter

    2017-04-01

    The etiology of preeclampsia is unclear. Fetal DNA is present in higher concentrations in the plasma of pregnant women suffering from preeclampsia than in the plasma of healthy pregnant women. A previously published study has shown that human fetal DNA injected into pregnant mice induces preeclampsia-like symptoms when administered between gestation days 10-14. The aim of our experiment was to determine whether or not similar effects would be induced by administration of human and mouse fetal DNA, as well as mouse adult DNA and lipopolysaccharide during late pregnancy in the mouse. Experimental animals were injected daily intraperitoneally during gestation days 14-18 with either saline - negative control, lipopolysaccharide - positive control, or various types of DNA. On gestation day 19, blood pressure and proteinuria were measured, and placental and fetal weights were recorded. Fetal and placental hypotrophy were induced only by lipopolysaccharide (p < 0.001). Neither fetal nor adult DNA induced changes in fetal/placental weight. None of the experimental groups had higher blood pressure or urinary protein in comparison to saline treated animals. In our experiment, we found that there was no effect from intraperitoneally injected human fetal DNA, mouse fetal DNA, or mouse adult DNA on pregnant mice. Additionally, relatively high doses of various types of DNA did not induce preeclampsia-like symptoms in mice when administered in late pregnancy. Our negative results support the hypothesis that the increase of fetal DNA circulating in maternal circulation during the third trimester is rather a consequence than a cause of preeclampsia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Establishing Mouse Models for Zika Virus-induced Neurological Disorders Using Intracerebral Injection Strategies: Embryonic, Neonatal, and Adult.

    PubMed

    Herrlinger, Stephanie A; Shao, Qiang; Ma, Li; Brindley, Melinda; Chen, Jian-Fu

    2018-04-26

    The Zika virus (ZIKV) is a flavivirus currently endemic in North, Central, and South America. It is now established that the ZIKV can cause microcephaly and additional brain abnormalities. However, the mechanism underlying the pathogenesis of ZIKV in the developing brain remains unclear. Intracerebral surgical methods are frequently used in neuroscience research to address questions about both normal and abnormal brain development and brain function. This protocol utilizes classical surgical techniques and describes methods that allow one to model ZIKV-associated human neurological disease in the mouse nervous system. While direct brain inoculation does not model the normal mode of virus transmission, the method allows investigators to ask targeted questions concerning the consequence after ZIKV infection of the developing brain. This protocol describes embryonic, neonatal, and adult stages of intraventricular inoculation of ZIKV. Once mastered, this method can become a straightforward and reproducible technique that only takes a few hours to perform.

  18. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  19. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    PubMed

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  20. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    PubMed Central

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  1. Isolation and culture of adult mouse vestibular nucleus neurons

    PubMed

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  2. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    PubMed

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application.

    PubMed

    Kielbik, Paula; Kaszewski, Jaroslaw; Rosowska, Julita; Wolska, Ewelina; Witkowski, Bartłomiej S; Gralak, Mikolaj A; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michal M

    2017-04-01

    Biodegradable zinc oxide nanoparticles (ZnO NPs) are considered promising materials for future biomedical applications. To fulfil this potential, biodistribution and elimination patterns of ZnO NPs in the living organism need to be resolved. In order to investigate gastrointestinal absorption of ZnO NPs and their intra-organism distribution, water suspension of ZnO or fluorescent ZnO:Eu (Europium-doped zinc oxide) NPs (10mg/ml; 0.3ml/mouse) was alimentary-administered (IG: intra-gastric) to adult mice. Internal organs collected at key time-points after IG were evaluated by AAS for Zn concentration and analysed by cytometric techniques. We found that Zn-based NPs were readily absorbed and distributed (3 h post IG) in the nanoparticle form throughout the organism. Results suggest, that liver and kidneys were key organs responsible for NPs elimination, while accumulation was observed in the spleen and adipose tissues. We also showed that ZnO/ZnO:Eu NPs were able to cross majority of biological barriers in the organism (including blood-brain-barrier). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary

    PubMed Central

    Liu, Zhong; Hu, Zhe; Pan, Xinghua; Li, Minshu; Togun, Taiwo A.; Tuck, David; Pelizzola, Mattia; Huang, Junjiu; Ye, Xiaoying; Yin, Yu; Liu, Mengyuan; Li, Chao; Chen, Zhisheng; Wang, Fang; Zhou, Lingjun; Chen, Lingyi; Keefe, David L.; Liu, Lin

    2011-01-01

    Parthenogenetic embryonic stem cells (pESCs) have been generated in several mammalian species from parthenogenetic embryos that would otherwise die around mid-gestation. However, previous reports suggest that pESCs derived from in vivo ovulated (IVO) mature oocytes show limited pluripotency, as evidenced by low chimera production, high tissue preference and especially deficiency in germline competence, a critical test for genetic integrity and pluripotency of ESCs. Here, we report efficient generation of germline-competent pESC lines (named as IVM pESCs) from parthenogenetic embryos developed from immature oocytes of adult mouse ovaries following in vitro maturation (IVM) and artificial activation. In contrast, pESCs derived from IVO oocytes show defective germline competence, consistent with previous reports. Further, IVM pESCs resemble more ESCs from fertilized embryos (fESCs) than do IVO pESCs on genome-wide DNA methylation and global protein profiles. In addition, IVM pESCs express higher levels of Blimp1, Lin28 and Stella, relative to fESCs, and in their embryoid bodies following differentiation. This may indicate differences in differentiation potentially to the germline. The mechanisms for acquisition of pluripotency and germline competency of IVM pESCs from immature oocytes remain to be determined. PMID:21239471

  5. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    PubMed

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  6. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.

    PubMed

    Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel

    2007-10-01

    Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.

  7. Evaluating the behavior of cultured sertoli cells in the presence and absence of spermatogonial stem cell

    PubMed Central

    Jabarpour, Masoome

    2018-01-01

    Background The complex process of spermatogenesis is regulated by various factors. Several studies have been conducted to proliferate cells involved in the spermatogenesis process, in culture by used growth factors, different hormones and feeder cells. This study was conducted to evaluate the role of Sertoli cells on gene expression of fibroblast growth factor (FGF2) and glial cell derived neurotrophic factor (GDNF) after removal of spermatogonial stem cells (SSCs) from the culture medium. Methods Following isolation, bovine SSCs were co-cultured with Sertoli cells and follicular stimulating hormone (FSH) for 12 days. In the treatment group, SSCs were removed from the culture medium; in the control group no intervention was done in the culture. Colony formation of SSCs was evaluated by using an inverted microscope. Then, the expression of factors genes were assessed by quantitative RT-PCR. Data was analyzed by using paired-samples t-test. Results The results showed that removal of SSCs led to the increase in expression of GDNF and FGF2. These findings suggest that loss of SSCs population or decline in its population leads to changing in behavior of somatic cells which forming niche and consequently stimulates self-renewal and inhibits differentiation of SSCs. Conclusions The present study showed that removal of SSCs from the culture medium could be a model for damage to SSCs; the results revealed that niche cells respond to SSCs removal by upregulation of FGF2 and GDNF to stimulate self-renewal of SSCs and abrogation of differentiation. PMID:29430457

  8. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.

    PubMed

    Khlghatyan, Jivan; Saghatelyan, Armen

    2012-09-12

    the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains.

  9. Development of a novel mouse glioma model using lentiviral vectors

    PubMed Central

    Marumoto, Tomotoshi; Tashiro, Ayumu; Friedmann-Morvinski, Dinorah; Scadeng, Miriam; Soda, Yasushi; Gage, Fred H; Verma, Inder M

    2009-01-01

    We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice. PMID:19122659

  10. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  11. Inducible and Conditional Deletion of Extracellular Signal-regulated Kinase 5 Disrupts Adult Hippocampal Neurogenesis*

    PubMed Central

    Pan, Yung-Wei; Zou, Junhui; Wang, Wenbin; Sakagami, Hiroyuki; Garelick, Michael G.; Abel, Glen; Kuo, Chay T.; Storm, Daniel R.; Xia, Zhengui

    2012-01-01

    Recent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is selectively expressed in the neurogenic regions of the adult mouse brain. We present evidence that shRNA suppression of ERK5 in adult hippocampal neural stem/progenitor cells (aNPCs) reduces the number of neurons while increasing the number of cells expressing markers for stem/progenitor cells or proliferation. Furthermore, shERK5 attenuates both transcription and neuronal differentiation mediated by Neurogenin 2, a transcription factor expressed in adult hippocampal neural progenitor cells. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, promotes neurogenesis in cultured aNPCs and in the dentate gyrus of the mouse brain. Moreover, neurotrophins including NT3 activate ERK5 and stimulate neuronal differentiation in aNPCs in an ERK5-dependent manner. Finally, inducible and conditional deletion of ERK5 specifically in the neurogenic regions of the adult mouse brain delays the normal progression of neuronal differentiation and attenuates adult neurogenesis in vivo. These data suggest ERK5 signaling as a critical regulator of adult hippocampal neurogenesis. PMID:22645146

  12. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    PubMed

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  13. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    PubMed Central

    Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.

    2017-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap

  14. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers.

    PubMed

    Heidari, Banafsheh; Rahmati-Ahmadabadi, Maryam; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan; Jeddi-Tehrani, Mahmood; Shirazi, Abolfazl; Naderi, Mohammad Mehdi; Behzadi, Bahareh

    2012-10-01

    Presently the techniques for making transgenic animals are cumbersome, required costly instruments and trained man-power. The ability of spermatogonial stem cells (SSCs) to integrate foreign genes has provided the opportunity for developing alternate methods for generation of transgenic animals. One of the big challenges in this field is development of the methods to identify and purify donor SSCs by antibody mediated cell sorting. The present study was aimed to identify goat subpopulations of SSCs using polyclonal antibodies against PGP9.5 and c-kit molecular markers as well as the growth characteristics of SSCs during short term culture. One month old goats' testicular samples were subjected for immunohistochemical and immunocytochemical evaluations. The enzymatically isolated SSCs were cultured in DMEM plus FCS supplemented with (treatment) or without (control) growth factors (GDNF, LIF, FGF, and EGF) for 2 weeks. At the end of culture the morphological characteristics of SSCs colonies and immunocytochemical staining were evaluated. The number and size of colonies in treatment groups were significantly (P < 0.01) higher than corresponding values in controls. The presence of PGP 9.5 and c-kit antigens was confirmed in immunocytochemical evaluation. In immunocytochemical evaluation, the proportion of c-kit and PGP9.5 positive cells were significantly (P < 0.001) higher in control and treatment groups, respectively. The presence of PGP9.5 and c-kit antigens was confirmed in goat SSCs. Moreover, culture medium supplementation with growth factors could effectively retain the undifferentiation status of SSCs, reflected as a higher population of PGP9.5 positive cells, after short term culture.

  15. An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways *

    PubMed Central

    Choi, Jong Min; Rousseaux, Maxime W. C.; Malovannaya, Anna; Kim, Jean J.; Kutzera, Joachim; Wang, Yi; Huang, Yin; Zhu, Weimin; Maity, Suman; Zoghbi, Huda Yahya; Qin, Jun

    2017-01-01

    Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/. PMID:28153913

  16. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    PubMed Central

    Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.

    2015-01-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  17. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    PubMed

    Xiong, Xiaolu; Zhong, Anyuan; Xu, Huajun

    2014-01-01

    Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  18. Development and function of human innate immune cells in a humanized mouse model.

    PubMed

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  19. Development and function of human innate immune cells in a humanized mouse model

    PubMed Central

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  20. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study

  1. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling

    PubMed Central

    Yu, Zhi-Bin; Wei, Hongguang

    2012-01-01

    Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213–C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97–H105, 2010). Here we characterized Ca2+-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca2+ was unchanged, but the peak Ca2+ transient was lowered and the durations of Ca2+ rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca2+ transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca2+, resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences. PMID:22538236

  2. Patterning by heritage in mouse molar row development.

    PubMed

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-08-31

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.

  3. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  4. Hericium erinaceus Extract Reduces Anxiety and Depressive Behaviors by Promoting Hippocampal Neurogenesis in the Adult Mouse Brain.

    PubMed

    Ryu, Sun; Kim, Hyoun Geun; Kim, Joo Youn; Kim, Seong Yun; Cho, Kyung-Ok

    2018-02-01

    Versatile biological activities of Hericium erinaceus (HE) have been reported in many brain diseases. However, roles of HE in major psychiatric disorders such as depression and anxiety remain to be investigated. Therefore, we evaluated whether HE could reduce anxiety and depressive behaviors in the adult mouse and its underlying mechanisms. Male C57BL/6 mice were administered HE (20 or 60 mg/kg, p.o.) or saline once a day for 4 weeks. Open field and tail suspension tests were performed 30 min after the last administration of HE, followed by forced swim test 2 days later. We found that chronic administration of HE showed anxiolytic and antidepressant-like effects. To elucidate possible mechanisms, proliferative activity of the hippocampal progenitor cells was assessed by immunohistochemistry of proliferating cell nuclear antigen (PCNA) and Ki67. Moreover, to evaluate neuronal survival in the dentate gyrus, 5-bromo-2'-deoxyuridine (BrdU) (120 mg/kg, i.p.) was given at the first day of HE administration, followed by isolation of the brains 4 weeks later. HE (60 mg/kg) increased the number of PCNA- and Ki67-positive cells in the subgranular zone of the hippocampus, indicating increased proliferation of hippocampal progenitors. In addition, BrdU- and BrdU/NeuN-positive cells in the dentate gyrus were significantly increased when treated with HE (60 mg/kg) compared with the saline-treated group, demonstrating enhanced neurogenesis by HE treatment. Taken together, the results indicate that chronic HE administration can exert anxiolytic and antidepressant-like effects, possibly by enhancing adult hippocampal neurogenesis.

