Sample records for adult muscle regeneration

  1. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  2. Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus.

    PubMed

    Maden, Malcolm; Brant, Jason Orr; Rubiano, Andres; Sandoval, Aaron Gabriel W; Simmons, Chelsey; Mitchell, Robert; Collin-Hooper, Henry; Jacobson, Jason; Omairi, Saleh; Patel, Ketan

    2018-06-11

    The spiny mouse, Acomys cahirinus, is an adult mammal capable of remarkable feats of scar-free tissue regeneration after damage to several organs including the skin and the heart. Here we investigate the regenerative properties of the skeletal muscle of A. cahirinus tibialis anterior in comparison to the lab mouse, Mus musculus. The A. cahirinus TA showed a similar distribution of myosin heavy chain fibre types and a reduced proportion of oxidative fibres compared to M. musculus. There were differences in the matrix components of the TA with regard to collagen VI and the biomechanical properties. A. cahirinus TA regenerated faster with a more rapid induction of embryonic myosin and higher levels of dystrophin than in M. musculus fibres. There were lower levels of inflammation (NF-kB), fibrosis (TGFβ-1, collagens) and higher levels of the anti-inflammatory cytokine Cxcl12. There was a difference in macrophage profile between the two species. After multiple rounds of muscle regeneration the M. musculus TA failed to regenerate muscle fibres and instead produced a large numbers of adipocytes whereas the A. cahirinus TA regenerated perfectly. This clearly improved regeneration performance can be explained by differing levels of growth factors such as adiponectin between the two species.

  3. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  4. Redox Control of Skeletal Muscle Regeneration

    PubMed Central

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane

    2017-01-01

    Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662

  5. Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration

    PubMed Central

    Shea, Kelly L.; Xiang, Wanyi; LaPorta, Vincent S.; Licht, Jonathan D.; Keller, Charles; Basson, M. Albert; Brack, Andrew S.

    2010-01-01

    Summary Satellite cells are a heterogeneous population of skeletal muscle specific stem cells capable of self-renewal and differentiation after transplantation. Whether quiescent satellite cells can self-renew and contribute to muscle fiber repair in their endogenous environment in normal regenerating muscle has remained unknown. The transcription factor Pax7 is expressed in satellite cells and is critical for establishing the adult satellite cell pool. Using a temporally-inducible genetic lineage tracing approach (Pax7-CreERtm; R26R-lacZ) to fate-map adult satellite cells, we show that in response to injury quiescent adult Pax7+ cells enter the cell cycle; a subpopulation return to quiescence to fully replenish the satellite cell compartment and the others contribute to de novo muscle fiber formation. We demonstrate that Sprouty1 (Spry1), an inhibitor of receptor tyrosine kinase signaling, is robustly expressed in quiescent Pax7+ satellite cells in uninjured adult muscle, down-regulated in proliferating myogenic cells in injured muscles, and re-induced as Pax7+ cells return to quiescence in regenerated muscles. We show through deletion of Spry1 specifically in cycling adult Pax7+ satellite cells, that Spry1 is required for the return to quiescence and homeostasis of the self-renewing Pax7+ satellite cell pool during repair. Satellite cells unable to return to quiescence succumb to apoptosis leading to a diminished self-renewing Pax7-derived satellite cell pool. Our results define a novel role for Spry1 in adult stem cell biology and tissue repair. PMID:20144785

  6. Effects of Aging on Thyroarytenoid Muscle Regeneration

    PubMed Central

    Lee, Kyungah; Kletzien, Heidi; Connor, Nadine P.; Schultz, Edward; Chamberlain, Connie S.; Bless, Diane M.

    2012-01-01

    Objectives/hypotheses Regenerative properties of age-associated changes in the intrinsic laryngeal muscles following injury are unclear. The purpose of this study was to investigate the regenerative properties of the thyroarytenoid muscle (TA) in an aging rat model. The hypothesis was that, following myotoxic injury, old animals would exhibit a decrease in mitotic activities of muscle satellite cells when compared with younger rats, suggesting reduced regenerative potential in the aging rat TA. Study Design Animal group comparison. Method Regeneration responses following injury to the TA were examined in 18 young adult, middle-aged, and old Fischer 344/Brown Norway rats. TA muscle fiber cross sectional area (CSA), satellite cell mitosis (number/fiber), and regeneration index (CSA injured side/CSA non-injured side) were measured and compared across age groups. Results Young animals had a significantly higher regeneration index than the middle-aged and old groups. Within the lateral region of the TA (LTA), the regeneration index was significantly higher in the young animals than in the middle-aged and old animals. The regeneration index of the medial TA (MTA) was significantly higher than the LTA across all age groups. Conclusions The regenerative capacity of the TA muscle is impaired with increasing age. Evidence N/A PMID:22965923

  7. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  8. Requirement of MEF2A, C, and D for skeletal muscle regeneration

    PubMed Central

    Liu, Ning; Nelson, Benjamin R.; Bezprozvannaya, Svetlana; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2014-01-01

    Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells, an injury-sensitive muscle stem cell population that proliferates, differentiates, and fuses with injured myofibers. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play essential roles in muscle differentiation during embryogenesis, but their potential contributions to adult muscle regeneration have not been systematically explored. To investigate the potential involvement of MEF2 factors in muscle regeneration, we conditionally deleted the Mef2a, c, and d genes, singly and in combination, within satellite cells in mice, using tamoxifen-inducible Cre recombinase under control of the satellite cell-specific Pax7 promoter. We show that deletion of individual Mef2 genes has no effect on muscle regeneration in response to cardiotoxin injury. However, combined deletion of the Mef2a, c, and d genes results in a blockade to regeneration. Satellite cell-derived myoblasts lacking MEF2A, C, and D proliferate normally in culture, but cannot differentiate. The absence of MEF2A, C, and D in satellite cells is associated with aberrant expression of a broad collection of known and unique protein-coding and long noncoding RNA genes. These findings reveal essential and redundant roles of MEF2A, C, and D in satellite cell differentiation and identify a MEF2-dependent transcriptome associated with skeletal muscle regeneration. PMID:24591619

  9. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  10. "Fast" and "slow" muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells.

    PubMed

    Kalhovde, J M; Jerkovic, R; Sefland, I; Cordonnier, C; Calabria, E; Schiaffino, S; Lømo, T

    2005-02-01

    Myosin heavy chain (MyHC) expression was examined in regenerating fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles of adult rats. Myotoxic bupivacaine was injected into SOL and EDL and the muscles were either denervated or neuromuscularly blocked by tetrodotoxin (TTX) on the sciatic nerve. Three to 10 or 30 days later, denervated SOL or EDL, or innervated but neuromuscularly blocked EDL received a slow 20 Hz stimulus pattern through electrodes implanted on the muscles or along the fibular nerve to EDL below the TTX block. In addition, denervated SOL and EDL received a fast 100 Hz stimulus pattern. Denervated EDL and SOL stimulated with the same slow stimulus pattern expressed different amounts of type 1 MyHC protein (8% versus 35% at 10 days, 13% versus 87% at 30 days). Stimulated denervated and stimulated innervated (TTX blocked) EDL expressed the same amounts of type 1, 2A, 2X and 2B MyHC proteins. Cross-sections treated for in situ hybridization and immunocytochemistry showed expression of type 1 MyHC in all SOL fibres but only in some scattered single or smaller groups of fibres in EDL. The results suggest that muscle fibres regenerate from intrinsically different satellite cells in EDL and SOL and within EDL. However, induction by different extrinsic factors arising in extracellular matrix or from muscle position and usage in the limb has not been excluded. No evidence for nerve-derived trophic influences was obtained.

  11. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  12. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  13. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Somik; Yin, Hongshan; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response ismore » observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.« less

  14. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2.

    PubMed

    Galimov, Artur; Merry, Troy L; Luca, Edlira; Rushing, Elisabeth J; Mizbani, Amir; Turcekova, Katarina; Hartung, Angelika; Croce, Carlo M; Ristow, Michael; Krützfeldt, Jan

    2016-03-01

    The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. [Muscle regeneration in mdx mouse, and a trial of normal myoblast transfer into regenerating dystrophic muscle].

    PubMed

    Takemitsu, M; Arahata, K; Nonaka, I

    1990-10-01

    The most ideal therapeutic trial on Duchenne muscular dystrophy (DMD) is a transfer of normal myoblasts into dystrophic muscle which has been attempted on animal models in several institutes. In the process of muscle regeneration, the transferred normal myoblasts are expected to incorporate into the regenerating fibers in host dystrophic mouse. To know the capacity of muscle regeneration in dystrophic muscle, we compared the regenerating process of the normal muscle with that of the dystrophic muscle after myonecrosis induced by 0.25% bupivacaine hydrochloride (BPVC) chronologically. In the present study, C57BL/10ScSn-mdx (mdx) mouse was used as an animal model of DMD and C57BL/10ScSn (B10) mouse as a control. There was no definite difference in the behavior of muscle fiber regeneration between normal and dystrophic muscles. The dystrophic muscle regenerated rapidly at the similar tempo to the normal as to their size and fiber type differentiation. The variation in fiber size diameter of dystrophic muscle, however, was more obvious than that of normal. To promote successful myoblast transfer from B10 mouse into dystrophic mdx mouse at higher ratio, cultured normal myoblasts were transferred into the regenerating dystrophic muscle on the first and the second day after myonecrosis induced by BPVC. Two weeks after the myoblast injection, the muscles were examined with immunohistochemical stain using anti dystrophin antibody. Although dystrophin-positive fibers appeared in dystrophic muscle, the positive fibers were unexpectedly small in number (3.86 +/- 1.50%).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.

    PubMed

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-11-18

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4 , the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration.

  17. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

    PubMed Central

    Paris, Nicole D; Soroka, Andrew; Klose, Alanna; Liu, Wenxuan; Chakkalakal, Joe V

    2016-01-01

    Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI: http://dx.doi.org/10.7554/eLife.19484.001 PMID:27855784

  18. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle.

    PubMed

    Buttgereit, Andreas; Weber, Cornelia; Friedrich, Oliver

    2014-07-01

    Duchenne muscular dystrophy is an inherited degenerative muscle disease with progressive weakness of skeletal and cardiac muscle. Disturbed calcium homeostasis and signalling pathways result in degeneration/regeneration cycles with fibrotic remodelling of muscle tissue, sustained by chronic inflammation. In addition to altered microarchitecture, regeneration in dystrophic muscle fibres is often only classified by centrally located nuclei but correlation of the regeneration process to nuclear volumes, myosin amounts, architecture and functional quality are missing, in particular in old muscles where the regenerative capacity is exhausted. Such information could yield novel regeneration-to-function biomarkers. Here we used second harmonic generation and multi photon fluorescence microscopy in intact single muscle fibres from wild-type, dystrophic mdx and transgenic mdx mice expressing an Δex 17-48 mini-dystrophin to determine the percentage of centronucleated fibres and nucleus-to-myosin volume ratio as a function of age. Based on this ratio we define a 'biomotoric efficiency' as an optical measure for fibre maturation, which is close to unity in adult wild-type and mini-dystrophin fibres, but smaller in very young and old mdx mice as a result of ongoing cell maturation (young) and regeneration (aged). With these parameters it is possible to provide a quantitative measure about muscle fibre regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A rat model for muscle regeneration in the soft palate.

    PubMed

    Carvajal Monroy, Paola L; Grefte, Sander; Kuijpers-Jagtman, Anne M; Helmich, Maria P A C; Ulrich, Dietmar J O; Von den Hoff, Johannes W; Wagener, Frank A D T G

    2013-01-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery.

  20. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases.

    PubMed

    Forcina, Laura; Miano, Carmen; Musarò, Antonio

    2018-06-01

    Skeletal muscle is a complex, dynamic tissue characterized by an elevated plasticity. Although the adult muscle is mainly composed of multinucleated fibers with post mitotic nuclei, it retains a remarkable ability to regenerate in response to traumatic events. The regenerative potential of the adult skeletal muscle relies in the activity of satellite cells, mononucleated cells residing within the muscle in intimate association with myofibers. Satellite cells normally remain quiescent in their sublaminar position, sporadically entering the cell cycle to guarantee an efficient cellular turnover, by fusing with pre-existing myofibers, and to maintain the stem cell pool. However, after muscle injury satellite cells undergo an extensive increase of their activity in response to environmental stimuli, thereby participating to the regeneration of a functional muscle tissue. Nevertheless, regeneration is affected in several pathologic conditions and by a wide range of environmental signals that are highly variable, not only through time, but also depending on the physiological or pathological conditions of the musculature. Among these factors, the interleukin-6 (IL-6) plays a critical physiopathologic role on muscle homeostasis and diseases. The basis of muscle regeneration and the impact of IL-6 on the physiopathology of skeletal muscle will be discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    PubMed

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  2. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  3. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK.

    PubMed

    Fu, Xing; Zhu, Meijun; Zhang, Shuming; Foretz, Marc; Viollet, Benoit; Du, Min

    2016-01-01

    Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration.

    PubMed

    Yang, Wenjun; Hu, Ping

    2018-04-01

    The muscle regeneration is a complicated bioprocess that involved in many cell types, including necrotic muscle cells, satellite cells, mesenchymal cells, pericytes, immune cells, and other cell types present at the injury site. Immune cells involved in both innate and adaptive immune responses regulate the progress of muscle regeneration. In this review, we discussed the roles of different immune cells in muscle regeneration. The immune cells regulate muscle regeneration through cytokine production, cell-cell contacts, and general immune environment regulation. We also describe the current known mechanism of how immune cells regulating muscle regeneration. Copyright © 2017. Published by Elsevier Inc.

  5. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases

    PubMed Central

    Ultimo, Simona; Zauli, Giorgio; Martelli, Alberto M.; Vitale, Marco; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.

    2018-01-01

    Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth. PMID:29682218

  6. A Rat Model for Muscle Regeneration in the Soft Palate

    PubMed Central

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  7. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice

    PubMed Central

    Liu, Ning; Williams, Andrew H.; Maxeiner, Johanna M.; Bezprozvannaya, Svetlana; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle–specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that miR-206 promotes skeletal muscle regeneration in response to injury. Genetic deletion of miR-206 in mice substantially delayed regeneration induced by cardiotoxin injury. Furthermore, loss of miR-206 accelerated and exacerbated the dystrophic phenotype in a mouse model of Duchenne muscular dystrophy. We found that miR-206 acts to promote satellite cell differentiation and fusion into muscle fibers through suppressing a collection of negative regulators of myogenesis. Our findings reveal an essential role for miR-206 in satellite cell differentiation during skeletal muscle regeneration and indicate that miR-206 slows progression of Duchenne muscular dystrophy. PMID:22546853

  9. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish

    PubMed Central

    Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.

    2017-01-01

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710

  10. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing, and disease

    PubMed Central

    Almada, Albert E.; Wagers, Amy J.

    2016-01-01

    Satellite cells are adult myogenic stem cells that function to repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, differentiation to produce myoblasts that can reconstitute damaged fibers, and self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulations of satellite cell fate and function contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne Muscular Dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration, aging, and in the context of DMD is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine. PMID:26956195

  11. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    PubMed

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The CXCR4/SDF1 Axis Improves Muscle Regeneration Through MMP-10 Activity

    PubMed Central

    Bobadilla, Miriam; Sainz, Neira; Abizanda, Gloria; Orbe, Josune; Rodriguez, José Antonio; Páramo, José Antonio; Prósper, Felipe

    2014-01-01

    The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration. PMID:24548137

  13. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  14. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    PubMed

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  15. Current Methods for Skeletal Muscle Tissue Repair and Regeneration

    PubMed Central

    Liu, Juan; Saul, Dominik; Böker, Kai Oliver; Ernst, Jennifer; Lehman, Wolfgang

    2018-01-01

    Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation. PMID:29850487

  16. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    PubMed

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  17. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration

    PubMed Central

    2013-01-01

    Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977

  18. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  19. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  20. Combination of small RNAs for skeletal muscle regeneration.

    PubMed

    Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin

    2016-03-01

    Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration. © FASEB.

  1. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  2. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    PubMed

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  3. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    PubMed Central

    2012-01-01

    Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms. PMID:22369050

  4. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle

    PubMed Central

    Call, Jarrod A.; Wilson, Rebecca J.; Laker, Rhianna C.; Zhang, Mei; Kundu, Mondira

    2017-01-01

    Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7. Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. PMID:28356270

  5. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    PubMed

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    PubMed Central

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  7. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    PubMed

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  8. A 3-D Cardiac Muscle Construct for Exploring Adult Marrow Stem Cell Based Myocardial Regeneration

    PubMed Central

    Valarmathi, Mani T.; Goodwin, Richard L.; Fuseler, John W.; Davis, Jeffrey M.; Yost, Michael J.; Potts, Jay D.

    2010-01-01

    Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation. PMID:20129663

  9. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  10. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    PubMed

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Engineering functional and histological regeneration of vascularized skeletal muscle.

    PubMed

    Gilbert-Honick, Jordana; Iyer, Shama R; Somers, Sarah M; Lovering, Richard M; Wagner, Kathryn; Mao, Hai-Quan; Grayson, Warren L

    2018-05-01

    Tissue engineering strategies to treat patients with volumetric muscle loss (VML) aim to recover the structure and contractile function of lost muscle tissue. Here, we assessed the capacity of novel electrospun fibrin hydrogel scaffolds seeded with murine myoblasts to regenerate the structure and function of damaged muscle within VML defects to the mouse tibialis anterior muscle. The electrospun fibrin scaffolds provide pro-myogenic alignment and stiffness cues, myomimetic hierarchical structure, suturability, and scale-up capabilities. Myoblast-seeded scaffolds enabled remarkable muscle regeneration with high myofiber and vascular densities after 2 and 4 weeks, mimicking that of native skeletal muscle, while acellular scaffolds lacked muscle regeneration. Both myoblast-seeded and acellular scaffolds fully recovered muscle contractile function to uninjured values after 2 and 4 weeks. Electrospun scaffolds pre-vascularized with co-cultured human endothelial cells and human adipose-derived stem cells implanted into VML defects for 2 weeks anastomosed with host vasculature and were perfused with host red blood cells. These data demonstrate the significant potential of electrospun fibrin scaffolds seeded with myoblasts to fully regenerate the structure and function of volumetric muscle defects and these scaffolds offer a promising treatment option for patients with VML. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle.

    PubMed

    Call, Jarrod A; Wilson, Rebecca J; Laker, Rhianna C; Zhang, Mei; Kundu, Mondira; Yan, Zhen

    2017-06-01

    Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. Copyright © 2017 the American Physiological Society.

  14. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  15. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  16. Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration.

    PubMed

    Louie, Ke'ale W; Saera-Vila, Alfonso; Kish, Phillip E; Colacino, Justin A; Kahana, Alon

    2017-11-09

    Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the

  17. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration

    PubMed Central

    Leclère, Lucas; Röttinger, Eric

    2017-01-01

    The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process. PMID:28168188

  18. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration.

    PubMed

    Leclère, Lucas; Röttinger, Eric

    2016-01-01

    The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2 . Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.

  19. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle

    PubMed Central

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria L.; Mintz, Akiva; Delbono, Osvaldo

    2014-01-01

    Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting. PMID:25278877

  20. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration

    PubMed Central

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M. Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle. PMID:26098312

  1. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

    PubMed

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.

  2. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  3. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  4. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  5. Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.

    PubMed

    Gutmann, E; Mares, V; Stichová, J

    1976-03-05

    Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.

  6. PKCε as a novel promoter of skeletal muscle differentiation and regeneration.

    PubMed

    Di Marcantonio, D; Galli, D; Carubbi, C; Gobbi, G; Queirolo, V; Martini, S; Merighi, S; Vaccarezza, M; Maffulli, N; Sykes, S M; Vitale, M; Mirandola, P

    2015-11-15

    Satellite cells are muscle resident stem cells and are responsible for muscle regeneration. In this study we investigate the involvement of PKCε during muscle stem cell differentiation in vitro and in vivo. Here, we describe the identification of a previously unrecognized role for the PKCε-HMGA1 signaling axis in myoblast differentiation and regeneration processes. PKCε expression was modulated in the C2C12 cell line and primary murine satellite cells in vitro, as well as in an in vivo model of muscle regeneration. Immunohistochemistry and immunofluorescence, RT-PCR and shRNA silencing techniques were used to determine the role of PKCε and HMGA1 in myogenic differentiation. PKCε expression increases and subsequently re-localizes to the nucleus during skeletal muscle cell differentiation. In the nucleus, PKCε blocks Hmga1 expression to promote Myogenin and Mrf4 accumulation and myoblast formation. Following in vivo muscle injury, PKCε accumulates in regenerating, centrally-nucleated myofibers. Pharmacological inhibition of PKCε impairs the expression of two crucial markers of muscle differentiation, namely MyoD and Myogenin, during injury induced muscle regeneration. This work identifies the PKCε-HMGA1 signaling axis as a positive regulator of skeletal muscle differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  8. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis

    PubMed Central

    Sobotka, Stanislaw; Mu, Liancai

    2012-01-01

    Background End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Materials and Methods Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Results Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. Conclusions The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. PMID:23207170

  9. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis.

    PubMed

    Sobotka, Stanislaw; Mu, Liancai

    2013-06-15

    End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration

    PubMed Central

    Xiong, Guangyan; Hindi, Sajedah M; Mann, Aman K; Gallot, Yann S; Bohnert, Kyle R; Cavener, Douglas R; Whittemore, Scott R; Kumar, Ashok

    2017-01-01

    Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis. DOI: http://dx.doi.org/10.7554/eLife.22871.001 PMID:28332979

  11. Conversion of muscle fiber types in regenerating chicken muscles following cross-reinnervation.

    PubMed

    Kikuchi, T; Akiba, T; Ashmore, C R

    1986-01-01

    Slow-tonic anterior latissimus dorsi (ALD) and fast-twitch posterior latissimus dorsi (PLD) muscles of 7 to 10-day-old White Leghorn chickens were crushed and allowed to be reinnervated by their own nerve, or crushed and transplanted to the other side and allowed to be reinnervated by the nerve of the side to which they were transplanted. Following transplantation, changes in the weight of the muscle, fiber-type composition and innervation pattern during regeneration were investigated. Normal growth rate of PLD was about twice that of ALD. Regenerating PLD, however, atrophied rapidly after crushing and denervation whether innervated by its own nerve or the other nerve type, whereas ALD reinnervated by its own nerve showed marked hypertrophy. PLD fibers transformed rapidly to fast-twitch alpha or slow-tonic (ST) fibers when they were reinnervated by PLD or ALD nerve, respectively. When ALD fibers were reinnervated by their own nerve, they differentiated into ST fibers that were surrounded by smaller immature fibers. ALD fibers were, however, resistant to complete control by fast-twitch PLD nerve and contained a large number of slow fibers (ST and beta) long after transplantation. Slow fibers in regenerates were initially multiply innervated, but later transformed into fast-twitch alpha fibers that were focally innervated. The mode of differentiation and innervation pattern of different muscle fiber types in regenerating muscles are discussed.

  12. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  13. Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail.

    PubMed

    Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M

    2018-01-15

    Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Botulinum Toxin Induces Muscle Paralysis and Inhibits Bone Regeneration in Zebrafish

    PubMed Central

    Recidoro, Anthony M.; Roof, Amanda C.; Schmitt, Michael; Worton, Leah E.; Petrie, Timothy; Strand, Nicholas; Ausk, Brandon J.; Srinivasan, Sundar; Moon, Randall T.; Gardiner, Edith M.; Kaminsky, Werner; Bain, Steven D.; Allan, Christopher H.; Gross, Ted S.; Kwon, Ronald Y.

    2016-01-01

    Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (e.g., development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study we developed a model of BTx-induced muscle paralysis in adult zebrafish, and examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders. PMID:24806738

  15. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages

    PubMed Central

    Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z

    2016-01-01

    Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases. PMID:27277683

  16. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    PubMed

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  17. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration.

    PubMed

    Bi, Pengpeng; McAnally, John R; Shelton, John M; Sánchez-Ortiz, Efrain; Bassel-Duby, Rhonda; Olson, Eric N

    2018-04-10

    Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.

  18. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  19. Regenerating muscle with arginine methylation

    PubMed Central

    Blanc, Roméo S.; Richard, Stéphane

    2017-01-01

    ABSTRACT Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging. PMID:28301308

  20. Regenerating muscle with arginine methylation.

    PubMed

    Blanc, Roméo S; Richard, Stéphane

    2017-05-27

    Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging.

  1. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles.

    PubMed

    Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya

    2010-05-01

    Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.

  2. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal.

    PubMed

    Angelino, Elia; Reano, Simone; Bollo, Alessandro; Ferrara, Michele; De Feudis, Marilisa; Sustova, Hana; Agosti, Emanuela; Clerici, Sara; Prodam, Flavia; Tomasetto, Catherine-Laure; Graziani, Andrea; Filigheddu, Nicoletta

    2018-05-30

    Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl -/- mice upon CTX-induced injury. Although muscles from Ghrl -/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl -/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.

  3. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    PubMed Central

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is

  4. The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration

    PubMed Central

    Griffin, Christine A.; Esk, Christopher; Torres, Jorge A.; Ohkoshi, Norio; Ishii, Akiko; Tamaoka, Akira; Funke, Birgit H.; Kucherlapati, Raju; Margeta, Marta; Rando, Thomas A.; Brodsky, Frances M.

    2013-01-01

    Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating

  5. Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma-A Broad Spectrum Analysis.

    PubMed

    Xu, Pengfei; Werner, Jens-Uwe; Milerski, Sebastian; Hamp, Carmen M; Kuzenko, Tatjana; Jähnert, Markus; Gottmann, Pascal; de Roy, Luisa; Warnecke, Daniela; Abaei, Alireza; Palmer, Annette; Huber-Lang, Markus; Dürselen, Lutz; Rasche, Volker; Schürmann, Annette; Wabitsch, Martin; Knippschild, Uwe

    2018-01-01

    Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore

  6. MOR23 promotes muscle regeneration and regulates cell adhesion and migration

    PubMed Central

    Griffin, Christine A.; Kafadar, Kimberly A.; Pavlath, Grace K.

    2009-01-01

    Summary Odorant receptors (ORs) in the olfactory epithelium bind to volatile small molecules leading to the perception of smell. ORs are expressed in many tissues but their functions are largely unknown. We show multiple ORs display distinct mRNA expression patterns during myogenesis in vitro and muscle regeneration in vivo. Mouse OR23 (MOR23) expression is induced during muscle regeneration when muscle cells are extensively fusing and plays a key role in regulating migration and adhesion of muscle cells in vitro, two processes common during tissue repair. A soluble ligand for MOR23 is secreted by muscle cells in vitro and muscle tissue in vivo. MOR23 is necessary for proper skeletal muscle regeneration as loss of MOR23 leads to increased myofiber branching, commonly associated with muscular dystrophy. Together these data identify a functional role for an OR outside of the nose and suggest a larger role for ORs during tissue repair. PMID:19922870

  7. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice

    PubMed Central

    Silva, M T; Wensing, L A; Brum, P C; Câmara, N O; Miyabara, E H

    2014-01-01

    Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries. PMID:24938737

  8. Regeneration of injured skeletal muscle after the injury

    PubMed Central

    Järvinen, Tero AH; Järvinen, Markku; Kalimo, Hannu

    2013-01-01

    Summary Muscle injuries are one of the most common traumas occurring in sports. Despite their clinical importance, few clinical studies exist on the treatment of these traumas. Thus, the current treatment recommendations for muscle injuries have either been derived from experimental studies or been tested only empirically. Although non operative treatment should almost always be the 1st choice as it results in good functional outcomes in the majority of athletes with muscle injuries, the consequences of failed treatment can be very dramatic, possibly postponing an athlete’s return to sports for weeks or even months. Moreover, the recognition of some basic principles of skeletal muscle regeneration and healing processes can considerably help in both avoiding the imminent dangers and accelerating the return to competition. Accordingly, in this review, the authors have summarized the prevailing understanding on the biology of muscle regeneration in hopes of extending these findings to clinical practice in an attempt to propose an evidence-based approach for the diagnosis and optimal treatment of skeletal muscle injuries. PMID:24596699

  9. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  10. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury.

    PubMed

    Swiderski, Kristy; Thakur, Savant S; Naim, Timur; Trieu, Jennifer; Chee, Annabel; Stapleton, David I; Koopman, René; Lynch, Gordon S

    2016-01-01

    effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.

  11. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy.

    PubMed

    André, Laurène M; Ausems, C Rosanne M; Wansink, Derick G; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP , respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for

  12. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy

    PubMed Central

    André, Laurène M.; Ausems, C. Rosanne M.; Wansink, Derick G.; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3′ non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient’s lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine

  13. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    PubMed Central

    Xu, Xiaoti; Wilschut, Karlijn J.; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P. Daniel; Hoffman, William Y.; Pomerantz, Jason H.

    2015-01-01

    Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications. PMID:26352798

  14. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy.