  5. The scarless heart and the MRL mouse.

    PubMed

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-05-29

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.

  6. Centralized mouse repositories.

    PubMed

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  7. Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse

    PubMed Central

    Vrooman, Lisa A.; Bartolomei, Marisa S.

    2016-01-01

    Millions of children have been born worldwide though assisted reproductive technologies (ART). Consistent with the Developmental Origins of Health and Disease hypothesis, there is concern that ART can induce adverse effects, especially because procedures coincide with epigenetic reprogramming events. Although the majority of studies investigating the effects of ART have focused on perinatal outcomes, more recent studies demonstrate that ART-conceived children may be at increased risk for postnatal effects. Here, we present the current epidemiological evidence that ART-conceived children have detectable differences in blood pressure, body composition, and glucose homeostasis. Similar effects are observed in the ART mouse model, which have no underlying infertility, suggesting that cardiometabolic effects are likely caused by ART procedures and not due to reasons related to infertility. We propose that the mouse system can, consequently, be used to adequately study, modify, and improve outcomes for ART children. PMID:27474254

  8. Mouse embryonic head as a site for hematopoietic stem cell development.

    PubMed

    Li, Zhuan; Lan, Yu; He, Wenyan; Chen, Dongbo; Wang, Jun; Zhou, Fan; Wang, Yu; Sun, Huayan; Chen, Xianda; Xu, Chunhong; Li, Sha; Pang, Yakun; Zhang, Guangzhou; Yang, Liping; Zhu, Lingling; Fan, Ming; Shang, Aijia; Ju, Zhenyu; Luo, Lingfei; Ding, Yuqiang; Guo, Wei; Yuan, Weiping; Yang, Xiao; Liu, Bing

    2012-11-02

    In the mouse embryo, the aorta-gonad-mesonephros (AGM) region is considered to be the sole location for intraembryonic emergence of hematopoietic stem cells (HSCs). Here we report that, in parallel to the AGM region, the E10.5-E11.5 mouse head harbors bona fide HSCs, as defined by long-term, high-level, multilineage reconstitution and self-renewal capacity in adult recipients, before HSCs enter the circulation. The presence of hemogenesis in the midgestation head is indicated by the appearance of intravascular cluster cells and the blood-forming capacity of a sorted endothelial cell population. In addition, lineage tracing via an inducible VE-cadherin-Cre transgene demonstrates the hemogenic capacity of head endothelium. Most importantly, a spatially restricted lineage labeling system reveals the physiological contribution of cerebrovascular endothelium to postnatal HSCs and multilineage hematopoiesis. We conclude that the mouse embryonic head is a previously unappreciated site for HSC emergence within the developing embryo. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer.

    PubMed

    Kishigami, Satoshi; Bui, Hong-Thuy; Wakayama, Sayaka; Tokunaga, Kenzo; Van Thuan, Nguyen; Hikichi, Takafusa; Mizutani, Eiji; Ohta, Hiroshi; Suetsugu, Rinako; Sata, Tetsutaro; Wakayama, Teruhiko

    2007-02-01

    Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the "clonable" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally "unclonable" strains.

  10. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  11. Gender markedly modulates behavioral thermoregulation in a non-human primate species, the mouse lemur (Microcebus murinus).

    PubMed

    Terrien, J; Perret, M; Aujard, F

    2010-11-02

    Age and gender are known to significantly modulate thermoregulatory capacities in mammals, suggesting strong impacts on behavioral adjustments, which are used to minimize the energy costs of thermoregulation. We tested the effects of sex and age on spontaneous choice of ambient temperature (Ta) in a non-human primate species, the mouse lemur (Microcebus murinus). The animals acclimated to both winter and summer photoperiods, two seasons significantly modifying thermoregulation function, were experimented in a thermal gradient device. During winter, adult males did not show preference for warm Tas whereas old males did. In contrast, female mouse lemurs of both age categories exhibited great preferences for warm Tas. Acclimation to summer revealed that males selected colder Ta for the day than during the night. Such behavior did not exist in females. Old females explored and selected warmer nests than adult ones. This study raised novel issues on the effect of gender on thermoregulatory capacities in the mouse lemur. Females probably use behavioral adjustments to limit energy expenditure and might prefer to preserve energy for maternal investment by anticipation of and during the breeding season. Further experiments focusing on female thermoregulatory capacities are needed to better understand the energy challenge that may occur during winter and summer in female mouse lemurs, and whether this trade-off changes during aging. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  13. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  14. Identification of a set of genes showing regionally enriched expression in the mouse brain.

    PubMed

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M

    2008-07-14

    The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  15. Isolation Efficiency of Mouse Pancreatic Stem Cells Is Age Dependent.

    PubMed

    Kuise, Takashi; Noguchi, Hirofumi; Saitoh, Issei; Kataoka, Hitomi Usui; Watanabe, Masami; Noguchi, Yasufumi; Fujiwara, Toshiyoshi

    2013-11-10

    Mouse pancreatic stem cells have been isolated from mouse pancreata. This study evaluated the efficacy of isolating mouse pancreatic stem cells using mice of different ages. The pancreata of newborn mice, 8-week-old mice, and 24-week-old mice were harvested and digested by using collagenase. The "duct-like" cells in the digested pancreatic tissue were then inoculated into 96-well plates, cloned by limiting dilution, and cultured in DMEM with 20% FBS. Pancreatic stem cells were isolated from the pancreata of all newborn mice, while cells could only be isolated from 10% of the pancreata of 8-week-old mice and could not be isolated from the pancreata of any 24-week-old mice. These data suggest that young mice may have some pancreatic stem cells and that older mice may only have a few pancreatic stem cells. These data also indicate that it is extremely difficult to isolate pancreatic stem cells from older mice, suggesting that future research focus its efforts on finding methods of isolating pancreatic stem cells from adult mice.

  16. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  17. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome

    PubMed Central

    Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.

    2016-01-01

    Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral

  18. Accuracy of a Mouse Bioassay for the Diagnosis of Botulism in Horses.

    PubMed

    Johnson, A L; McAdams-Gallagher, S C; Aceto, H

    2016-07-01

    The laboratory diagnosis of botulism in horses traditionally has relied upon the mouse bioassay (MBA). The accuracy of this test for the diagnosis of botulism in horses is unknown. Our goal was to determine the sensitivity, specificity, positive predictive value, and negative predictive value of the MBA on laboratory-processed fecal and gastrointestinal samples for foals and adult horses. Cases included all horses with a final clinical diagnosis of botulism that were admitted between 1986 and 2011 and had MBA testing performed. Controls included horses without botulism that were admitted during the same time period and had MBA testing performed. Retrospective study. Horses suspected of having botulism had fecal or (less commonly) gastrointestinal content samples tested using MBA. For every hospitalized botulism suspect, control samples were obtained from ≥1 additional hospitalized horses not suspected to have botulism. One hundred and twenty-nine adult horses and 253 adult controls were identified. Overall sensitivity of the MBA was only 32% but specificity was 97%. Forty-three foal cases and 21 foal controls were evaluated; sensitivity of the MBA was 53% and specificity was 100%. Positive predictive value was substantially higher (100% for foals and 89% for adults) than negative predictive value (51% for foals and 67% for adults). Mouse bioassay has low sensitivity but high specificity for the diagnosis of botulism in horses. Positive results are highly suggestive of botulism but negative results do not exclude the diagnosis. Unaffected horses and foals rarely shed C. botulinum in their feces. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Young Children's Skill in Using a Mouse to Control a Graphical Computer Interface.

    ERIC Educational Resources Information Center

    Crook, Charles

    1992-01-01

    Describes a study that investigated the performance of preschoolers and children in the first three years of formal education on tasks that involved skills using a mouse-based control of a graphical computer interface. The children's performance is compared with that of novice adult users and expert users. (five references) (LRW)

  20. Mouse Curve Biometrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  1. Evaluation of the effect of follicular stimulating hormone on the in vitro bovine spermatogonial stem cells self-renewal: An experimental study

    PubMed Central

    Jabarpour, Masoome; Tajik, Parviz

    2017-01-01

    Background: Spermatogonial stem cells (SSCs) are undifferentiated cells which are highly reproducible and expandable. Several studies have been conducted to reproduce these cells in culture. They used growth factors, hormones and different feeder cells to improve survival and proliferation of SSCs. Objective: This study was conducted to evaluate the effects of follicular stimulating hormone (FSH) on gene expression of fibroblast growth factor (FGF2) and glial cell-derived neurotrophic factor (GDNF) in Sertoli cells. Materials and Methods: Sertoli cells and SSCs were isolated from 3-5 month-old calves. Bovine testicular cells were cultured for 15 days with or without FSH. Identification of these cells was confirmed by immunocytochemistry analysis. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of FGF2 and GDNF and the gene markers bcl6b, thy-1, and C-kit were evaluated using the quantitative RT-PCR technique. Results: The results indicated that FSH increased colonization of SSCs. the expression of GDNF, FGF2, and markers of undifferentiated spermatogonia was increased following culture in control and FSH groups (p<0.05), this increase was more in FSH group. Conversely, the expression of C-kit was decreased in both groups (p<0.05). Conclusion: The results showed that FSH can increase the self-renewal of SSCs in vitro via upregulation of GDNF and FGF2 expression in Sertoli cells. PMID:29492477

  2. Not GABA but glycine mediates segmental, propriospinal, and bulbospinal postsynaptic inhibition in adult mouse spinal forelimb motor neurons.

    PubMed

    Jiang, Juan; Alstermark, Bror

    2015-02-04

    The general view is that both glycine (Eccles, 1964) and GABA (Curtis and Felix, 1971) evoke postsynaptic inhibition in spinal motor neurons. In newborn or juvenile animals, there are conflicting results showing postsynaptic inhibition in motor neurons by corelease of GABA and glycine (Jonas et al., 1998) or by glycine alone (Bhumbra et al., 2012). To resolve the relative contributions of GABA and glycine to postsynaptic inhibition, we performed in vivo intracellular recordings from forelimb motor neurons in adult mice. Postsynaptic potentials evoked from segmental, propriospinal, and bulbospinal systems in motor neurons were compared across four different conditions: control, after gabazine, gabazine followed by strychnine, and strychnine alone. No significant differences were observed in the proportion of IPSPs and EPSPs between control and gabazine conditions. In contrast, EPSPs but not IPSPs were recorded after adding strychnine with gabazine or administering strychnine alone, suggesting an exclusive role for glycine in postsynaptic inhibition. To test whether the injected (intraperitoneal) dose of gabazine blocked GABAergic inhibitory transmission, we evoked GABAA receptor-mediated monosynaptic IPSPs in deep cerebellar nuclei neurons by stimulation of Purkinje cell fibers. No monosynaptic IPSPs could be recorded in the presence of gabazine, showing the efficacy of gabazine treatment. Our results demonstrate that, in the intact adult mouse, the postsynaptic inhibitory effects in spinal motor neurons exerted by three different systems, intrasegmental and intersegmental as well as supraspinal, are exclusively glycinergic. These findings emphasize the importance of glycinergic postsynaptic inhibition in motor neurons and challenge the view that GABA also contributes. Copyright © 2015 the authors 0270-6474/15/351991-08$15.00/0.

  3. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  4. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  5. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  6. Distinct spatiotemporal expression of ISM1 during mouse and chick development.

    PubMed

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.

  7. Distinct spatiotemporal expression of ISM1 during mouse and chick development

    PubMed Central

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain–hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species. PMID:24675886

  8. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting.

    PubMed

    Ackermann, Amanda M; Zhang, Jia; Heller, Aryel; Briker, Anna; Kaestner, Klaus H

    2017-03-01

    α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreER T2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. We utilized CRISPR-Cas9 technology to insert an IRES-CreER T2 sequence into the 3' UTR of the Glucagon ( Gcg ) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreER T2 mice. Recombination efficiency in GCG + pancreatic α-cells and glucagon-like peptide 1 positive (GLP1 + ) enteroendocrine L-cells was measured in Gcg-CreER T2 ; Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Tamoxifen injection of Gcg-CreER T2 ; Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreER T2 allele were phenotypically normal. We successfully derived a Gcg-CreER T2 mouse line that expresses CreER T2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing

  9. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    PubMed

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Characteristics of taurine release in slices from adult and developing mouse brain stem.

    PubMed

    Saransaari, P; Oja, S S

    2006-07-01

    Taurine has been thought to function as a regulator of neuronal activity, neuromodulator and osmoregulator. Moreover, it is essential for the development and survival of neural cells and protects them under cell-damaging conditions. Taurine is also involved in many vital functions regulated by the brain stem, including cardiovascular control and arterial blood pressure. The release of taurine has been studied both in vivo and in vitro in higher brain areas, whereas the mechanisms of release have not been systematically characterized in the brain stem. The properties of release of preloaded [(3)H]taurine were now characterized in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. In general, taurine release was found to be similar to that in other brain areas, consisting of both Ca(2+)-dependent and Ca(2+)-independent components. Moreover, the release was mediated by Na(+)-, Cl(-)-dependent transporters operating outwards, as both Na(+)-free and Cl(-) -free conditions greatly enhanced it. Cl(-) channel antagonists and a Cl(-) transport inhibitor reduced the release at both ages, indicating that a part of the release occurs through ion channels. Protein kinases appeared not to be involved in taurine release in the brain stem, since substances affecting the activity of protein kinase C or tyrosine kinase had no significant effects. The release was modulated by cAMP second messenger systems and phospholipases at both ages. Furthermore, the metabotropic glutamate receptor agonists likewise suppressed the K(+)-stimulated release at both ages. In the immature brain stem, the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release in a receptor-mediated manner. This could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.

  12. Echocardiographic and Histological Examination of Cardiac Morphology in the Mouse.

    PubMed

    Baudouy, Delphine; Michiels, Jean-François; Vukolic, Ana; Wagner, Kay-Dietrich; Wagner, Nicole

    2017-10-26

    An increasing number of genetically modified mouse models has become available in recent years. Moreover, the number of pharmacological studies performed in mice is high. Phenotypic characterization of these mouse models also requires the examination of cardiac function and morphology. Echocardiography and magnetic resonance imaging (MRI) are commonly used approaches to characterize cardiac function and morphology in mice. Echocardiographic and MRI equipment specialized for use in small rodents is expensive and requires a dedicated space. This protocol describes cardiac measurements in mice using a clinical echocardiographic system with a 15 MHz human vascular probe. Measurements are performed on anesthetized adult mice. At least three image sequences are recorded and analyzed for each animal in M-mode in the parasternal short-axis view. Afterwards, cardiac histological examination is performed, and cardiomyocyte diameters are determined on hematoxylin-eosin- or wheat germ agglutinin (WGA)-stained paraffin sections. Vessel density is determined morphometrically after Pecam-1 immunostaining. The protocol has been applied successfully to pharmacological studies and different genetic animal models under baseline conditions, as well as after experimental myocardial infarction by the permanent ligation of the left anterior descending coronary artery (LAD). In our experience, echocardiographic investigation is limited to anesthetized animals and is feasible in adult mice weighing at least 25 g.

  13. Uncompensated polyuria in a mouse model of Bartter's syndrome

    PubMed Central

    Takahashi, Nobuyuki; Chernavvsky, Daniel R.; Gomez, R. Ariel; Igarashi, Peter; Gitelman, Hillel J.; Smithies, Oliver

    2000-01-01

    We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney. PMID:10779555

  14. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines.

    PubMed

    Majhi, Sullip K; Hattori, Ricardo S; Yokota, Masashi; Watanabe, Seiichi; Strüssmann, Carlos A

    2009-07-02

    The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC) proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT) in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae), were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg) and high water temperature (25 degrees C) treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2-13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species.

  16. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring.

    PubMed

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Metges, Cornelia C

    2016-04-01

    Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.

  17. Identification of the human homolog of the imprinted mouse Air non-coding RNA

    PubMed Central

    Yotova, Iveta Y.; Vlatkovic, Irena M.; Pauler, Florian M.; Warczok, Katarzyna E.; Ambros, Peter F.; Oshimura, Mitsuo; Theussl, Hans-Christian; Gessler, Manfred; Wagner, Erwin F.; Barlow, Denise P.

    2010-01-01

    Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse. PMID:18789384

  18. [Comparative ultrastructural study of parotid gland, lacrimal gland and pituitary gland between miniature pig and mouse].

    PubMed

    Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling

    2009-02-01

    To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.

  19. Mouse TCOF1 is expressed widely, has motifs conserved in nucleolar phosphoproteins, and maps to chromosome 18.

    PubMed

    Paznekas, W A; Zhang, N; Gridley, T; Jabs, E W

    1997-09-08

    Mutations in the human TCOF1 gene have been identified in patients with Treacher Collins Syndrome (Mandibulofacial Dysostosis), an autosomal dominant condition affecting the craniofacial region. We report the isolation of the entire mouse Tcof1 coding sequence (3960 bp) by performing a computer-based search for mouse cDNA clones homologous to TCOF1 and generating overlapping RT-PCR products from mouse RNA. Tcof1 is a 1320 amino acid protein of 135 kd with 61.4% identity to TCOF1 and displays repeating motifs enriched for serine- and acidic amino acid-rich regions with potential phosphorylation sites and putative nuclear localization signals. Tcof1 maps to the mouse chromosome 18 region syntenic with human chromosome 5q32-->q33 which contains the TCOF1 locus. Northern blot hybridization indicates Tcof1 expression is ubiquitous in adult tissues and in the embryonic stage, is elevated at 11 dpc when the branchial arches and facial swellings are present in mouse. Our results are consistent with TCOF1 mutations leading to the Treacher Collins syndrome phenotype.

  20. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate.

    PubMed

    Okubo, Tadashi; Clark, Cheryl; Hogan, Brigid L M

    2009-02-01

    The epithelium of the mouse tongue and soft palate consists of at least three distinct epithelial cell populations: basal cells, keratinized cells organized into filiform and fungiform papillae, and taste receptor cells present in tight clusters known as taste buds in the fungiform and circumvallate papillae and soft palate. All three cell types develop from the simple epithelium of the embryonic tongue and palate, and are continually replaced in the adult by cell turnover. Previous studies using pulse-chase tritiated thymidine labeling in the adult mouse provided evidence for a high rate of cell turnover in the keratinocytes (5-7 days) and taste buds (10 days). However, little is known about the localization and phenotype of the long-term stem or progenitor cells that give rise to the mature taste bud cells and surrounding keratinocytes in these gustatory tissues. Here, we make use of a tamoxifen-inducible K14-CreER transgene and the ROSA26 LacZ reporter allele to lineage trace the mature keratinocytes and taste bud cells of the early postnatal and adult mouse tongue and soft palate. Our results support the hypothesis that both the pore keratinocytes and receptor cells of the taste bud are derived from a common K14(+)K5(+)Trp63(+)Sox2(+) population of bipotential progenitor cells located outside the taste bud. The results are also compatible with models in which the keratinocytes of the filiform and fungiform papillae are derived from basal progenitor cells localized at the base of these structures.

  1. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  2. Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain.

    PubMed

    Ashe, Karen M; Chiu, Wan-Ling; Khalifa, Ahmed M; Nicolas, Antoine N; Brown, Bonnie L; De Martino, Randall R; Alexander, Clayton P; Waggener, Christopher T; Fischer-Stenger, Krista; Stewart, Jennifer K

    2011-01-01

    Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal. VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity. Immunoreactive proteins were examined on western blots probed with four different antibodies to VMAT-1. Sequencing confirmed identity of the entire coding sequences of VMAT-1 cDNA from mouse medulla oblongata/pons and adrenal to a Gen-Bank reference sequence. Transfection of the brain cDNA into COS-1 cells resulted in transporter activity that was blocked by the VMAT inhibitor reserpine and a proton ionophore, but not by tetrabenazine, which has a high affinity for VMAT-2. Antibodies to either the C- or N- terminus of VMAT-1 detected two proteins (73 and 55 kD) in transfected COS-1 cells. The C-terminal antibodies detected both proteins in extracts of mouse medulla/pons, cortex, hypothalamus, and cerebellum but only the 73 kD protein and higher molecular weight immunoreactive proteins in mouse adrenal and rat PC12 cells, which are positive controls for rodent VMAT-1. These findings demonstrate that a functional VMAT-1 mRNA coding sequence is expressed in mouse brain and suggest processing of VMAT-1 protein differs in mouse adrenal and brain.

  3. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  4. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case

  5. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    PubMed

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  6. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs

    PubMed Central

    Barrera, Leah O.; Li, Zirong; Smith, Andrew D.; Arden, Karen C.; Cavenee, Webster K.; Zhang, Michael Q.; Green, Roland D.; Ren, Bing

    2008-01-01

    By integrating genome-wide maps of RNA polymerase II (Polr2a) binding with gene expression data and H3ac and H3K4me3 profiles, we characterized promoters with enriched activity in mouse embryonic stem cells (mES) as well as adult brain, heart, kidney, and liver. We identified ∼24,000 promoters across these samples, including 16,976 annotated mRNA 5′ ends and 5153 additional sites validating cap-analysis of gene expression (CAGE) 5′ end data. We showed that promoters with CpG islands are typically non-tissue specific, with the majority associated with Polr2a and the active chromatin modifications in nearly all the tissues examined. By contrast, the promoters without CpG islands are generally associated with Polr2a and the active chromatin marks in a tissue-dependent way. We defined 4396 tissue-specific promoters by adapting a quantitative index of tissue-specificity based on Polr2a occupancy. While there is a general correspondence between Polr2a occupancy and active chromatin modifications at the tissue-specific promoters, a subset of them appear to be persistently marked by active chromatin modifications in the absence of detectable Polr2a binding, highlighting the complexity of the functional relationship between chromatin modification and gene expression. Our results provide a resource for exploring promoter Polr2a binding and epigenetic states across pluripotent and differentiated cell types in mammals. PMID:18042645

  7. Adult-Onset Fluoxetine Treatment Does Not Improve Behavioral Impairments and May Have Adverse Effects on the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Heinen, Markus; Hettich, Moritz M.; Ryan, Devon P.; Schnell, Susanne; Paesler, Katharina; Ehninger, Dan

    2012-01-01

    Down syndrome is caused by triplication of chromosome 21 and is associated with neurocognitive phenotypes ranging from severe intellectual disability to various patterns of more selective neuropsychological deficits, including memory impairments. In the Ts65Dn mouse model of Down syndrome, excessive GABAergic neurotransmission results in local over-inhibition of hippocampal circuits, which dampens hippocampal synaptic plasticity and contributes to cognitive impairments. Treatments with several GABAA receptor antagonists result in increased plasticity and improved memory deficits in Ts65Dn mice. These GABAA receptor antagonists are, however, not suitable for clinical applications. The selective serotonin reuptake inhibitor fluoxetine, in contrast, is a widely prescribed antidepressant that can also enhance plasticity in the adult rodent brain by lowering GABAergic inhibition. For these reasons, we wondered if an adult-onset 4-week oral fluoxetine treatment restores spatial learning and memory impairments in Ts65Dn mice. Fluoxetine did not measurably improve behavioral impairments of Ts65Dn mice. On the contrary, we observed seizures and mortality in fluoxetine-treated Ts65Dn mice, raising the possibility of a drug × genotype interaction with respect to these adverse treatment outcomes. Future studies should re-address this in larger animal cohorts and determine if fluoxetine treatment is associated with adverse treatment effects in individuals with Down syndrome. PMID:22848851

  8. Effect of Removal of Spermatogonial Stem Cells (SSCs) from In Vitro Culture on Gene Expression of Niche Factors in Bovine

    PubMed Central

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    Background: Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. Methods: Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. Results: SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). Conclusion: In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation. PMID:27563426

  9. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    PubMed

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  10. [Effect of Tribulus terrestris extract on melanocyte-stimulating hormone expression in mouse hair follicles].

    PubMed

    Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan

    2006-12-01

    To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (P<0.01). The aqueous extract of Tribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.

  11. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  12. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  13. Reconstruction of Mouse Testicular Cellular Microenvironments in Long-Term Seminiferous Tubule Culture

    PubMed Central

    Mäkelä, Juho-Antti; Toppari, Jorma; Rivero-Müller, Adolfo; Ventelä, Sami

    2014-01-01

    Research on spermatogonia is hampered by complex architecture of the seminiferous tubule, poor viability of testicular tissue ex vivo and lack of physiologically relevant long-term culture systems. Therefore there is a need for an in vitro model that would enable long term survival and propagation of spermatogonia. We aimed at the most simplified approach to enable all different cell types within the seminiferous tubules to contribute to the creation of a niche for spermatogonia. In the present study we describe the establishment of a co-culture of mouse testicular cells that is based on proliferative and migratory activity of seminiferous tubule cells and does not involve separation, purification or differential plating of individual cell populations. The co-culture is composed of the constituents of testicular stem cell niche: Sertoli cells [identified by expression of Wilm's tumour antigen 1 (WT1) and secretion of glial cell line-derived neurotrophic factor, GDNF], peritubular myoid cells (expressing alpha smooth muscle actin, αSMA) and spermatogonia [expressing MAGE-B4, PLZF (promyelocytic leukaemia zinc finger), LIN28, Gpr125 (G protein-coupled receptor 125), CD9, c-Kit and Nanog], and can be maintained for at least five weeks. GDNF was found in the medium at a sufficient concentration to support proliferating spermatogonial stem cells (SSCs) that were able to start spermatogenic differentiation after transplantation to an experimentally sterile recipient testis. Gdnf mRNA levels were elevated by follicle-stimulating hormone (FSH) which shows that the Sertoli cells in the co-culture respond to physiological stimuli. After approximately 2–4 weeks of culture a spontaneous formation of cord-like structures was monitored. These structures can be more than 10 mm in length and branch. They are formed by peritubular myoid cells, Sertoli cells, fibroblasts and spermatogonia as assessed by gene expression profiling. In conclusion, we have managed to establish in

  14. Temporally and spatially controllable gene expression and knockout in mouse urothelium.

    PubMed

    Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru

    2010-08-01

    Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.

  15. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Maga, Murat; Mallitt, Kylie-Ann; Fahey, Paul; Cox, Timothy C; Whitelaw, Emma; Chong, Suyinn

    2010-01-15

    Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5-8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (A(vy)), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at A(vy). This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the A(vy) mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than A(vy), a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the A(vy) allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.