    PubMed

    Cerquone Perpetuini, Andrea; Re Cecconi, Andrea David; Chiappa, Michela; Martinelli, Giulia Benedetta; Fuoco, Claudia; Desiderio, Giovanni; Castagnoli, Luisa; Gargioli, Cesare; Piccirillo, Rosanna; Cesareni, Gianni

    2018-05-21

    Skeletal muscle is characterized by an efficient regeneration potential that is often impaired during myopathies. Understanding the molecular players involved in muscle homeostasis and regeneration could help to find new therapies against muscle degenerative disorders. Previous studies revealed that the Ser/Thr kinase p21 protein-activated kinase 1 (Pak1) was specifically down-regulated in the atrophying gastrocnemius of Yoshida hepatoma-bearing rats. In this study, we evaluated the role of group I Paks during cancer-related atrophy and muscle regeneration. We examined Pak1 expression levels in the mouse Tibialis Anterior muscles during cancer cachexia induced by grafting colon adenocarcinoma C26 cells and in vitro by dexamethasone treatment. We investigated whether the overexpression of Pak1 counteracts muscle wasting in C26-bearing mice and in vitro also during interleukin-6 (IL6)-induced or dexamethasone-induced C2C12 atrophy. Moreover, we analysed the involvement of group I Paks on myogenic differentiation in vivo and in vitro using the group I chemical inhibitor IPA-3. We found that Pak1 expression levels are reduced during cancer-induced cachexia in the Tibialis Anterior muscles of colon adenocarcinoma C26-bearing mice and in vitro during dexamethasone-induced myotube atrophy. Electroporation of muscles of C26-bearing mice with plasmids directing the synthesis of PAK1 preserves fiber size in cachectic muscles by restraining the expression of atrogin-1 and MuRF1 and possibly by inducing myogenin expression. Consistently, the overexpression of PAK1 reduces the dexamethasone-induced expression of MuRF1 in myotubes and increases the phospho-FOXO3/FOXO3 ratio. Interestingly, the ectopic expression of PAK1 counteracts atrophy in vitro by restraining the IL6-Stat3 signalling pathway measured in luciferase-based assays and by reducing rates of protein degradation in atrophying myotubes exposed to IL6. On the other hand, we observed that the inhibition of group I Paks

  15. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    PubMed

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  16. Immunology Guides Skeletal Muscle Regeneration.

    PubMed

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  17. Immunology Guides Skeletal Muscle Regeneration

    PubMed Central

    Sass, F. Andrea; Pumberger, Matthias; Geissler, Sven; Duda, Georg N.; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues. PMID:29534011

  18. In vivo two-photon imaging of macrophage activities in skeletal muscle regeneration

    NASA Astrophysics Data System (ADS)

    Qin, Zhongya; Long, Yanyang; Sun, Qiqi; He, Sicong; Li, Xuesong; Chen, Congping; Wu, Zhenguo; Qu, Jianan Y.

    2018-02-01

    Macrophages are essential for the regeneration of skeletal muscle after injury. It has been demonstrated that depletion of macrophages results in delay of necrotic fiber phagocytosis and decreased size of regenerated myofibers. In this work, we developed a multi-modal two-photon microscope system for in vivo study of macrophage activities in the regenerative and fibrotic healing process of injured skeletal muscles. The system is capable to image the muscles based on the second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals simultaneously. The dynamic activities of macrophages and muscle satellite cells are recorded in different time windows post the muscle injury. Moreover, we found that infiltrating macrophages emitted strong autofluorescence in the injured skeletal muscle of mouse model, which has not been reported previously. The macrophage autofluorescence was characterized in both spectral and temporal domains. The information extracted from the autofluorescence signals may facilitate the understanding on the formation mechanisms and possible applications in biological research related to skeletal muscle regeneration.

  19. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  20. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  1. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.

    PubMed

    Hawke, Thomas J; Atkinson, Daniel J; Kanatous, Shane B; Van der Ven, Peter F M; Goetsch, Sean C; Garry, Daniel J

    2007-11-01

    Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.

  2. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  3. Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity

    PubMed Central

    Tamilarasan, K P; Temmel, H; Das, S K; Al Zoughbi, W; Schauer, S; Vesely, P W; Hoefler, G

    2012-01-01

    According to the concept of lipotoxicity, ectopic accumulation of lipids in non-adipose tissue induces pathological changes. The most prominent effects are seen in fatty liver disease, lipid cardiomyopathy, non-insulin-dependent diabetes mellitus, insulin resistance and skeletal muscle myopathy. We used the MCK(m)-hLPL mouse distinguished by skeletal and cardiac muscle-specific human lipoprotein lipase (hLPL) overexpression to investigate effects of lipid overload in skeletal muscle. We were intrigued to find that ectopic lipid accumulation induced proteasomal activity, apoptosis and skeletal muscle damage. In line with these findings we observed reduced Musculus gastrocnemius and Musculus quadriceps mass in transgenic animals, accompanied by severely impaired physical endurance. We suggest that muscle loss was aggravated by impaired muscle regeneration as evidenced by reduced cross-sectional area of regenerating myofibers after cardiotoxin-induced injury in MCK(m)-hLPL mice. Similarly, an almost complete loss of myogenic potential was observed in C2C12 murine myoblasts upon overexpression of LPL. Our findings directly link lipid overload to muscle damage, impaired regeneration and loss of performance. These findings support the concept of lipotoxicity and are a further step to explain pathological effects seen in muscle of obese patients, patients with the metabolic syndrome and patients with cancer-associated cachexia. PMID:22825472

  4. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy

    2009-07-15

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1more » resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.« less

  5. Expression of HGF and IGF-1 during regeneration of masseter muscle in mdx mice.

    PubMed

    Honda, Hidemitsu; Abe, Shinichi; Ishida, Ryo; Watanabe, Yutaka; Iwanuma, Osamu; Sakiyama, Koji; Ide, Yoshinobu

    2010-07-01

    This study investigated the expression of the growth factors HGF and IGF-1 during the process of muscle regeneration in mdx mice. HGF and IGF-1 are reportedly expressed during the regeneration of muscle tissue in vitro. However, few studies have focused on the role of HGF and IGF-1 during muscle regeneration in mdx mice, which lack expression of the dystrophin gene. In the present study, we examined the expression of HGF and IGF-1 in masseter muscle during muscle regeneration in mdx and B10 (control) mice using histological analysis, immunohistochemistry and Western blotting, as well as examining gene expression by RT-PCR, at 3, 4 and 9 weeks. Mdx mice showed localized HGF and IGF-1 positivity in the cytoplasm of regenerating muscle cells at 3 and 4 weeks, but hardly any reactivity was evident at 9 weeks. The control group was completely negative for IGF-1 at any of the examined time points. Western blotting showed stronger expression of HGF and IGF-1 in mdx mice than in B10 mice at 3 and 4 weeks, but at 9 weeks the expression was absent in both groups. Similar results were obtained using RT-PCR. These present results suggest that HGF and IGF-1 appear to play an important role during regeneration of the masseter muscle in mdx mice.

  6. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress.

    PubMed

    Xiao, Weihua; Liu, Yu; Chen, Peijie

    2016-12-01

    Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

  7. Bioengineered nerve regeneration and muscle reinnervation

    PubMed Central

    Kingham, Paul J; Terenghi, Giorgio

    2006-01-01

    The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury. PMID:17005023

  8. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle.

    PubMed

    Mahdy, Mohamed A A; Warita, Katsuhiko; Hosaka, Yoshinao Z

    2017-11-01

    Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies. © 2017 Japanese Society of Animal Science.

  9. Prevalence and elimination of sibling neurite convergence in motor units supplying neonatal and adult mouse skeletal muscle.

    PubMed

    Teriakidis, Adrianna; Willshaw, David J; Ribchester, Richard R

    2012-10-01

    During development, neurons form supernumerary synapses, most of which are selectively pruned leading to stereotyped patterns of innervation. During the development of skeletal muscle innervation, or its regeneration after nerve injury, each muscle fiber is transiently innervated by multiple motor axon branches but eventually by a single branch. The selective elimination of all but one branch is the result of competition between the converging arbors. It is thought that motor neurons initially innervate muscle fibers randomly, but that axon branches from the same neuron (sibling branches) do not converge to innervate the same muscle fiber. However, random innervation would result in many neonatal endplates that are co-innervated by sibling branches. To investigate whether this occurs we examined neonatal levator auris longus (LAL) and 4th deep lumbrical (4DL) muscles, as well as adult reinnervated deep lumbrical muscles (1-4) in transgenic mice expressing yellow fluorescent protein (YFP) as a reporter. We provide direct evidence of convergence of sibling neurites within single fluorescent motor units, both during development and during regeneration after nerve crush. The incidence of sibling neurite convergence was 40% lower in regeneration and at least 75% lower during development than expected by chance. Therefore, there must be a mechanism that decreases the probability of its occurrence. As sibling neurite convergence is not seen in normal adults, or at later timepoints in regeneration, synapse elimination must also remove convergent synaptic inputs derived from the same motor neuron. Mechanistic theories of synaptic competition should now accommodate this form of isoaxonal plasticity. Copyright © 2012 Wiley Periodicals, Inc.

  10. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration.

    PubMed

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2017-07-01

    Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    PubMed

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  12. Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat.

    PubMed

    Sultan, K R; Dittrich, B T; Pette, D

    2000-09-01

    Fiber-type transitions in adult skeletal muscle induced by chronic low-frequency stimulation (CLFS) encompass coordinated exchanges of myofibrillar protein isoforms. CLFS-induced elevations in cytosolic Ca(2+) could activate proteases, especially calpains, the major Ca(2+)-regulated cytosolic proteases. Calpain activity determined by a fluorogenic substrate in the presence of unaltered endogenous calpastatin activities increased twofold in low-frequency-stimulated extensor digitorum longus (EDL) muscle, reaching a level intermediate between normal fast- and slow-twitch muscles. micro- and m-calpains were delineated by a calpain-specific zymographical assay that assessed total activities independent of calpastatin and distinguished between native and processed calpains. Contrary to normal EDL, structure-bound, namely myofibrillar and microsomal calpains, were abundant in soleus muscle. However, the fast-to-slow conversion of EDL was accompanied by an early translocation of cytosolic micro-calpain, suggesting that myofibrillar and microsomal micro-calpain was responsible for the twofold increase in activity and thus involved in controlled proteolysis during fiber transformation. This is in contrast to muscle regeneration where m-calpain translocation predominated. Taken together, we suggest that translocation is an important step in the control of calpain activity in skeletal muscle in vivo.

  13. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice.

    PubMed

    Guitart, Maria; Lloreta, Josep; Mañas-Garcia, Laura; Barreiro, Esther

    2018-05-01

    Reduced muscle activity leads to muscle atrophy and function loss in patients and animal models. Satellite cells (SCs) are postnatal muscle stem cells that play a pivotal role in skeletal muscle regeneration following injury. The regenerative potential, satellite cell numbers, and markers during recovery following immobilization of the hindlimb for 7 days were explored. In mice exposed to 7 days of hindlimb immobilization, in those exposed to recovery (7 days, splint removal), and in contralateral control muscles, muscle precursor cells were isolated from all hindlimb muscles (fluorescence-activated cell sorting, FACS) and SCs, and muscle regeneration were identified using immunofluorescence (gastrocnemius and soleus) and electron microscopy (EM, gastrocnemius). Expression of ki67, pax7, myoD, and myogenin was quantified (RT-PCR) from SC FACS yields. Body and grip strength were determined. Following 7 day hindlimb immobilization, a decline in SCs (FACS, immunofluorescence) was observed together with an upregulation of SC activation markers and signs of muscle regeneration including fusion to existing myofibers (EM). Recovery following hindlimb immobilization was characterized by a program of muscle regeneration events. Hindlimb immobilization induced a decline in SCs together with an upregulation of markers of SC activation, suggesting that fusion to existing myofibers takes place during unloading. Muscle recovery induced a significant rise in muscle precursor cells and regeneration events along with reduced SC activation expression markers and a concomitant rise in terminal muscle differentiation expression. These are novel findings of potential applicability for the treatment of disuse muscle atrophy, which is commonly associated with severe chronic and acute conditions. © 2017 Wiley Periodicals, Inc.

  14. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    PubMed Central

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  15. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  16. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    PubMed

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-06-01

    The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.

  17. Barx2 is Expressed in Satellite Cells and is Required for Normal Muscle Growth and Regeneration

    PubMed Central

    Meech, Robyn; Gonzalez, Katie N.; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P.

    2015-01-01

    Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2−/− mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2+/− mice. Barx2−/− myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation. PMID:22076929

  18. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury

    PubMed Central

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M.

    2014-01-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα−/− (M-ERRα−/−) mice after injury by intramuscular cardiotoxin injection. M-ERRα−/− mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα−/− muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (−45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα−/− muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.—LaBarge, S., McDonald, M., Smith-Powell, L., Auwerx, J., Huss, J. M. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury. PMID:24277576

  19. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    PubMed Central

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  20. Asynchronous inflammation and myogenic cell migration limit muscle tissue regeneration mediated by a cellular scaffolds

    PubMed Central

    Garg, Koyal; Ward, Catherine L.; Corona, Benjamin T.

    2016-01-01

    Volumetric muscle loss (VML) following orthopaedic trauma results in chronic loss of strength and can contribute to disability. Tissue engineering and regenerative medicine approaches to regenerate the lost skeletal muscle and improve functional outcomes are currently under development. At the forefront of these efforts, decellularized extracellular matrices (ECMs) have reached clinical testing and provide the foundation for other approaches that include stem/progenitor cell delivery. ECMs have been demonstrated to possess many qualities to initiate regeneration, to include stem cell chemotaxis and pro-regenerative macrophage polarization. However, the majority of observations indicate that ECM-repair of VML does not promote appreciable muscle fiber regeneration. In a recent study, ECM-repair of VML was compared to classical muscle fiber regeneration (Garg et al., 2014, Cell & Tissue Research) mediated by autologous minced grafts. The most salient findings of this study were: 1) Satellite cells did not migrate into the scaffold beyond ~0.5 mm from the remaining host tissue, although other migratory stem cells (Sca-1+) were observed throughout the scaffold;2) Macrophage migration to the scaffold was over two-times that observed with muscle grafts, but they appeared to be less active, as gene expression of pro- and anti-inflammatory cytokines (TNF-α, IL-12, IL-4, IL-10, VEGF, and TGF-β1) was significantly reduced in scaffold-repaired muscles; And, 3) scaffolds did not promote appreciable muscle fiber regeneration. Collectively, these data suggest that the events following ECM transplantation in VML are either incongruous or asynchronous with classical muscle fiber regeneration. PMID:26949720

  1. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine.

    PubMed

    Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria

    2017-03-01

    Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  3. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    PubMed Central

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  4. Characteristics of the Localization of Connexin 43 in Satellite Cells during Skeletal Muscle Regeneration In Vivo

    PubMed Central

    Ishido, Minenori; Kasuga, Norikatsu

    2015-01-01

    For myogenesis, new myotubes are formed by the fusion of differentiated myoblasts. In the sequence of events for myotube formation, intercellular communication through gap junctions composed of connexin 43 (Cx43) plays critical roles in regulating the alignment and fusion of myoblasts in advances of myotube formation in vitro. On the other hand, the relationship between the expression patterns of Cx43 and the process of myotube formation in satellite cells during muscle regeneration in vivo remains poorly understood. The present study investigated the relationship between Cx43 and satellite cells in muscle regeneration in vivo. The expression of Cx43 was detected in skeletal muscles on day 1 post-muscle injury, but not in control muscles. Interestingly, the expression of Cx43 was not localized on the inside of the basement membrane of myofibers in the regenerating muscles. Moreover, although the clusters of differentiated satellite cells, which represent a more advanced stage of myotube formation, were observed on the inside of the basement membrane of myofibers in regenerating muscles, the expression of Cx43 was not localized in the clusters of these satellite cells. Therefore, in the present study, it was suggested that Cx43 may not directly contribute to muscle regeneration via satellite cells. PMID:26019374

  5. Comparison of behavior in muscle fiber regeneration after bupivacaine hydrochloride- and acid anhydride-induced myonecrosis.

    PubMed

    Akiyama, C; Kobayashi, S; Nonaka, I

    1992-01-01

    We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.

  6. Heterogeneity of adult masseter muscle satellite cells with cardiomyocyte differentiation potential.

    PubMed

    Huang, Wei; Liang, Jialiang; Feng, Yuliang; Jia, Zhanfeng; Jiang, Lin; Cai, Wenfeng; Paul, Christian; Gu, Jianguo G; Stambrook, Peter J; Millard, Ronald W; Zhu, Xiao-Lan; Zhu, Ping; Wang, Yigang

    2018-05-26

    Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1 + MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1 - MMSCs with Pax7 expression. Sca1 + MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement. Copyright © 2018. Published by Elsevier Inc.

  7. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice

    PubMed Central

    Hardy, David; Besnard, Aurore; Latil, Mathilde; Jouvion, Grégory; Briand, David; Thépenier, Cédric; Pascal, Quentin; Guguin, Aurélie; Gayraud-Morel, Barbara; Cavaillon, Jean-Marc; Tajbakhsh, Shahragim

    2016-01-01

    Background A longstanding goal in regenerative medicine is to reconstitute functional tissus or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised. Methods We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite) cells (SC) and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®. Results We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a “dead zone” devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. Conclusions Our studies show that the nature of the injury model should be chosen carefully depending on the

  8. Localization of survival motor neuron protein in human apoptotic-like and regenerating muscle fibers, and neuromuscular junctions.

    PubMed

    Broccolini, A; Engel, W K; Askanas, V

    1999-06-03

    Mutations in the gene encoding survival motor neuron (SMN) protein are found in > 98% of patients with autosomal-recessive spinal muscular atrophy. We investigated the possible role of SMN in normal and abnormal human muscle by immunostaining biopsies of 20 patients with various neuromuscular diseases using monoclonal antibodies against SMN. SMN was strongly expressed cytoplasmically in chronic peripheral neuropathies, in about 80% of chronically denervated, very atrophic muscle fibers containing clumps of TUNEL-positive pyknotic nuclei: about 60% of those fibers also had cytoplasmic Bcl-2 and Bax immunoreactivity. In regenerating muscle fibers of various myopathies SMN co-localized with desmin, Bcl-2 and Bax; it was also present at the postsynaptic domain of normal human neuromuscular junctions. Thus, SMN may play a role in normal and pathological processes of adult human muscle fibers.

  9. Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury.

    PubMed

    Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2004-04-01

    Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.

  10. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle.

    PubMed

    Kamizaki, Koki; Doi, Ryosuke; Hayashi, Makoto; Saji, Takeshi; Kanagawa, Motoi; Toda, Tatsushi; Fukada, So-Ichiro; Ho, Hsin-Yi Henry; Greenberg, Michael Eldon; Endo, Mitsuharu; Minami, Yasuhiro

    2017-09-22

    The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1 , but not Ror2 , was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation

    PubMed Central

    Church, Jarrod E.; Trieu, Jennifer; Sheorey, Radhika; Chee, Annabel Y. -M.; Naim, Timur; Baum, Dale M.; Ryall, James G.; Gregorevic, Paul; Lynch, Gordon S.

    2014-01-01

    Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating β2-adrenoceptors (β-ARs) using β2-AR agonists (β2-agonists) has been demonstrated previously, the exact role β-ARs play in regulating the regenerative process remains unclear. To investigate β-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either β1-AR (β1-KO) and/or β2-ARs (β2-KO), testing the hypothesis that muscles from mice lacking the β2-AR would exhibit impaired functional regeneration after damage compared with muscles from β1-KO or β1/β2-AR null (β1/β2-KO) KO mice. At 7 days post-injury, regenerating muscles from β1/β2-KO mice produced less force than those of controls but muscles from β1-KO or β2-KO mice did not exhibit any delay in functional restoration. Compared with controls, β1/β2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the β-AR signaling pathway was unexpected and may have important implications for manipulating β-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury. PMID:25000590

  12. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    PubMed

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  13. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Liang, Xinrong

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number andmore » size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.« less

  14. Loss of the Inducible Hsp70 Delays the Inflammatory Response to Skeletal Muscle Injury and Severely Impairs Muscle Regeneration

    PubMed Central

    Howard, Travis M.; Ahn, Bumsoo; Ferreira, Leonardo F.

    2013-01-01

    Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70) is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our findings indicate that

  15. Strength training prior to muscle injury potentiates low-level laser therapy (LLLT)-induced muscle regeneration.

    PubMed

    Morais, Samuel Rodrigues Lourenço; Goya, Alexandre Ginei; Urias, Úrsula; Jannig, Paulo Roberto; Bacurau, Aline Villa Nova; Mello, Wagner Garcez; Faleiros, Paula Lazilha; Oliveira, Sandra Helena Penha; Garcia, Valdir Gouveia; Ervolino, Edilson; Brum, Patricia Chakur; Dornelles, Rita Cássia Menegati

    2017-02-01

    We evaluated whether strength training (ST) performed prior to skeletal muscle cryolesion would act as a preconditioning, improving skeletal muscle regeneration and responsiveness to low-level laser therapy (LLLT). Wistar rats were randomly assigned into non-exercised (NE), NE plus muscle lesion (NE + LE), NE + LE plus LLLT (NE + LE + LLLT), strength training (ST), ST + LE, and ST + LE + LLLT. The animals performed 10 weeks of ST (climbing ladder; 3× week; 80% overload). Forty-eight hours after the last ST session, tibialis anterior (TA) cryolesion was induced and LLLT (InGaAlP, 660 nm, 0.035 W, 4.9 J/cm 2 /point, 3 points, spot light 0.028 cm 2 , 14 J/cm 2 ) initiated and conducted daily for 14 consecutive days. The difference between intergroups was assessed using Student's t test and intragroups by two-way analysis of variance. Cryolesion induced massive muscle degeneration associated with inflammatory infiltrate. Prior ST improved skeletal regeneration 14-days after cryolesion and potentiated the regenerative response to LLLT. Cryolesion induced increased TNF-α levels in both NE + LE and ST + LE groups. Both isolated ST and LLLT reduced TNF-α to control group levels; however, prior ST potentiated LLLT response. Both isolated ST and LLLT increased IL-10 levels with no additional effect. In contrast, increased TA IL-6 levels were restricted to ST and ST + LE + LLLT groups. TA myogenin mRNA levels were not changed by neither prior ST or ST + LLLT. Both prior ST and LLLT therapies increased MyoD mRNA levels and, interestingly, combined therapies potentiated this response. Myf5 mRNA levels were increased only in ST groups. Taken together, our data provides evidences for prior ST potentiating LLLT efficacy in promoting skeletal muscle regeneration.

  16. Injected Human Muscle Precursor Cells Overexpressing PGC-1α Enhance Functional Muscle Regeneration after Trauma

    PubMed Central

    Haralampieva, Deana; Salemi, Souzan; Betzel, Thomas; Dinulovic, Ivana; Krämer, Stefanie D.; Schibli, Roger; Sulser, Tullio; Ametamey, Simon M.

    2018-01-01

    While many groups demonstrated new muscle tissue formation after muscle precursor cell (MPC) injection, the capacity of these cells to heal muscle damage, for example, sphincter in stress urinary incontinence, in long-term is still limited. Therefore, the first goal of our project was to optimize the functional regenerative potential of hMPC by genetic modification to overexpress human peroxisome proliferator-activated receptor gamma coactivator 1-alpha (hPGC-1α), key regulator of exercise-mediated adaptation. Moreover, we aimed at establishing a feasible methodology for noninvasive PET visualization of implanted cells and their microenvironment in muscle crush injury model. PGC-1α-bioengineered muscles showed enhanced marker expression for myogenesis (α-actinin, MyHC, and Desmin), vascularization (VEGF), neuronal (ACHE), and mitochondrial (COXIV) activity. Consistently, use of hPGC-1α_hMPCs produced significantly increased contractile force one to three weeks postinjury. PET imaging showed distinct differences in radiotracer signals ([18F]Fallypride and [11C]Raclopride (both targeting dopamine 2 receptors (D2R)) and [64Cu]NODAGA-RGD (targeting neovascularization)) between GFP_hMPCs and hD2R_hPGC-1α_hMPCs. After muscle harvesting, inflammation levels were in parallel to radiotracer uptake amount, with significantly lower uptake in hPGC-1α overexpressing samples. In summary, we facilitated early functional muscle tissue regeneration, introducing a novel approach to improve skeletal muscle regeneration. Besides successful tracking of hMPCs in muscle crush injuries, we showed that in high-inflammation areas, the specificity of radioligands might be significantly reduced, addressing a possible bottleneck of neovascularization PET imaging. PMID:29531537

  17. AMP-activated Protein Kinase Stimulates Warburg-like Glycolysis and Activation of Satellite Cells during Muscle Regeneration*

    PubMed Central

    Fu, Xing; Zhu, Mei-Jun; Dodson, Mike V.; Du, Min

    2015-01-01

    Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration. PMID:26370082

  18. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    PubMed

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  19. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    PubMed

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  20. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization

    PubMed Central

    Tonkin, Joanne; Temmerman, Lieve; Sampson, Robert D; Gallego-Colon, Enrique; Barberi, Laura; Bilbao, Daniel; Schneider, Michael D; Musarò, Antonio; Rosenthal, Nadia

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration. PMID:25896247

  1. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation

    PubMed Central

    Xiao, Lihai; Lee, Kenneth Ka Ho

    2016-01-01

    ABSTRACT The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. PMID:26740569

  2. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration

    PubMed Central

    Park, Seung-Yoon; Yun, Youngeun; Lim, Jung-Suk; Kim, Mi-Jin; Kim, Sang-Yeob; Kim, Jung-Eun; Kim, In-San

    2016-01-01

    Myoblast fusion is essential for the formation of skeletal muscle myofibres. Studies have shown that phosphatidylserine is necessary for myoblast fusion, but the underlying mechanism is not known. Here we show that the phosphatidylserine receptor stabilin-2 acts as a membrane protein for myoblast fusion during myogenic differentiation and muscle regeneration. Stabilin-2 expression is induced during myogenic differentiation, and is regulated by calcineurin/NFAT signalling in myoblasts. Forced expression of stabilin-2 in myoblasts is associated with increased myotube formation, whereas deficiency of stabilin-2 results in the formation of small, thin myotubes. Stab2-deficient mice have myofibres with small cross-sectional area and few myonuclei and impaired muscle regeneration after injury. Importantly, myoblasts lacking stabilin-2 have reduced phosphatidylserine-dependent fusion. Collectively, our results show that stabilin-2 contributes to phosphatidylserine-dependent myoblast fusion and provide new insights into the molecular mechanism by which phosphatidylserine mediates myoblast fusion during muscle growth and regeneration. PMID:26972991

  3. Key changes in denervated muscles and their impact on regeneration and reinnervation

    PubMed Central

    Wu, Peng; Chawla, Aditya; Spinner, Robert J.; Yu, Cong; Yaszemski, Michael J.; Windebank, Anthony J.; Wang, Huan

    2014-01-01

    The neuromuscular junction becomes progressively less receptive to regenerating axons if nerve repair is delayed for a long period of time. It is difficult to ascertain the denervated muscle's residual receptivity by time alone. Other sensitive markers that closely correlate with the extent of denervation should be found. After a denervated muscle develops a fibrillation potential, muscle fiber conduction velocity, muscle fiber diameter, muscle wet weight, and maximal isometric force all decrease; remodeling increases neuromuscular junction fragmentation and plantar area, and expression of myogenesis-related genes is initially up-regulated and then down-regulated. All these changes correlate with both the time course and degree of denervation. The nature and time course of these denervation changes in muscle are reviewed from the literature to explore their roles in assessing both the degree of detrimental changes and the potential success of a nerve repair. Fibrillation potential amplitude, muscle fiber conduction velocity, muscle fiber diameter, mRNA expression levels of myogenic regulatory factors and nicotinic acetylcholine receptor could all reflect the severity and length of denervation and the receptiveness of denervated muscle to regenerating axons, which could possibly offer an important clue for surgical choices and predict the outcomes of delayed nerve repair. PMID:25422641

  4. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.

    PubMed

    Zhang, Pengpeng; Liang, Xinrong; Shan, Tizhong; Jiang, Qinyang; Deng, Changyan; Zheng, Rong; Kuang, Shihuan

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7(CreER) and Mtor(flox/flox) mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration.

    PubMed

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-30

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.

  6. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2.

    PubMed

    Sakuma, Kunihiro; Nishikawa, Junji; Nakao, Ryuta; Watanabe, Kimi; Totsuka, Tsuyoshi; Nakano, Hiroshi; Sano, Mamoru; Yasuhara, Masahiro

    2003-03-01

    The molecular signaling pathways involved in regeneration after muscle damage have not been identified. In the present study, we tested the hypothesis that calcineurin, a calcium-regulated phosphatase recently implicated in the signaling of fiber-type conversion and muscle hypertrophy, is required to induce skeletal muscle remodeling. The amount of calcineurin and dephosphorylated nuclear factor of activated T cells c1 (NFATc1) proteins was markedly increased in the regenerating muscle of rats. The amount of calcineurin co-precipitating with NFATc1 and GATA-2, and NFATc1 co-precipitating with GATA-2 gradually increased in the tibialis anterior muscle after bupivacaine injection. Calcineurin protein was present in the proliferating satellite cells labeled with BrdU in the damaged muscle after 4 days. In contrast, calcineurin was not detected in the quiescent nonactivating satellite cells expressing Myf-5. At 4 days post injection, many macrophages detected in the damaged and regenerating area did not possess calcineurin protein. Calcineurin protein was abundant in many myoblasts and myotubes that expressed MyoD and myogenin at 4 and 6 days post injection. In the intact muscle, no immunoreactivity of calcineurin or BrdU was detected in the cell membrane, cytosol or the extracellular connective tissue. In mice, intraperitoneal injection of cyclosporin A, a potent inhibitor of calcineurin, induced extensive inflammation, marked fiber atrophy, the appearance of immature myotubes, and calcification in the regenerating muscle compared with phosphate-buffered saline-administered mice. Thus, calcineurin may have an important role in muscle regeneration in association with NFATc1 and GATA-2.