  16. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus.

    PubMed

    Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin

    2017-02-01

    Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland

    PubMed Central

    Catalán, Marcelo A.; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E.; Melvin, James E.

    2015-01-01

    Activation of an apical Ca2+-activated Cl− channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl− current and Cl− efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl− channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A−/−). Ca2+-dependent salivation was abolished in Tmem16A−/− mice, demonstrating that Tmem16A is obligatory for Ca2+-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A−/− mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr∆F508/∆F508) or ClC-2 (Clcn2−/−) Cl− channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl− channel. Indeed, Cl− channel blockers abolished fluid secretion, indicating that Cl− channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic–induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A−/− mice identify Tmem16A as the Cl− channel essential for muscarinic, Ca2+-dependent fluid secretion in adult mouse salivary glands. PMID:25646474

  18. Differences in Mouse and Human Non-Memory B Cell Pools1

    PubMed Central

    Benitez, Abigail; Weldon, Abby J.; Tatosyan, Lynnette; Velkuru, Vani; Lee, Steve; Milford, Terry-Ann; Francis, Olivia L.; Hsu, Sheri; Nazeri, Kavoos; Casiano, Carlos M.; Schneider, Rebekah; Gonzalez, Jennifer; Su, Rui-Jun; Baez, Ineavely; Colburn, Keith; Moldovan, Ioana; Payne, Kimberly J.

    2014-01-01

    Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Co-expression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. Here, we validate these markers for identifying analogous subsets in humans and use them to compare the non-memory B cell pools in mice and humans, across tissues, during fetal/neonatal and adult life. Among human CD19+IgM+ B cells, the CD21/CD24 schema identifies distinct populations that correspond to T1 (transitional 1), T2 (transitional 2), FM (follicular mature), and MZ (marginal zone) subsets identified in mice. Markers specific to human B cell development validate the identity of MZ cells and the maturation status of human CD21/CD24 non-memory B cell subsets. A comparison of the non-memory B cell pools in bone marrow (BM), blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the non-memory B cell pool in mouse BM where their frequency is more than twice that in humans. Conversely, in spleen the T1:T2 ratio shows that T2 cells are proportionally ∼8 fold higher in humans than mouse. Despite the relatively small contribution of transitional B cells to the human non-memory pool, the number of naïve FM cells produced per transitional B cell is 3-6 fold higher across tissues than in mouse. These data suggest differing dynamics or mechanisms produce the non-memory B cell compartments in mice and humans. PMID:24719464

  19. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro.

    PubMed

    Tommasi, Stella; Bates, Steven E; Behar, Rachel Z; Talbot, Prue; Besaratinia, Ahmad

    2017-10-01

    Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation.

    PubMed

    Bar, Ido; Smith, Andre; Bubner, Erin; Yoshizaki, Goro; Takeuchi, Yutaka; Yazawa, Ryosuke; Chen, Ben Nan; Cummins, Scott; Elizur, Abigail

    2016-10-01

    Germ cell transplantation is an innovative technology for the production of interspecies surrogates, capable of facilitating easier and more economical management of large-bodied broodstock, such as the bluefin tuna. The present study explored the suitability of yellowtail kingfish (Seriola lalandi) as a surrogate host for transplanted southern bluefin tuna (Thunnus maccoyii) spermatogonial cells to produce tuna donor-derived gametes upon sexual maturity. Germ cell populations in testes of donor T. maccoyii males were described using basic histology and the molecular markers vasa and dead-end genes. The peripheral area of the testis was found to contain the highest proportions of dead-end-expressing transplantable Type A spermatogonia. T. maccoyii Type A spermatogonia-enriched preparations were transplanted into the coelomic cavity of 6-10-day-old post-hatch S. lalandi larvae. Fluorescence microscopy and polymerase chain reaction analysis detected the presence of tuna cells in the gonads of the transplanted kingfish fingerlings at 18, 28, 39 and 75 days after transplantation, indicating that the transplanted cells migrated to the genital ridge and had colonised the developing gonad. T. maccoyii germ cell-derived DNA or RNA was not detected at later stages, suggesting that the donor cells were not maintained in the hosts' gonads.

  1. Cross state-dependency of learning between arachidonylcyclopropylamide (ACPA) and muscimol in the mouse dorsal hippocampus.

    PubMed

    Jafari-Sabet, Majid; Karimi, Amir-Mohammad

    2017-12-01

    The aim of the present study was to examine cross state-dependent learning between ACPA (a selective cannabinoid CB1 receptor agonist) and muscimol (a selective GABAA receptor agonist) in the step-down inhibitory avoidance learning task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended sites of injection. Post-training and/or pre-test administration of ACPA (1 and 2ng/mouse) dose-dependently induced amnesia. Pre-test microinjection of the same doses of ACPA reversed the post-training ACPA-induced amnesia. This event has been named ACPA state-dependent learning (SDL). Post-training and/or pre-test microinjection of muscimol (0.05 and 0.1μg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of muscimol reversed the post-training muscimol-induced amnesia, suggesting muscimol SDL. The amnesia induced by post-training administration of ACPA was reversed by pre-test administration of muscimol (0.05 and 0.1μg/mouse). Furthermore, the pre-test microinjection of muscimol (0.025 and 0.05μg/mouse) with an ineffective dose of ACPA (0.5ng/mouse) significantly restored memory retrieval and induced ACPA SDL. In another series of experiments, the amnesia induced by post-training administration of muscimol was reversed by pre-test administration of ACPA (1 and 2ng/mouse). Moreover, pre-test microinjection of ACPA (0.5 and 1ng/mouse) with an ineffective dose of muscimol (0.025μg/mouse) significantly restored memory retrieval and induced muscimol SDL. It is important to note that pre-test intra-CA1 injection of a selective GABAA receptor antagonist, bicuculline (0.125 and 0.25μg/mouse), 5min before the administration of muscimol (0.1μg/mouse) or ACPA (2ng/mouse) dose-dependently inhibited muscimol- and ACPA-induced SDL, respectively. Pre-test intra-CA1 administration of bicuculline (0.0625, 0.125 and 0.25μg/mouse) by itself did not affect memory retention

  2. Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.

    PubMed

    Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin

    2017-09-01

    Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.

  3. Absence of Vsx1 expression in the normal and damaged mouse cornea

    PubMed Central

    Chow, Robert L.

    2011-01-01

    Purpose To examine the expression of visual system homeobox 1 (Vsx1) in the mouse cornea and its potential role in the corneal wound response pathway. Methods Expression of Vsx1 was examined by quantitative reverse-transcription PCR (qRT–PCR) in corneal tissue from developing and adult mice and from mice that had undergone alkali-burn corneal wounding. Immunolabeling and Vsx1 knock-in reporter gene expression in wild type and Vsx1 null-mice were used to confirm the qRT–PCR data. Results Using qRT–PCR, Vsx1 expression was not detected in either the postnatal or adult mouse cornea or in corneas following wounding. This qRT–PCR data was supported by the absence of specific Vsx1 immunolabeling and Vsx1 knock-in reporter expression in untreated and wounded corneas. Conclusions In mice, Vsx1 mRNA, protein or reporter gene expression is not detected in the normal or damaged cornea. These results make it uncertain what role VSX1/Vsx1 plays in corneal biology. Future experiments examining the pathogenicity of VSX1 mutations associated with corneal dystrophy are required to rule out species differences and possible non-cell autonomous roles for VSX1 in the cornea. PMID:21437200

  4. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

    PubMed

    Brumovsky, P; Watanabe, M; Hökfelt, T

    2007-06-29

    The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and

  5. Combination radiotherapy in an orthotopic mouse brain tumor model.

    PubMed

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  6. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    PubMed

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  7. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  8. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  9. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  10. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    PubMed

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  11. Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100 kDa.

    PubMed

    Turgeon, B; Saba-El-Leil, M K; Meloche, S

    2000-02-15

    MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.

  12. An association between Schistosoma mansoni worms and an enzymatically-active protease/peptidase in mouse blood.

    PubMed

    Darani, H Y; Doenhoff, M J

    2008-04-01

    An enzyme found previously in extracts of adult Schistosoma mansoni worms, that hydrolysed the chromogenic substrate N-acetyl-DL-phenylalanine beta-naphthyl-ester, has here been further investigated and characterized. Evidence that the molecule found in the parasite was antigenically and enzymatically homologous with a constituent of normal mouse plasma has been consolidated using a monospecific serum in immunoelectrophoresis and Western immunoblotting. The molecular size of the enzyme was found to be approximately 70 kDa and it was inhibited by a serine protease inhibitor, but not by inhibitors of other classes of protease. The enzymatic activity found in normal mouse serum was also found in normal rat serum, but not in sera from several other mammalian species.

  13. Thyroid hormones regulate anxiety in the male mouse.

    PubMed

    Buras, Alexander; Battle, Loxley; Landers, Evan; Nguyen, Tien; Vasudevan, Nandini

    2014-02-01

    Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) α and β isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRα1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis.

    PubMed

    Kawaguchi, Daichi; Furutachi, Shohei; Kawai, Hiroki; Hozumi, Katsuto; Gotoh, Yukiko

    2013-01-01

    Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis.

  15. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis

    PubMed Central

    Kawaguchi, Daichi; Furutachi, Shohei; Kawai, Hiroki; Hozumi, Katsuto; Gotoh, Yukiko

    2013-01-01

    Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis. PMID:23695674

  16. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    PubMed

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  17. The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction.

    PubMed

    Heckmann, Laura; Pock, Tim; Tröndle, Ina; Neuhaus, Nina

    2018-05-01

    In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences. © 2018 Society for Reproduction and Fertility.

  18. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  19. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  20. Specific Distribution of the Autophagic Protein GABARAPL1/GEC1 in the Developing and Adult Mouse Brain and Identification of Neuronal Populations Expressing GABARAPL1/GEC1

    PubMed Central

    Le Grand, Jaclyn Nicole; Bon, Karine; Fraichard, Annick; Zhang, Jianhua; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël; Delage-Mourroux, Régis

    2013-01-01

    Macroautophagy is a highly conserved cellular degradation process, regulated by autophagy-related (atg) factors, in which a double membrane autophagosome engulfs cytoplasmic components to target them for degradation. In yeast, the Atg8 protein is indispensable for autophagosome formation. In mammals, this is complicated by the presence of six Atg8 homologues grouped into the GABARAP and MAP1LC3 subfamilies. Although these proteins share a high similarity, their transcript expression, regulation and protein interactions differ, suggesting they may display individual properties and specific functions. GABARAPL1/GEC1 is a member of the GABARAP subfamily and its mRNA is the most highly expressed Atg8 homologue in the central nervous system. Consequently, we performed an in depth study of GABARAPL1 distribution in the developing and adult murine brain. Our results show that GABARAPL1 brain expression is visible as early as embryonic day 11 and progressively increases to a maximum level in the adult. Immunohistochemical staining was detected in both fibers and immature neurons in embryos but was restrained to neurons in adult tissue. By E17, intense punctate-like structures were visible and these accumulated in cortical primary neurons treated with the autophagosome/lysosome fusion inhibitor Bafilomycin A1 (Baf A1), suggesting that they represent autophagosomes. Finally, GABARAPL1 expression was particularly intense in motoneurons in the embryo and in neurons involved in somatomotor and neuroendocrine functions in the adult, particularly in the substantia nigra pars compacta, a region affected in Parkinson's disease. Our study of cerebral GABARAPL1 protein expression provides insight into its role in the development and homeostasis of the mouse brain. PMID:23690988

  1. Single-shot dimension measurements of the mouse eye using SD-OCT.

    PubMed

    Jiang, Minshan; Wu, Pei-Chang; Fini, M Elizabeth; Tsai, Chia-Ling; Itakura, Tatsuo; Zhang, Xiangyang; Jiao, Shuliang

    2012-01-01

    The authors demonstrate the feasibility and advantage of spectral-domain optical coherence tomography (SD-OCT) for single-shot ocular biometric measurement during the development of the mouse eye. A high-resolution SD-OCT system was built for single-shot imaging of the whole mouse eye in vivo. The axial resolution and imaging depth of the system are 4.5 μm (in tissue) and 5.2 mm, respectively. The system is capable of acquiring a cross-sectional OCT image consisting of 2,048 depth scans in 85 ms. The imaging capability of the SD-OCT system was validated by imaging the normal ocular growth and experimental myopia model using C57BL/6J mice. The biometric dimensions of the mouse eye can be calculated directly from one snapshot of the SD-OCT image. The biometric parameters of the mouse eye including axial length, corneal thickness, anterior chamber depth, lens thickness, vitreous chamber depth, and retinal thickness were successfully measured by the SD-OCT. In the normal ocular growth group, the axial length increased significantly from 28 to 82 days of age (P < .001). The lens thickness increased and the vitreous chamber depth decreased significantly during this period (P < .001 and P = .001, respectively). In the experimental myopia group, there were significant increases in vitreous chamber depth and axial length in comparison to the control eyes (P = .040 and P < .001, respectively). SD-OCT is capable of providing single-shot direct, fast, and high-resolution measurements of the dimensions of young and adult mouse eyes. As a result, SD-OCT is a potentially powerful tool that can be easily applied to research in eye development and myopia using small animal models. Copyright 2012, SLACK Incorporated.