  7. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    PubMed

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P < 0.001) in hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P < 0.01), while mitochondrial creatine kinase activity and sensitivity of mitochondrial respiration to creatine were not altered. The results of this study demonstrate that hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  8. Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies.

    PubMed

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten; Angelini, Corrado; Vissing, John; Krag, Thomas O

    2012-03-23

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD) with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC), vimentin, MyoD and myogenin and counting internally nucleated fibers. We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  9. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    PubMed

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role

  10. Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair

    PubMed Central

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.

    2012-01-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented. PMID:22697475

  11. Strategies to improve regeneration of the soft palate muscles after cleft palate repair.

    PubMed

    Carvajal Monroy, Paola L; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2012-12-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.

  12. Type II iodothyronine deiodinase provides intracellular 3,5,3'-triiodothyronine to normal and regenerating mouse skeletal muscle.

    PubMed

    Marsili, Alessandro; Tang, Dan; Harney, John W; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico; Larsen, P Reed

    2011-11-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T(3) under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T(4)-to-T(3) conversion increases during differentiation in C(2)C(12) myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given (125)I-T(4) and (131)I-T(3), the intracellular (125)I-T(3)/(131)I-T(3) ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the (125)I-T(3)/(131)I-T(3) ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in (125)I-T(3)/(131)I-T(3) ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of (125)I-T(3) is doubled after skeletal muscle injury. Thus, D2-mediated T(4)-to-T(3) conversion generates significant intracellular T(3) in normal mouse skeletal muscle, with the increased T(3) required for muscle regeneration being provided by increased D2 synthesis, not by T(3) from the circulation.

  13. Amphibian tail regeneration in space: effect on the pigmentation of the blastema

    NASA Astrophysics Data System (ADS)

    Grinfeld, S.; Foulquier, F.; Mitashov, V.; Bruchlinskaia, N.; Duprat, A. M.

    In Urodele amphibians, the tail regenerates after section. This regeneration, including tissues as different as bone (vertebrae), muscle, epidermis and central nervous system (spinal cord), was studied in adult Pleurodeles sent aboard the russian satellite Bion 10 and compared with tail regeneration in synchronous controls. Spinal cord, muscle and cartilage regeneration occurred in space animals as in synchronous controls. One of the most important differences between the two groups was the pigmentation of the blastemas: it was shown in laboratory, to be not due to a difference in light intensity.

  14. Vertebrate-like regeneration in the invertebrate chordate amphioxus

    PubMed Central

    Somorjai, Ildikó M. L.; Garcia-Fernàndez, Jordi; Escrivà, Hector

    2012-01-01

    An important question in biology is why some animals are able to regenerate, whereas others are not. The basal chordate amphioxus is uniquely positioned to address the evolution of regeneration. We report here the high regeneration potential of the European amphioxus Branchiostoma lanceolatum. Adults regenerate both anterior and posterior structures, including neural tube, notochord, fin, and muscle. Development of a classifier based on tail regeneration profiles predicts the assignment of young and old adults to their own class with >94% accuracy. The process involves loss of differentiated characteristics, formation of an msx-expressing blastema, and neurogenesis. Moreover, regeneration is linked to the activation of satellite-like Pax3/7 progenitor cells, the extent of which declines with size and age. Our results provide a framework for understanding the evolution and diversity of regeneration mechanisms in vertebrates. PMID:22203957

  15. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    PubMed

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Fetal myosin immunoreactivity in human dystrophic muscle.

    PubMed

    Schiaffino, S; Gorza, L; Dones, I; Cornelio, F; Sartore, S

    1986-01-01

    We report immunofluorescence observations on normal and dystrophic human muscle using an antibody (anti-bF) raised against bovine fetal myosin and specific for fetal myosin heavy chains. In rat skeletal muscle, anti-bF was previously found to react selectively with myosin isoforms expressed during fetal and early postnatal development and in regenerating muscles. Anti-bF stained most fibers in human fetal and neonatal muscle, whereas only nuclear chain fibers of muscle spindles were labeled in normal adult muscle. In muscle biopsies from patients with Duchenne's muscular dystrophy, numerous extrafusal fibers were stained: some were small regenerating fibers, others were larger fibers presumably resulting from previous regenerative events. Fetal myosin immunoreactivity in Duchenne's dystrophy appears to reflect the reexpression of fetal-specific myosin isoforms and provides a new valuable tool for identifying regenerating fibers and following their destiny in dystrophic muscle.

  17. Zebrafish heart regeneration: 15 years of discoveries

    PubMed Central

    González‐Rosa, Juan Manuel; Burns, Caroline E.

    2017-01-01

    Abstract Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans? PMID:28979788

  18. Type II iodothyronine deiodinase provides intracellular 3,5,3′-triiodothyronine to normal and regenerating mouse skeletal muscle

    PubMed Central

    Marsili, Alessandro; Tang, Dan; Harney, John W.; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico

    2011-01-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T4) to 3,5,3′-triiodothyronine (T3), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T3 under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T4-to-T3 conversion increases during differentiation in C2C12 myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given 125I-T4 and 131I-T3, the intracellular 125I-T3/131I-T3 ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the 125I-T3/131I-T3 ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in 125I-T3/131I-T3 ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of 125I-T3 is doubled after skeletal muscle injury. Thus, D2-mediated T4-to-T3 conversion generates significant intracellular T3 in normal mouse skeletal muscle, with the increased T3 required for muscle regeneration being provided by increased D2 synthesis, not by T3 from the circulation. PMID:21771965

  19. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    PubMed

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?

    PubMed

    Perandini, Luiz Augusto; Chimin, Patricia; Lutkemeyer, Diego da Silva; Câmara, Niels Olsen Saraiva

    2018-06-01

    Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury. © 2018 Federation of European Biochemical Societies.

  1. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    PubMed

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Degeneration and regeneration of neuromuscular junction architecture in rat skeletal muscle fibers damaged by bupivacaine hydrochloride.

    PubMed

    Nishizawa, Tomie; Tamaki, Hiroyuki; Kasuga, Norikatsu; Takekura, Hiroaki

    2003-01-01

    We evaluated the degeneration and regeneration of neuromuscular junctions (NMJs) on the extensor digitorum longus muscle of Fischer 344 rats between 4 h and 3 weeks after bupivacaine hydrochloride (BPVC) injection, which induces muscle fiber necrosis, using histochemical staining by acetylcholine esterase (AchE)-silver and electron microscopy. Degeneration of muscle fibers and NMJs was observed 4 h after BPVC injection. One week after BPVC injection, some terminal axons were almost completely retracted, and the level of basal lamina-associated AchE in some NMJ regions had gradually disappeared. At that time, the depression contained a few, mostly pit-like or elongated oval invaginations: the incipient junctional folds and some NMJs did not have any secondary junctional fold. By 2 weeks after the BPVC injection, secondary junctional folds began to develop: however, the number of secondary junctional folds was clearly less than that in normal NMJs. At 3 weeks when regeneration of muscle fibers was well advanced, the staining for AchE at the end-plates became stronger and better-defined. The volume density of mitochondria in the terminal area of the terminal significantly decreased upon BPVC-induced destruction of the NMJ, and the density reached the lowest value 24 h after BPVC injection. Significant changes in the ultrastructural features of the architecture of NMJs occurred in skeletal muscle fibers damaged by BPVC during both the degeneration and regeneration processes. The changes in the ultrastructural and morphological features of the NMJ architecture during the regeneration of degenerated muscle fibers resembled those that occur during the differentiation of normal muscle fibers.

  3. Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia

    PubMed Central

    Brzeszczyńska, Joanna; Meyer, Angelika; McGregor, Robin; Schilb, Alain; Degen, Simone; Tadini, Valentina; Johns, Neil; Langen, Ramon; Schols, Annemie; Glass, David J.; Roubenoff, Ronenn; Ross, James A.; Fearon, Kenneth C.H.; Greig, Carolyn A.

    2017-01-01

    Abstract Background Sarcopenia is defined as the age‐related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2–5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle‐aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non‐sarcopenic skeletal muscle phenotypes during ageing. Methods Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non‐sarcopenic (HENS, n = 21) and healthy middle‐aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17–83 years) was used to mimic the environmental challenges of muscle regeneration over time. Results The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30‐fold upregulation of TNF‐α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age‐related upregulation of pro‐inflammatory cytokines (2‐fold upregulation of interleukin (IL)‐6, IL‐8 mRNA, increased secretion of tumor necrosis factor‐α (TNF‐α) and IL‐6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the

  4. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

    PubMed

    Soriano-Arroquia, Ana; McCormick, Rachel; Molloy, Andrew P; McArdle, Anne; Goljanek-Whysall, Katarzyna

    2016-04-01

    A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration

    PubMed Central

    De Angelis, Luciana; Berghella, Libera; Coletta, Marcello; Lattanzi, Laura; Zanchi, Malvina; Gabriella, M.; Ponzetto, Carola; Cossu, Giulio

    1999-01-01

    Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met−/− embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells. The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system. PMID:10562287

  6. Impaired Regeneration: A Role for the Muscle Microenvironment in Cancer Cachexia

    PubMed Central

    Talbert, Erin E.; Guttridge, Denis C.

    2016-01-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. PMID:26385617

  7. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle.

    PubMed

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko

    2013-08-01

    We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.

  8. Transplantated Mesenchymal Stem Cells Derived from Embryonic Stem Cells Promote Muscle Regeneration and Accelerate Functional Recovery of Injured Skeletal Muscle

    PubMed Central

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka

    2013-01-01

    Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336

  9. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.

    PubMed

    Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.

  10. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  11. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia.

    PubMed

    Talbert, Erin E; Guttridge, Denis C

    2016-06-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Molecular Determinants of Cephalopod Muscles and Their Implication in Muscle Regeneration

    PubMed Central

    Zullo, Letizia; Fossati, Sara M.; Imperadore, Pamela; Nödl, Marie-Therese

    2017-01-01

    The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus) is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans. PMID:28555185

  13. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration.

    PubMed

    Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu

    2015-12-01

    We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.

  14. Muscle stem cell dysfunction impairs muscle regeneration in a mouse model of Down syndrome.

    PubMed

    Pawlikowski, Bradley; Betta, Nicole Dalla; Elston, Tiffany; Williams, Darian A; Olwin, Bradley B

    2018-03-09

    Down syndrome, caused by trisomy 21, is characterized by a variety of medical conditions including intellectual impairments, cardiovascular defects, blood cell disorders and pre-mature aging phenotypes. Several somatic stem cell populations are dysfunctional in Down syndrome and their deficiencies may contribute to multiple Down syndrome phenotypes. Down syndrome is associated with muscle weakness but skeletal muscle stem cells or satellite cells in Down syndrome have not been investigated. We find that a failure in satellite cell expansion impairs muscle regeneration in the Ts65Dn mouse model of Down syndrome. Ts65Dn satellite cells accumulate DNA damage and over express Usp16, a histone de-ubiquitinating enzyme that regulates the DNA damage response. Impairment of satellite cell function, which further declines as Ts65Dn mice age, underscores stem cell deficiencies as an important contributor to Down syndrome pathologies.

  15. Epimorphic regeneration approach to tissue replacement in adult mammals

    USDA-ARS?s Scientific Manuscript database

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  16. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    PubMed

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    PubMed

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Regenerating Fish Optic Nerves and a Regeneration-Like Response in Injured Optic Nerves of Adult Rabbits

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Belkin, M.; Harel, A.; Solomon, A.; Lavie, V.; Hadani, M.; Rachailovich, I.; Stein-Izsak, C.

    1985-05-01

    Regeneration of fish optic nerve (representing regenerative central nervous system) was accompanied by increased activity of regeneration-triggering factors produced by nonneuronal cells. A graft of regenerating fish optic nerve, or a ``wrap-around'' implant containing medium conditioned by it, induced a response associated with regeneration in injured optic nerves of adult rabbits (representing a nonregenerative central nervous system). This response was manifested by an increase of general protein synthesis and of selective polypeptides in the retinas and by the ability of the retina to sprout in culture.

  19. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration.

    PubMed

    Bosurgi, Lidia; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2011-01-01

    Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases.

  20. Macrophages in Injured Skeletal Muscle: A Perpetuum Mobile Causing and Limiting Fibrosis, Prompting or Restricting Resolution and Regeneration

    PubMed Central

    Bosurgi, Lidia; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2011-01-01

    Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases. PMID:22566851

  1. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  2. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  3. [Reparative regeneration of muscle fibers of the skeletal type and reasons for its delay in local x-ray irradiation].

    PubMed

    Dmitrieva, E V

    1975-06-01

    Under study was the reparative regeneration of the frog's tibial muscle and the reason of its delay under local X-ray irradiation in dosage of 800 and 3000 r. The irradiated animals were shown to have the same type of regeneration as non-irradiated animals. Both pale proper muscle nuclei and dark subsarcolemma nuclei belonging, to the author's mind, to cell-satellites, took part in it. The buds and "primary" myosymplasts playing mainly a subsidiary supporting role developed from the formers (which were not labeled with H-3-thymidine and did not divide mitotically). From the latters (labeled with H-3-thymidine and dividing mitotically) developed myoblasts and "secondary" myosymplasts forming young muscle fibres when merging with one another and then differentiating. At early stages of the process the delay in the muscle fibres regeneration was related with their radiation damage, at later stages - with a damage of the connective tissue.

  4. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype.

    PubMed

    Koulmann, Nathalie; Richard-Bulteau, Hélène; Crassous, Brigitte; Serrurier, Bernard; Pasdeloup, Marielle; Bigard, Xavier; Banzet, Sébastien

    2017-01-01

    As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91-100, 2017. © 2016 Wiley Periodicals, Inc.

  5. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  6. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  7. Mesoangioblasts of inclusion-body myositis: a twofold tool to study pathogenic mechanisms and enhance defective muscle regeneration.

    PubMed

    Morosetti, R; Gliubizzi, C; Broccolini, A; Sancricca, C; Mirabella, M

    2011-06-01

    Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtained from diagnostic muscle biopsies of IBM patients display a defective differentiation down skeletal muscle and this block can be corrected in vitro by transient MyoD transfection. We are currently investigating different pathways involved in mesoangioblasts skeletal muscle differentiation and exploring alternative stimulatory approaches not requiring extensive cell manipulation. This will allow to obtain safe, easy and efficient molecular or pharmacological modulation of pro-myogenic pathways in IBM mesoangioblasts. It is of crucial importance to identify factors (ie. cytokines, growth factors) produced by muscle or inflammatory cells and released in the surrounding milieu that are able to regulate the differentiation ability of IBM mesoangioblasts. To promote myogenic differentiation of endogenous mesoangioblasts in IBM muscle, the modulation of such target molecules selectively dysregulated would be a more handy approach to enhance muscle regeneration compared to transplantation techniques. Studies on the biological characteristics of IBM mesoangioblasts with their aberrant differentiation behavior, the signaling pathways possibly involved in their differentiation block and the possible strategies to overcome it in vivo, might provide new insights to better understand the etiopathogenesis of this crippling disorder and to identify molecular targets susceptible of therapeutic modulation.

  8. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  9. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus.

    PubMed

    Olsen, Ansgar S; Sarras, Michael P; Intine, Robert V

    2010-01-01

    The zebrafish (Danio rerio) is an established model organism for the study of developmental processes, human disease, and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes mellitus. Intraperitoneal streptozocin injection of adult, wild-type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a decreased amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin-injected fish at 3 weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish and nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. © 2010 by the Wound Healing Society.

  10. Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration

    PubMed Central

    Perry, Richard A.; Brown, Lemuel A.; Lee, David E.; Brown, Jacob L.; Baum, Jamie I.; Greene, Nicholas P.; Washington, Tyrone A.

    2016-01-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  11. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    PubMed Central

    Mackey, Abigail L.; Rasmussen, Lotte K.; Kadi, Fawzi; Schjerling, Peter; Helmark, Ida C.; Ponsot, Elodie; Aagaard, Per; Durigan, João Luiz Q.; Kjaer, Michael

    2016-01-01

    With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation–induced injury to the leg extensor muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared with PLA, IBU was found to augment the proportion of ActiveNotch1+ satellite cells at 2 d [IBU, 29 ± 3% vs. PLA, 19 ± 2% (means ± sem)], satellite cell content at 7 d [IBU, 0.16 ± 0.01 vs. PLA, 0.12 ± 0.01 (Pax7+ cells/fiber)], and to expedite muscle repair at 30 d. The PLA group displayed a greater proportion of embryonic myosin+ fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P < 0.05). Endomysial collagen was also elevated with PLA at 30 d. Minimum telomere length shortening was not observed. In conclusion, ingestion of NSAID has a potentiating effect on Notch activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.—Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. PMID:26936358

  12. Statin Therapy Negatively Impacts Skeletal Muscle Regeneration and Cutaneous Wound Repair in Type 1 Diabetic Mice.

    PubMed

    Rebalka, Irena A; Cao, Andrew W; Raleigh, Matthew J; Henriksbo, Brandyn D; Coleman, Samantha K; Schertzer, Jonathan D; Hawke, Thomas J

    2017-01-01

    Those with diabetes invariably develop complications including cardiovascular disease (CVD). To reduce their CVD risk, diabetics are generally prescribed cholesterol-lowering 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors (i.e., statins). Statins inhibit cholesterol biosynthesis, but also reduce the synthesis of a number of mevalonate pathway intermediates, leading to several cholesterol-independent effects. One of the pleiotropic effects of statins is the reduction of the anti-fibrinolytic hormone plasminogen activator inhibitor-1 (PAI-1). We have previously demonstrated that a PAI-1 specific inhibitor alleviated diabetes-induced delays in skin and muscle repair. Here we tested if statin administration, through its pleiotropic effects on PAI-1, could improve skin and muscle repair in a diabetic rodent model. Six weeks after diabetes onset, adult male streptozotocin-induced diabetic (STZ), and WT mice were assigned to receive control chow or a diet enriched with 600 mg/kg Fluvastatin. Tibialis anterior muscles were injured via Cardiotoxin injection to induce skeletal muscle injury. Punch biopsies were administered on the dorsal scapular region to induce injury of skin. Twenty-four days after the onset of statin therapy (10 days post-injury), tissues were harvested and analyzed. PAI-1 levels were attenuated in statin-treated diabetic tissue when compared to control-treated tissue, however no differences were observed in non-diabetic tissue as a result of treatment. Muscle and skin repair were significantly attenuated in Fluvastatin-treated STZ-diabetic mice as demonstrated by larger wound areas, less mature granulation tissue, and an increased presence of smaller regenerating muscle fibers. Despite attenuating PAI-1 levels in diabetic tissue, Fluvastatin treatment impaired cutaneous healing and skeletal muscle repair in STZ-diabetic mice.

  13. Regenerative capability of skeletal muscle in chicken muscular dystrophy.

    PubMed

    Nonaka, I; Fujita, T; Sugita, H

    1984-06-01

    To examine the morphological sequence of regenerating fibers after myonecrosis in dystrophic muscles, 0.5 ml of 0.5% bupivacaine hydrochloride (BPVC) (Marcaine) solution, a local anesthetic with a cytotoxic effect on the muscle fibers, was injected directly into the dystrophic (line 413) and nondystrophic (line 412) posterior latissimus dorsi (PLD) muscles of young and adult chickens. Although the dystrophic muscles after BPVC injection showed a rapid recovery with a similar tempo to that of nondystrophic ones, they showed different morphological behavior in the early phase of regeneration, including marked variability in the size of fibers and in the intracytoplasmic enzyme activities of nicotinamide adenine dinucleotide, reduced-tetrazolium reductase (NADH-TR), acetylcholinesterase (AChE), and nonspecific esterase (NSE).

  14. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-04-08

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.

  15. Participation of Myosin Va and Pka Type I in the Regeneration of Neuromuscular Junctions

    PubMed Central

    Röder, Ira Verena; Strack, Siegfried; Reischl, Markus; Dahley, Oliver; Khan, Muzamil Majid; Kassel, Olivier; Zaccolo, Manuela; Rudolf, Rüdiger

    2012-01-01

    Background The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. Methodology/Principal Findings To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. Conclusions/Significance Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle. PMID:22815846

  16. Muscle satellite cell heterogeneity and self-renewal

    PubMed Central

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  17. Can injured adult CNS axons regenerate by recapitulating development?

    PubMed

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  18. Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration.

    PubMed

    Ogawa, Ryo; Ma, Yuran; Yamaguchi, Masahiko; Ito, Takahito; Watanabe, Yoko; Ohtani, Takuji; Murakami, Satoshi; Uchida, Shizuka; De Gaspari, Piera; Uezumi, Akiyoshi; Nakamura, Miki; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Hashimoto, Naohiro; Braun, Thomas; Tanaka, Teruyuki; Takeda, Shin'ichi; Yamamoto, Hiroshi; Fukada, So-Ichiro

    2015-01-01

    Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7(+)MyoD(+) myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7(+)MyoD(-) subpopulation, which contributes to myofiber maturation during muscle regeneration. © 2015. Published by The Company of Biologists Ltd.

  19. Asynchronous Inflammation and Myogenic Cell Migration Limit Muscle Tissue Regeneration Mediated by a Cellular Scaffolds

    DTIC Science & Technology

    2015-02-11

    such as duchenne muscular dystrophy ) results in impaired regeneration, increased atrophy and fibrosis of skeletal muscle [24-27]. It has also been...2005; 122:289-301. 24. Cohn RDCampbell KP. Molecular basis of muscular dystrophies . Muscle Nerve 2000; 23:1456-1471. 25. Morgan JEZammit PS. Direct...et al. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy . Neurology 2005; 65:826-834. 28. Lepper C

  20. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Gliubizzi, Carla; Servidei, Tiziana; Pescatori, Mario; Tonali, Pietro A; Ricci, Enzo; Mirabella, Massimiliano

    2006-02-01

    Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.

  1. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration.

    PubMed

    Yamamoto, Masakazu; Legendre, Nicholas P; Biswas, Arpita A; Lawton, Alexander; Yamamoto, Shoko; Tajbakhsh, Shahragim; Kardon, Gabrielle; Goldhamer, David J

    2018-03-13

    MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. A case of adult-onset reducing body myopathy presenting a novel clinical feature, asymmetrical involvement of the sternocleidomastoid and trapezius muscles.

    PubMed

    Fujii, Takayuki; Hayashi, Shintaro; Kawamura, Nobutoshi; Higuchi, Masa-Aki; Tsugawa, Jun; Ohyagi, Yasumasa; Hayashi, Yukiko K; Nishino, Ichizo; Kira, Jun-Ichi

    2014-08-15

    We herein report a 32-year-old woman with adult-onset reducing body myopathy (RBM) who had a mutation in the four-and-a-half LIM domain 1 gene (FHL1) and showed a marked asymmetrical involvement of sternocleidomastoid and trapezius muscles. At 30 years of age she noticed bilateral foot drop, and over the next two years developed difficulty raising her right arm. At 32 years of age she was admitted to our hospital for a diagnostic evaluation. Neurological examination showed moderate weakness and atrophy of her right sternocleidomastoid muscle, right trapezius muscle, and bilateral upper proximal muscles. There were severe weakness and atrophy of her bilateral tibialis anterior muscles. Her deep tendon reflexes were hypoactive in her upper extremities. Her serum creatine kinase level was mildly increased. Muscle biopsy specimens from the left tibialis anterior muscle revealed marked variation in fiber size, some necrotic or regenerating fibers, and reducing bodies. Gene analysis of FHL1 demonstrated a mutation: a heterozygous missense mutation of c.377G>A (p. C126T) in FHL1. Compared with previous adult-onset RBM cases harboring mutations in FHL1, our case was characterized by asymmetrical atrophy of the sternocleidomastoid and trapezius muscles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. ENHANCING ADULT NERVE REGENERATION THROUGH THE KNOCKDOWN OF RETINOBLASTOMA PROTEIN

    PubMed Central

    Christie, Kimberly J.; Krishnan, Anand; Martinez, Jose A.; Purdy, Kaylynn; Singh, Bhagat; Eaton, Shane; Zochodne, Douglas

    2016-01-01

    Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb siRNA knockdown or Rb1 deletion in vitro enhances neurite outgrowth and branching. Plasticity is achieved in part through upregulation of neuronal PPARγ; its antagonism inhibits Rb siRNA plasticity whereas a PPARγ agonist increases growth. In an in vivo regenerative paradigm following complete peripheral nerve trunk transection, direct delivery of Rb siRNA prompts increased outgrowth of axons from proximal stumps and entrains Schwann cells to accompany them for greater distances. Similarly Rb siRNA delivery following a nerve crush improves behavioural indices of motor and sensory recovery in mice. The overall findings indicate that inhibition of tumour suppressor molecules has a role to play in promoting adult neuron regeneration. PMID:24752312

  4. Injury and subsequent regeneration of muscles for activation of local innate immunity to facilitate the development and relapse of autoimmune myositis in C57BL/6 mice.

    PubMed

    Kimura, Naoki; Hirata, Shinya; Miyasaka, Nobuyuki; Kawahata, Kimito; Kohsaka, Hitoshi

    2015-04-01

    To determine whether injury and regeneration of the skeletal muscles induce an inflammatory milieu that facilitates the development and relapse of autoimmune myositis. The quadriceps of C57BL/6 mice were injured with bupivacaine hydrochloride (BPVC) and evaluated histologically. Macrophages and regenerating myofibers in the treated muscles and differentiating C2C12 myotubes were examined for cytokine expression. Mice were immunized with C protein fragments at the base of the tail and in the right hind footpads (day 0) to evoke systemic anti-C protein immunity and to induce local myositis in the right hind limbs. The contralateral quadriceps muscles were injured with BPVC or phosphate buffered saline (PBS) on day 7 or after spontaneous regression of myositis (day 42). The quadriceps muscle in nonimmunized mice was injured with BPVC on day 7. The muscles were examined histologically 14 days after treatment. The BPVC-injured muscles had macrophage infiltration most abundantly at 3 days after the injection, with emergence of regenerating fibers from day 5. The macrophages expressed inflammatory cytokines, including tumor necrosis factor α, interleukin-1β, and CCL2. Regenerating myofibers and C2C12 myotubes also expressed the cytokines. The BPVC-injected muscles from nonimmunized mice had regenerating myofibers with resolved cell infiltration 14 days after treatment. In mice preimmunized with C protein fragments, the muscles injected with BPVC on day 7 as well as on day 42, but not those injected with PBS, had myositis accompanied by CD8+ T cell infiltration. Injury and regeneration could set up an inflammatory milieu in the muscles and facilitate the development and relapse of autoimmune myositis. Copyright © 2015 by the American College of Rheumatology.

  5. Possible Muscle Repair in the Human Cardiovascular System.

    PubMed

    Sommese, Linda; Zullo, Alberto; Schiano, Concetta; Mancini, Francesco P; Napoli, Claudio

    2017-04-01

    The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.

  6. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    NASA Astrophysics Data System (ADS)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  7. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    PubMed

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.

  9. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy.

    PubMed

    Owens, Daniel J; Sharples, Adam P; Polydorou, Ioanna; Alwan, Nura; Donovan, Timothy; Tang, Jonathan; Fraser, William D; Cooper, Robert G; Morton, James P; Stewart, Claire; Close, Graeme L

    2015-12-15

    Skeletal muscle is a direct target for vitamin D. Observational studies suggest that low 25[OH]D correlates with functional recovery of skeletal muscle following eccentric contractions in humans and crush injury in rats. However, a definitive association is yet to be established. To address this gap in knowledge in relation to damage repair, a randomised, placebo-controlled trial was performed in 20 males with insufficient concentrations of serum 25(OH)D (45 ± 25 nmol/l). Prior to and following 6 wk of supplemental vitamin D3 (4,000 IU/day) or placebo (50 mg of cellulose), participants performed 20 × 10 damaging eccentric contractions of the knee extensors, with peak torque measured over the following 7 days of recovery. Parallel experimentation using isolated human skeletal muscle-derived myoblast cells from biopsies of 14 males with low serum 25(OH)D (37 ± 11 nmol/l) were subjected to mechanical wound injury, which enabled corresponding in vitro studies of muscle repair, regeneration, and hypertrophy in the presence and absence of 10 or 100 nmol 1α,25(OH)2D3. Supplemental vitamin D3 increased serum 25(OH)D and improved recovery of peak torque at 48 h and 7 days postexercise. In vitro, 10 nmol 1α,25(OH)2D3 improved muscle cell migration dynamics and resulted in improved myotube fusion/differentiation at the biochemical, morphological, and molecular level together with increased myotube hypertrophy at 7 and 10 days postdamage. Together, these preliminary data are the first to characterize a role for vitamin D in human skeletal muscle regeneration and suggest that maintaining serum 25(OH)D may be beneficial for enhancing reparative processes and potentially for facilitating subsequent hypertrophy. Copyright © 2015 the American Physiological Society.

  10. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model.

    PubMed

    Pereira, T; Armada-da Silva, P A S; Amorim, I; Rêma, A; Caseiro, A R; Gärtner, A; Rodrigues, M; Lopes, M A; Bártolo, P J; Santos, J D; Luís, A L; Maurício, A C

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  11. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model

    PubMed Central

    Pereira, T.; Armada-da Silva, P. A. S.; Amorim, I.; Rêma, A.; Caseiro, A. R.; Gärtner, A.; Rodrigues, M.; Lopes, M. A.; Bártolo, P. J.; Santos, J. D.; Luís, A. L.; Maurício, A. C.

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering. PMID:25379040

  12. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers.