  2. Characterization of Aromatase Expression in the Adult Male and Female Mouse Brain. I. Coexistence with Oestrogen Receptors α and β, and Androgen Receptors

    PubMed Central

    Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin

    2014-01-01

    Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567

  3. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    PubMed Central

    Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  4. Conditional Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 MAP Kinase Is Not Associated with Anxiety/Depression-Like Behaviors1,2

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Abel, Glen M.

    2015-01-01

    Abstract Although there is evidence that adult neurogenesis contributes to the therapeutic efficacy of chronic antidepressant treatment for anxiety and depression disorders, the role of adult neurogenesis in the onset of depression-related symptoms is still open to question. To address this issue, we utilized a transgenic mouse strain in which adult neurogenesis was specifically and conditionally impaired by Nestin-CreER-driven, inducible knockout (icKO) of erk5 MAP kinase in Nestin-expressing neural progenitors of the adult mouse brain upon tamoxifen administration. Here, we report that inhibition of adult neurogenesis by this mechanism is not associated with an increase of the baseline anxiety or depression in non-stressed animals, nor does it increase the animal’s susceptibility to depression after chronic unpredictable stress treatment. Our findings indicate that impaired adult neurogenesis does not lead to anxiety or depression. PMID:26464972

  5. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation

    PubMed Central

    Weiss, Dana A.; Rodriguez, Esequiel; Cunha, Tristan; Menshenina, Julia; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald

    2013-01-01

    Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of “non-traditional” mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms. PMID:21893161

  6. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  7. An illustrated anatomical ontology of the developing mouse lower urogenital tract

    PubMed Central

    Georgas, Kylie M.; Armstrong, Jane; Keast, Janet R.; Larkins, Christine E.; McHugh, Kirk M.; Southard-Smith, E. Michelle; Cohn, Martin J.; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P.; Wiese, Carrie B.; Brennan, Jane; Davies, Jamie A.; Harding, Simon D.; Baldock, Richard A.; Little, Melissa H.; Vezina, Chad M.; Mendelsohn, Cathy

    2015-01-01

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. PMID:25968320

  8. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    PubMed

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  10. NCI Mouse Repository | FNLCR Staging

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  11. Female Presence and Estrous State Influence Mouse Ultrasonic Courtship Vocalizations

    PubMed Central

    Hanson, Jessica L.; Hurley, Laura M.

    2012-01-01

    The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1) vocalizations varied among males, 2) the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3) the frequency (kHz), bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4) syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls. PMID:22815817

  12. Improved mutagen testing systems in mice. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roderick, T.H.

    Our laboratory was the first to induce and ascertain a mammalian chromosomal inversion; we did this by searching for a high frequency of first meiotic anaphase bridges in testes of males whose fathers received post-spermatogonial radiation or mutagenesis from chromosomal breaking chemical mutagens. One test in was examined in each mouse, and those showing a high frequency were then mated to determine if the high frequency were passed on as a dominant and whether linkage analysis suggested the presence of an inversion. A very high incidence (exceeding 20% bridges in first meiotic anaphase bridges) was found in about 1 inmore » 150 males examined and this frequency was generally found to be passed on to the offspring an predicted. Later cytological banding techniques were developed elsewhere and we used them to show visually the inverted orders of the inverted chromosomal segments. Since that time we have induced inversions covering most of the mouse genome.« less

  13. Improved mutagen testing systems in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roderick, T.H.

    Our laboratory was the first to induce and ascertain a mammalian chromosomal inversion; we did this by searching for a high frequency of first meiotic anaphase bridges in testes of males whose fathers received post-spermatogonial radiation or mutagenesis from chromosomal breaking chemical mutagens. One test in was examined in each mouse, and those showing a high frequency were then mated to determine if the high frequency were passed on as a dominant and whether linkage analysis suggested the presence of an inversion. A very high incidence (exceeding 20% bridges in first meiotic anaphase bridges) was found in about 1 inmore » 150 males examined and this frequency was generally found to be passed on to the offspring an predicted. Later cytological banding techniques were developed elsewhere and we used them to show visually the inverted orders of the inverted chromosomal segments. Since that time we have induced inversions covering most of the mouse genome.« less

  14. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases

    PubMed Central

    Mulder, Callista L.; Zheng, Yi; Jan, Sabrina Z.; Struijk, Robert B.; Repping, Sjoerd; Hamer, Geert; van Pelt, Ans M.M.

    2016-01-01

    BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer

  15. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  16. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

  17. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shreya, E-mail: Shreya.patel214@gmail.com; Peretz, Jackye, E-mail: Jackye.peretz@gmail.com; Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 micemore » were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  18. Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell-type-specific fashion.

    PubMed

    Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M

    2010-07-01

    The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits.

    PubMed

    Herbin, Marc; Hommet, Eva; Hanotin-Dossot, Vicky; Perret, Martine; Hackert, Rémi

    2018-06-01

    The gaits of the adult grey mouse lemur Microcebus murinus were studied during treadmill locomotion over a large range of velocities. The locomotion sequences were analysed to determine the gait and the various spatiotemporal gait parameters of the limbs. We found that velocity adjustments are accounted for differently by stride frequency and stride length depending on whether the animal showed a symmetrical or an asymmetrical gait. When using symmetrical gaits the increase in velocity is associated with a constant contribution of the stride length and stride frequency; the increase of the stride frequency being always lower. When using asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride length which tends to decrease with increasing velocity. A reduction in both stance time and swing time contributed to the increase in stride frequency for both gaits, though with a major contribution from the decrease in stance time. The pattern of locomotion obtained in a normal young adult mouse lemurs can be used as a template for studying locomotor control deficits during aging or in different environments such as arboreal ones which likely modify the kinematics of locomotion.

  20. Testicular Cancer and Cryptorchidism

    PubMed Central

    Ferguson, Lydia; Agoulnik, Alexander I.

    2013-01-01

    The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors’ expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation. PMID:23519268

  1. HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages.

    PubMed

    Wang, Jing; Gu, Yong; Wang, Lihong; Hang, Xingyi; Gao, Yan; Wang, Hangyan; Zhang, Chenggang

    2007-11-01

    This study is a part of the HUPO Brain Proteome Project (BPP) pilot study, which aims at obtaining a reliable database of mouse brain proteome, at the comparison of techniques, laboratories, and approaches as well as at preparing subsequent proteome studies of neurologic diseases. The C57/Bl6 mouse brains of three developmental stages at embryonic day 16 (E16), postnatal day 7 (P7), and 8 wk (P56) (n = 5 in each group) were provided by the HUPO BPP executive committee. The whole brain proteins of each animal were individually prepared using 2-DE coupled with PDQuest software analysis. The protein spots representing developmentally related or stably expressed proteins were then prepared with in-gel digestion followed with MALDI-TOF/TOF MS/MS and analyzed using the MASCOT search engines to search the Swiss-Prot or NCBInr database. The 2-DE gel maps of the mouse brains of all of the developmental stages were obtained and submitted to the Data Collection Centre (DCC). The proteins alpha-enolase, stathmin, actin, C14orf166 homolog, 28,000 kDa heat- and acid-stable phosphoprotein, 3-mercaptopyruvate sulfurtransferase and 40 S ribosomal protein S3a were successfully identified. A further Western blotting analysis demonstrated that enolase is a protein up-regulated in the mouse brain from embryonic stage to adult stage. These data are helpful for understanding the proteome changes in the development of the mouse brain.

  2. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion

    PubMed Central

    Kidder, Benjamin L.; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine

    2008-01-01

    Abstract Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras. PMID:18338954

  5. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  6. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annese, Tiziana; Corsi, Patrizia; Ruggieri, Simona

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs).more » We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels

  8. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring.

    PubMed

    Fiandanese, Nadia; Borromeo, Vitaliano; Berrini, Anna; Fischer, Bernd; Schaedlich, Kristina; Schmidt, Juliane-Susanne; Secchi, Camillo; Pocar, Paola

    2016-10-01

    We investigated the effects of maternal exposure to the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the organic industrial compounds polychlorinated biphenyls (PCBs), singly and combined, on the reproductive function of male mouse offspring. Mice dams were exposed throughout pregnancy and lactation to 1μg PCBs (101+118)/kg/day, 50μg DEHP/kg/day, or the DEHP/PCB mixture in the diet. The mixture induced permanent alterations in adult F1 males' reproductive health in a way, differently from the single compounds. Depending on the endpoint, we observed: (1) synergy in altering the gross and histological morphology of the testis; (2) antagonism on the expression levels of genes involved in pituitary-gonadal cross-talk; (3) non-interactions on sperm parameters and testosterone production. This study illustrates the complex action of a DEHP/PCB mixture, leading to a unique panel of effects on the male reproductive system, indicating the need for research on the reproductive hazards of combined endocrine disruptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction.

    PubMed

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, M Angel; Besalduch, Nuria; Tomàs, Josep

    2010-03-01

    Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75(NTR) at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75(NTR) were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).

  10. Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development

    PubMed Central

    Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.

    2015-01-01

    During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110

  11. FINE STRUCTURE OF CELLS ISOLATED FROM ADULT MOUSE LIVER

    PubMed Central

    Berry, M. N.; Simpson, F. O.

    1962-01-01

    Suspensions of isolated cells in various media were prepared from mouse liver which had been perfused via the portal vein with a buffered medium containing 0.40 M sucrose, and the cells were fixed with osmium tetroxide. Their fine structure was compared with that of cells from perfused and unperfused intact liver. Perfusion brought about some separation of the cells with little or no damage to cell membranes. When cells were dispersed in 0.40 M sucrose medium the plasma membranes partially broke down, and this disintegration was increased by transfer of the cells to media of lower osmolarity. This is presumed to account for the loss of permeability barriers which occurs in isolated liver cells. The mitochondria in cells of perfused liver and in isolated cells remained elongated, but the layers of many mitochondrial cristae became separated by clear spaces. When cells were transferred to a medium containing 0.20 M sucrose, the mitochondria swelled and became spherical, often with displacement of the swollen cristae to the periphery. In a medium containing 0.06 M sucrose and 0.08 M potassium chloride the outer chamber of many mitochondria became swollen with displacement of the mitochondrial body to one side to give a crescent-shaped appearance. These changes in mitochondrial morphology are discussed in relation to the metabolic activity of isolated liver cells. PMID:19866610

  12. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations

    PubMed Central

    Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.

    2015-01-01

    Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

  13. Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion*

    PubMed Central

    Li, Dan; Peng, Shi-yun; Zhang, Zhen-wu; Feng, Rui-cheng; Li, Lu; Liang, Jie; Tai, Sheng; Teng, Chun-bo

    2013-01-01

    The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells. PMID:23825145

  14. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  15. Dental abnormalities in a mouse model for craniometaphyseal dysplasia.

    PubMed

    Dutra, E H; Chen, I-P; Reichenberger, E J

    2013-02-01

    Mice carrying a knock-in mutation (Phe377del) in the Ank gene replicate many skeletal characteristics of human craniometaphyseal dysplasia, including hyperostotic mandibles. Ank (KI/KI) mice have normal morphology of erupted molars and incisors but excessive cementum deposition with increased numbers of Ibsp- and Dmp1-positive cells on root surfaces. The cervical loops of adult Ank (KI/KI) lower incisors are at the level of the third molars, while they are close to the mandibular foramen in Ank (+/+) mice. Furthermore, Ank (KI/KI) incisors show decreased eruption rates, decreased proliferation of odontoblast precursors, and increased cell apoptosis in the stellate reticulum. However, their capability for continuous elongation is not compromised. Quantification of TRAP-positive cells in the apical ends of Ank (KI/KI) incisors revealed decreased osteoclast numbers and osteoclast surfaces. Bisphosphonate injections in Ank (+/+) mice replicate the Ank (KI/KI) incisor phenotype. These results and a comparison with the dental phenotype of Ank loss-of-function mouse models suggest that increased cementum thickness may be caused by decreased extracellular PPi levels and that the incisor phenotype is likely due to hyperostosis of mandibles, which distinguishes Ank (KI/KI) mice from the other Ank mouse models.

  16. An illustrated anatomical ontology of the developing mouse lower urogenital tract.

    PubMed

    Georgas, Kylie M; Armstrong, Jane; Keast, Janet R; Larkins, Christine E; McHugh, Kirk M; Southard-Smith, E Michelle; Cohn, Martin J; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P; Wiese, Carrie B; Brennan, Jane; Davies, Jamie A; Harding, Simon D; Baldock, Richard A; Little, Melissa H; Vezina, Chad M; Mendelsohn, Cathy

    2015-05-15

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.

  17. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    PubMed

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identification of novel mouse genes conferring posthypoxic pauses

    PubMed Central

    Gillombardo, C. Barton; Yamauchi, Motoo; Adams, Mark D.; Dostal, Jesse; Chai, Sam; Moore, Michael W.; Donovan, Lucas M.; Han, Fang

    2012-01-01

    Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1A/J/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1A/J/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis. PMID:22539170

  19. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat

    PubMed Central

    Bautista, W.; McCrea, D. A.; Nagy, J. I.

    2014-01-01

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437

  20. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.

    PubMed

    García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J

    2002-06-01

    We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.