    PubMed

    Sihvo, H-K; Immonen, K; Puolanne, E

    2014-05-01

    A myopathy affecting the pectoralis major muscle of the commercial broiler has emerged creating remarkable economic losses as well as a potential welfare problem of the birds. We here describe the macroscopic and histologic lesions of this myopathy within 10 pectoralis major muscles of 5- to 6-week-old broilers in Finland. Following macroscopic evaluation and palpation of the muscles, a tissue sample of each was fixed in formalin, processed for histology, and histologically evaluated. The muscles that were macroscopically hard, outbulging, pale, and often accompanied with white striping histologically exhibited moderate to severe polyphasic myodegeneration with regeneration as well as a variable amount of interstitial connective tissue accumulation or fibrosis. All affected cases also exhibited perivenular lymphocyte accumulation. The etiology of this myodegenerative lesion remains yet open. Polyphasic myodegeneration is associated with several previously known etiologies, but palpatory hardness focusing on the pectoralis major, together with perivenular lymphocytes, has not been described in relation to them. The results of this study provide the pathological basis for further studies concerning the etiology of the currently described myopathy.

  14. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    PubMed

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  15. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    PubMed

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  16. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  17. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues

    PubMed Central

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult. PMID:28386539

  18. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    PubMed

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  19. Attenuation of p38-mediated miR-1/133 expression facilitates myoblast proliferation during the early stage of muscle regeneration.

    PubMed

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration.

  20. Activation of Pax7-Positive Cells in a Non-Contractile Tissue Contributes to Regeneration of Myogenic Tissues in the Electric Fish S. macrurus

    PubMed Central

    Weber, Christopher M.; Martindale, Mark Q.; Tapscott, Stephen J.; Unguez, Graciela A.

    2012-01-01

    The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells

  1. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  2. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    USDA-ARS?s Scientific Manuscript database

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  3. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration.

    PubMed

    Schmidt, Rebecca; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2014-08-04

    Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.

  4. Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions.

    PubMed

    Askanas, V; Engel, W K; Alvarez, R B; McFerrin, J; Broccolini, A

    2000-07-01

    Alpha-synuclein (alpha-syn) is an important component of neuronal and glial inclusions in brains of patients with several neurodegenerative disorders. Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older patients. Its muscle phenotype shows several similarities with Alzheimer disease brain. A distinct feature of s-IBM pathology is specific vacuolar degeneration of muscle fibers characterized by intracellular amyloid inclusions formed by both amyloid-beta (Abeta) and paired-helical filaments composed of phosphorylated tau. We immunostained alpha-syn in muscle biopsies of s-IBM, disease-control, and normal patients. Approximately 60% of Abeta-positive vacuolated muscle fibers (VMF) contained well-defined inclusions immunoreactive with antibodies against alpha-syn. In those fibers. alpha-syn co-localized with Abeta, both by light microscopy, and ultrastructurally. Paired-helical filaments did not contain alpha-syn immunoreactivity. In all muscle biopsies, alpha-syn was strongly immunoreactive at the postsynaptic region of the neuromuscular junctions. alpha-syn immunoreactivity also occurred diffusely in regenerating and necrotic muscle fibers. In cultured human muscle fibers, alpha-syn and its mRNA were expressed by immunocytochemistry, immunoblots, and Northern blots. Our study provides the first demonstration that alpha-syn participates in normal and pathologic processes of human muscle. Therefore. its function is not exclusive to the brain and neurodegenerative diseases.

  5. Identification and functional characterization of muscle satellite cells in Drosophila

    PubMed Central

    Reichert, Heinrich

    2017-01-01

    Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells. PMID:29072161

  6. Promoting peripheral nerve regeneration with biodegradable poly (DL-lactic acid) films

    PubMed Central

    Li, Ruijun; Chen, Lei; Fu, Jinling; Liu, Zhigang; Wang, Shuang; Pan, Yuehai

    2015-01-01

    Regeneration and repair of peripheral nerve injury has always been a major problem in the clinic. The conventional technique based on suturing the nerve ends to each other coupled with the implantation of nerve conduits outside is associated with postoperative adhesions and scar problems. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been introduced. This novel anti-adhesion film has a porous structure with better mechanical properties, better flexibility, and more controllable degradation as compared to traditional non-porous nerve conduits. However, little is known about the effects of such PDLLA films on regeneration and repair of peripheral nerve injury in vivo. In this study, we evaluated the effects of PDLLA films implantation after sciatic nerve transection and anastomosis on subsequent sciatic nerve regeneration in vivo, using a rat sciatic nerve injury model. Sciatic nerve transection surgery coupled with direct suturing only, suturing and wrapping with traditional nerve conduits, or suturing and wrapping with PDLLA films was performed on adult Wistar rats. The additional wrapping with PDLLA films inhibited the nerve adhesion after 12 weeks recovery from surgery. It also increased the compound muscle action potentials and tibialis and gastrocnemius muscle wet weight ratio following 8 weeks recovery from surgery. Regenerated nerve fibers were relatively straight and the aligned structure was complete in rats with implantations of PDLLA films. The results suggested that PDLLA films can improve the nutritional status in the muscles innervated by the damaged nerves and promote nerve regeneration in vivo. PMID:26339372

  7. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age*

    PubMed Central

    Gorski, Jeff P.; Huffman, Nichole T.; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V.; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G.; Bonewald, Lynda; Brotto, Marco

    2016-01-01

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10–12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  9. A Brain Unfixed: Unlimited Neurogenesis and Regeneration of the Adult Planarian Nervous System

    PubMed Central

    Brown, David D. R.; Pearson, Bret J.

    2017-01-01

    Powerful genetic tools in classical laboratory models have been fundamental to our understanding of how stem cells give rise to complex neural tissues during embryonic development. In contrast, adult neurogenesis in our model systems, if present, is typically constrained to one or a few zones of the adult brain to produce a limited subset of neurons leading to the dogma that the brain is primarily fixed post-development. The freshwater planarian (flatworm) is an invertebrate model system that challenges this dogma. The planarian possesses a brain containing several thousand neurons with very high rates of cell turnover (homeostasis), which can also be fully regenerated de novo from injury in just 7 days. Both homeostasis and regeneration depend on the activity of a large population of adult stem cells, called neoblasts, throughout the planarian body. Thus, much effort has been put forth to understand how the flatworm can continually give rise to the diversity of cell types found in the adult brain. Here we focus on work using single-cell genomics and functional analyses to unravel the cellular hierarchies from stem cell to neuron. In addition, we will review what is known about how planarians utilize developmental signaling to maintain proper tissue patterning, homeostasis, and cell-type diversity in their brains. Together, planarians are a powerful emerging model system to study the dynamics of adult neurogenesis and regeneration. PMID:28588444

  10. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2.

    PubMed

    DeVault, Laura; Li, Tun; Izabel, Sarah; Thompson-Peer, Katherine L; Jan, Lily Yeh; Jan, Yuh Nung

    2018-03-01

    Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging. © 2018 DeVault et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  12. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  13. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Liu, Yi; Zhao, Hua

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediatedmore » transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which

  14. Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Bandman, Everett

    1985-02-01

    The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

  15. Attenuation of p38-Mediated miR-1/133 Expression Facilitates Myoblast Proliferation during the Early Stage of Muscle Regeneration

    PubMed Central

    Zhang, Duo; Li, Xihua; Chen, Chuchu; Li, Yuyin; Zhao, Lei; Jing, Yanyan; Liu, Wei; Wang, Xiaoyun; Zhang, Ying; Xia, Hongfeng; Chang, Yaning; Gao, Xiang; Yan, Jun; Ying, Hao

    2012-01-01

    Myoblast proliferation following myotrauma is regulated by multiple factors including growth factors, signal pathways, transcription factors, and miRNAs. However, the molecular mechanisms underlying the orchestration of these regulatory factors remain unclear. Here we show that p38 signaling is required for miR-1/133a clusters transcription and both p38 activity and miR-1/133 expression are attenuated during the early stage of muscle regeneration in various animal models. Additionally, we show that both miR-1 and miR-133 reduce Cyclin D1 expression and repress myoblast proliferation by inducing G1 phase arrest. Furthermore, we demonstrate that miR-133 inhibits mitotic progression by targeting Sp1, which mediates Cyclin D1 transcription, while miR-1 suppresses G1/S phase transition by targeting Cyclin D1. Finally, we reveal that proproliferative FGF2, which is elevated during muscle regeneration, attenuates p38 signaling and miR-1/133 expression. Taken together, our results suggest that downregulation of p38-mediated miR-1/133 expression by FGF2 and subsequent upregulation of Sp1/Cyclin D1 contribute to the increased myoblast proliferation during the early stage of muscle regeneration. PMID:22911796

  16. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    PubMed

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  17. Strategies for regeneration of heart muscle.

    PubMed

    Guyette, Jacques P; Cohen, Ira S; Gaudette, Glenn R

    2010-01-01

    Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.

  18. Theorising Participation in Urban Regeneration Partnerships: An Adult Education Perspective

    ERIC Educational Resources Information Center

    Galvin, Martin; Mooney Simmie, Geraldine

    2017-01-01

    While the policy approach in Urban Regeneration Partnership tends to be viewed as participatory governance using an urban studies lens, this article posits an alternative theorisation that takes an adult education perspective. We draw from Lefebvre's notion of "space", Engeström's "Cultural Historical Activity Theory" and…

  19. Monitoring of injury induced brain regeneration of the adult zebrafish by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    The adult zebrafish has pronounced regenerative capacity of the brain, which makes it an ideal model organism of vertebrate biology for the investigation of recovery of central nervous system injuries. The aim of this study was to employ spectral-domain optical coherence tomography (SD-OCT) system for long-term in vivo monitoring of tissue regeneration using an adult zebrafish model of brain injury. Based on a 1325 nm light source and two high-speed galvo mirrors, the SD-OCT system can offer a large field of view of the three-dimensional (3D) brain structures with high imaging resolution (12 μm axial and 13 μm lateral) at video rate. In vivo experiments based on this system were conducted to monitor the regeneration process of zebrafish brain after injury during a period of 43 days. To monitor and detect the process of tissue regeneration, we performed 3D in vivo imaging in a zebrafish model of adult brain injury during a period of 43 days. The coronal and sagittal views of the injured zebrafish brain at each time point (0 days, 10 days, 20 days and 43 days postlesion) were presented to show the changes of the brain lesion in detail. In addition, the 3D SD-OCT images for an injured zebrafish brain were also reconstructed at days 0 and days 43 post-lesion. We found that SD-OCT is able to effectively and noninvasively monitor the regeneration of the adult zebrafish brain after injury in real time with high 3D spatial resolution and good penetration depth. Our findings also suggested that the adult zebrafish has the extraordinary capability of brain regeneration and is able to repair itself after brain injury.

  20. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM

    PubMed Central

    Bi, P.; Kuang, S.

    2012-01-01

    Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality. PMID:22100594

  1. Muscle satellite cells adopt divergent fates

    PubMed Central

    Zammit, Peter S.; Golding, Jon P.; Nagata, Yosuke; Hudon, Valérie; Partridge, Terence A.; Beauchamp, Jonathan R.

    2004-01-01

    Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool. PMID:15277541

  2. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    PubMed

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effects of hypertonic dextrose on injured rat skeletal muscles.

    PubMed

    Kunduracioglu, Burak; Ulkar, Bulent; Sabuncuoglu, Bizden T; Can, Belgin; Bayrakci, Kenan

    2006-04-01

    Histological examination of proliferative therapy effects on the healing process of muscular injury. We performed this study between March and August 2002 at Ankara University, School of Medicine, Laboratory of Animal Experiments, Ankara, Turkey. We used an experimental animal model by conducting a standardized cut injury of the gastrocnemius muscle in 30 adult male albino rats, which we divided into 2 groups; proliferative therapy group and control group. We evaluated the injured rat muscles by light microscopy on the fifth, eight, and twelfth day of injury. The muscular regeneration process began at day 5 in both the control and proliferative therapy groups. The proliferative therapy group revealed a prominent inflammatory reaction, fibroblast migration, and necrosis with accompanying regeneration and excessive connective tissue formation. We cannot consider proliferative therapy an appropriate treatment modality for muscular injuries, unless there is evidence of normal muscle physiology and biomechanics post traumatically.

  4. Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells.

    PubMed Central

    Fassati, A; Wells, D J; Sgro Serpente, P A; Walsh, F S; Brown, S C; Strong, P N; Dickson, G

    1997-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD. PMID:9239410

  5. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    PubMed

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  6. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation.

    PubMed

    Takeoka, Aya; Jindrich, Devin L; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L; Ziegler, Matthias D; Ramón-Cueto, Almudena; Roy, Roland R; Edgerton, V Reggie; Phelps, Patricia E

    2011-03-16

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function.

  7. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.

    PubMed

    Zupanc, Günther K H; Sîrbulescu, Ruxandra F

    2011-09-01

    Teleost fish are distinguished by their ability to constitutively generate new neurons in the adult central nervous system ('adult neurogenesis'), and to regenerate whole neurons after injury ('neuronal regeneration'). In the brain, new neurons are produced in large numbers in several dozens of proliferation zones. In the spinal cord, proliferating cells are present in the ependymal layer and throughout the parenchyma. In the retina, new cells arise from the ciliary marginal zone and from Müller glia. Experimental evidence has suggested that both radial glia and non-glial cells can function as adult stem cells. The proliferative activity of these cells can be regulated by molecular factors, such as fibroblast growth factor and Notch, as well as by social and behavioral experience. The young cells may either reside near the respective proliferation zone, or migrate to specific target areas. Approximately half of the newly generated cells persist for the rest of the fish's life, and many of them differentiate into neurons. After injury, a massive surge of apoptotic cell death occurs at the lesion site within a few hours. Apoptosis is followed by a marked increase in cell proliferation and neurogenesis, leading to repair of the tissue. The structural regeneration is paralleled by partial or complete recovery of function. Recent investigations have led to the identification of several dozens of molecular factors that are potentially involved in the process of regeneration. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  9. Autologous Minced Muscle Grafts: A Tissue Engineering Therapy for the Volumetric Loss of Skeletal Muscle

    DTIC Science & Technology

    2013-07-24

    report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area...i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles ...cated nuclei in 30% of fibers observed in nonrepaired muscles ); and 3) significantly improves net torque production (i.e., 55% of the functional deficit

  10. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy

    PubMed Central

    Goh, Qingnian; Millay, Douglas P

    2017-01-01

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001 PMID:28186492

  11. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps

    PubMed Central

    Broughton, Kathleen; Sussman, Mark A.

    2016-01-01

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells four years ago (Mohsin et al., Empowering adult stem cells for myocardial regeneration. Circ Res. 2011; 109(12):1415–1428) [1]. The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathologic injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating “state of affairs” in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: “Success will never be a big step in the future. Success is a small step taken just now.” PMID:26941423

  12. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration.

    PubMed

    Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng

    2011-03-01

    In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

  13. RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes

    PubMed Central

    Gundry, Stacey R.; Chan, Aye T.; Widrick, Jeffrey; Draper, Isabelle; Chakraborty, Anirban; Zhou, Yi; Zon, Leonard I.; Gleizes, Pierre-Emmanuel

    2018-01-01

    Gene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles. PMID:29518074

  14. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    PubMed Central

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  15. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  16. Inducing myoblast re-entry into the cell cycle: a potential mechanism for laser-enhanced skeletal muscle regeneration

    NASA Astrophysics Data System (ADS)

    Liu, T.; Fang, Y.; Zhang, C. P.; Chen, P.; Wang, C. Z.; Kang, H. X.; Shen, B. J.; Liang, J.; Fu, X. B.

    2014-09-01

    This study investigated the effect of low-level laser irradiation (LLLI) on the cell cycle and proliferative activity of cultured myoblasts, and sought to elucidate the possible cellular mechanism by which LLLI promotes the regeneration of skeletal muscle in vivo. Primary myoblasts isolated from rat hindlegs were irradiated with helium-neon laser light at different energy densities. Distributions of cell-cycle subpopulations and the expression of cell-cycle regulatory proteins in myoblasts were assessed using flow cytometric analysis and western blot assay. It was found that laser irradiation stimulated cell-cycle entry; induced the expression of cyclin A and cyclin D; and increased cell proliferation index and bromodeoxyuridine incorporation as compared to the unirradiated control cells, indicating LLLI augmented the number of proliferative myoblasts in the S phase and G2/M phase of the cell cycle. These results suggest that LLLI at certain fluxes and wavelengths could activate quiescent myoblasts, leading to cell division and facilitating new myofiber formation. This could contribute to the improvement of skeletal muscle regeneration following trauma and myopathic diseases.

  17. p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells.

    PubMed

    Wang, Gang; Zhu, Han; Situ, Chenghao; Han, Lifang; Yu, Youqian; Cheung, Tom H; Liu, Kai; Wu, Zhenguo

    2018-04-13

    Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon injury, MuSCs exit quiescence in vivo to become activated, re-enter the cell cycle to proliferate, and differentiate to repair the damaged muscles. It remains unclear which extrinsic cues and intrinsic signaling pathways regulate quiescence exit during MuSC activation. Here, we demonstrated that inducible MuSC-specific deletion of p110α , a catalytic subunit of phosphatidylinositol 3-kinase (PI3K), rendered MuSCs unable to exit quiescence, resulting in severely impaired MuSC proliferation and muscle regeneration. Genetic reactivation of mTORC1, or knockdown of FoxO s, in p110α -null MuSCs partially rescued the above defects, making them key effectors downstream of PI3K in regulating quiescence exit. c-Jun was found to be a key transcriptional target of the PI3K/mTORC1 signaling axis essential for MuSC quiescence exit. Moreover, induction of a constitutively active PI3K in quiescent MuSCs resulted in spontaneous MuSC activation in uninjured muscles and subsequent depletion of the MuSC pool. Thus, PI3K-p110α is both necessary and sufficient for MuSCs to exit quiescence in response to activating signals. © 2018 The Authors.

  18. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  19. Wnt Protein-mediated Satellite Cell Conversion in Adult and Aged Mice Following Voluntary Wheel Running

    PubMed Central

    Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2014-01-01

    Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7+Myf5+ and Pax7+ MyoD+ cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle. PMID:24482229

  20. Axon Regeneration Can Facilitate or Suppress Hindlimb Function after Olfactory Ensheathing Glia Transplantation

    PubMed Central

    Takeoka, Aya; Jindrich, Devin L.; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L.; Ziegler, Matthias D.; Ramón-Cueto, Almudena; Roy, Roland R.; Edgerton, V. Reggie

    2011-01-01

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function. PMID:21411671

  1. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Functional heterogeneity of side population cells in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also somemore » mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.« less

  3. Striated Muscle Function, Regeneration, and Repair

    PubMed Central

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  4. Relationship between muscle mass and physical performance: is it the same in older adults with weak muscle strength?

    PubMed

    Kim, Kyoung-Eun; Jang, Soong-Nang; Lim, Soo; Park, Young Joo; Paik, Nam-Jong; Kim, Ki Woong; Jang, Hak Chul; Lim, Jae-Young

    2012-11-01

    the relationship between muscle mass and physical performance has not been consistent among studies. to clarify the relationship between muscle mass and physical performance in older adults with weak muscle strength. cross-sectional analysis using the baseline data of 542 older men and women from the Korean Longitudinal Study on Health and Aging. dual X-ray absorptiometry, isokinetic dynamometer and the Short Physical Performance Battery (SPPB) were performed. Two muscle mass parameters, appendicular skeletal mass divided by weight (ASM/Wt) and by height squared (ASM/Ht(2)), were measured. We divided the participants into a lower-quartile (L25) group and an upper-three-quartiles (H75) group based on the knee-extensor peak torque. Correlation analysis and logistic regression models were used to assess the association between muscle mass and low physical performance, defined as SPPB scores <9, after controlling for confounders. in the L25 group, no correlation between mass and SPPB was detected, whereas the correlation between peak torque and SPPB was significant and higher than that in the H75 group. Results from the logistic models also showed no association between muscle mass and SPPB in the L25 group, whereas muscle mass was associated with SPPB in the H75 group. muscle mass was not associated with physical performance in weak older adults. Measures of muscle strength may be of greater clinical importance in weak older adults than is muscle mass per se.

  5. Exercise training in older adults, what effects on muscle oxygenation? A systematic review.

    PubMed

    Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine

    2017-07-01

    To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Normal isometric strength of rotatorcuff muscles in adults.

    PubMed

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  7. Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury.

    PubMed

    Hamrick, Mark W; Arounleut, Phonepasong; Kellum, Ethan; Cain, Matthew; Immel, David; Liang, Li-Fang

    2010-09-01

    Myostatin (GDF-8) is known as a potent inhibitor of muscle growth and development, and myostatin is also expressed early in the fracture healing process. The purpose of this study was to test the hypothesis that a new myostatin inhibitor, a recombinant myostatin propeptide, can enhance the repair and regeneration of both muscle and bone in cases of deep penetrant injury. We used a fibula osteotomy model with associated damage to lateral compartment muscles (fibularis longus and brevis) in mice to test the hypothesis that blocking active myostatin with systemic injections of a recombinant myostatin propeptide would improve muscle and bone repair. Mice were assigned to two treatment groups after undergoing a fibula osteotomy: those receiving either vehicle (saline) or recombinant myostatin propeptide (20 mg/kg). Mice received one injection on the day of surgery, another injection 5 days after surgery, and a third injection 10 days after surgery. Mice were killed 15 days after the osteotomy procedure. Bone repair was assessed using microcomputed tomography (micro-CT) and histologic evaluation of the fracture callus. Muscle healing was assessed using Masson trichrome staining of the injury site, and image analysis was used to quantify the degree of fibrosis and muscle regeneration. Three propeptide injections over a period of 15 days increased body mass by 7% and increased muscle mass by almost 20% (p < 0.001). Micro-CT analysis of the osteotomy site shows that by 15 days postosteotomy, bony callus tissue was observed bridging the osteotomy gap in 80% of the propeptide-treated mice but only 40% of the control (vehicle)-treated mice (p < 0.01). Micro-CT quantification shows that bone volume of the fracture callus was increased by ∼ 30% (p < 0.05) with propeptide treatment, and the increase in bone volume was accompanied by a significant increase in cartilage area (p = 0.01). Propeptide treatment significantly decreased the fraction of fibrous tissue in the wound site

  8. Long-Term Therapy With Omega-3 Ameliorates Myonecrosis and Benefits Skeletal Muscle Regeneration in Mdx Mice.

    PubMed

    Apolinário, Leticia Montanholi; De Carvalho, Samara Camaçari; Santo Neto, Humberto; Marques, Maria Julia

    2015-09-01

    In Duchenne muscle dystrophy (DMD) and in the mdx mouse model of DMD, a lack of dystrophin leads to myonecrosis and cardiorespiratory failure. Several lines of evidence suggest a detrimental role of the inflammatory process in the dystrophic process. Previously, we demonstrated that short-term therapy with eicosapentaenoic acid (EPA), at early stages of disease, ameliorated dystrophy progression in the mdx mouse. In the present study, we evaluated the effects of a long-term therapy with omega-3 later in dystrophy progression. Three-month-old mdx mice received omega-3 (300 mg/kg) or vehicle by gavage for 5 months. The quadriceps and diaphragm muscles were removed and processed for histopathology and Western blot. Long-term therapy with omega-3 increased the regulatory protein MyoD and muscle regeneration and reduced markers of inflammation (TNF-α and NF-kB) in both muscles studied. The present study supports the long-term use of omega-3 at later stages of dystrophy as a promising option to be investigated in DMD clinical trials. © 2015 Wiley Periodicals, Inc.

  9. Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury.

    PubMed

    Fink, E; Fortin, D; Serrurier, B; Ventura-Clapier, R; Bigard, A X

    2003-01-01

    The recovery of metabolic pathways after muscle damage has been poorly studied. We investigated the myosin heavy chain (MHC) isoform transitions and the recovery of citrate synthase (CS) activity, isoform distribution of lactate dehydrogenase (LDH) and creatine kinase (CK) in slow muscles after two types of injury. Muscle degeneration was induced in left soleus muscles of male Wistar rats by either notexin injection or crushing and the regenerative process was examined from 2 to 56 days after injury. Myosin transition occurred earlier after notexin than after crush injury. Fast-type IIx and more particularly type IIa MHC isoform disappeared by day 28 after notexin inoculation, while they were still detected long after in crushed muscles. A full recovery of both the CS activity and the specific activity of the H-LDH subunit was observed from day 42 in notexin-treated muscles, while values measured in crushed muscles remained significantly lower than in non-injured muscles (P < 0.05). The activity of the mitochondrial isoform of CK (mi-CK) was markedly affected by the type of injury (P < 0.001), and failed to reach normal levels after crush injury (P < 0.05). The results of this study show that the relatively rapid MHC transitions during regeneration contrasts with the slow recovery in the oxidative capacity. The recovery of the oxidative capacity remained incomplete after crush injury, a model of injury known to lead to disruption of the basal lamina and severe interruption of the vascular and nerve supply.

  10. Shock wave treatment improves nerve regeneration in the rat.

    PubMed

    Mense, Siegfried; Hoheisel, Ulrich

    2013-05-01

    The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.

  11. Regenerating new heart with stem cells

    PubMed Central

    Anversa, Piero; Kajstura, Jan; Rota, Marcello; Leri, Annarosa

    2013-01-01

    This article discusses current understanding of myocardial biology, emphasizing the regeneration potential of the adult human heart and the mechanisms involved. In the last decade, a novel conceptual view has emerged. The heart is no longer considered a postmitotic organ, but is viewed as a self-renewing organ characterized by a resident stem cell compartment responsible for tissue homeostasis and cardiac repair following injury. Additionally, HSCs possess the ability to transdifferentiate and acquire the cardiomyocyte, vascular endothelial, and smooth muscle cell lineages. Both cardiac and hematopoietic stem cells may be used therapeutically in an attempt to reverse the devastating consequences of chronic heart failure of ischemic and nonischemic origin. PMID:23281411

  12. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  13. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  14. Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    PubMed Central

    Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.

    2010-01-01

    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725

  15. [Regeneration capacity of skeletal muscle].

    PubMed

    Wernig, A

    2003-07-01

    The organotypic stem cell of skeletal muscle has previously been known as satellite cell. They allow muscle fiber growth during ontogenesis, enable fiber hypertrophy and are responsible for the very efficient repair of muscle fibers. This efficient apparatus is to some degree counterbalanced by an enormous use of the satellite cell pool: fiber atrophy probably is accompanied by loss of myonuclei such that every reversal of atrophy is bound to use new myonuclei i.e. satellite cells. How often in life does this occur? Hard to say. Moreover, the potent repair capacity is challenged by an unexpected vulnerability of skeletal muscle fibers: Passive stretching of contracted muscles may cause multiple "microdamage," disruption of contractile elements or tiny areas of true necrosis (focal necrosis). How often does this happen? Well, for many of us at least once per year when we go up and down mountains during vacation time, followed by sour muscles. Others may decide to change his/her (locomotor) behaviour by severe onset of jogging; it may happen that they suffer kidney failure on Monday due to muscle microdamage and the transfer of myoproteins into the serum over weekend. Also 20 minutes of stepping up and down something like a chair will do: There is a remarkable increase in kreatin kinase and other muscle derived proteins which lasts for days and is bound to reflect some muscle damage. How about sportsmen and worker who repeatedly use their muscles in such a way? We don't have answers yet to most of these questions, but considerable amount of information has been collected over the last years both in animal and--less--in human. What is common in all cases of growth and repair is the proliferation of the satellite cells and their consequent incorporation and fusion with the parent fiber. This way focal damage is repaired often without visible reminders. We would run out of satellite cells were they not stem cells: After division one daughter remains a satellite cell

  16. Liver regeneration in donors and adult recipients after living donor liver transplantation.

    PubMed

    Haga, Junko; Shimazu, Motohide; Wakabayashi, Go; Tanabe, Minoru; Kawachi, Shigeyuki; Fuchimoto, Yasushi; Hoshino, Ken; Morikawa, Yasuhide; Kitajima, Masaki; Kitagawa, Yuko

    2008-12-01

    In living donor liver transplantation, the safety of the donor operation is the highest priority. The introduction of the right lobe graft was late because of concerns about donor safety. We investigated donor liver regeneration by the types of resected segments as well as recipients to assess that appropriate regeneration was occurring. Eighty-seven donors were classified into 3 groups: left lateral section donors, left lobe donors, and right lobe donors. Forty-seven adult recipients were classified as either left or right lobe grafted recipients. Volumetry was retrospectively performed at 1 week, 1, 2, 3, and 6 months, and 1 year after the operation. In the right lobe donor group, the remnant liver volume was 45.4%, and it rapidly increased to 68.9% at 1 month and 89.8% at 6 months. At 6 months, the regeneration ratios were almost the same in all donor groups. The recipient liver volume increased rapidly until 2 months, exceeding the standard liver volume, and then gradually decreased to 90% of the standard liver volume. Livers of the right lobe donor group regenerated fastest in the donor groups, and the recipient liver regenerated faster than the donor liver. Analyzing liver regeneration many times with a large number of donors enabled us to understand the normal liver regeneration pattern. Although the donor livers did not reach their initial volume, the donors showed normal liver function at 1 year. The donors have returned to their normal daily activities. Donor hepatectomy, even right hepatectomy, can be safely performed with accurate preoperative volumetry and careful decision-making concerning graft-type selection.

  17. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    PubMed

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  18. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy

    PubMed Central

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E.; Yang, Lin; Konhilas, John; Lawlor, Michael W.; Ottenheijm, Coen; Granzier, Henk L.

    2015-01-01

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  19. Resetting the epigenome for heart regeneration.

    PubMed

    Quaife-Ryan, Gregory A; Sim, Choon Boon; Porrello, Enzo R; Hudson, James E

    2016-10-01

    In contrast to adults, recent evidence suggests that neonatal mice are able to regenerate following cardiac injury. This regenerative capacity is reliant on robust induction of cardiomyocyte proliferation, which is required for faithful regeneration of the heart following injury. However, cardiac regenerative potential is lost as cardiomyocytes mature and permanently withdraw from the cell cycle shortly after birth. Recently, a handful of factors responsible for the regenerative disparity between the adult and neonatal heart have been identified, but the proliferative response of adult cardiomyocytes following modulation of these factors rarely reaches neonatal levels. The inefficient re-induction of proliferation in adult cardiomyocytes may be due to the epigenetic landscape, which drastically changes during cardiac development and maturation. In this review, we provide an overview of the role of epigenetic modifiers in developmental processes related to cardiac regeneration. We propose an epigenetic framework for heart regeneration whereby adult cardiomyocyte identity requires resetting to a neonatal-like state to facilitate cell cycle re-entry and regeneration following cardiac injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway

    PubMed Central

    Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2016-01-01

    Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031

  1. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    PubMed

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.

  2. Type 2 diabetes is associated with low muscle mass in older adults.

    PubMed

    Kim, Kyung-Soo; Park, Kyung-Sun; Kim, Moon-Jong; Kim, Soo-Kyung; Cho, Yong-Wook; Park, Seok Won

    2014-02-01

    Our aim was to clarify the association between type 2 diabetes and the risk of low muscle mass in older adults. In the present study, 414 adults aged 65 years or older (144 patients with type 2 diabetes and 270 control participants) were included. Body composition was measured by dual-energy X-ray absorptiometry. Low muscle mass was defined as the appendicular skeletal muscle mass/height(2) (ASM/Ht(2)) or appendicular skeletal muscle mass/weight (ASM/Wt) of <2 SD below the sex-specific normal mean of the young reference group, or muscle mass/weight (TSM/Wt) from control participants. Older men with type 2 diabetes showed significantly lower appendicular skeletal muscle mass than those without diabetes (19.5 ± 3.5 kg vs 21.0 ± 2.8 kg, P < 0.001). The prevalence of low muscle mass was consistently higher in older men with diabetes than those without diabetes defined by ASM/Ht(2) (57.6% vs 41.5%, P = 0.040), ASM/Wt (23.7% vs 12.3%, P = 0.046) and TSM/Wt (49.2% vs 20.0%, P < 0.001). In older women with diabetes, the prevalence of low muscle mass was higher than those without diabetes by ASM/Wt (25.9% vs 15.0%, P = 0.044) and TSM/Wt (32.9% vs 20.0%, P = 0.030), but not by ASM/Ht(2) (7.1% vs 8.6%, P = 0.685). The risk of low muscle mass was approximately two- to fourfold higher in older adults with type 2 diabetes, even after adjusting for age, body mass index, current smoking and other risk factors. In Korean older adults, type 2 diabetes is associated with low muscle mass. © 2014 Japan Geriatrics Society.

  3. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    PubMed

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  4. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  5. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  6. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    PubMed

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P < 0.001). Compared to those not engaging in aerobic exercise and not meeting muscle-strengthening activity guidelines, those doing 1 (βadjusted = 3.7; 95% CI: 1.9-5.4; P < 0.001) and both (βadjusted = 6.6; 95% CI: 4.8-8.3; P < 0.001) of these behaviors had a significantly higher executive cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. © The Author(s) 2016.

  7. Regeneration of axotomized olfactory neurons in young and adult locusts quantified by fasciclin I immunofluorescence.

    PubMed

    Wasser, Hannah; Biller, Alexandra; Antonopoulos, Georgios; Meyer, Heiko; Bicker, Gerd; Stern, Michael

    2017-04-01

    The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.

  8. Aging-Related Geniohyoid Muscle Atrophy Is Related to Aspiration Status in Healthy Older Adults

    PubMed Central

    2013-01-01

    Background. Age-related muscle weakness due to atrophy and fatty infiltration in orofacial muscles may be related to swallowing deficits in older adults. An important component of safe swallowing is the geniohyoid (GH) muscle, which helps elevate and stabilize the hyoid bone, thus protecting the airway. This study aimed to explore whether aging and aspiration in older adults were related to GH muscle atrophy and fatty infiltration. Method. Eighty computed tomography scans of the head and neck from 40 healthy older (average age 78 years) and 40 younger adults (average age 32 years) were analyzed. Twenty aspirators and 20 nonaspirators from the 40 older adults had been identified previously. Two-dimensional views in the sagittal and coronal planes were used to measure the GH cross-sectional area and fatty infiltration. Results. GH cross-sectional area was larger in men than in women (p < .05). Decreased cross-sectional area was associated with aging (p < .05), and cross-sectional area was significantly smaller in aspirators compared with nonaspirators, but only among the older men (p < .01). Increasing fatty infiltration was associated with aging in the middle (p < .05) and posterior (p < .01) portions of the GH muscle. There was no significant difference in fatty infiltration of the GH muscle among aspirators and nonaspirators. Conclusion. GH muscle atrophy was associated with aging and aspiration. Fatty infiltration in the GH muscle was increased with aging but not related to aspiration status. These findings suggest that GH muscle atrophy may be a component of decreased swallowing safety and aspiration in older adults and warrants further investigation. PMID:23112114

  9. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    PubMed

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    PubMed

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  11. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  12. Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish.

    PubMed

    Unguez, G A; Zakon, H H

    1998-09-14

    In most groups of electric fish, the electric organ (EO) derives from striated muscle cells that suppress many muscle phenotypic properties. This phenotypic conversion is recapitulated during regeneration of the tail in the weakly electric fish Sternopygus macrurus. Mature electrocytes, the cells of the electric organ, are considerably larger than the muscle fibers from which they derive, and it is not known whether this is a result of muscle fiber hypertrophy and/or fiber fusion. In this study, electron micrographs revealed fusion of differentiated muscle fibers during the formation of electrocytes. There was no evidence of hypertrophy of muscle fibers during their phenotypic conversion. Furthermore, although fish possess distinct muscle phenotypes, the extent to which each fiber population contributes to the formation of the EO has not been determined. By using myosin ATPase histochemistry and anti-myosin heavy chain (MHC) monoclonal antibodies (mAbs), different fiber types were identified in fascicles of muscle in the adult tail. Mature electrocytes were not stained by the ATPase reaction, nor were they labeled by any of the anti-MHC mAbs. In contrast, mature muscle fibers exhibited four staining patterns. The four fiber types were spatially arranged in distinct compartments with little intermixing; peripherally were two populations of type I fibers with small cross-sectional areas, whereas more centrally were two populations of type II fibers with larger cross-sectional areas. In 2- and 3-week regenerating blastema, three fiber types were clearly discerned. Most (> 95%) early-forming electrocytes had an MHC phenotype similar to that of type II fibers. In contrast, fusion among type I fibers was rare. Together, ultrastructural and immunohistochemical analyses revealed that the fusion of muscle fibers gives rise to electrocytes and that this fusion occurs primarily among the population of type II fibers in regenerating blastema.

  13. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration.

    PubMed

    Miroshnychenko, Olga; Chang, Wen-Teh; Dragoo, Jason L

    2017-03-01

    Platelet-rich plasma (PRP) has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP does not show a consistent clinical effect. Purpose/Hypothesis: This study aimed to compare the effects of the following non-neutrophil-containing (leukocyte-poor) plasma fractions on human skeletal muscle myoblast (HSMM) differentiation: (1) PRP, (2) modified PRP (Mod-PRP), in which transforming growth factor β1 (TGF-β1) and myostatin (MSTN) were depleted, and (3) platelet-poor plasma (PPP). The hypothesis was that leukocyte-poor PRP would lead to myoblast proliferation (not differentiation), whereas certain modifications of PRP preparations would increase myoblast differentiation, which is necessary for skeletal muscle regeneration. Controlled laboratory study. Blood from 7 human donors was individually processed to simultaneously create leukocyte-poor fractions: PRP, Mod-PRP, PPP, and secondarily spun PRP and Mod-PRP (PRP ss and Mod-PRP ss , respectively). Mod-PRP was produced by removing TGF-β1 and MSTN from PRP using antibodies attached to sterile beads, while a second-stage centrifugal spin of PRP was performed to remove platelets. The biologics were individually added to cell culture groups. Analysis for induction into myoblast differentiation pathways included Western blot analysis, reverse-transcription polymerase chain reaction, and immunohistochemistry, as well as confocal microscopy to assess polynucleated myotubule formation. HSMMs cultured with PRP showed an increase in proliferation but no evidence of differentiation. Western blot analysis confirmed that MSTN and TGF-β1 could be decreased in Mod-PRP using antibody-coated beads, but this modification mildly improved myoblast differentiation. However, cell culture with PPP, PRP ss , and Mod-PRP ss led to a decreased proliferation rate but a significant induction of myoblast differentiation verified by increased multinucleated

  14. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  15. Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration.

    PubMed

    Pegan, Katarina; Matkovic, Urska; Mars, Tomaz; Mis, Katarina; Pirkmajer, Sergej; Brecelj, Janez; Grubic, Zoran

    2010-09-06

    The best established role of acetylcholinesterase (EC 3.1.1.7, AChE) is termination of neurotransmission at cholinergic synapses. However, AChE is also located at sites, where no other cholinergic components are present and there is accumulating evidence for non-cholinergic functions of this protein. In the process of skeletal muscle formation, AChE is expressed already at the stage of mononuclear myoblast, which is long before other cholinergic components can be demonstrated in this tissue. Myoblast proliferation is an essential step in muscle regeneration and is always accompanied by apoptosis. Since there are several reports demonstrating AChE participation in apoptosis one can hypothesize that early AChE expression in myoblasts reflects the development of the apoptotic apparatus in these cells. Here we tested this hypothesis by following the effect of siRNA AChE silencing on apoptotic markers and by determination of AChE level after staurosporine-induced apoptosis in cultured human myoblasts. Decreased apoptosis in siRNA AChE silenced myoblasts and increased AChE expression in staurosporine-treated myoblasts confirmed AChE involvement in apoptosis. The three AChE splice variants were differently affected by staurosporine-induced apoptosis. The hydrophobic (H) variant appeared unaffected, a tendency towards increase of tailed (T) variant was detected, however the highest, 8-fold increase was observed for readthrough (R) variant. In the light of these findings AChE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    PubMed

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    PubMed

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration.

    PubMed

    Mayerl, Steffen; Schmidt, Manuel; Doycheva, Denica; Darras, Veerle M; Hüttner, Sören S; Boelen, Anita; Visser, Theo J; Kaether, Christoph; Heuer, Heike; von Maltzahn, Julia

    2018-06-05

    Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    PubMed

    Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K

    2015-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an

  20. Synthesis and Characterization of a Model Extracellular Matrix that Induces Partial Regeneration of Adult Mammalian Skin

    NASA Astrophysics Data System (ADS)

    Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F.

    1989-02-01

    Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen--glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 μ m, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was >5 × 104 cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physicochemical structure, functioning as a transient basal lamina during morphogenesis of skin.

  1. Axonal regeneration in zebrafish spinal cord

    PubMed Central

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  2. Axonal regeneration in zebrafish spinal cord.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2018-03-01

    In the present review we discuss two interrelated events-axonal damage and repair-known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals.

  3. Influence of muscle strength on early mobility in critically ill adult patients: Systematic literature review.

    PubMed

    Roberson, Audrey R; Starkweather, Angela; Grossman, Catherine; Acevedo, Edmund; Salyer, Jeanne

    Muscle strength may be one indicator of readiness to mobilize that can be used to guide decisions regarding early mobility efforts and to progressively advance mobilization. To provide a synthesis of current measures of muscle strength in the assessment of early mobilization in critically ill adult patients who are receiving MV therapy. Research studies conducted between 2000-2015 were identified using PubMed, CINHAL, MEDLINE, and the Cochrane Database of Systematic Reviews databases using the search terms "muscle strength", "intensive care", "mechanical ventilation" and "muscle weakness". Nine articles used manual muscle testing, the Medical Research Council scale and/or hand-held dynamometer to provide objective measures for assessing muscle strength in the critically ill adult patient population. Further research is needed to examine the application of standardized measures of muscle strength for guiding decisions regarding early and progressive advancement of mobility goals in adult ICU patients on MV. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    PubMed

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  5. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    PubMed

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  6. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    PubMed

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  7. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis

    PubMed Central

    Golding, Anne; Levin, Michael; Kaplan, David L.

    2016-01-01

    In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device’s observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies. PMID:27257960

  8. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    PubMed

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  9. EFFECTS OF AGE AND ACUTE MUSCLE FATIGUE ON REACTIVE POSTURAL CONTROL IN HEALTHY ADULTS

    PubMed Central

    Papa, Evan V.; Foreman, K. Bo; Dibble, Lee E.

    2015-01-01

    BACKGROUND Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. METHODS A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-minutes (T15) and 30-minutes (T30) of rest. FINDINGS Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. INTERPRETATION Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 minutes of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. PMID:26351001

  10. Effects of age and acute muscle fatigue on reactive postural control in healthy adults.

    PubMed

    Papa, Evan V; Foreman, K Bo; Dibble, Leland E

    2015-12-01

    Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-min (T15) and 30-min (T30) of rest. Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 min of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preliminary time-course study of antiinflammatory macrophage infiltration in crush-injured skeletal muscle.

    PubMed

    Shono, Jun-ichi; Sakaguchi, Shohei; Suzuki, Takahiro; Do, Mai-Khoi Q; Mizunoya, Wataru; Nakamura, Mako; Sato, Yusuke; Furuse, Mitsuhiro; Yamada, Koji; Ikeuchi, Yoshihide; Tatsumi, Ryuichi

    2013-11-01

    Muscle damage induces massive macrophage infiltration of the injury site, in which activated pro-inflammatory and anti-inflammatory phenotypes (currently classified as M1 and M2, respectively) have been documented as distinct functional populations predominant at different times after the conventional acute injury by intramuscular injection of snake venoms (cardiotoxin, notexin) or chemicals (bupivacaine hydrochloride, barium chloride). The present study employed a muscle-crush injury model that may better reflect the physiologic damage and repair processes initiated by contusing a gastrocnemius muscle in the lower hind-limb of adult mice with hemostat forceps, and examined the time-course invasion of M1 and M2 macrophages during muscle regeneration by immunocytochemistry of CD197 and CD206 marker proteins. CD197-positive M1 macrophages were observed exclusively at 1-4 days after crush followed by the alternative prevalence of CD206-positive M2 at 7 days of myogenic differentiation, characterized by increasing levels of myogenin messenger RNA expression. Preliminary PCR analysis showed that M2 may produce hepatocyte growth factor (HGF) in culture, providing additional benefit to understanding that M2 populations actively promote regenerative myogenesis (muscle fiber repair) and moto-neuritogenesis (re-attachment of motoneuron terminals onto damaged fibers) through their time-specific infiltration and release of growth factor at the injury site early in muscle regeneration. © 2013 Japanese Society of Animal Science.

  12. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.

    PubMed

    Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A

    2008-09-01

    The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.

  13. Electrotransfer of Plasmid Vector DNA into Muscle

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satsuki; Miyazaki, Jun-Ichi

    Wolff et al. (1990) first reported that plasmid DNA injected into skeletal muscle is taken up by muscle cells and the genes in the plasmid are expressed for more than two months thereafter, although the transfected DNA does not usually undergo chromosomal integration (Wolff et al., 1991, 1992). However, the relatively low expression levels attained by this method have hampered its applications for uses other than as a DNA vaccine (Davis et al., 1995). There are a number of reports analyzing the conditions that affect the efficiency of gene transfer by intramuscular DNA injection and assessing the fine structures of expression plasmid vectors that may affect expression levels (Davis et al., 1993; Liang et al., 1996; Norman et al., 1997). Furthermore, various attempts were done to improve the efficiency of gene transfer by intramus cular DNA injection. Consequently, regenerating muscle was shown to produce 80-fold or more protein than did normal muscle, following injection of an expression plas-mid. Muscle regeneration was induced by treatment with cardiotoxin or bupivacaine (Wells, 1993; Vitadello et al., 1994). We previously demonstrated that by combining a strong promoter and bupivacaine pretreatment intramuscular injection of an IL-5 expression plasmid results in IL-5 production in muscle at a level sufficient to induce marked proliferation of eosinophils in the bone marrow and eosinophil infiltration of various organs (Tokui et al., 1997). It was also reported that a single intramuscular injection of an erythropoietin expression plasmid produced physiologically significant elevations in serum erythropoietin levels and increased hematocrits in adult mice (Tripathy et al., 1996). Hematocrits in these animals remained elevated at >60% for at least 90 days after a single injection. However, improvements to this method have not been sufficient to extend its applications including clinical use.

  14. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults

    PubMed Central

    Behringer, M.; Moser, M.; Montag, J.; McCourt, M.; Tenner, D.; Mester, J.

    2015-01-01

    Objectives: Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. Methods: 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). Results: After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). Conclusion: The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus. PMID:26032216

  15. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    DTIC Science & Technology

    2015-07-01

    potential therapy for some VML indications, autologous minced muscle grafts (1mm3 pieces of muscle ) are effective in promoting remarkable de novo fiber ...may be misaligned.9–12 More recently, minced muscle grafts were effective in promoting de novomus- cle fiber regeneration and functional recovery in...to enable torque stabilization. The contribution of the tenotomized EDL muscle was negligible in this testing system.13 Peak TA muscle isometric torque

  16. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes.

    PubMed

    Park, Seok Won; Goodpaster, Bret H; Lee, Jung Sun; Kuller, Lewis H; Boudreau, Robert; de Rekeneire, Nathalie; Harris, Tamara B; Kritchevsky, Stephen; Tylavsky, Frances A; Nevitt, Michael; Cho, Yong-wook; Newman, Anne B

    2009-11-01

    A loss of skeletal muscle mass is frequently observed in older adults. The aim of the study was to investigate the impact of type 2 diabetes on the changes in body composition, with particular interest in the skeletal muscle mass. We examined total body composition with dual-energy X-ray absorptiometry annually for 6 years in 2,675 older adults. We also measured mid-thigh muscle cross-sectional area (CSA) with computed tomography in year 1 and year 6. At baseline, 75-g oral glucose challenge tests were performed. Diagnosed diabetes (n = 402, 15.0%) was identified by self-report or use of hypoglycemic agents. Undiagnosed diabetes (n = 226, 8.4%) was defined by fasting plasma glucose (>or=7 mmol/l) or 2-h postchallenge plasma glucose (>or=11.1 mmol/l). Longitudinal regression models were fit to examine the effect of diabetes on the changes in body composition variables. Older adults with either diagnosed or undiagnosed type 2 diabetes showed excessive loss of appendicular lean mass and trunk fat mass compared with nondiabetic subjects. Thigh muscle CSA declined two times faster in older women with diabetes than their nondiabetic counterparts. These findings remained significant after adjusting for age, sex, race, clinic site, baseline BMI, weight change intention, and actual weight changes over time. Type 2 diabetes is associated with excessive loss of skeletal muscle and trunk fat mass in community-dwelling older adults. Older women with type 2 diabetes are at especially high risk for loss of skeletal muscle mass.

  17. Cells, Scaffolds and Their Interactions in Myocardial Tissue Regeneration.

    PubMed

    Gorabi, Armita Mahdavi; Tafti, Seyed Hossein Ahmadi; Soleimani, Masoud; Panahi, Yunes; Sahebkar, Amirhossein

    2017-08-01

    Cardiac regenerative therapy includes several techniques to repair and replace damaged tissues and organs using cells, biomaterials, molecules, or a combination of these factors. Generation of heart muscle is the most important challenge in this field, although it is well known that new advances in stem cell isolation and culture techniques in bioreactors and synthesis of bioactive materials contribute to the creation of cardiac tissue regeneration in vitro. Some investigations in stem cell biology shows that stem cells are an important source for regeneration of heart muscle cells and blood vessels and can thus clinically contribute to the regeneration of damaged heart tissue. The aim of this review was to explain the principles and challenges of myocardial tissue regeneration with an emphasis on stem cells and scaffolds. J. Cell. Biochem. 118: 2454-2462, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  19. The Skeletal Muscle Satellite Cell

    PubMed Central

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  20. Impact of Pseudomonas aeruginosa Infection on Respiratory Muscle Function in Adult Cystic Fibrosis Patients.

    PubMed

    Magnet, Friederike Sophie; Callegari, Jens; Dieninghoff, Doris; Spielmanns, Marc; Storre, Jan Hendrik; Schmoor, Claudia; Windisch, Wolfram

    2017-01-01

    Pseudomonas aeruginosa infection impairs respiratory muscle function in adolescents with cystic fibrosis, but its impact on adult patients has not been characterised. To investigate respiratory muscle function in adult cystic fibrosis patients according to P. aeruginosa status (repetitive samples over 12 months). The pressure-time index of the respiratory muscles (PTImus), a measure of their efficiency, served as the primary outcome. In addition, respiratory load and maximal respiratory muscle strength were assessed. In 51 patients examined (65% female; median age 32 years, IQR 24-40), a median of 3.0 (IQR 2-4) different pathogens was found in each patient. The PTImus was 0.113 and 0.126 in Pseudomonas-positive (n = 33) and -negative (n = 18) patients, respectively (p = 0.53). Univariate analysis showed a lower PTImus in male than in female patients (p = 0.006). Respiratory muscle load and strength were otherwise comparable, with the exception of higher nasal sniff pressures in Pseudomonas-positive patients who were chronically infected (>50% of positive samples). Quality of Life (according to the Cystic Fibrosis Questionnaire-Revised) was higher if both respiratory load and the PTImus were low (high respiratory muscle efficiency). Chronic P. aeruginosa infection does not influence respiratory muscle efficiency in adult cystic fibrosis patients with otherwise multiple co-infections. In addition, patients with reduced respiratory muscle efficiency had worse Quality of Life. © 2016 S. Karger AG, Basel.

  1. Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats

    PubMed Central

    Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.

    2013-01-01

    Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925

  2. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  3. Orbital Floor Fracture with Atypical Extraocular Muscle Entrapment Pattern and Intraoperative Asystole in an Adult

    PubMed Central

    Merali, Farhan I.; Grant, Michael P.; Mahoney, Nicholas R.

    2015-01-01

    Extraocular muscle entrapment in a nondisplaced orbital fracture, although a well-known entity in pediatric trauma, is atypical in adults. It can present with a triad of bradycardia, nausea, and in rare cases, syncope, and result in severe fibrosis of damaged and incarcerated muscle. We present a case of muscle entrapment in a partially nondisplaced two-wall orbital fracture with accompanying preoperative bradycardia and intraoperative asystole in an adult PMID:26576246

  4. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  5. Slow early growers have more muscle in relation to adult activity: evidence from Cebu, Philippines.

    PubMed

    Workman, M; McDade, T W; Adair, L S; Kuzawa, C W

    2015-12-01

    Adult skeletal muscle mass (SMM) protects against type 2 diabetes, but little is known about its developmental antecedents. We examined whether pace of early weight gain predicted adult SMM in a birth cohort from Cebu City, Philippines. In addition, we examined whether increases in SMM associated with adult muscle-building exercise varied according to the early growth. Data came from 1472 participants of the Cebu Longitudinal Health and Nutrition Survey. Weight was measured at birth and at 6-month intervals through the age of 24 months. Adult SMM was estimated from anthropometric measurements when participants were 20-22-years old. Interviews provided the information on adult exercise/lifestyle habits. SMM (mean ± s.d.) was 20.8 ± 3.9 kg (men) and 13.6 ± 3.4 kg (women). Faster early weight gain predicted a higher adult SMM. After adjustment for height and lifestyle factors, strongest associations with SMM were found for 6-12 months growth in men (β=0.17, P=0.001) and for birth weight in women (β=0.14, P=0.001). Individuals who had grown slowly displayed greater SMM in association with adult weightlifting, basketball playing and physically demanding forms of employment (men) or household chores (women). These results suggest heightened sensitivity of activity-induced muscle hypertrophy among the adults who were born light or who gained weight slowly as infants. Future research should test this finding by comparing responses of muscle mass to an intervention in slow vs fast early growers. Findings suggest that adults who display a reduced SMM following suboptimal early growth may be good candidates for new anti-diabetes interventions that promote muscle-building activities.

  6. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury

    PubMed Central

    Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee

    2016-01-01

    Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130

  7. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    PubMed

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration.

    PubMed

    Harada, Akihito; Maehara, Kazumitsu; Ono, Yusuke; Taguchi, Hiroyuki; Yoshioka, Kiyoshi; Kitajima, Yasuo; Xie, Yan; Sato, Yuko; Iwasaki, Takeshi; Nogami, Jumpei; Okada, Seiji; Komatsu, Tetsuro; Semba, Yuichiro; Takemoto, Tatsuya; Kimura, Hiroshi; Kurumizaka, Hitoshi; Ohkawa, Yasuyuki

    2018-04-11

    Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation.

  9. Evolution of the Chordate Regeneration Blastema: Differential Gene Expression and Conserved Role of Notch Signaling During Siphon Regeneration in the Ascidian Ciona

    PubMed Central

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S.; Satoh, Noriyuki; Jeffery, William R.

    2015-01-01

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration. PMID:26206613

  10. Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle.

    PubMed

    Anastasia, Luigi; Sampaolesi, Maurilio; Papini, Nadia; Oleari, Diego; Lamorte, Giuseppe; Tringali, Cristina; Monti, Eugenio; Galli, Daniela; Tettamanti, Guido; Cossu, Giulio; Venerando, Bruno

    2006-12-01

    Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.

  11. Wound healing and skin regeneration.

    PubMed

    Takeo, Makoto; Lee, Wendy; Ito, Mayumi

    2015-01-05

    The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  13. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    DTIC Science & Technology

    2008-04-01

    frequently disabling injuries sustained by athletes and soldiers. Although injured muscles heal naturally, the regeneration is very slow and often...yields incomplete functional recovery. In injured muscle, regeneration begins shortly after injury, but the healing process is rather inefficient and is...skin disorders), can reduce muscle fibrosis and consequently improve muscle healing , resulting in nearly complete recovery after laceration or strain

  14. Validation of Manual Muscle Testing and a Subset of Eight Muscles (MMT8) for Adult and Juvenile Idiopathic Inflammatory Myopathies

    PubMed Central

    Rider, Lisa G.; Koziol, Deloris; Giannini, Edward H.; Jain, Minal S.; Smith, Michaele R.; Whitney-Mahoney, Kristi; Feldman, Brian M.; Wright, Susan J.; Lindsley, Carol B.; Pachman, Lauren M.; Villalba, Maria L.; Lovell, Daniel J.; Bowyer, Suzanne L.; Plotz, Paul H.; Miller, Frederick W.; Hicks, Jeanne E.

    2010-01-01

    Objective To validate manual muscle testing (MMT) for strength assessment in juvenile and adult dermatomyositis (DM) and polymyositis (PM). Methods Seventy-three children and 45 adult DM/PM patients were assessed at baseline and reevaluated 6–9 months later. We compared Total MMT (a group of 24 proximal, distal, and axial muscles) and Proximal MMT (7 proximal muscle groups) tested bilaterally on a 0–10 scale with 144 subsets of six and 96 subsets of eight muscle groups tested unilaterally. Expert consensus was used to rank the best abbreviated MMT subsets for face validity and ease of assessment. Results The Total, Proximal and best MMT subsets had excellent internal reliability (rs:Total MMT 0.91–0.98), and consistency (Cronbach’s α 0.78–0.97). Inter- and intra-rater reliability were acceptable (Kendall’s W 0.68–0.76; rs 0.84–0.95). MMT subset scores correlated highly with Total and Proximal MMT scores and with the Childhood Myositis Assessment Scale, and correlated moderately with physician global activity, functional disability, magnetic resonance imaging, axial and distal MMT scores and, in adults, with creatine kinase. The standardized response mean for Total MMT was 0.56 in juveniles and 0.75 in adults. Consensus was reached to use a subset of eight muscles (neck flexors, deltoids, biceps, wrist extensors, gluteus maximus and medius, quadriceps and ankle dorsiflexors) that performed as well as the Total and Proximal MMT, and had good face validity and ease of assessment. Conclusions These findings aid in standardizing the use of MMT for assessing strength as an outcome measure for myositis. PMID:20391500

  15. Increased adipogenicity of cells from regenerating skeletal muscle.

    PubMed

    Yamanouchi, Keitaro; Yada, Erica; Ishiguro, Naomi; Hosoyama, Tohru; Nishihara, Masugi

    2006-09-10

    Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.

  16. Modulation of Stem Cells Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2008-03-01

    well as the other parallel work with bone marrow cells [ 22 ], the effects were comparatively short- lived, since in our case, the considerable...comparison of myogenic, fibrogenic and adipogenic potential of stem cells from intact and regenerating muscle from mdx, wt and Mst(-/-) mice; b) effects on...sections (not shown). Figure 3. The stem cell nature of Wt MDSC and response to paracrine effects is evidenced by their conversion into SMC when

  17. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis

    PubMed Central

    Eng, Diana G.; Sunseri, Maria W.; Kaverina, Natalya; Roeder, Sebastian S.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2015-01-01

    Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative. PMID:25993321

  18. Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniote.