  2. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less

  3. Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior

    PubMed Central

    Sah, A; Schmuckermair, C; Sartori, S B; Gaburro, S; Kandasamy, M; Irschick, R; Klimaschewski, L; Landgraf, R; Aigner, L; Singewald, N

    2012-01-01

    Adult neurogenesis has been implicated in affective disorders and the action of antidepressants (ADs) although the functional significance of this association is still unclear. The use of animal models closely mimicking human comorbid affective and anxiety disorders seen in the majority of patients should provide relevant novel information. Here, we used a unique genetic mouse model displaying higher trait anxiety (HAB) and comorbid depression-like behavior. We demonstrate that HABs have a lower rate of hippocampal neurogenesis and impaired functional integration of newly born neurons as compared with their normal anxiety/depression-like behavior (NAB) controls. In HABs, chronic treatment with the AD fluoxetine alleviated their higher depression-like behavior and protected them from relapse for 3 but not 7 weeks after discontinuation of the treatment without affecting neurogenesis. Similar to what has been observed in depressed patients, fluoxetine treatment induced anxiogenic-like effects during the early treatment phase in NABs along with a reduction in neurogenesis. On the other hand, treatment with AD drugs with a particularly strong anxiolytic component, namely the neurokinin-1-receptor-antagonist L-822 429 or tianeptine, increased the reduced rate of neurogenesis in HABs up to NAB levels. In addition, challenge-induced hypoactivation of dentate gyrus (DG) neurons in HABs was normalized by all three drugs. Overall, these data suggest that AD-like effects in a psychopathological mouse model are commonly associated with modulation of DG hypoactivity but not neurogenesis, suggesting normalization of hippocampal hypoactivity as a neurobiological marker indicating successful remission. Finally, rather than to higher depression-related behavior, neurogenesis seems to be linked to pathological anxiety. PMID:23047242

  4. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    PubMed

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  5. Characterization and isolation of immature neurons of the adult mouse piriform cortex.

    PubMed

    Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J

    2016-07-01

    Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016. © 2015 Wiley Periodicals, Inc.

  6. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  7. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    PubMed Central

    2012-01-01

    Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826

  8. Effects of different levels of dietary selenium on the proliferation of spermatogonial stem cells and antioxidant status in testis of roosters.

    PubMed

    Shi, Lei; Zhao, Hui; Ren, Youshe; Yao, Xiaolei; Song, Ruigao; Yue, Wenbin

    2014-10-01

    The objective of this study was to investigate the different levels of dietary Se (from sodium selenite) on the proliferation of SSCs (spermatogonial stem cells) in testis of roosters. Also, the antioxidant status and Se content in blood plasma and testis were evaluated. A total of eighty 12-week-old Hy-Line Variety white roosters at an averaged body weight of 1.38 ± 0.2 kg were selected and randomly divided into four experimental groups. They were fed with the basal diet (0.044 mgSe/kg DM) supplemented with 0 (control), 0.5, 1.0 or 2.0 mgSe/kg DM (from sodium selenite). After the feeding experiment, blood and testis samples were collected for analysis of the antioxidant status and Se concentration. The testis samples were also used to examine the Thy-1 and β1-integrin mRNA expression by RT-PCR and detect the population of SSCs by immunofluorescence analysis. The results show that Se concentration in blood and testis of the animals was progressively increased with the increasing Se level in diet. The highest GSH-Px (glutathione peroxidase) activity and lowest MDA content in blood and testis was obtained in the treatment of 0.5mg/kg. RT-PCR analysis showed that mRNA expression of SSCs markers were significantly lower in the control and 1.0mg/kg groups when compared with that in the treatment of 0.5mg/kg. A similar trend was observed in the population of SSCs analyzed by immunofluorescence assay. These data suggest that dietary Se can influence the population of SSCs of roosters during spermatogenesis and that oxidative stress can modulate SSCs behavior through regulating some key factors during spermatogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis

    PubMed Central

    Salz, Helen K.; Dawson, Emily P.; Heaney, Jason D.

    2017-01-01

    SUMMARY Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which the evidence supports common underlying mechanisms such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. PMID:28079292

  10. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  11. 4-N-pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila

    NASA Astrophysics Data System (ADS)

    Yadav, Jhillu S.; Lavanya, Madugula P.; Das, Pragna P.; Bag, Indira; Krishnan, Anita; Jagannadh, Bulusu; Mohapatra, Debendra K.; Pal Bhadra, Manika; Bhadra, Utpal

    2010-04-01

    p-aminobenzoic acid (PABA), a structural moiety of many commercial drugs, is self-assembled with linker alkyl side chains to form tubular nanostructures. The tubes exhibited fluorescence either intrinsic or from fluorescent molecules embedded in the wall during self-assembly. Uptake and inter-cellular delivery of the conjugated nanotubes in human cancer cells and in mouse embryonic stem cells were demonstrated by fluorescence imaging and flow cytometry. Biocompatibility, cytotoxicity and clearance were monitored both ex vivo in mouse multipotent embryonic stem cells and in vivo in adult Drosophila. Accumulation of nanotubes had no adverse effects and abnormalities on stem cell morphology and proliferation rate. A distinct distribution of two separate nanotubes in various internal organs of Drosophila interprets that accumulation of nanomaterials might be interdependent on the side chain modifications and physiological settings of cell or tissue types. Unlike carbon nanomaterials, exposure of PABA nanotubes does not produce any hazards including locomotion defects and mortality of adult flies. Despite differential uptake and clearance from multiple live tissues, the use of self-assembled nanotubes can add new dimensions and scope to the development of dual-purpose oral carriers for the fulfilment of many biological promises.

  12. Surrogate production of eggs and sperm by intrapapillary transplantation of germ cells in cytoablated adult fish.

    PubMed

    Majhi, Sullip Kumar; Hattori, Ricardo Shohei; Rahman, Sheikh Mustafizur; Strüssmann, Carlos Augusto

    2014-01-01

    Germ cell transplantation (GCT) is a promising assisted reproductive technology for the conservation and propagation of endangered and valuable genetic resources. In teleost fish, GCT in adult gonads has been achieved only in male recipients, limiting greatly the usefulness of this technique in situations where both sexes need equal and timely attention for conservation and/or propagation. Here we describe a simplified GCT approach that ultimately leads to production of donor-derived eggs and sperm in considerably short time. Donor germ cells isolated from young pejerrey Odontesthes bonariensis (Atherinopsidae) were transplanted non-surgically through the genital papilla into the sexually mature gonads of Patagonian pejerrey O. hatcheri recipients whose gonads have been depleted of endogenous GCs by heat (26°C) and chemical treatment (four doses of Busulfan at 30 mg/kg and 40 mg/kg for females and males, respectively). Transplanted spermatogonial and oogonial cells were able to recolonize the recipients' gonads and produce functional donor origin eggs and sperm within 7 months from the GCT. We confirmed the presence of donor-derived gametes by PCR in 17% and 5% of the surrogate O. hatcheri fathers and mothers, respectively. The crosses between surrogate fathers and O. bonariensis mothers yielded 12.6-39.7% pure O. bonariensis and that between a surrogate mother and an O. bonariensis father yielded 52.2% pure O. bonariensis offspring. Our findings confirm that transplantation of germ cells into sexually competent adult fish by non-surgical methods allows the production of functional donor-derived eggs and sperm in a considerably short time. The methods described here could play a vital role in conservation and rapid propagation of endangered fish genetic resources.

  13. Surrogate Production of Eggs and Sperm by Intrapapillary Transplantation of Germ Cells in Cytoablated Adult Fish

    PubMed Central

    Majhi, Sullip Kumar; Hattori, Ricardo Shohei; Rahman, Sheikh Mustafizur; Strüssmann, Carlos Augusto

    2014-01-01

    Germ cell transplantation (GCT) is a promising assisted reproductive technology for the conservation and propagation of endangered and valuable genetic resources. In teleost fish, GCT in adult gonads has been achieved only in male recipients, limiting greatly the usefulness of this technique in situations where both sexes need equal and timely attention for conservation and/or propagation. Here we describe a simplified GCT approach that ultimately leads to production of donor-derived eggs and sperm in considerably short time. Donor germ cells isolated from young pejerrey Odontesthes bonariensis (Atherinopsidae) were transplanted non-surgically through the genital papilla into the sexually mature gonads of Patagonian pejerrey O. hatcheri recipients whose gonads have been depleted of endogenous GCs by heat (26°C) and chemical treatment (four doses of Busulfan at 30 mg/kg and 40 mg/kg for females and males, respectively). Transplanted spermatogonial and oogonial cells were able to recolonize the recipients' gonads and produce functional donor origin eggs and sperm within 7 months from the GCT. We confirmed the presence of donor-derived gametes by PCR in 17% and 5% of the surrogate O. hatcheri fathers and mothers, respectively. The crosses between surrogate fathers and O. bonariensis mothers yielded 12.6–39.7% pure O. bonariensis and that between a surrogate mother and an O. bonariensis father yielded 52.2% pure O. bonariensis offspring. Our findings confirm that transplantation of germ cells into sexually competent adult fish by non-surgical methods allows the production of functional donor-derived eggs and sperm in a considerably short time. The methods described here could play a vital role in conservation and rapid propagation of endangered fish genetic resources. PMID:24748387

  14. Phospholipid epitopes for mouse antibodies against bromelain-treated mouse erythrocytes.

    PubMed Central

    Kawaguchi, S

    1987-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with phospholipid epitopes was assessed by ELISA, using four clones of monoclonal anti-BrMRBC antibodies that had idiotypes distinct from one another. The four antibodies could bind to low-density lipoproteins (LDL) from human and chicken, but not to LDL from mouse and rat. As to liposomes of natural phospholipids, all the clones reacted with liposomes of phosphatidylcholine, and some of them could react with liposomes of sphingomyelin, phosphatidylglycerol, phosphatidylic acid or cardiolipin. For liposomes of synthetic phosphatidylcholine with different fatty acids, the length of carbon chains and the number of unsaturated carbon chains of the fatty acids markedly affected the binding of each monoclonal antibody to the liposomes. The addition of dicetyl phosphate or stearylamine to phosphatidylcholine liposomes changed the reactivity of the liposomes. These results support the view that mouse anti-BrMRBC antibodies can recognize appropriately spaced phosphorylcholine residues on the surface of phospholipid liposomes, LDL and cells. The four clones had similar capacities for binding to LDL as well as to BrMRBC, but they had obviously different capacities for binding to phospholipid liposomes; the epitopes on phospholipid liposomes used in the present study were not so perfect as to react well with every anti-BrMRBC antibody. PMID:2443446

  15. Adult Mouse Venous Hypertension Model: Common Carotid Artery to External Jugular Vein Anastomosis.

    PubMed Central

    Yang, Shun-Tai; Rodriguez-Hernandez, Ana; Walker, Espen J.; Young, William L.; Su, Hua; Lawton, Michael T.

    2015-01-01

    The understanding of the pathophysiology of brain arteriovenous malformations and arteriovenous fistulas has improved thanks to animal models. A rat model creating an artificial fistula between the common carotid artery (CCA) and the external jugular vein (EJV) has been widely described and proved technically feasible. This construct provokes a consistent cerebral venous hypertension (CVH), and therefore has helped studying the contribution of venous hypertension to formation, clinical symptoms, and prognosis of brain AVMs and dural AVFs. Equivalent mice models have been only scarcely described and have shown trouble with stenosis of the fistula. An established murine model would allow the study of not only pathophysiology but also potential genetic therapies for these cerebrovascular diseases. We present a model of arteriovenous fistula that produces a durable intracranial venous hypertension in the mouse. Microsurgical anastomosis of the murine CCA and EJV can be difficult due to diminutive anatomy and frequently result in a non-patent fistula. In this step-by-step protocol we address all the important challenges encountered during this procedure. Avoiding excessive retraction of the vein during the exposure, using 11-0 sutures instead of 10-0, and making a carefully planned end-to-side anastomosis are some of the critical steps. Although this method requires advanced microsurgical skills and a longer learning curve that the equivalent in the rat, it can be consistently developed. This novel model has been designed to integrate transgenic mouse techniques with a previously well-established experimental system that has proved useful to study brain AVMs and dural AVFs. By opening the possibility of using transgenic mice, a broader spectrum of valid models can be achieved and genetic treatments can also be tested. The experimental construct could also be further adapted to the study of other cerebrovascular diseases related with venous hypertension such as migraine

  16. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  17. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    PubMed

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  18. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    PubMed

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  19. Isolation of sphere-forming stem cells from the mouse inner ear.

    PubMed

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  20. Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina

    PubMed Central

    Balasubramanian, Revathi; Bui, Andrew; Ding, Qian; Gan, Lin

    2014-01-01

    LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes. PMID:24333658

  1. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse.

    PubMed

    O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D

    2014-03-01

    The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics. Copyright © 2014. Published by Elsevier Inc.

  2. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain.more » As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the

  3. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  4. A novel minimal invasive mouse model of extracorporeal circulation.