    PubMed

    Lozito, Thomas P; Tuan, Rocky S

    2017-03-01

    The ability to regenerate damaged or lost tissues has remained the lofty goal of regenerative medicine. Unfortunately, humans, like most mammals, suffer from very minimal natural regenerative capabilities. Certain non-mammalian animal species, however, are not so limited in their healing capabilities, and several have attracted the attention of researchers hoping to recreate enhanced healing responses in humans. This review focuses on one such animal group with remarkable regenerative abilities, the lizards. As the closest relatives of mammals that exhibit enhanced regenerative abilities as adults, lizards potentially represent the most relevant model for direct comparison and subsequent improvement of mammalian healing. Lizards are able to regenerate amputated tails and exhibit adaptations that both limit tissue damage in response to injury and initiate coordinated regenerative responses. This review summarizes the salient aspects of lizard tail regeneration as they relate to the overall regenerative process and also presents the relevant information pertaining to regrowth of specific tissues, including skeletal, muscular, nervous, and vascular tissues. The goal of this review is to introduce the topic of lizard tail regeneration to new audiences with the hope of expanding the knowledge base of this underutilized but potentially powerful model organism.

  19. The Drosophila TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle

    PubMed Central

    Langerak, Shaughna; Kim, Myung-Jun; Lamberg, Hannah; Godinez, Michael; Main, Mackenzie; Winslow, Lindsey; O'Connor, Michael B.

    2018-01-01

    ABSTRACT The Drosophila Activin signaling pathway employs at least three separate ligands – Activin-β (Actβ), Dawdle (Daw), and Myoglianin (Myo) – to regulate several general aspects of fruit fly larval development, including cell proliferation, neuronal remodeling, and metabolism. Here we provide experimental evidence indicating that both Daw and Myo are anti-ageing factors in adult fruit flies. Knockdown of Myo or Daw in adult fruit flies reduced mean lifespan, while overexpression of either ligand in adult muscle tissues but not in adipose tissues enhanced mean lifespan. An examination of ubiquitinated protein aggregates in adult muscles revealed a strong inverse correlation between Myo- or Daw-initiated Activin signaling and the amount of ubiquitinated protein aggregates. We show that this correlation has important functional implications by demonstrating that the lifespan extension effect caused by overexpression of wild-type Daw or Myo in adult muscle tissues can be completely abrogated by knockdown of a 26S proteasome regulatory subunit Rpn1 in adult fly muscle, and that the prolonged lifespan caused by overexpression of Daw or Myo in adult muscle could be due to enhanced protein levels of the key subunits of 26S proteasome. Overall, our data suggest that Activin signaling initiated by Myo and Daw in adult Drosophila muscles influences lifespan, in part, by modulation of protein homeostasis through either direct or indirect regulation of the 26S proteasome levels. Since Myo is closely related to the vertebrate muscle mass regulator Myostatin (GDF8) and the Myostatin paralog GDF11, our observations may offer a new experimental model for probing the roles of GDF11/8 in ageing regulation in vertebrates. This article has an associated First Person interview with the first author of the paper. PMID:29615416

  20. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  1. Muscle activities used by young and old adults when stepping to regain balance during a forward fall.

    PubMed

    Thelen, D G; Muriuki, M; James, J; Schultz, A B; Ashton-Miller, J A; Alexander, N B

    2000-04-01

    The current study was undertaken to determine if age-related differences in muscle activities might relate to older adults being significantly less able than young adults to recover balance during a forward fall. Fourteen young and twelve older healthy males were released from forward leans of various magnitudes and asked to regain standing balance by taking a single forward step. Myoelectric signals were recorded from 12 lower extremity muscles and processed to compare the muscle activation patterns of young and older adults. Young adults successfully recovered from significantly larger leans than older adults using a single step (32.2 degrees vs. 23.5 degrees ). Muscular latency times, the time between release and activity onset, ranged from 73 to 114 ms with no significant age-related differences in the shortest muscular latency times. The overall response muscular activation patterns were similar for young and older adults. However older adults were slower to deactivate three stance leg muscles and also demonstrated delays in activating the step leg hip flexors and knee extensors prior to and during the swing phase. In the forward fall paradigm studied, age-differences in balance recovery performance do not seem due to slowness in response onset but may relate to differences in muscle activation timing during the stepping movement.

  2. The central role of muscle stem cells in regenerative failure with aging

    PubMed Central

    Blau, Helen M; Cosgrove, Benjamin D; Ho, Andrew T V

    2016-01-01

    Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged. PMID:26248268

  3. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    PubMed

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  4. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    PubMed

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  5. Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury

    DTIC Science & Technology

    2017-08-01

    stimulation has an anabolic effect on musculoskeletal tissues, and mechanical stimulation via LIV has been shown to accelerate bone regeneration. Our... bone marrow-derived cells (BMDC) in LIV-induced improvements in muscle healing. Third, we will identify specific cells that detect and transduce...muscle regeneration following traumatic injury. 2. Determine the role of bone marrow-derived cells (BMDC) in LIV-induced improvements in muscle

  6. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults.

    PubMed

    Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M; Abid, Hinnah; Morse, Dawn M; Klaus, Katherine A; Lanza, Ian R

    2017-04-01

    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults.

  7. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults

    PubMed Central

    Lalia, Antigoni Z.; Dasari, Surendra; Robinson, Matthew M.; Abid, Hinnah; Morse, Dawn M.; Klaus, Katherine A.; Lanza, Ian R.

    2017-01-01

    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults. PMID:28379838

  8. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury.

    PubMed

    Garg, Koyal; Corona, Benjamin T; Walters, Thomas J

    2014-11-15

    Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.

  9. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles

    PubMed Central

    Cosgrove, Benjamin D.; Gilbert, Penney M.; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P.; Corbel, Stephane Y.; Llewellyn, Michael E.; Delp, Scott L.; Blau, Helen M.

    2014-01-01

    The aged suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging due in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of aged MuSCs are intrinsically defective relative to young MuSCs, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation due to a higher incidence of cells that express senescence markers and that have elevated p38α/β MAPK activity. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the aged MuSC population to transient inhibition of p38α/β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional aged MuSC population, rejuvenating its potential for regeneration, serial transplantation, and strengthening damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy in aged individuals. PMID:24531378

  10. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration After Injury. Addendum

    DTIC Science & Technology

    2012-03-01

    considerable increase in central nuclei in the regenerating myofibers, and molsidomine supplementation appears to have upregulated the overall stem cell...the increase of central nuclei as indicator of muscle repair observed in the SC group in comparison to the UT group, in frozen tissue sections...treatments on myofiber repair will be better defined by the counting of central nuclei on hematoxylin/eosin stained frozen sections as in Fig 3, and the

  11. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.

  12. Lower leg muscle density is independently associated with fall status in community-dwelling older adults.

    PubMed

    Frank-Wilson, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Davison, K S; Olszynski, W P; Kontulainen, S A

    2016-07-01

    Muscle density is a risk factor for fractures in older adults; however, its association with falls is not well described. After adjusting for biologically relevant confounding factors, a unit decrease in muscle density was associated with a 17 % increase in odds of reporting a fall, independent of functional mobility. Falls are the leading cause of injury, disability, and fractures in older adults. Low muscle density (i.e., caused by muscle adiposity) and functional mobility have been identified as risk factors for incident disability and fractures in older adults; however, it is not known if these are also independently associated with falls. The purpose of this study was to explore the associations of muscle density and functional mobility with fall status. Cross-sectional observational study of 183 men and women aged 60-98 years. Descriptive data, including a 12-month fall recall, Timed Up and Go (TUG) test performance, lower leg muscle area, and density. Odds ratio (OR) of being a faller were calculated, adjusted for age, sex, body mass index, general health status, diabetes, and comorbidities. Every mg/cm(3) increase in muscle density (mean 70.2, SD 2.6 mg/cm(3)) independently reduced the odds of being a faller by 19 % (OR 0.81 [95 % CI 0.67 to 0.97]), and every 1 s longer TUG test time (mean 9.8, SD 2.6 s) independently increased the odds by 17 % (OR 1.17 [95 % CI 1.01 to 1.37]). When both muscle density and TUG test time were included in the same model, only age (OR 0.93 [95 % CI 0.87 to 0.99]) and muscle density (OR 0.83 [95 % CI 0.69 to 0.99]) were independently associated with fall status. Muscle density was associated with fall status, independent of functional mobility. Muscle density may compliment functional mobility tests as a biometric outcome for assessing fall risk in well-functioning older adults.

  13. Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype

    NASA Technical Reports Server (NTRS)

    Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene

    1991-01-01

    Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying

  14. EFFECT OF USE OF BONE-MARROW CENTRIFUGATE ON MUSCLE INJURY TREATMENT: EXPERIMENTAL STUDY ON RABBITS

    PubMed Central

    Vieira, Daniel Ferreira Fernandes; Guarniero, Roberto; Vaz, Carlos Eduardo Sanches; de Santana, Paulo José

    2015-01-01

    Objective: The objective of this study was to evaluate the effect of bone-marrow centrifugate on the healing of muscle injuries in rabbits. Methods: This experimental study involved use of fifteen adult male New Zealand White rabbits. Each animal received a transverse lesion in the middle of the right tibialis anterior muscle, to which an absorbable collagen sponge, soaked in a centrifugate of bone marrow aspirate from the ipsilateral iliac bone, was added. The left hind limb was used as a control and underwent the same injury, but in this case only the absorbable collagen sponge. Thirty days later, the animals were sacrificed to study the muscle healing. These muscle areas were subjected to histological analysis with histomorphometry, with the aim of measuring the number of muscle cells per square micrometer undergoing regeneration and the proportion of resultant fibrosis. Results: The centrifugation method used in this study resulted in an average concentration of nucleated cells greater than the number of these cells in original aspirates, without causing significant cell destruction. Addition of the bone marrow centrifugate did not result in any significant increase in the number of muscle cells undergoing regeneration, in relation to the control group. There was also no significant difference in the proportion of resultant fibrosis, compared with the control group. Conclusion: Administration of the bone marrow centrifugate used in this study did not favor healing of muscle injuries in rabbits. PMID:27047832

  15. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy

    PubMed Central

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.

    2017-01-01

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746

  16. Sarcopenia Is Associated With Lower Skeletal Muscle Capillarization and Exercise Capacity in Older Adults.

    PubMed

    Prior, Steven J; Ryan, Alice S; Blumenthal, Jacob B; Watson, Jonathan M; Katzel, Leslie I; Goldberg, Andrew P

    2016-08-01

    Skeletal muscle capillary rarefaction limits the transcapillary transport of nutrients and oxygen to muscle and may contribute to sarcopenia and functional impairment in older adults. We tested the hypothesis that skeletal muscle capillarization and exercise capacity (VO2max) are lower in sarcopenic than in nonsarcopenic older adults and that the degree of sarcopenia is related to lower skeletal muscle capillarization. Body composition, VO2max, and vastus lateralis capillarization were determined in 76 middle-aged and older men and women (age = 61±1 years, body mass index [BMI] = 30.7±0.5kg/m(2) [mean ± SEM]). Participants were classified as sarcopenic if appendicular lean mass divided by BMI (ALMBMI) was less than 0.789 for men or less than 0.512 for women. Sarcopenic subjects (ALMBMI = 0.65±0.04, n = 16) had 20% lower capillary-to-fiber ratio, as well as 13% and 15% lower VO2max expressed as mL/kg/min or L/min, respectively, compared with sex-, race-, and age-matched participants without sarcopenia (ALMBMI = 0.81±0.05, n = 16; p < .05). In all 76 subjects, ALMBMI, thigh muscle cross-sectional area, and VO2max correlated directly with capillarization (r = .30-.37, p ≤ .05), after accounting for age, sex, and race. These findings suggest that low skeletal muscle capillarization is one factor that may contribute to sarcopenia and reduced exercise capacity in older adults by limiting diffusion of substrates, oxygen, hormones, and nutrients. Strategies to prevent the aging-related decline in skeletal muscle capillarization may help to prevent or slow the progression of sarcopenia and its associated functional declines in generally healthy older adults. Published by Oxford University Press on behalf of the Gerontological Society of America 2016.

  17. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    PubMed

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  18. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart.

    PubMed

    Bollini, Sveva; Riley, Paul R; Smart, Nicola

    2015-01-01

    Despite recent improvements in interventional medicine, cardiovascular disease still represents the major cause of morbidity worldwide, with myocardial infarction being the most common cardiac injury. This has sustained the development of several regenerative strategies based on the use of stem cells and tissue engineering approaches in order to achieve cardiac repair and regeneration by enhancing coronary neovascularization, modulating acute inflammation and supporting myocardial regeneration to provide new functional muscle. The actin monomer binding peptide, Thymosin β4 (Tβ4), has recently been described as a powerful regenerative agent with angiogenic, anti-inflammatory and cardioprotective effects on the heart and which specifically acts on its resident cardiac progenitor cells. In this review we will discuss the state of the art regarding the many roles of Tβ4 in preserving and regenerating the mammalian heart, with specific attention to its ability to activate the quiescent adult epicardium and specific subsets of epicardial progenitor cells for repair. The therapeutic potential of Tβ4 for the treatment of cardiac failure is herein evaluated alongside existing, emerging and prospective novel treatments.

  19. [Experimental studies for the improvement of facial nerve regeneration].

    PubMed

    Guntinas-Lichius, O; Angelov, D N

    2008-02-01

    Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.

  20. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    PubMed

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  2. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  3. Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components.

    PubMed

    Piatkowski, Tanja; Mühlfeld, Christian; Borchardt, Thilo; Braun, Thomas

    2013-07-01

    Adult newts efficiently regenerate the heart after injury in a process that involves proliferation of cardiac muscle and nonmuscle cells and repatterning of the myocardium. To analyze the processes that underlie heart regeneration in newts, we characterized the structural changes in the myocardium that allow regeneration after mechanical injury. We found that cardiomyocytes in the damaged ventricle mainly die by necrosis and are removed during the first week after injury, paving the way for the extension of thin myocardial trabeculae, which initially contain only very few cardiomyocytes. During the following 200 days, these thin trabeculae fill up with new cardiomyocytes until the myocardium is fully reconstituted. Interestingly, reconstruction of the newly formed trabeculated network is accompanied by transient deposition of extracellular matrix (ECM) components such as collagen III. We conclude that the ECM is a critical guidance cue for outgrowing and branching trabeculae to reconstruct the trabeculated network, which represents a hallmark of uninjured cardiac tissue in newts.

  4. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    PubMed

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P < 0.003, η p 2  > 0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P < 0.001). Increased postural sway in children and seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  5. Delayed Onset Muscle Soreness After Inspiratory Threshold Loading in Healthy Adults

    PubMed Central

    Mathur, Sunita; Sheel, A. William; Road, Jeremy D.; Reid, W. Darlene

    2010-01-01

    Purpose: Skeletal muscle damage occurs following high-intensity or unaccustomed exercise; however, it is difficult to monitor damage to the respiratory muscles, particularly in humans. The aim of this study was to use clinical measures to investigate the presence of skeletal muscle damage in the inspiratory muscles. Methods: Ten healthy subjects underwent 60 minutes of voluntary inspiratory threshold loading (ITL) at 70% of maximal inspiratory pressure. Maximal inspiratory and expiratory mouth pressures, delayed onset muscle soreness on a visual analogue scale and plasma creatine kinase were measured prior to ITL, and at repeated time points after ITL (4, 24 and 48 hours post-ITL). Results: Delayed onset muscle soreness was present in all subjects 24 hours following ITL (intensity = 22 ± 6 mm; significantly higher than baseline p = 0.02). Muscle soreness was reported primarily in the anterior neck region, and was correlated to the amount of work done by the inspiratory muscles during ITL (r = 0.72, p = 0.02). However, no significant change was observed in maximal inspiratory or expiratory pressures or creatine kinase. Conclusions: These findings suggest that an intense bout of ITL results in muscle soreness primarily in the accessory muscles of inspiration, however, may be insufficient to cause significant muscle damage in healthy adults. PMID:20467514

  6. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  7. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002muscles. Co-activation was elevated in young adults for the trunk (0.001adults for the ankle (0.009muscle coordination patterns during all stance conditions at the ankle (0.06<ηp(2)<0.28) and the trunk (0.14<ηp(2)<0.23). Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Differential MMP-2 and MMP-9 activity and collagen distribution in skeletal muscle from pacu (Piaractus mesopotamicus) during juvenile and adult growth phases.

    PubMed

    Michelin, Aline Cristina; Justulin, Luis Antonio; Delella, Flávia Karina; Padovani, Carlos Roberto; Felisbino, Sérgio Luis; Dal-Pai-Silva, Maeli

    2009-03-01

    Here, we evaluated collagen distribution and matrix metalloproteinases (MMPs) MMP-2 and MMP-9 activities in skeletal muscle of pacu (Piaractus mesopotamicus) during juvenile and adult growth phases. Muscle samples from juvenile and adult fishes were processed by histochemistry for collagen system fibers and for gelatin-zymography for MMP-2 and MMP-9 activities analysis. Picrosirius staining revealed a myosept, endomysium, and perimysium-like structures in both growth phases and muscle types, with increased areas of collagen fibers in adults, mainly in red muscle. Reticulin staining showed that reticular fibers in the endomysium-like structure were thinner and discontinuous in the red muscle fibers. The zymography revealed clear bands of the pro- MMP-9, active- MMP-9, intermediate- MMP-2, and active- MMP-2 forms in red and white muscle in both growth phases. MMP-2 activity was more intense in juvenile than adult muscle fibers. Comparing the red and white muscle types, MMP-2 activity was significantly higher in red muscle in adult phase only. The activity of MMP-9 forms was similar in juvenile red and white muscles and in the adult red muscle, without any activity in adult white muscle. In conclusion, our results show that, in pacu, the higher activities of MMP-2 and -9 are associated with the rapid muscle growth in juvenile age and in adult fish, these activities are related with a different red and white muscle physiology. This study may contribute to the understanding muscle growth mechanisms and may also contribute to analyse red and the white muscle parameters of firmness and softness, respectively, of the commercial product. (c) 2009 Wiley-Liss, Inc.

  9. Regeneration of guinea PIG facial nerve: the effect of hypergravity

    NASA Astrophysics Data System (ADS)

    Rosenzweig, E.; Horodiceanu, E.; Ishay, J. S.

    Exposure to moderate hypergravity improves the regenerative capacity of sectioned guinea-pig facial nerve. The improvement in regeneration is tri-directional as follows: a) an average 1.7 fold increase in rate of regeneration in guinea pigs subjected to hypergravity; b) a 25% enhancement of facial muscle activity following the exposure to hypergravity; and c) improvement in the quality of regeneration from an esthetic standpoint. A good correlation was recorded between the histological structure of the severed nerve at the end of the regeneration and the clinical results.

  10. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    PubMed

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the

  11. Augmentation of partially regenerated nerves by end-to-side side-to-side grafting neurotization: experience based on eight late obstetric brachial plexus cases

    PubMed Central

    2006-01-01

    Objective The effect of end-to-side neurotization of partially regenerated recipient nerves on improving motor power in late obstetric brachial plexus lesions, so-called nerve augmentation, was investigated. Methods Eight cases aged 3 – 7 years were operated upon and followed up for 4 years (C5,6 rupture C7,8T1 avulsion: 5; C5,6,7,8 rupture T1 avulsion:1; C5,6,8T1 rupture C7 avulsion:1; C5,6,7 ruptureC8 T1 compression: one 3 year presentation after former neurotization at 3 months). Grade 1–3 muscles were neurotized. Grade0 muscles were neurotized, if the electromyogram showed scattered motor unit action potentials on voluntary contraction without interference pattern. Donor nerves included: the phrenic, accessory, descending and ascending loops of the ansa cervicalis, 3rd and 4th intercostals and contralateral C7. Results Superior proximal to distal regeneration was observed firstly. Differential regeneration of muscles supplied by the same nerve was observed secondly (superior supraspinatus to infraspinatus regeneration). Differential regeneration of antagonistic muscles was observed thirdly (superior biceps to triceps and pronator teres to supinator recovery). Differential regeneration of fibres within the same muscle was observed fourthly (superior anterior and middle to posterior deltoid regeneration). Differential regeneration of muscles having different preoperative motor powers was noted fifthly; improvement to Grade 3 or more occurred more in Grade2 than in Grade0 or Grade1 muscles. Improvements of cocontractions and of shoulder, forearm and wrist deformities were noted sixthly. The shoulder, elbow and hand scores improved in 4 cases. Limitations The sample size is small. Controls are necessary to rule out any natural improvement of the lesion. There is intra- and interobserver variability in testing muscle power and cocontractions. Conclusion Nerve augmentation improves cocontractions and muscle power in the biceps, pectoral muscles, supraspinatus

  12. [EMG activities of the head, neck and upper trunk muscles with mandibular movements in healthy adults and mandibular asymmetry patients].

    PubMed

    Jiang, Ting; Zhang, Zhenkang; Yang, Zhaohui; Yi, Biao; Feng, Hailan; Wang, Xing

    2002-03-25

    To study the activities of head, neck and upper trunk muscles during mandibular movements in healthy adults and mandibular asymmetry patients. Electromyographic integrogram was used to record and analyze the electromyographic activities of the anterior temporal (Ta), posterior temporal (Tp), sternocleidomastoid (SCM), and trapezius (TRAP) muscles in rest position and during mandibular movement among 10 normal adults and 10 mandibular asymmetry patients. All the four muscles showed constant electromyographic activities when the mandible was in the rest position. The activities of Ta, Tp, and SCM muscles increased with protrusion of mandible, mouth opening, tapping, maximum clenching, and chewing. The activities of Ta and Tp muscles of the patients were 1.7 times greater than that of the normal adults during mandibular movement without occlusion, and were weaker by 50% during mandibular movement with occlusion. The difference between electromyographic activities during mandibular movement and in rest position was less among patients than among normal adults. The TRAP muscle of the patients showed constant electromyographic activities with the activity volume nearly 1.8 times that of the normal adults. The difference between the muscle and its namesake at the opposite side was greater among the patients (21%) than among the normal adults (8%). All the four muscles participate in the maintenance of rest position of mandible and the realization of mandibular movements. The coordination of muscular activities among mandibular asymmetry patients is poorer than that among normal adults.

  13. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    PubMed

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  14. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury: a pilot study.

    PubMed

    Hogendoorn, S; Duijnisveld, B J; van Duinen, S G; Stoel, B C; van Dijk, J G; Fibbe, W E; Nelissen, R G H H

    2014-01-01

    Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38-47.

  15. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

    PubMed

    Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo

    2015-05-06

    Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

  16. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E.

    2015-01-01

    After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb+ neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. SIGNIFICANCE STATEMENT After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust

  17. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.

    PubMed

    Wu, Di; Klaw, Michelle C; Connors, Theresa; Kholodilov, Nikolai; Burke, Robert E; Tom, Veronica J

    2015-08-05

    After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb(+) neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after

  18. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  19. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    PubMed Central

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D.; Bentzinger, C. Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van IJcken, Wilfred; Grosveld, Frank; Dekemp, Robert A.; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A.

    2013-01-01

    SUMMARY Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. PMID:23395168

  20. Laser therapy of muscle injuries.

    PubMed

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  1. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    PubMed

    Hauerslev, Simon; Sveen, Marie L; Vissing, John; Krag, Thomas O

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  2. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  3. Effect of oxidative insult on young and adult cardiac muscle cells in vitro.

    PubMed

    Nag, A C; Sreepathi, P; Lee, M L; Reddan, J R

    1996-01-01

    The effect of hydrogen peroxide on cultured neonatal and adult cardiac myocytes was investigated. On neonatal cardiac myocytes the effect was very pronounced at a low concentration (0.03 mM), whereas the adult cardiac myocytes were resistant to the same concentration of H2O2. Dividing neonatal cardiac myocytes were more susceptible to H2O2 insult than the non-dividing adult cardiac myocytes. At a concentration of 0.1 mM H2O2, the neonatal cardiac myocytes were significantly damaged compared with the adult cardiac myocytes. Cardiac muscle cells from neonatal and adult hearts at high density culture were more tolerant to the oxidative insult by H2O2 than cells in low density culture. The damaging effect of H2O2 was very selective on F-actin in neonatal and adult cardiac muscle cells. The effect of H2O2 on myosin, titin, alpha-actinin, desmin or tubulin was not pronounced. Microscopical studies suggested a more marked protection by catalase than by glutathione reductase in the neonatal cells.

  4. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    PubMed

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  5. Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration

    PubMed Central

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M.; Downes, Sandra; Reid, Adam J.

    2015-01-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  6. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and Sertoli cells (Fshr, Dhh, and Sox9) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  7. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis.

    PubMed

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig ( Lhcgr , Cyp11a1, Hsd3b1, Cyp17a1 , and Hsd17b3 ) and Sertoli cells ( Fshr , Dhh , and Sox9 ) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  8. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  9. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  10. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones

    PubMed Central

    McHale, Matthew J.; Sarwar, Zaheer U.; Cardenas, Damon P.; Porter, Laurel; Salinas, Anna S.; Michalek, Joel E.; McManus, Linda M.

    2012-01-01

    Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E2) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E2 replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E2, but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E2 decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury. PMID:22116509

  11. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  12. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    PubMed Central

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  13. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  14. [Association of muscle strength with early markers of cardiovascular risk in sedentary adults].

    PubMed

    Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson

    2013-10-01

    To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  15. Molecular Architecture of Muscles in an Acoel and Its Evolutionary Implications

    PubMed Central

    CHIODIN, MARTA; ACHATZ, JOHANNES G.; WANNINGER, ANDREAS; MARTINEZ, PEDRO

    2011-01-01

    We have characterized the homologs of an actin, a troponin I, and a tropomyosin gene in the acoel Symsagittifera roscoffensis. These genes are expressed in muscles and most likely coexpressed in at least a subset of them. In addition, and for the first time for Acoela, we have produced a species-specific muscular marker, an antibody against the tropomyosin protein. We have followed tropomyosin gene and protein expression during postembryonic development and during the posterior regeneration of amputated adults, showing that preexisting muscle fibers contribute to the wound closure. The three genes characterized in this study interact in the striated muscles of vertebrates and invertebrates, where troponin I and tropomyosin are key regulators of the contraction of the sarcomere. S. roscoffensis and all other acoels so far described have only smooth muscles, but the molecular architecture of these is the same as that of striated fibers of other bilaterians. Given the proposed basal position of acoels within the Bilateria, we suggest that sarcomeric muscles arose from a smooth muscle type, which had the molecular repertoire of striated musculature already in place. We discuss this model in a broad comparative perspective. PMID:21538843

  16. The cellular basis for animal regeneration

    PubMed Central

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  17. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    PubMed Central

    Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi

    2012-01-01

    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689

  18. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  19. Neuronal differentiation of stem cells isolated from adult muscle.

    PubMed

    Romero-Ramos, Marina; Vourc'h, Patrick; Young, Henry E; Lucas, Paul A; Wu, Young; Chivatakarn, Onanong; Zaman, Rumina; Dunkelman, Noushin; el-Kalay, Mohammad A; Chesselet, Marie-Françoise

    2002-09-15

    Lineage uncommitted pluripotent stem cells reside in the connective tissue of skeletal muscle. The present study was carried out with pluripotent stem cells (PPSCs) isolated from 6-month old rat muscle. Before differentiation, these cells were vimentin+, CD90+, CD45-, and varied in their expression of CD34. The PPSCs were expanded as non-adherent aggregates under similar conditions to those used to generate neurospheres from embryonic or neural stem cells. The PPSC-derived neurospheres were positive for nestin, an early marker present in neuronal precursors, and expressed the two alternative mRNA forms of the neuroectodermal marker Pax-6, as well as mRNA for Oct-4, a gene related to the pluripotentiality of stem cells. To confirm their neural potential, PPSC-derived neurospheres were plated on coated coverslips under varying conditions: Neurobasal medium with N2 or B27, and either NT3 or BDNF. After 4-6 days the cells expressed neuronal (Tuj1+, NF68), astrocytic (GFAP) and oligodendrocytic (MOSP+, MBP+) markers, both by immunocytochemistry and RT-PCR. In addition, PPSCs were cultured as monolayers under adherent conditions, exposed to growth factors and defined differentiating conditions for 5 hr, and subsequently kept for 2 days in a maturation medium. At this point they gave rise to a mixed population of early neural progenitors (Nestin+ or NG2+), immature and mature neurons (Tuj1+ and NF145+) and myelin producing oligodendrocytes (CNPase + and MOSP+). Our study shows that PPSCs present in adult muscle can overcome germ lineage restrictions and express the molecular characteristics of brain cells. Therefore, PPSCs isolated from adult muscle could provide a novel source for autologous cell replacement in neurodegenerative and demyelinating diseases. Copyright 2002 Wiley-Liss, Inc.

  20. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    PubMed Central

    Spencer, M. J.; Guyon, J. R.; Sorimachi, H.; Potts, A.; Richard, I.; Herasse, M.; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J. S.

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development. PMID:12084932

  1. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    PubMed

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  2. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.

    PubMed

    Frisk, Rasmus F; Jensen, Peter; Kirk, Henrik; Bouyer, Laurent J; Lorentzen, Jakob; Nielsen, Jens B

    2017-12-01

    Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands. NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory

  3. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation.

    PubMed

    Yamane, Hitomi; Nishikawa, Akio

    2013-08-01

    During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.

  4. Decreased Muscle Strength Relates to Self-Reported Stooping, Crouching, or Kneeling Difficulty in Older Adults

    PubMed Central

    Goldberg, Allon; Alexander, Neil B.

    2010-01-01

    Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678

  5. Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues.

    PubMed

    Di Rocco, Giuliana; Tritarelli, Alessandra; Toietta, Gabriele; Gatto, Ilaria; Iachininoto, Maria Grazia; Pagani, Francesca; Mangoni, Antonella; Straino, Stefania; Capogrossi, Maurizio C

    2008-02-01

    At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle.