    PubMed

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  5. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    PubMed Central

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury. PMID:25705092

  6. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  7. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    PubMed

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Inducible Intestine-specific Deletion Of Krüppel-Like Factor 5 Is Characterized By A Regenerative Response In Adult Mouse Colon

    PubMed Central

    Nandan, Mandayam O.; Ghaleb, Amr M.; Liu, Yang; Bialkowska, Agnieszka B.; McConnell, Beth B.; Shroyer, Kenneth R.; Robine, Sylvie

    2014-01-01

    Reg family of proteins. Our study demonstrates that adult mouse colonic tissue undergoes acute physiological changes to accommodate the loss of Klf5 withstanding epithelial damage further signifying importance of Klf5 in colonic homeostasis. PMID:24440658

  9. Adult Restoration of Shank3 Expression Rescues Selective Autistic-Like Phenotypes

    PubMed Central

    Mei, Yuan; Monteiro, Patricia; Zhou, Yang; Kim, Jin-Ah; Gao, Xian; Fu, Zhanyan; Feng, Guoping

    2016-01-01

    Because ASD is a neurodevelopmental disorder and patients typically display symptoms before the age of three1, one of the key questions in autism research is whether the pathology is reversible in adults. Here we investigated the developmental requirement of Shank3, one of the most prominent monogenic ASD genes that is estimated to contribute to ~1% of all ASD cases2–6. SHANK3 is a postsynaptic scaffold protein that regulates synaptic development, function and plasticity by orchestrating the assembly of postsynaptic density (PSD) macromolecular signaling complex7–9. Disruptions of the Shank3 gene in mouse models have resulted in synaptic defects and autistic-like behaviors including anxiety, social interaction deficits, and repetitive behavior10–13. We generated a novel Shank3 conditional knock-in mouse model and used it to demonstrate that re-expression of the Shank3 gene in adult led to improvements in synaptic protein composition, spine density and neural function in the striatum. We also provided behavioral evidence that certain behavioral abnormalities including social interaction deficit and repetitive grooming behavior could be rescued, while anxiety and motor coordination deficit could not be recovered in adulthood. Together, these results elucidate the profound impact of post-developmental activation of Shank3 expression on neural function and demonstrate certain degree of continued plasticity in the adult diseased brain. PMID:26886798

  10. Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium

    PubMed Central

    Johnson, Jo-Anne; Watson, Julie K.

    2018-01-01

    ABSTRACT The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied, but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone, and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover, knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro. This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover, we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition, our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways. This article has an associated First Person interview with the first author of the paper. PMID:29661797

  11. ANALYSIS OF TMEFF2 ALLOGRAFTS AND TRANSGENIC MOUSE MODELS REVEALS ROLES IN PROSTATE REGENERATION AND CANCER

    PubMed Central

    Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ

    2015-01-01

    BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and

  12. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer.

    PubMed

    Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J

    2016-01-01

    Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa

  13. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  14. SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis

    PubMed Central

    Mu, Lifang; Berti, Lucia; Masserdotti, Giacomo; Covic, Marcela; Michaelidis, Theologos M.; Doberauer, Kathrin; Merz, Katharina; Rehfeld, Frederick; Haslinger, Anja; Wegner, Michael; Sock, Elisabeth; Lefebvre, Veronique; Couillard-Despres, Sebastien; Aigner, Ludwig; Berninger, Benedikt; Lie, D. Chichung

    2012-01-01

    Neural stem cells (NSCs) generate new hippocampal dentate granule neurons throughout adulthood. The genetic programs controlling neuronal differentiation of adult NSCs are only poorly understood. Here we show that, in the adult mouse hippocampus, expression of the SoxC transcription factors Sox4 and Sox11 is initiated around the time of neuronal commitment of adult NSCs and is maintained in immature neurons. Overexpression of Sox4 and Sox11 strongly promotes in vitro neurogenesis from adult NSCs, whereas ablation of Sox4/Sox11 prevents in vitro and in vivo neurogenesis from adult NSCs. Moreover, we demonstrate that SoxC transcription factors target the promoters of genes that are induced on neuronal differentiation of adult NSCs. Finally, we show that reprogramming of astroglia into neurons is dependent on the presence of SoxC factors. These data identify SoxC proteins as essential contributors to the genetic network controlling neuronal differentiation in adult neurogenesis and neuronal reprogramming of somatic cells. PMID:22378879

  15. Commentary: "re-programming or selecting adult stem cells?".

    PubMed

    Trosko, James E

    2008-01-01

    The recent observations that embryonic stemness-associated genes could assist in the "de-differentiation" of adult skin fibroblast cells to "embryonic-like stem cells", using the "somatic cell nuclear transfer" techniques, have been interpreted as indicating a "re-programming" of genes. These reports have demonstrated a "proof of principle" approach to by-pass many, but not all, of the ethical, scientific and medical limitations of the "therapeutic cloning" of embryonic stem cells from embryos. However, while the interpretation that real "re-programming" of all those somatic fibroblastic differentiation genes might be correct, there does exists an alternative hypothesis of these exciting results. Based on the fact that multipotent adult stem cells exist in most, if not all, adult organs, the possibility exists that all these recent "re-programming" results, using the somatic nuclear transfer techniques, actually were the results of transferred rare nuclear material from the adult stem cells residing in the skin of the mouse, monkey and human samples. An examination of the rationale for this challenging hypothesis has been drawn from the hypothesis of the "stem cell theory of cancer", as well as from the field of human adult stem cells research.

  16. Testicular growth and development in puberty.

    PubMed

    Koskenniemi, Jaakko J; Virtanen, Helena E; Toppari, Jorma

    2017-06-01

    To describe pubertal testicular growth in humans, changes in testicular cell populations that result in testicular growth, and the role of testosterone and gonadotrophins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in testicular growth. When human data were not available, studies in nonhuman primates and/or rodents were used as surrogates. Testicular growth in puberty follows a sigmoidal growth curve, with a large variation in timing of testicular growth and adult testicular volume. Testicular growth early in puberty is due to increase in Sertoli cell number and length of seminiferous tubules, whereas the largest and fastest growth results from the increase in the diameter of the seminiferous tubules first due to spermatogonial proliferation and then due to the expansion of meiotic and haploid germ cells. FSH stimulates Sertoli cell and spermatogonial proliferation, whereas LH/testosterone is mandatory to complete spermatogenesis. However, FSH and LH/testosterone work in synergy and are both needed for normal spermatogenesis. Testicular growth during puberty is rapid, and mostly due to germ cell expansion and growth in seminiferous tubule diameter triggered by androgens. Pre-treatment with FSH before the induction of puberty may improve the treatment of hypogonadotropic hypogonadism, but remains to be proven.

  17. RNA SYNTHESIS IN THE MOUSE OOCYTE

    PubMed Central

    Moore, G. P. M.; Lintern-Moore, Sue; Peters, Hannah; Faber, M.

    1974-01-01

    RNA synthesis in the oocyte and granulosa cell nuclei of growing follicles has been studied in the mouse ovary. The RNA precursor [3H]uridine was administered intraperitoneally to adult mice and the amount of label incorporated into ovarian RNA was quantitated autoradiographically using grain-counting procedures. Uridine incorporation into the nucleus is low in oocytes of small, resting follicles but increases during follicle growth and reaches a peak prior to the beginning of antrum formation. Thereafter uptake rapidly declines and is very low in the oocytes of maturing follicles. Uridine incorporation into granulosa cell nuclei, in contrast to that found in the oocyte, increases gradually during most of the period of follicle growth. Qualitative studies of the activity of endogenous, DNA-dependent RNA polymerases have also been made in fixed oocytes isolated from follicles at different stages of growth. Polymerase activity is demonstrable in the nucleolus and nucleoplasm of oocytes from growing follicles, but is absent from maturing oocytes of large follicles. PMID:4813213

  18. Record long-distance movement of a Deer Mouse, Peromyscus maniculatus, in a New England montane boreal forest

    USGS Publications Warehouse

    Wood, Connor M.; McKinney, Shawn T.

    2015-01-01

    We report a single-season, non-homing movement of 4287 ± 10 m by an adult male Deer Mouse, Peromyscus maniculatus, in western Maine, United States, in summer 2014. The movement was achieved in two stages: 927 ± 3 m in four days and an additional 3360 ± 10 m in 44 days. This is approximately 40% greater than the previously documented maximum linear movement for an individual of this species.

  19. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  20. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  1. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  2. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis.

    PubMed

    Salz, Helen K; Dawson, Emily P; Heaney, Jason D

    2017-03-01

    Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Mouse spermatogonia exposed to a high, multiply fractionated dose of a cancer chemotherapeutic drug: mutation analysis by electrophoresis.

    PubMed

    Johnson, F M; Lewis, S E

    1981-04-01

    Male mice of the DBA/2J strain were injected with procarbazine at a dose of 200 mg/kg body weight twice weekly until an accumulated dose of 2400 mg/kg was reached. A concurrent control group, injected only with the vehicle (saline) was also established. Most of the treated animals died as a result of exposure and all survivors became temporarily sterile. After regaining fertility the few survivors were repeatedly mated with C57BL/6J females over several weeks time to generate a population of F1 animals. The parental animals and the F1 were subsequently analyzed by electrophoresis for the occurrence of newly arisen mutations of spermatogonial origin. A mutation in the gene Pep-3 was found.

  4. What Pace Is Best? Assessing Adults' Learning from Slideshows and Video

    ERIC Educational Resources Information Center

    Sage, Kara

    2014-01-01

    When acquiring information from a 2D platform, self-control and/or optimal pacing may help reduce cognitive load and enhance learning outcomes. In the present research, adults viewed novel action sequences via one of four learning media: (1) self-paced slideshows, where viewers advanced through slides at their own pace by clicking a mouse, (2)…

  5. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    PubMed

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  6. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    PubMed

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  7. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    PubMed

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    PubMed

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  9. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.

    PubMed

    Gluck, Christian; Min, Sangwon; Oyelakin, Akinsola; Smalley, Kirsten; Sinha, Satrajit; Romano, Rose-Anne

    2016-11-16

    Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at

  10. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    PubMed

    Charles, James P; Cappellari, Ornella; Spence, Andrew J; Hutchinson, John R; Wells, Dominic J

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  11. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation

    PubMed Central

    Zoch, Ansgar; Mayerl, Steffen; Schulz, Alexander; Greither, Thomas; Frappart, Lucien; Rübsam, Juliane; Heuer, Heike; Giovannini, Marco; Morrison, Helen

    2015-01-01

    The tumour suppressor Merlin, encoded by the gene NF2, is frequently mutated in the autosomal dominant disorder neurofibromatosis type II, characterised primarily by the development of schwannoma and other glial cell tumours. However, NF2 is expressed in virtually all analysed human and rodent organs, and its deletion in mice causes early embryonic lethality. Additionally, NF2 encodes for two major isoforms of Merlin of unknown functionality. Specifically, the tumour suppressor potential of isoform 2 remains controversial. In this study, we used Nf2 isoform-specific knockout mouse models to analyse the function of each isoform during development and organ homeostasis. We found that both isoforms carry full tumour suppressor functionality and can completely compensate the loss of the other isoform during development and in most adult organs. Surprisingly, we discovered that spermatogenesis is strictly dependent on the presence of both isoforms. While the testis primarily expresses isoform 1, we noticed an enrichment of isoform 2 in spermatogonial stem cells. Deletion of either isoform was found to cause decreased sperm quality as observed by maturation defects and head/midpiece abnormalities. These defects led to impaired sperm functionality as assessed by decreased sperm capacitation. Thus, we describe spermatogenesis as a new Nf2-dependent process. Additionally, we provide for the first time in vivo evidence for equal tumour suppressor potentials of Merlin isoform 1 and isoform 2. PMID:26258444

  12. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  13. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  14. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  15. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  16. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  17. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferredmore » relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.« less

  18. An Adult Mouse Thyroid Side Population Cell Line that Exhibits Enriched Epithelial–Mesenchymal Transition

    PubMed Central

    Murata, Tsubasa; Iwadate, Manabu; Takizawa, Yoshinori; Miyakoshi, Masaaki; Hayase, Suguru; Yang, Wenjing; Cai, Yan; Yokoyama, Shigetoshi; Nagashima, Kunio; Wakabayashi, Yoshiyuki; Zhu, Jun

    2017-01-01

    Background: Studies of thyroid stem/progenitor cells have been hampered due to the small organ size and lack of tissue, which limits the yield of these cells. A continuous source that allows the study and characterization of thyroid stem/progenitor cells is desired to push the field forward. Method: A cell line was established from Hoechst-resistant side population cells derived from mouse thyroid that were previously shown to contain stem/progenitor-like cells. Characterization of these cells were carried out by using in vitro two- and three-dimensional cultures and in vivo reconstitution of mice after orthotopic or intravenous injection, in conjunction with quantitative reverse transcription polymerase chain reaction, Western blotting, immunohisto(cyto)chemistry/immunofluorescence, and RNA seq analysis. Results: These cells were named SPTL (side population cell-derived thyroid cell line). Under low serum culturing conditions, SPTL cells expressed the thyroid differentiation marker NKX2-1, a transcription factor critical for thyroid differentiation and function, while no expression of other thyroid differentiation marker genes were observed. SPTL cells formed follicle-like structures in Matrigel® cultures, which did not express thyroid differentiation marker genes. In mouse models of orthotopic and intravenous injection, the latter following partial thyroidectomy, a few SPTL cells were found in part of the follicles, most of which expressed NKX2-1. SPTL cells highly express genes involved in epithelial–mesenchymal transition, as demonstrated by RNA seq analysis, and exhibit a gene-expression pattern similar to anaplastic thyroid carcinoma. Conclusion: These results demonstrate that SPTL cells have the capacity to differentiate into thyroid to a limited degree. SPTL cells may provide an excellent tool to study stem cells, including cancer stem cells of the thyroid. PMID:28125936

  19. Drug discovery in prostate cancer mouse models.

    PubMed

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  20. Expression patterns of protein C inhibitor in mouse development.

    PubMed

    Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian

    2010-02-01

    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.