  6. PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

    PubMed Central

    Micheli, Laura; Leonardi, Luca; Conti, Filippo; Maresca, Giovanna; Colazingari, Sandra; Mattei, Elisabetta; Lira, Sergio A.; Farioli-Vecchioli, Stefano; Caruso, Maurizia; Tirone, Felice

    2011-01-01

    In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis. PMID:21127072

  7. Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.

    PubMed

    McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D

    2017-09-01

    McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.

  8. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  9. Localization of the putative precursor of Alzheimer's disease-specific amyloid at nuclear envelopes of adult human muscle.

    PubMed Central

    Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G

    1988-01-01

    Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589

  10. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression.

    PubMed

    Hou, Lianjie; Xu, Jian; Jiao, Yiren; Li, Huaqin; Pan, Zhicheng; Duan, Junli; Gu, Ting; Hu, Chingyuan; Wang, Chong

    2018-01-01

    Skeletal muscle plays an essential role in the body movement. However, injuries to the skeletal muscle are common. Lifelong maintenance of skeletal muscle function largely depends on preserving the regenerative capacity of muscle. Muscle satellite cells proliferation, differentiation, and myoblast fusion play an important role in muscle regeneration after injury. Therefore, understanding of the mechanisms associated with muscle development during muscle regeneration is essential for devising the alternative treatments for muscle injury in the future. Edu staining, qRT-PCR and western blot were used to evaluate the miR-27b effects on pig muscle satellite cells (PSCs) proliferation and differentiation in vitro. Then, we used bioinformatics analysis and dual-luciferase reporter assay to predict and confirm the miR-27b target gene. Finally, we elucidate the target gene function on muscle development in vitro and in vivo through Edu staining, qRT-PCR, western blot, H&E staining and morphological observation. miR-27b inhibits PSCs proliferation and promotes PSCs differentiation. And the miR-27b target gene, MDFI, promotes PSCs proliferation and inhibits PSCs differentiation in vitro. Furthermore, interfering MDFI expression promotes mice muscle regeneration after injury. our results conclude that miR-27b promotes PSCs myogenesis by targeting MDFI. These results expand our understanding of muscle development mechanism in which miRNAs and genes work collaboratively in regulating skeletal muscle development. Furthermore, this finding has implications for obtaining the alternative treatments for patients with the muscle injury. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers.

    PubMed

    Oishi, Yasuharu; Hayashida, Mari; Tsukiashi, Shinsuke; Taniguchi, Kohachi; Kami, Katsuya; Roy, Roland R; Ohira, Yoshinobu

    2009-11-01

    To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 +/- 1 degrees C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.

  12. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    PubMed

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults.

  13. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children.

    PubMed

    Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Tsiokanos, Athanasios; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-01-01

    Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults ( n = 14) and children ( n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation ( p < 0.01). In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.

  14. Regulation of zebrafish heart regeneration by miR-133.

    PubMed

    Yin, Viravuth P; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D

    2012-05-15

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. Copyright © 2012. Published by Elsevier Inc.

  15. Regulation of zebrafish heart regeneration by miR-133

    PubMed Central

    Yin, Viravuth P.; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D.

    2012-01-01

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. With pharmacological inhibition and EGFP sensor interaction studies, we demonstrated that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. PMID:22374218

  16. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity.

    PubMed

    Richard-Bulteau, Hélène; Serrurier, Bernard; Crassous, Brigitte; Banzet, Sébastien; Peinnequin, André; Bigard, Xavier; Koulmann, Nathalie

    2008-02-01

    The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration.

  17. Formation and regeneration of the urothelium.

    PubMed

    Yamany, Tammer; Van Batavia, Jason; Mendelsohn, Cathy

    2014-06-01

    This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.

  18. Localization of Proliferating Cells in the Inter-Vertebral Region of the Developing and Adult Vertebrae of Lizards in Relation to Growth and Regeneration.

    PubMed

    Alibardi, Lorenzo

    2016-04-01

    New cartilaginous tissues in lizards is formed during the regeneration of the tail or after vertebral damage. In order to understand the origin of new cartilaginous cells in the embryo and after injury of adult vertebrae we have studied the distribution of proliferating cartilaginous cells in the vertebral column of embryos and adults of the lizard Anolis lineatopus using autoradiography for H3-thymidine and light and ultrastructural immunocytochemistry for 5BrdU. Proliferating sclerotomal cells initially surround the notochord in a segmental pattern and give rise to the chondrocytes of the vertebral centrum that replace the original chordal cells. Qualitative observations show that proliferating sclerotomal cells dilute the labeling up to 13 days post-injection but a few maintain the labeling as long labeling retention cells and remain in the inter-centra and perichondrium after birth. These cells supply new chondroblasts for post-natal growth of vertebrae but can also proliferate in case of vertebral damage or tail amputation in lizards, a process that sustains tail regeneration. The lack of somitic organization in the regenerating tail impedes the re-formation of a segmental vertebral column that is instead replaced by a continuous cartilaginous tube. It is hypothesized that long labeling retaining cells might represent stem/primordial cells, and that their permanence in the inter-vertebral cartilages and the nearby perichondrium in adult lizards pre-adapt these reptiles to elicit a broad cartilage regeneration in case of injury of the vertebrae. © 2016 Wiley Periodicals, Inc.

  19. Calf muscle density is independently associated with physical function in overweight and obese older adults.

    PubMed

    Scott, David; Shore-Lorenti, Catherine; McMillan, Lachlan B; Mesinovic, Jakub; Clark, Ross A; Hayes, Alan; Sanders, Kerrie M; Duque, Gustavo; Ebeling, Peter R

    2018-03-01

    To determine whether associations of calf muscle density with physical function are independent of other determinants of functional decline in overweight and obese older adults. This was a secondary analysis of a cross-sectional study of 85 community-dwelling overweight and obese adults (mean±SD age 62.8±7.9 years; BMI 32.3±6.1 kg/m2; 58% women). Peripheral quantitative computed tomography assessed mid-calf muscle density (66% tibial length) and dual-energy X-ray absorptiometry determined visceral fat area. Fasting glucose, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and C-reactive protein (CRP) were analysed. Physical function assessments included hand grip and knee extension strength, balance path length (computerised posturography), stair climb test, Short Physical Performance Battery (SPPB) and self-reported falls efficacy (Modified Falls Efficacy Scale; M-FES). Visceral fat area, not muscle density, was independently associated with CRP and fasting glucose (B=0.025; 95% CI 0.009-0.042 and B=0.009; 0.001-0.017, respectively). Nevertheless, higher muscle density was independently associated with lower path length and stair climb time, and higher SPPB and M-FES scores (all P⟨0.05). Visceral fat area, fasting glucose and CRP did not mediate these associations. Higher calf muscle density predicts better physical function in overweight and obese older adults independent of insulin resistance, visceral adiposity or inflammation.

  20. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration

    PubMed Central

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia MC; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-01

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration. DOI: http://dx.doi.org/10.7554/eLife.21052.001 PMID:28072387

  1. Cyclooxygenase-2 deficiency impairs muscle-derived stem cell-mediated bone regeneration via cellular autonomous and non-autonomous mechanisms.

    PubMed

    Gao, Xueqin; Usas, Arvydas; Lu, Aiping; Kozemchak, Adam; Tang, Ying; Poddar, Minakshi; Sun, Xuying; Cummins, James H; Huard, Johnny

    2016-08-01

    This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Paclitaxel inhibits post-traumatic recurrent laryngeal nerve regeneration into the posterior cricoarytenoid muscle in a canine model.

    PubMed

    Park, Andrea M; Bhatt, Neel K; Paniello, Randal C

    2017-03-01

    To investigate the efficacy of paclitaxel, a potent microtubule inhibitor with a more favorable therapeutic index as compared with vincristine, in preventing post-traumatic nerve regeneration of the recurrent laryngeal nerve into the posterior cricoarytenoid muscle in a canine laryngeal model. Experimental animal study. Forty-nine canine hemilaryngeal specimens were divided into five experimental groups. Under general anesthesia, a tracheostomy, recurrent laryngeal nerve (RLN) transection and repair, and laryngeal adductory pressures (LAP) were measured pre-RLN injury. The approach to the posterior cricoarytenoid (PCA) muscle for neurotoxin injection was transoral or open transcervical, at 0 or 3 months. At 6 months, postinjury LAPs were measured and the animals were sacrificed at 6 months to allow for laryngeal harvesting and analysis. Paclitaxel demonstrated increased mean laryngeal adductory pressures (70.6%) as compared with saline control (55.5%). The effect of paclitaxel was the same as observed with vincristine at 0 months and with a delayed injection at 3 months. There was no difference between transoral or open injection groups. PCA muscle injection with paclitaxel resulted in improved strength of laryngeal adduction. This effect was similar to that of vincristine at both 0 and 3 months following nerve injury. A single intramuscular injection of paclitaxel was well tolerated. Additional human studies are needed to determine the degree of clinical benefit of this intervention. NA Laryngoscope, 127:651-655, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review.

    PubMed

    Papa, Evan V; Dong, Xiaoyang; Hassan, Mahdi

    2017-01-01

    Human aging results in a variety of changes to skeletal muscle. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Previous research has demonstrated that resistance training can attenuate skeletal muscle function deficits in older adults, however few articles have focused on the effects of resistance training on functional mobility. The purpose of this systematic review was to 1) present the current state of literature regarding the effects of resistance training on functional mobility outcomes for older adults with skeletal muscle function deficits and 2) provide clinicians with practical guidelines that can be used with seniors during resistance training, or to encourage exercise. We set forth evidence that resistance training can attenuate age-related changes in functional mobility, including improvements in gait speed, static and dynamic balance, and fall risk reduction. Older adults should be encouraged to participate in progressive resistance training activities, and should be admonished to move along a continuum of exercise from immobility, toward the recommended daily amounts of activity.

  4. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    PubMed

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  5. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    PubMed

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  6. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    PubMed Central

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  7. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration.

    PubMed

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults.

    PubMed

    Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M

    2007-01-01

    Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.

  9. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

    PubMed

    Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B

    2009-08-01

    To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

  10. Losartan Administration Reduces Fibrosis but Hinders Functional Recovery after Volumetric Muscle Loss Injury

    DTIC Science & Technology

    2014-09-25

    therapy. Pre - viously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of...efficacy of losartan has not yet been tested in a VML injury model. VML injury involves a substantial loss of muscle tissue that does not regenerate by...fibrosis development after VML injury in the rat tibialis anterior (TA) muscle. METHODS Experimental Design Male Lewis rats with VML were provided access

  11. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  12. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    PubMed

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  13. Identification of Skeletal Muscle Satellite Cells by Immunofluorescence with Pax7 and Laminin Antibodies.

    PubMed

    Feng, Xuesong; Naz, Faiza; Juan, Aster H; Dell'Orso, Stefania; Sartorelli, Vittorio

    2018-04-19

    Immunofluorescence is an effective method that helps to identify different cell types on tissue sections. In order to study the desired cell population, antibodies for specific cell markers are applied on tissue sections. In adult skeletal muscle, satellite cells (SCs) are stem cells that contribute to muscle repair and regeneration. Therefore, it is important to visualize and trace the satellite cell population under different physiological conditions. In resting skeletal muscle, SCs reside between the basal lamina and myofiber plasma membrane. A commonly used marker for identifying SCs on the myofibers or in cell culture is the paired box protein Pax7. In this article, an optimized Pax7 immunofluorescence protocol on skeletal muscle sections is presented that minimizes non-specific staining and background. Another antibody that recognizes a protein (laminin) of the basal lamina was also added to help identify SCs. Similar protocols can also be used to perform double or triple labeling with Pax7 and antibodies for additional proteins of interest.

  14. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    PubMed

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  15. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    PubMed

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  16. Alterations in osteopontin modify muscle size in females in both humans and mice.

    PubMed

    Hoffman, Eric P; Gordish-Dressman, Heather; McLane, Virginia D; Devaney, Joseph M; Thompson, Paul D; Visich, Paul; Gordon, Paul M; Pescatello, Linda S; Zoeller, Robert F; Moyna, Niall M; Angelopoulos, Theodore J; Pegoraro, Elena; Cox, Gregory A; Clarkson, Priscilla M

    2013-06-01

    An osteopontin (OPN; SPP1) gene promoter polymorphism modifies disease severity in Duchenne muscular dystrophy, and we hypothesized that it might also modify muscle phenotypes in healthy volunteers. Gene association studies were carried out for OPN (rs28357094) in the FAMuSS cohort (n = 752; mean ± SD age = 23.7 ± 5.7 yr). The phenotypes studied included muscle size (MRI), strength, and response to supervised resistance training. We also studied 147 young adults that had carried out a bout of eccentric elbow exercise (age = 24.0 ± 5.2 yr). Phenotypes analyzed included strength, soreness, and serum muscle enzymes. In the FAMuSS cohort, the G allele was associated with 17% increase in baseline upper arm muscle volume only in women (F = 26.32; P = 5.32 × 10), explaining 5% of population variance. In the eccentric damage cohort, weak associations of the G allele were seen in women with both baseline myoglobin and elevated creatine kinase. The sexually dimorphic effects of OPN on muscle were also seen in OPN-null mice. Five of seven muscle groups examined showed smaller size in OPN-null female mice, whereas two were smaller in male mice. The query of OPN gene transcription after experimental muscle damage in mice showed rapid induction within 12 h (100-fold increase from baseline), followed by sustained high-level expression through 16 d of regeneration before falling to back to baseline. OPN is a sexually dimorphic modifier of muscle size in normal humans and mice and responds to muscle damage. The OPN gene is known to be estrogen responsive, and this may explain the female-specific genotype effects in adult volunteers.

  17. Prevalence of clinically relevant muscle weakness and its association with vitamin D status among older adults in Ecuador.

    PubMed

    Orces, Carlos H

    2017-10-01

    Muscle weakness and 25-hydroxyvitamin D (25(OH)D) deficiency have been associated with adverse outcomes among older adults. However, little is known about the relationship between clinically relevant muscle weakness and 25(OH)D levels in Ecuador. To examine the prevalence of muscle weakness and its association with 25(OH)D status among subjects aged 60 years and older in Ecuador. The present study was based on data from 2205 participants in the first National Survey of Health, Wellbeing, and Aging. The Foundation for the National Institute of Health Sarcopenia Project criteria was used to examine muscle weakness prevalence rates. Gender-specific general linear and logistic regression models adjusted for potential confounders were created to compare mean 25(OH)D concentrations and 25(OH)D deficiency across muscle strength categories, respectively. An estimated 32.2% of women and 33.4% of men had evidence of clinically relevant muscle weakness in Ecuador. In general, increased muscle weakness prevalence rates were present among Indigenous, residents in the rural Andes Mountains, underweight subjects, and those with a sedentary lifestyle. Muscle strength was significantly and directly correlated with mean 25(OH)D levels. After controlling for potential confounders, 25(OH)D deficiency prevalence rates were 31 and 43% higher among men and women with muscle weakness than those with normal strength, respectively. One-third of older adults nationwide had evidence of muscle weakness. While the present study found a significant correlation between muscle strength and 25(OH)D concentrations, further research is needed to examine whether optimizing 25(OH)D levels may improve muscle weakness among older adults.

  18. Muscle performance and physical function are associated with voluntary rate of neuromuscular activation in older adults

    USDA-ARS?s Scientific Manuscript database

    Participants were recruited to three experimental groups: middle-aged healthy adults (MH), older healthy adults (OH), and older adults with mobility limitations (OML). OH and OML were primarily differentiated by performance on the Short Physical Performance Battery (SPPB). Muscle performance (accele...

  19. Zebrafish fin and heart: what's special about regeneration?

    PubMed

    Sehring, Ivonne M; Jahn, Christopher; Weidinger, Gilbert

    2016-10-01

    Many organs regenerate well in adult zebrafish, but most research has been directed toward fin and heart regeneration. Cells have been found to remain generally lineage-restricted during regeneration, and proliferative regenerative progenitors can be formed by dedifferentiation from differentiated cells. Recent studies begin to shed light on the molecular underpinnings of differences between development and regeneration. Retinoic acid, BMP and NF-κB signaling are emerging as regulators of cellular dedifferentiation. Reactive oxygen species promote regeneration, and the dynamics of ROS signaling might help explain differences between wound healing and regeneration. Finally, the heart has been added to those organs that require a nerve supply to regenerate, and a trade-off between regeneration and tumor suppression has been proposed to help explain why mammals regenerate poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16.

    PubMed

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D; Bentzinger, C Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van Ijcken, Wilfred; Grosveld, Frank; Dekemp, Robert A; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A

    2013-02-05

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Cell lineage tracing during Xenopus tail regeneration.

    PubMed

    Gargioli, Cesare; Slack, Jonathan M W

    2004-06-01

    The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promoter driving GFP (Green Fluorescent Protein) ubiquitously throughout the embryo. Single tissues were then specifically labelled by making grafts at the neurula stage from transgenic donors to unlabelled hosts. When the hosts have developed to tadpoles, they carry a region of the appropriate tissue labelled with GFP. These tails were amputated through the labelled region and the distribution of labelled cells in the regenerate was followed. We also labelled myofibres using the Cre-lox method. The results show that the spinal cord and the notochord regenerate from the same tissue type in the stump, with no labelling of other tissues. In the case of the muscle, we show that the myofibres of the regenerate arise from satellite cells and not from the pre-existing myofibres. This shows that metaplasia between differentiated cell types does not occur, and that the process of Xenopus tail regeneration is more akin to tissue renewal in mammals than to urodele tail regeneration.

  2. Resolving Heart Regeneration by Replacement Histone Profiling.

    PubMed

    Goldman, Joseph Aaron; Kuzu, Guray; Lee, Nutishia; Karasik, Jaclyn; Gemberling, Matthew; Foglia, Matthew J; Karra, Ravi; Dickson, Amy L; Sun, Fei; Tolstorukov, Michael Y; Poss, Kenneth D

    2017-02-27

    Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Associations of Low Muscle Mass and the Metabolic Syndrome in Caucasian and Asian Middle-aged and Older Adults.

    PubMed

    Scott, D; Park, M S; Kim, T N; Ryu, J Y; Hong, H C; Yoo, H J; Baik, S H; Jones, G; Choi, K M

    2016-03-01

    Age-related declines in skeletal muscle mass may confer significant metabolic consequences for older adults. Associations of low muscle mass and metabolic syndrome (MetS) in Caucasians, and comparisons with associations observed in Asian populations, have not been reported. We examined associations of low muscle mass and metabolic syndrome (MetS) in Asian and Caucasian middle-aged and older men and women using criteria for low muscle mass. Two population-based studies of Australian (Tasmanian Older Adult Cohort Study; TASOAC; N=1005) and Korean (Korean Sarcopenic Obesity Study; KSOS; N=376) community-dwelling adults, mean age 62 and 58 years, respectively. Appendicular lean mass (aLM) determined by dual-energy X-ray absorptiometry and normalised to height squared (aLM/Ht2), weight (aLM/Wt) or body mass index (aLM/BMI). Participants in the lowest sex-specific 20% for aLM measures were defined as having low muscle mass. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III criteria. Although Australians demonstrated generally unfavourable anthropometric and metabolic characteristics compared to Koreans, prevalence of MetS was similar (29.5% in Australians and 31.4% in Koreans, respectively). Low aLM/Ht2 was associated with significantly reduced likelihood of MetS in both Australians (OR: 0.30, 95% CI 0.19 - 0.46) and Koreans (OR: 0.31, 95% CI 0.16 - 0.62). Conversely, low aLM/BMI was associated with increased odds for MetS in Australians (OR: 1.78, 95% CI 1.12 - 2.84), but not Koreans (OR: 1.33, 95% CI = 0.67 - 2.64). Low aLM/BMI is associated with significantly increased likelihood of MetS in Australian adults, but not Koreans, suggesting potential differences in effects of low muscle mass relative to body mass on cardiometabolic health in Caucasian and Asian middle-aged and older adults. Low muscle mass relative to height is associated with reduced likelihood of MetS in both populations.

  4. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review

    PubMed Central

    Scafoglieri, Aldo; Jager‐Wittenaar, Harriët; Hobbelen, Johannes S.M.; van der Schans, Cees P.

    2017-01-01

    Abstract This review evaluates the reliability and validity of ultrasound to quantify muscles in older adults. The databases PubMed, Cochrane, and Cumulative Index to Nursing and Allied Health Literature were systematically searched for studies. In 17 studies, the reliability (n = 13) and validity (n = 8) of ultrasound to quantify muscles in community‐dwelling older adults (≥60 years) or a clinical population were evaluated. Four out of 13 reliability studies investigated both intra‐rater and inter‐rater reliability. Intraclass correlation coefficient (ICC) scores for reliability ranged from −0.26 to 1.00. The highest ICC scores were found for the vastus lateralis, rectus femoris, upper arm anterior, and the trunk (ICC = 0.72 to 1.000). All included validity studies found ICC scores ranging from 0.92 to 0.999. Two studies describing the validity of ultrasound to predict lean body mass showed good validity as compared with dual‐energy X‐ray absorptiometry (r 2 = 0.92 to 0.96). This systematic review shows that ultrasound is a reliable and valid tool for the assessment of muscle size in older adults. More high‐quality research is required to confirm these findings in both clinical and healthy populations. Furthermore, ultrasound assessment of small muscles needs further evaluation. Ultrasound to predict lean body mass is feasible; however, future research is required to validate prediction equations in older adults with varying function and health. PMID:28703496

  5. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    PubMed

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  6. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  7. Degenerative and regenerative features of myofibers differ among skeletal muscles in a murine model of muscular dystrophy.

    PubMed

    Ikeda, Teppei; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nakamura, Teppei; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2016-10-01

    Skeletal muscle myofibers constantly undergo degeneration and regeneration. Histopathological features of 6 skeletal muscles (cranial tibial [CT], gastrocnemius, quadriceps femoris, triceps brachii [TB], lumbar longissimus muscles, and costal part of the diaphragm [CPD]) were compared using C57BL/10ScSn-Dmd mdx (mdx) mice, a model for muscular dystrophy versus control, C57BL/10 mice. Body weight and skeletal muscle mass were lower in mdx mice than the control at 4 weeks of age; these results were similar at 6-30 weeks. Additionally, muscular lesions were observed in all examined skeletal muscles in mdx mice after 4 weeks, but none were noted in the controls. Immunohistochemical staining revealed numerous paired box 7-positive satellite cells surrounding the embryonic myosin heavy chain-positive regenerating myofibers, while the number of the former and staining intensity of the latter decreased as myofiber regeneration progressed. Persistent muscular lesions were observed in skeletal muscles of mdx mice between 4 and 14 weeks of age, and normal myofibers decreased with age. Number of muscular lesions was lowest in CPD at all ages examined, while the ratio of normal myofibers was lowest in TB at 6 weeks. In CT, TB, and CPD, Iba1-positive macrophages, the main inflammatory cells in skeletal muscle lesions, showed a significant positive correlation with the appearance of regenerating myofibers. Additionally, B220-positive B-cells showed positive and negative correlation with regenerating and regenerated myofibers, respectively. Our data suggest that degenerative and regenerative features of myofibers differ among skeletal muscles and that inflammatory cells are strongly associated with regenerative features of myofibers in mdx mice.

  8. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults.

    PubMed

    Minetto, Marco A; Caresio, Cristina; Menapace, Tommaso; Hajdarevic, Arnel; Marchini, Andrea; Molinari, Filippo; Maffiuletti, Nicola A

    2016-05-01

    To establish muscle-specific cut-off values for ultrasound-based detection of low muscle mass, and to assess its prevalence in a population of frail older subjects when applying the cut-points of different muscles and those of different sarcopenic indices. Cross-sectional study. Geriatric outpatient clinic and clinical research laboratory. A total of 44 older adults (30 women and 14 men, mean age 82 years, range 67-93 years) and 60 younger individuals (30 women and 30 men, mean age 26 years, range 20-36 years) participated. Body composition and thickness of 4 lower limb muscles (rectus femoris, vastus lateralis, tibialis anterior, medial gastrocnemius) were respectively assessed by bioelectrical impedance analysis (BIA) and ultrasonography. Site-specific cut-points for ultrasound-based assessment of low muscle mass (muscle thickness values 2 standard deviations below the gender-specific means of our sample of younger subjects) and comparative prevalence rates of low muscle mass. The following site-specific cut-points for muscle thickness were identified: rectus femoris: 20 mm in men and 16 mm in women; vastus lateralis: 17 mm in men and 15 mm in women; tibialis anterior: 23 mm in men and 22 mm in women; and medial gastrocnemius: 13 mm in both men and women. The prevalence of low muscle mass in older adults was highly dependent on the muscle being investigated; it varied from 86% for thigh muscles to 30% for leg muscles. Moreover, the prevalence of low muscle mass was highly dependent on the applied diagnostic criterion and on the adopted cut-off value; it ranged from 2% to 75% for different BIA-derived criteria. We suggest that muscle ultrasonography provides physiatrists with a practical and accurate tool for identifying individuals with low muscle mass. However, the usability of cut-off values established in our group of healthy younger subjects of white ethnicity to identify low muscle mass in older individuals of different ethnic groups remains to be

  9. Recurrent laryngeal nerve regeneration through a silicone tube produces reinnervation without vocal fold mobility in rats.

    PubMed

    Kumai, Yoshihiko; Aoyama, Takashi; Nishimoto, Kohei; Sanuki, Tetsuji; Minoda, Ryosei; Yumoto, Eiji

    2013-01-01

    We established an animal model of recurrent laryngeal nerve reinnervation with persistent vocal fold immobility following recurrent laryngeal nerve injury. In 36 rats, the left recurrent laryngeal nerve was transected and the stumps were abutted in a silicone tube with a 1-mm interspace, facilitating regeneration. The mobility of the vocal folds was examined endoscopically 5, 10, and 15 weeks later. Electromyography of the thyroarytenoid muscle was performed. Reinnervation was assessed by means of a quantitative immunohistologic evaluation with anti-neurofilament antibody in the nerve both proximal and distal to the silicone tube. The atrophy of the thyroarytenoid muscle was assessed histologically. We observed that all animals had a fixed left vocal fold throughout the study. The average neurofilament expression in the nerve both distal and proximal to the silicone tube, the muscle area, and the amplitude of the compound muscle action potential recorded from the thyroarytenoid muscle on the treated side increased significantly (p < 0.05) over time, demonstrating regeneration through the silicone tube. Recurrent laryngeal nerve regeneration through a silicone tube produced reinnervation without vocal fold mobility in rats. The efficacy of new laryngeal reinnervation treatments can be assessed with this model.

  10. Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish

    PubMed Central

    Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael

    2013-01-01

    Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018

  11. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    PubMed

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  12. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes.

    PubMed

    Monaco, Cynthia M F; Hughes, Meghan C; Ramos, Sofhia V; Varah, Nina E; Lamberz, Christian; Rahman, Fasih A; McGlory, Chris; Tarnopolsky, Mark A; Krause, Matthew P; Laham, Robert; Hawke, Thomas J; Perry, Christopher G R

    2018-06-01

    A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. Physically active, young adults (men and women) with type 1 diabetes (HbA 1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H 2 O 2 emission and Ca 2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H 2 O 2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKα Thr172 ), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1 Ser555 ) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of

  13. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    NASA Astrophysics Data System (ADS)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle histomorphology from microgravity specimens showed signs of extensive atrophy and regenerative hypoplasia relative to ground controls. Specifically, we observed a two-fold decrease in the number of myonuclei, compared to vivarium and ground controls, and central location of myonuclei, low density of myofibers in the tissue, and of myofibrils within a fiber, as well as fragmentation and swelling of myofibers. Despite obvious atrophy, muscle regeneration nevertheless appeared to have continued after 30 days in microgravity as evidenced by thin and short newly formed myofibers. Many of them, however, showed evidence of apoptotic cells and myofibril degradation, suggesting that long-term unloading in microgravity may affect late stages of myofiber differentiation. Ground asynchronous and vivarium control animals demonstrated normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new myofibers free of apoptotic nuclei. Regenerative activity of satellite cells in muscles was observed both in microgravity and ground control groups, using Pax7 and Myogenin

  14. Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons.

    PubMed

    Shah, S M; Patel, C H; Feng, A S; Kollmar, R

    2013-10-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove

  15. Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4.

    PubMed

    Bikbova, Guzel; Oshitari, Toshiyuki; Yamamoto, Shuichi

    2013-10-09

    The purpose of this study was to determine the effect of low concentrations of advanced glycation end-products on neurite regeneration in isolated rat retinas, and to determine the effects of neurotrophin-4 on regeneration in advanced glycation end-products exposed retinas. Retinal explants of 4 adult Sprague-Dawley rats were cultured on collagen gel and were incubated in; (1) serum-free control culture media, (2) glucose-advanced glycation end-products-bovine serum albumin media, (3) glycolaldehyde-advanced glycation end-products-bovine serum albumin media, (4) glyceraldehyde-advanced glycation end-products-bovine serum albumin media, (5) glucose-advanced glycation end-products+neurotrophin-4 media, (6) glycolaldehyde-advanced glycation end-products+neurotrophin-4 media, or (7) glyceraldehyde-advanced glycation end-products+neurotrophin-4 supplemented culture media. After 7 days, the number of regenerating neurites from the explants was counted. Then, explants were fixed, cryosectioned, and stained for TUNEL. The ratio of TUNEL-positive cells to all cells in the ganglion cell layer was determined. Immunohistochemical examinations for the active-form of caspase-9 and apoptosis-inducing factor were performed. In retinas incubated with advanced glycation end-products containing media, the number of regenerating neurites were fewer than in retinas without advanced glycation end-products, and the number of TUNEL-positive cells and caspase-9- and apoptosis-inducing factor-immunopositive cells was significantly higher than in control media. Neurotrophin-4 supplementation increased the numbers of regenerating neuritis, and the number of TUNEL-positives, caspase-9-, and apoptosis-inducing factor-immunopositive cells were significantly fewer than that in advanced glycation end-products without neurotrophin-4 media. Low doses of advanced glycation end-products impede neurite regeneration in the rat retinas. Neurotrophin-4 significantly enhances neurite regeneration in

  16. Regenerating skeletal muscle in the face of aging and disease.

    PubMed

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.