  1. Studies on sperm storage in the vas deferens of the spinifex hopping mouse (Notomys alexis).

    PubMed

    Peirce, E J; Moore, H D M; Leigh, C M; Breed, W G

    2003-02-01

    The cauda epididymidis, with its relatively cool temperature (32-35 degrees C), is considered to be the main site of sperm storage in male mammals. However, in the adult male spinifex hopping mouse, Notomys alexis, similar numbers of spermatozoa are found in the vas deferens to those in the cauda epididymidis. The present study shows that, unlike in the laboratory mouse in which spermatozoa of the vas deferens are found mainly in the epididymal region of the duct, spermatozoa in the hopping mouse are localized mainly to the middle and urethral regions of the vas deferens which lies in the inguinal and lower abdominal region of the body cavity. After ligation of the vas deferens close to its connection with the epididymis, many spermatozoa in the vas deferens retain the potential for motility for up to 2 weeks, indicating that the viability of spermatozoa is not compromised by being restricted to core body temperature. This urethral region of the vas deferens, in which spermatozoa reside, has a highly divergent structural organization compared with that of common laboratory rodents in which there is an expanded lumen with a network of epithelial folds. Ultrastructural observations of the cells lining the duct indicate that there are not any marked differences in morphology compared with the cells lining the duct in common laboratory murids, but the infoldings of the vas deferens of the hopping mouse are highly vascular which might facilitate supply of oxygen and nutrients to the spermatozoa residing in the lumen.

  2. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study.

    PubMed

    Hayashi, K; Hayashi, M; Jalkanen, M; Firestone, J H; Trelstad, R L; Bernfield, M

    1987-10-01

    The core protein of the proteoglycan at the cell surface of NMuMG mouse mammary epithelial cells bears both heparan and chondroitin sulfate chains and is recognized by the monoclonal antibody 281-2. Using this antibody and the peroxidase-antiperoxidase staining technique in adult mouse tissues, we found that the antibody recognizes the antigen in a highly restricted distribution, staining a variety of epithelial cells but no cells derived from embryonic mesoderm or neural crest. The antibody fails to stain any stromal (mesenchymal) or neuronal cells, with the exception of plasma cells and Leydig cells. Squamous and transitional epithelia stain intensely over their entire surfaces, whereas cuboidal and columnar epithelia stain moderately and only at the lateral surface of the basal cells. Within squamous and transitional epithelial tissues that undergo physiological regeneration (e.g., epidermis), the most superficial and differentiated cell types fail to stain. Within glandular and branched epithelia (e.g., pancreas), the secretory alveolar cells fail to stain. When evaluated by electron microscopy, granular deposits of stain are seen on the plasma membrane, especially on lateral surfaces, but none are noted within the cells or the basement membrane. These results indicate that in adult tissues the core protein of this heparan sulfate-rich proteoglycan is expressed almost exclusively at epithelial cell surfaces. Expression appears to be lost as the cells become either mature or highly differentiated.

  3. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  4. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  5. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  6. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  7. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  8. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  9. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  10. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  11. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.K.; Schuh, R.A.; Department of Anesthesiology, University of Maryland, Baltimore, MD

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For themore » in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.« less

  12. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    PubMed

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  13. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  14. A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor.

    PubMed

    Bernard, Clémence; Vincent, Clémentine; Testa, Damien; Bertini, Eva; Ribot, Jérôme; Di Nardo, Ariel A; Volovitch, Michel; Prochiantz, Alain

    2016-05-01

    During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.

  15. How Mouse-tracking Can Advance Social Cognitive Theory.

    PubMed

    Stillman, Paul E; Shen, Xi; Ferguson, Melissa J

    2018-06-01

    Mouse-tracking - measuring computer-mouse movements made by participants while they choose between response options - is an emerging tool that offers an accessible, data-rich, and real-time window into how people categorize and make decisions. In the present article we review recent research in social cognition that uses mouse-tracking to test models and advance theory. In particular, mouse-tracking allows examination of nuanced predictions about both the nature of conflict (e.g., its antecedents and consequences) as well as how this conflict is resolved (e.g., how decisions evolve). We demonstrate how mouse-tracking can further our theoretical understanding by highlighting research in two domains - social categorization and self-control. We conclude with future directions and a discussion of the limitations of mouse-tracking as a method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.

    PubMed

    Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H

    2018-03-16

    The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.

  17. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  18. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  19. Regulation of the mouse Treacher Collins syndrome homolog (Tcof1) promoter through differential repression of constitutive expression.

    PubMed

    Shows, Kathryn H; Shiang, Rita

    2008-11-01

    Treacher Collins syndrome is an autosomal-dominant mandibulofacial dysostosis caused by haploinsufficiency of the TCOF1 gene product treacle. Mouse Tcof1 protein is approximately 61% identical and 71% similar to treacle, and heterozygous knockout of Tcof1 causes craniofacial malformation. Tcof1 expression is high in developing neural crest, but much lower in other tissues. To investigate this dual regulation, highly conserved regions upstream of TCOF1 homologs were tested through deletion and mutation reporter assays, and conserved predicted transcription factor binding sites were assessed through chromatin binding studies. Assays were performed in mouse P19 embryonic carcinoma cells and in HEK293 cells to determine differential activation in cell types at different stages of differentiation. Binding of Cebpb, Zfp161, and Sp1 transcription factors was specific to the Tcof1 regulatory region in P19 cells. The Zfp161 binding site demonstrated P19 cell-specific repression, while the Sp1/Sp3 candidate site demonstrated HEK293 cell-specific activation. Moreover, presence of c-myb and Zfp161 transcripts was specific to P19 cells. A minimal promoter fragment from -253 to +43 bp directs constitutive expression in both cell types, and dual regulation of Tcof1 appears to be through differential repression of this minimal promoter. The CpG island at the transcription start site remains unmethylated in P19 cells, 11.5 dpc mouse embryonic tissue, and adult mouse ear, which supports constitutive activation of the Tcof1 promoter.

  20. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.

    PubMed

    Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves

    2013-12-01

    Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.

    PubMed

    Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A

    2018-02-19

    Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*

    PubMed Central

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-01-01

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741

  4. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  5. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kazim, Syed Faraz; Blanchard, Julie; Bianchi, Riccardo; Iqbal, Khalid

    2017-01-01

    Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer’s disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain development caused by trisomy 21 contribute significantly to memory deficits in adult life in DS. Prenatal genetic testing to diagnose DS in utero, provides the novel opportunity to initiate early pharmacological treatment to target this critical period of brain development. Here, we report that prenatal to early postnatal treatment with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021), rescued developmental delay in pups and AD-like hippocampus-dependent memory impairments in adult life in Ts65Dn mice. Furthermore, this treatment prevented pre-synaptic protein deficit, decreased glycogen synthase kinase-3beta (GSK3β) activity, and increased levels of synaptic plasticity markers including brain derived neurotrophic factor (BNDF) and phosphorylated CREB, both in young (3-week-old) and adult (~ 7-month-old) Ts65Dn mice. These findings provide novel evidence that providing neurotrophic support during early brain development can prevent developmental delay and AD-like memory impairments in a DS mouse model. PMID:28368015

  6. GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue.

    PubMed

    Dörner, Julia; Martinez Rodriguez, Verena; Ziegler, Ricarda; Röhrig, Theresa; Cochran, Rebecca S; Götz, Ronni M; Levin, Mark D; Pihlajoki, Marjut; Heikinheimo, Markku; Wilson, David B

    2017-02-05

    As certain strains of mice age, hyperplastic lesions resembling gonadal tissue accumulate beneath the adrenal capsule. Gonadectomy (GDX) accelerates this heterotopic differentiation, resulting in the formation of wedge-shaped adrenocortical neoplasms that produce sex steroids. Stem/progenitor cells that reside in the adrenal capsule and retain properties of the adrenogonadal primordium are thought to be the source of this heterotopic tissue. Here, we demonstrate that GLI1 + progenitors in the adrenal capsule give rise to gonadal-like cells that accumulate in the subcapsular region. A tamoxifen-inducible Cre driver (Gli1-creER T2 ) and two reporters (R26R-lacZ, R26R-confetti) were used to track the fate of GLI1 + cells in the adrenal glands of B6D2F2 mice, a strain that develops both GDX-induced adrenocortical neoplasms and age-dependent subcapsular cell hyperplasia. In gonadectomized B6D2F2 mice GLI1 + progenitors contributed to long-lived adrenal capsule cells and to adrenocortical neoplasms that expressed Gata4 and Foxl2, two prototypical gonadal markers. Pdgfra, a gene expressed in adrenocortical stromal cells, was upregulated in the GDX-induced neoplasms. In aged non-gonadectomized B6D2F2 mice GLI1 + progenitors gave rise to patches of subcapsular cell hyperplasia. Treatment with GANT61, a small-molecule GLI antagonist, attenuated the upregulation of gonadal-like markers (Gata4, Amhr2, Foxl2) in response to GDX. These findings support the premise that GLI1 + progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    PubMed Central

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  8. Survival of adult neurons lacking cholesterol synthesis in vivo

    PubMed Central

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-01

    Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system. PMID:17199885

  9. Survival of adult neurons lacking cholesterol synthesis in vivo.

    PubMed

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  10. Surface immunoglobulin on cultured foetal mouse thymocytes

    PubMed Central

    Haustein, D.; Mandel, T. E.

    1979-01-01

    Organ cultures of 14–15 day foetal mouse thymus were used as a source of non-neoplastic differentiating T cells, free of contaminating B cells. Viable cells obtained from such cultured thymuses were radio-iodinated and immunoglobulins (Ig) were isolated by co-precipitation from the 125I-labelled cell-surface proteins released during 1 h of incubation at 37°. The precipitates, both reduced and unreduced, were then analysed by polyacrylamide gel electrophoresis. The unreduced material migrated in a 5% gel as a single peak with a mobility slightly faster than that of mouse IgG. After reduction, however, two peaks were obtained (in a 10% gel), one corresponding in migration to mouse light chain and the other which moved slightly faster than mouse μ chain. This pattern was identical with that previously seen for both surface Ig of normal mouse thymocytes and neoplastic T lymphoma cells. Uncultured, 15 day foetal thymocytes did not produce any detectable co-precipitated cell surface material. Ig detected in these experiments was therefore produced during in vitro culture by non-neoplastic T cells in a system free of contaminating B cells and mouse serum proteins. PMID:315364

  11. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar

    2014-10-03

    Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.

  12. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.

    PubMed Central

    Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo

    2003-01-01

    CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID

  13. Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus).

    PubMed

    Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R

    2017-08-01

    Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.

  14. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  15. Principles and application of LIMS in mouse clinics.

    PubMed

    Maier, Holger; Schütt, Christine; Steinkamp, Ralph; Hurt, Anja; Schneltzer, Elida; Gormanns, Philipp; Lengger, Christoph; Griffiths, Mark; Melvin, David; Agrawal, Neha; Alcantara, Rafael; Evans, Arthur; Gannon, David; Holroyd, Simon; Kipp, Christian; Raj, Navis Pretheeba; Richardson, David; LeBlanc, Sophie; Vasseur, Laurent; Masuya, Hiroshi; Kobayashi, Kimio; Suzuki, Tomohiro; Tanaka, Nobuhiko; Wakana, Shigeharu; Walling, Alison; Clary, David; Gallegos, Juan; Fuchs, Helmut; de Angelis, Martin Hrabě; Gailus-Durner, Valerie

    2015-10-01

    Large-scale systemic mouse phenotyping, as performed by mouse clinics for more than a decade, requires thousands of mice from a multitude of different mutant lines to be bred, individually tracked and subjected to phenotyping procedures according to a standardised schedule. All these efforts are typically organised in overlapping projects, running in parallel. In terms of logistics, data capture, data analysis, result visualisation and reporting, new challenges have emerged from such projects. These challenges could hardly be met with traditional methods such as pen & paper colony management, spreadsheet-based data management and manual data analysis. Hence, different Laboratory Information Management Systems (LIMS) have been developed in mouse clinics to facilitate or even enable mouse and data management in the described order of magnitude. This review shows that general principles of LIMS can be empirically deduced from LIMS used by different mouse clinics, although these have evolved differently. Supported by LIMS descriptions and lessons learned from seven mouse clinics, this review also shows that the unique LIMS environment in a particular facility strongly influences strategic LIMS decisions and LIMS development. As a major conclusion, this review states that there is no universal LIMS for the mouse research domain that fits all requirements. Still, empirically deduced general LIMS principles can serve as a master decision support template, which is provided as a hands-on tool for mouse research facilities looking for a LIMS.

  16. Zika virus-induced hyper excitation precedes death of mouse primary neuron.

    PubMed

    Gaburro, Julie; Bhatti, Asim; Sundaramoorthy, Vinod; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard

    2018-04-27

    Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.

  17. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus

    PubMed Central

    Autio, Henri; Mätlik, Kert; Rantamäki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumäe, Urmas; Castrén, Eero

    2014-01-01

    Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD. PMID:21820453

  18. Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models.

    PubMed

    Irvin, David M; McNeill, Robert S; Bash, Ryan E; Miller, C Ryan

    2017-01-01

    The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis. © 2016 International Society of Neuropathology.

  19. EuroPhenome and EMPReSS: online mouse phenotyping resource

    PubMed Central

    Mallon, Ann-Marie; Hancock, John M.

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC). PMID:17905814

  20. EuroPhenome and EMPReSS: online mouse phenotyping resource.

    PubMed

    Mallon, Ann-Marie; Blake, Andrew; Hancock, John M

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).