  17. Tai Chi Improves Brain Metabolism and Muscle Energetics in Older Adults.

    PubMed

    Zhou, Min; Liao, Huijun; Sreepada, Lasya P; Ladner, Joshua R; Balschi, James A; Lin, Alexander P

    2018-04-17

    Tai Chi is a mind-body exercise that has been shown to improve both mental and physical health. As a result, recent literature suggests the use of Tai Chi to treat both physical and psychological disorders. However, the underlying physiological changes have not been characterized. The aim of this pilot study is to assess the changes in brain metabolites and muscle energetics after Tai Chi training in an aging population using a combined brain-muscle magnetic resonance spectroscopy (MRS) examination. Six healthy older adults were prospectively recruited and enrolled into a 12-week Tai Chi program. A brain 1 H MRS and a muscle 31 P MRS were scanned before and after the training, and postprocessed to measure N-acetylaspartate to creatine (NAA/Cr) ratios and phosphocreatine (PCr) recovery time. Wilcoxon-signed rank tests were utilized to assess the differences between pre- and post-Tai Chi training. A significant within-subject increase in both the NAA/Cr ratios (P = .046) and the PCr recovery time (P = .046) was observed between the baseline and the posttraining scans. The median percentage changes were 5.38% and 16.51% for NAA/Cr and PCr recovery time, respectively. Our pilot study demonstrates significant increase of NAA/Cr ratios in posterior cingulate gyrus and significantly improved PCr recovery time in leg muscles in older adults following short-term Tai Chi training, and thus provides insight into the beneficial mechanisms. Copyright © 2018 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  18. Citrulline Malate Does Not Improve Muscle Recovery after Resistance Exercise in Untrained Young Adult Men

    PubMed Central

    da Silva, Douglas K.; Jacinto, Jeferson L.; de Andrade, Walquiria B.; Roveratti, Mirela C.; Estoche, José M.; Balvedi, Mario C. W.; de Oliveira, Douglas B.; da Silva, Rubens A.; Aguiar, Andreo F.

    2017-01-01

    The effects of citrulline malate (CM) on muscle recovery from resistance exercise remains unknown. We aimed to determine if citrulline malate supplementation improves muscle recovery after a single session of high-intensity resistance exercise (RE) in untrained young adult men. Nine young adult men (24.0 ± 3.3 years) participated in a double-blind crossover study in which they received 6 g of CM and placebo (PL) on two occasions, separated by a seven-day washout period. Each occasion consisted of a single session of high-intensity RE (0 h) and three subsequent fatigue tests sessions (at 24, 48, and 72 h) to assess the time course of muscle recovery. During the tests sessions, we assessed the following variables: number of maximum repetitions, electromyographic signal (i.e., root mean square (RMS) and median frequency (MF)), muscle soreness and perceived exertion, as well as blood levels of creatine kinase (CK), lactate, insulin, and testosterone:cortisol ratio. CK levels increased at 24 h post-exercise and remained elevate at 48 and 72 h, with no difference between CM and PL conditions. Muscle soreness increased at 24 h post-exercise, which progressively returned to baseline at 72 h in both conditions. Lactate levels increased immediately post-exercise and remained elevated at 24, 48, and 72 h in both conditions. No significant treatment × time interaction was found for all dependents variables (maximum repetitions, perceived exertion, CK, lactate, RMS, MF, and testosterone:cortisol ratio) during the recovery period. In conclusion, our data indicate that CM supplementation (single 6 g dose pre-workout) does not improve the muscle recovery process following a high-intensity RE session in untrained young adult men. PMID:29057836

  19. Citrulline Malate Does Not Improve Muscle Recovery after Resistance Exercise in Untrained Young Adult Men.

    PubMed

    da Silva, Douglas K; Jacinto, Jeferson L; de Andrade, Walquiria B; Roveratti, Mirela C; Estoche, José M; Balvedi, Mario C W; de Oliveira, Douglas B; da Silva, Rubens A; Aguiar, Andreo F

    2017-10-18

    The effects of citrulline malate (CM) on muscle recovery from resistance exercise remains unknown. We aimed to determine if citrulline malate supplementation improves muscle recovery after a single session of high-intensity resistance exercise (RE) in untrained young adult men. Nine young adult men (24.0 ± 3.3 years) participated in a double-blind crossover study in which they received 6 g of CM and placebo (PL) on two occasions, separated by a seven-day washout period. Each occasion consisted of a single session of high-intensity RE (0 h) and three subsequent fatigue tests sessions (at 24, 48, and 72 h) to assess the time course of muscle recovery. During the tests sessions, we assessed the following variables: number of maximum repetitions, electromyographic signal (i.e., root mean square (RMS) and median frequency (MF)), muscle soreness and perceived exertion, as well as blood levels of creatine kinase (CK), lactate, insulin, and testosterone:cortisol ratio. CK levels increased at 24 h post-exercise and remained elevate at 48 and 72 h, with no difference between CM and PL conditions. Muscle soreness increased at 24 h post-exercise, which progressively returned to baseline at 72 h in both conditions. Lactate levels increased immediately post-exercise and remained elevated at 24, 48, and 72 h in both conditions. No significant treatment × time interaction was found for all dependents variables (maximum repetitions, perceived exertion, CK, lactate, RMS, MF, and testosterone:cortisol ratio) during the recovery period. In conclusion, our data indicate that CM supplementation (single 6 g dose pre-workout) does not improve the muscle recovery process following a high-intensity RE session in untrained young adult men.

  20. Neuregulin Facilitates Nerve Regeneration by Speeding Schwann Cell Migration via ErbB2/3-Dependent FAK Pathway

    PubMed Central

    Chang, Hung-Ming; Shyu, Ming-Kwang; Tseng, Guo-Fang; Liu, Chiung-Hui; Chang, Hung-Shuo; Lan, Chyn-Tair; Hsu, Wen-Ming; Liao, Wen-Chieh

    2013-01-01

    Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI. PMID:23301073

  1. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches

    PubMed Central

    Cosgrove, Benjamin D.; Sacco, Alessandra; Gilbert, Penney M.; Blau, Helen M.

    2009-01-01

    Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells. PMID:19751902

  2. The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation

    PubMed Central

    Das, Amitava; Datta, Soma; Rhea, Brian; Sinha, Mithun; Veeraragavan, Muruganandam; Gordillo, Gayle

    2016-01-01

    Abstract The objective of the present study (clinicaltrials.gov NCT02026414) was to observe the effects of oral supplementation of a purified and standardized Shilajit extract on skeletal muscle adaptation in adult overweight/class I obese human subjects from the U.S. population. Shilajit is a mineral pitch that oozes out of Himalayan rocks. The study design consisted of a baseline visit, followed by 8 weeks of 250 mg of oral Shilajit supplementation b.i.d., and additional 4 weeks of supplementation with exercise. At each visit, blood samples and muscle biopsies were collected for further analysis. Supplementation was well tolerated without any changes in blood glucose levels and lipid profile after 8 weeks of oral supplementation and the additional 4 weeks of oral supplementation with exercise. In addition, no changes were noted in creatine kinase and serum myoglobin levels after 8 weeks of oral supplementation and the additional 4 weeks of supplementation with exercise. Microarray analysis identified a cluster of 17 extracellular matrix (ECM)-related probe sets that were significantly upregulated in muscles following 8 weeks of oral supplementation compared with the expression at the baseline visit. This cluster included tenascin XB, decorin, myoferlin, collagen, elastin, fibrillin 1, and fibronectin 1. The differential expression of these genes was confirmed using quantitative real-time polymerase chain reaction (RT-PCR). The study provided maiden evidence that oral Shilajit supplementation in adult overweight/class I obese human subjects promoted skeletal muscle adaptation through upregulation of ECM-related genes that control muscle mechanotransduction properties, elasticity, repair, and regeneration. PMID:27414521

  3. The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation.

    PubMed

    Das, Amitava; Datta, Soma; Rhea, Brian; Sinha, Mithun; Veeraragavan, Muruganandam; Gordillo, Gayle; Roy, Sashwati

    2016-07-01

    The objective of the present study ( clinicaltrials.gov NCT02026414) was to observe the effects of oral supplementation of a purified and standardized Shilajit extract on skeletal muscle adaptation in adult overweight/class I obese human subjects from the U.S. Shilajit is a mineral pitch that oozes out of Himalayan rocks. The study design consisted of a baseline visit, followed by 8 weeks of 250 mg of oral Shilajit supplementation b.i.d., and additional 4 weeks of supplementation with exercise. At each visit, blood samples and muscle biopsies were collected for further analysis. Supplementation was well tolerated without any changes in blood glucose levels and lipid profile after 8 weeks of oral supplementation and the additional 4 weeks of oral supplementation with exercise. In addition, no changes were noted in creatine kinase and serum myoglobin levels after 8 weeks of oral supplementation and the additional 4 weeks of supplementation with exercise. Microarray analysis identified a cluster of 17 extracellular matrix (ECM)-related probe sets that were significantly upregulated in muscles following 8 weeks of oral supplementation compared with the expression at the baseline visit. This cluster included tenascin XB, decorin, myoferlin, collagen, elastin, fibrillin 1, and fibronectin 1. The differential expression of these genes was confirmed using quantitative real-time polymerase chain reaction (RT-PCR). The study provided maiden evidence that oral Shilajit supplementation in adult overweight/class I obese human subjects promoted skeletal muscle adaptation through upregulation of ECM-related genes that control muscle mechanotransduction properties, elasticity, repair, and regeneration.

  4. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

    PubMed

    Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo

    2017-09-01

    The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves

  5. Association of early- and adult-life socioeconomic circumstances with muscle strength in older age.

    PubMed

    Cheval, Boris; Boisgontier, Matthieu P; Orsholits, Dan; Sieber, Stefan; Guessous, Idris; Gabriel, Rainer; Stringhini, Silvia; Blane, David; van der Linden, Bernadette W A; Kliegel, Matthias; Burton-Jeangros, Claudine; Courvoisier, Delphine S; Cullati, Stéphane

    2018-05-01

    socioeconomic circumstances (SEC) during a person's lifespan influence a wide range of health outcomes. However, solid evidence of the association of early- and adult-life SEC with health trajectories in ageing is still lacking. This study assessed whether early-life SEC are associated with muscle strength in later life-a biomarker of health-and whether this relationship is caused by adult-life SEC and health behaviours. we used data from the Survey of Health Ageing and Retirement in Europe, a 12-year population-based cohort study with repeated measurement in six waves (2004-15) and retrospective collection of life-course data. Participants' grip strength was assessed by using a handheld dynamometer. Confounder-adjusted logistic mixed-effect models were used to examine the associations of early- and adult-life SEC with the risk of low muscle strength (LMS) in older age. a total of 24,179 participants (96,375 observations) aged 50-96 living in 14 European countries were included in the analyses. Risk of LMS was increased with disadvantaged relative to advantaged early-life SEC. The association between risk of LMS and disadvantaged early-life SEC gradually decreased when adjusting for adult-life SEC for both sexes and with unhealthy behaviours for women. After adjusting for these factors, all associations between risk of LMS and early-life SEC remained significant for women. early-life SEC are associated with muscle strength after adjusting for adult-life SEC and behavioural lifestyle factors, especially in women, which suggests that early life may represent a sensitive period for future health.

  6. The Impact of Aerobic Exercise on the Muscle Stem Cell Response.

    PubMed

    Joanisse, Sophie; Snijders, Tim; Nederveen, Joshua P; Parise, Gianni

    2018-04-16

    Satellite cells are indispensable for skeletal muscle repair and regeneration and are associated with muscle growth in humans. Aerobic exercise training results in improved skeletal muscle health also translating to an increase in satellite cell pool activation. We postulate that aerobic exercise improves satellite cell function in skeletal muscle.

  7. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  8. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    PubMed Central

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  9. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    PubMed

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  10. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants

    PubMed Central

    2011-01-01

    Background The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. Results Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. Conclusion Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism. PMID:21645366

  11. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle

    PubMed Central

    Kirsch, Wolfgang G; Uttenweiler, Dietmar; Fink, Rainer H A

    2001-01-01

    Using laser scanning confocal microscopy, we show for the first time elementary Ca2+ release events (ECRE) from the sarcoplasmic reticulum in chemically and mechanically skinned fibres from adult mammalian muscle and compare them with ECRE from amphibian skinned fibres. Hundreds of spontaneously occurring events could be measured from individual single skinned mammalian fibres. In addition to spark-like events, we found ember-like events, i.e. long-lasting events of steady amplitude. These two different fundamental release types in mammalian muscle could occur in combination at the same location. The two peaks of the frequency of occurrence for ECRE of mammalian skeletal muscle coincided with the expected locations of the transverse tubular system within the sarcomere, suggesting that ECRE mainly originate at triadic junctions. ECRE in adult mammalian muscle could also be identified at the onset of the global Ca2+ release evoked by membrane depolarisation in mechanically skinned fibres. In addition, the frequency of ECRE was significantly increased by application of 0.5 mm caffeine and reduced by application of 2 mm tetracaine. We conclude that the excitation-contraction coupling process in adult mammalian muscle involves the activation of both spark- and ember-like elementary Ca2+ release events. PMID:11731572

  12. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.

    PubMed

    Fukada, So-Ichiro

    2018-05-01

    Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.

  13. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.

    PubMed

    Wyckelsma, Victoria L; Levinger, Itamar; McKenna, Michael J; Formosa, Luke E; Ryan, Michael T; Petersen, Aaron C; Anderson, Mitchell J; Murphy, Robyn M

    2017-06-01

    Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole

  14. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults.

    PubMed

    Timmerman, Kyle L; Lee, Jessica L; Fujita, Satoshi; Dhanani, Shaheen; Dreyer, Hans C; Fry, Christopher S; Drummond, Micah J; Sheffield-Moore, Melinda; Rasmussen, Blake B; Volpi, Elena

    2010-11-01

    Skeletal muscle protein metabolism is resistant to the anabolic action of insulin in healthy, nondiabetic older adults. This defect is associated with impaired insulin-induced vasodilation and mTORC1 signaling. We hypothesized that, in older subjects, pharmacological restoration of insulin-induced capillary recruitment would improve the response of muscle protein synthesis and anabolism to insulin. Twelve healthy, nondiabetic older subjects (71 ± 2 years) were randomized to two groups. Subjects were studied at baseline and during local infusion in one leg of insulin alone (Control) or insulin plus sodium nitroprusside (SNP) at variable rate to double leg blood flow. We measured leg blood flow by dye dilution; muscle microvascular perfusion with contrast enhanced ultrasound; Akt/mTORC1 signaling by Western blotting; and muscle protein synthesis, amino acid, and glucose kinetics using stable isotope methodologies. There were no baseline differences between groups. Blood flow, muscle perfusion, phenylalanine delivery to the leg, and intracellular availability of phenylalanine increased significantly (P < 0.05) in SNP only. Akt phosphorylation increased in both groups but increased more in SNP (P < 0.05). Muscle protein synthesis and net balance (nmol · min(-1) · 100 ml · leg(-1)) increased significantly (P < 0.05) in SNP (synthesis, 43 ± 6 to 129 ± 25; net balance, -16 ± 3 to 26 ± 12) but not in Control (synthesis, 41 ± 10 to 53 ± 8; net balance, -17 ± 3 to -2 ± 3). Pharmacological enhancement of muscle perfusion and amino acid availability during hyperinsulinemia improves the muscle protein anabolic effect of insulin in older adults.

  15. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    PubMed Central

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  16. Muscle damage and inflammation during recovery from exercise.

    PubMed

    Peake, Jonathan M; Neubauer, Oliver; Della Gatta, Paul A; Nosaka, Kazunori

    2017-03-01

    Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs, and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length, and muscle groups used during exercise. The effects of these factors on muscle strength, soreness, and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses, if tightly regulated, are integral to muscle repair and regeneration. Animal studies have revealed that various cell types, including neutrophils, macrophages, mast cells, eosinophils, CD8 and T-regulatory lymphocytes, fibro-adipogenic progenitors, and pericytes help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological, and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise. Copyright © 2017 the American Physiological Society.

  17. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    PubMed

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Accelerated skeletal muscle recovery after in vivo polyphenol administration.

    PubMed

    Myburgh, Kathryn H; Kruger, Maria J; Smith, Carine

    2012-09-01

    Acute skeletal muscle damage results in fiber disruption, oxidative stress and inflammation. We investigated cell-specific contributions to the regeneration process after contusion-induced damage (rat gastrocnemius muscle) with or without chronic grape seed-derived proanthocyanidolic oligomer (PCO) administration. In this placebo-controlled study, male Wistar rats were subjected to PCO administration for 2 weeks, after which they were subjected to a standardised contusion injury. Supplementation was continued after injury. Immune and satellite cell responses were assessed, as well as oxygen radical absorption capacity and muscle regeneration. PCO administration resulted in a rapid satellite cell response with an earlier peak in activation (Pax7⁺, CD56⁺, at 4 h post-contusion) vs. placebo groups (PLA) (P<.001: CD56⁺ on Day 5 and Pax7⁺ on Day 7). Specific immune-cell responses in PLA followed expected time courses (neutrophil elevation on Day 1; sustained macrophage elevation from Days 3 to 5). PCO dramatically decreased neutrophil elevation to nonsignificant, while macrophage responses were normal in extent, but significantly earlier (peak between Days 1 and 3) and completely resolved by Day 5. Anti-inflammatory cytokine, IL-10, increased significantly only in PCO (Day 3). Muscle fiber regeneration (MHC(f) content and central nuclei) started earlier and was complete by Day 14 in PCO, but not in PLA. Thus, responses by three crucial cell types involved in muscle recovery were affected by in vivo administration of a specific purified polyphenol in magnitude (neutrophil), time course (macrophages), or time course and activation state (satellite cell), explaining faster effective regeneration in the presence of proanthocyanidolic oligomers. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    PubMed

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Leucine partially protects muscle mass and function during bed rest in middle-aged adults1,2

    PubMed Central

    English, Kirk L; Mettler, Joni A; Ellison, Jennifer B; Mamerow, Madonna M; Arentson-Lantz, Emily; Pattarini, James M; Ploutz-Snyder, Robert; Sheffield-Moore, Melinda; Paddon-Jones, Douglas

    2016-01-01

    Background: Physical inactivity triggers a rapid loss of muscle mass and function in older adults. Middle-aged adults show few phenotypic signs of aging yet may be more susceptible to inactivity than younger adults. Objective: The aim was to determine whether leucine, a stimulator of translation initiation and skeletal muscle protein synthesis (MPS), can protect skeletal muscle health during bed rest. Design: We used a randomized, double-blind, placebo-controlled trial to assess changes in skeletal MPS, cellular signaling, body composition, and skeletal muscle function in middle-aged adults (n = 19; age ± SEM: 52 ± 1 y) in response to leucine supplementation (LEU group: 0.06 g ∙ kg−1 ∙ meal−1) or an alanine control (CON group) during 14 d of bed rest. Results: Bed rest decreased postabsorptive MPS by 30% ± 9% (CON group) and by 10% ± 10% (LEU group) (main effect for time, P < 0.05), but no differences between groups with respect to pre-post changes (group × time interactions) were detected for MPS or cell signaling. Leucine protected knee extensor peak torque (CON compared with LEU group: −15% ± 2% and −7% ± 3%; group × time interaction, P < 0.05) and endurance (CON compared with LEU: −14% ± 3% and −2% ± 4%; group × time interaction, P < 0.05), prevented an increase in body fat percentage (group × time interaction, P < 0.05), and reduced whole-body lean mass loss after 7 d (CON compared with LEU: −1.5 ± 0.3 and −0.8 ± 0.3 kg; group × time interaction, P < 0.05) but not 14 d (CON compared with LEU: −1.5 ± 0.3 and −1.0 ± 0.3 kg) of bed rest. Leucine also maintained muscle quality (peak torque/kg leg lean mass) after 14 d of bed-rest inactivity (CON compared with LEU: −9% ± 2% and +1% ± 3%; group × time interaction, P < 0.05). Conclusions: Bed rest has a profoundly negative effect on muscle metabolism, mass, and function in middle-aged adults. Leucine supplementation may partially protect muscle health during relatively

  1. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells

    PubMed Central

    Jackson, Kathyjo A.; Majka, Susan M.; Wang, Hongyu; Pocius, Jennifer; Hartley, Craig J.; Majesky, Mark W.; Entman, Mark L.; Michael, Lloyd H.; Hirschi, Karen K.; Goodell, Margaret A.

    2001-01-01

    Myocyte loss in the ischemically injured mammalian heart often leads to irreversible deficits in cardiac function. To identify a source of stem cells capable of restoring damaged cardiac tissue, we transplanted highly enriched hematopoietic stem cells, the so-called side population (SP) cells, into lethally irradiated mice subsequently rendered ischemic by coronary artery occlusion for 60 minutes followed by reperfusion. The engrafted SP cells (CD34–/low, c-Kit+, Sca-1+) or their progeny migrated into ischemic cardiac muscle and blood vessels, differentiated to cardiomyocytes and endothelial cells, and contributed to the formation of functional tissue. SP cells were purified from Rosa26 transgenic mice, which express lacZ widely. Donor-derived cardiomyocytes were found primarily in the peri-infarct region at a prevalence of around 0.02% and were identified by expression of lacZ and α-actinin, and lack of expression of CD45. Donor-derived endothelial cells were identified by expression of lacZ and Flt-1, an endothelial marker shown to be absent on SP cells. Endothelial engraftment was found at a prevalence of around 3.3%, primarily in small vessels adjacent to the infarct. Our results demonstrate the cardiomyogenic potential of hematopoietic stem cells and suggest a therapeutic strategy that eventually could benefit patients with myocardial infarction. PMID:11390421

  2. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    DTIC Science & Technology

    2012-10-01

    Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism CINRG: Systems Biology of Glucocorticoids in Muscle Disease Zuyi Wang, Ph.D...2011-2012) for Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy ...DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis

  3. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    DTIC Science & Technology

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant

  4. Muscle response to leg lengthening during distraction osteogenesis.

    PubMed

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  5. Two different roles of purified CD45+c-Kit+Sca-1+Lin- cells after transplantation in muscles.

    PubMed

    Yoshimoto, Momoko; Chang, Hsi; Shiota, Mitsutaka; Kobayashi, Hirohiko; Umeda, Katsutsugu; Kawakami, Atsushi; Heike, Toshio; Nakahata, Tatsutoshi

    2005-05-01

    Recent studies have indicated that bone marrow cells can regenerate damaged muscles and that they can adopt phenotypes of other cells by cell fusion. Our direct visualization system gave evidence of massive muscle regeneration by green fluorescent protein (GFP)-labeled CD45+c-Kit+Sca-1+Lin- cells (KSL cells), and we investigated the role of KSL cells in muscle regeneration after transplantation with or without lethal irradiation. In the early phase, GFP signals were clearly observed in all the muscles of only irradiated mice. Transverse cryostat sections showed GFP+myosin+ muscle fibers, along with numerous GFP+ hematopoietic cells in damaged muscle. These phenomena were temporary, and GFP signals had dramatically reduced 30 days after transplantation. After 6 months, GFP+ fibers could hardly be detected, but GFP+c-Met+ mononuclear cells were located beneath the basal lamina where satellite cells usually exist in both conditioned mice. Immunostaining of isolated single fibers revealed GFP+PAX7+, GFP+MyoD+, and GFP+Myf5+ satellite-like cells on the fibers. Single-fiber cultures from these mice showed proliferation of GFP+ fibers. These results indicate two different roles of KSL cells: one leading to regeneration of damaged muscles in the early phase and the other to conversion into satellite cells in the late phase.

  6. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    PubMed Central

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  7. Centroacinar cells: At the center of pancreas regeneration.

    PubMed

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  9. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina.

    PubMed

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M; Hyde, David R

    2015-11-25

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal

  10. Disrupted Membrane Structure and Intracellular Ca2+ Signaling in Adult Skeletal Muscle with Acute Knockdown of Bin1

    PubMed Central

    Tjondrokoesoemo, Andoria; Park, Ki Ho; Ferrante, Christopher; Komazaki, Shinji; Lesniak, Sebastian; Brotto, Marco; Ko, Jae-Kyun; Zhou, Jingsong; Weisleder, Noah; Ma, Jianjie

    2011-01-01

    Efficient intracellular Ca2+ ([Ca2+]i) homeostasis in skeletal muscle requires intact triad junctional complexes comprised of t-tubule invaginations of plasma membrane and terminal cisternae of sarcoplasmic reticulum. Bin1 consists of a specialized BAR domain that is associated with t-tubule development in skeletal muscle and involved in tethering the dihydropyridine receptors (DHPR) to the t-tubule. Here, we show that Bin1 is important for Ca2+ homeostasis in adult skeletal muscle. Since systemic ablation of Bin1 in mice results in postnatal lethality, in vivo electroporation mediated transfection method was used to deliver RFP-tagged plasmid that produced short –hairpin (sh)RNA targeting Bin1 (shRNA-Bin1) to study the effect of Bin1 knockdown in adult mouse FDB skeletal muscle. Upon confirming the reduction of endogenous Bin1 expression, we showed that shRNA-Bin1 muscle displayed swollen t-tubule structures, indicating that Bin1 is required for the maintenance of intact membrane structure in adult skeletal muscle. Reduced Bin1 expression led to disruption of t-tubule structure that was linked with alterations to intracellular Ca2+ release. Voltage-induced Ca2+ released in isolated single muscle fibers of shRNA-Bin1 showed that both the mean amplitude of Ca2+ current and SR Ca2+ transient were reduced when compared to the shRNA-control, indicating compromised coupling between DHPR and ryanodine receptor 1. The mean frequency of osmotic stress induced Ca2+ sparks was reduced in shRNA-Bin1, indicating compromised DHPR activation. ShRNA-Bin1 fibers also displayed reduced Ca2+ sparks' amplitude that was attributed to decreased total Ca2+ stores in the shRNA-Bin1 fibers. Human mutation of Bin1 is associated with centronuclear myopathy and SH3 domain of Bin1 is important for sarcomeric protein organization in skeletal muscle. Our study showing the importance of Bin1 in the maintenance of intact t-tubule structure and ([Ca2+]i) homeostasis in adult skeletal muscle

  11. Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction.

    PubMed

    Hill, D L; Phillips, L M

    1994-05-01

    Unilateral chorda tympani nerve sectioning was combined with institution of a sodium-restricted diet in adult rats to determine the role that environment has on the functional properties of regenerating taste receptor cells. Rats receiving chorda tympani sectioning but no dietary manipulation (cut controls) and rats receiving only the dietary manipulation (diet controls) had normal responses to a concentration series of NaCl, sodium acetate (NaAc), and NH4Cl. However, responses from the regenerated nerve in NaCl-restricted rats (40-120 d postsectioning) to NaCl and NaAc were reduced by as much as 30% compared to controls, indicating that regenerating taste receptors are influenced by environmental (dietary) factors. Responses to NH4Cl were normal; therefore, the effect appears specific to sodium salts. Surprisingly, in the same rats, NaCl responses from the contralateral, intact chorda tympani were up to 40% greater than controls. Thus, in the same rat, there was over a twofold difference in sodium responses between the right and left chorda tympani nerves. A study of the time course of the functional alterations in the intact nerve revealed that responses to NaCl were extremely low immediately following sectioning (about 20% of the normal response), and then increased monotonically during the following 50 d until relative response magnitudes became supersensitive. This function occurred even when the cut chorda tympani was prevented from reinnervating lingual epithelia, demonstrating that events related to regeneration do not play a role in the functional properties of the contralateral side of the tongue.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Cellular dynamics in the muscle satellite cell niche

    PubMed Central

    Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2013-01-01

    Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182

  13. Effect of pure muscle retraction on multifidus injury and atrophy after posterior lumbar spine surgery with 24 weeks observation in a rabbit model.

    PubMed

    Hu, Zhi-Jun; Zhang, Jian-Feng; Xu, Wen-Bin; Zhao, Feng-Dong; Wang, Ji-Ying; Fan, Shun-Wu; Fang, Xiang-Qian

    2017-01-01

    To evaluate the effect of pure muscle retraction on multifidus injury and atrophy. Sixty-three adult New Zealand white rabbits were divided evenly into three groups: 1-h retraction (group R1), 2-h retraction (R2), and sham surgery (C). The multifidus muscle was evaluated using magnetic resonance imaging (MRI) and histology after 3 and 48 h, and 1, 3, 6, 12, and 24 weeks after surgery. Multifidus muscle injury and atrophy were not observed in group C, but were obvious in groups R1 and R2. Edema, necrosis, and inflammation mainly occurred in the first week postoperatively, and were more severe in R2 than in R1 (P < 0.01). Muscle fiber regeneration began at week 1, fibrotic changes mainly occurred at weeks 3 and 6, and fat degeneration became obvious at weeks 12 and 24 postoperatively. The fibrosis and fat degeneration scores of R2 were higher than those of R1 (P < 0.01). Decreased acetylcholine activity and granular degeneration of the neuromuscular junction were observed in both retraction groups, but was more severe in R2 than in R1 (P < 0.01). Muscle retraction was an important factor not only for multifidus injury, but also for long-term multifidus atrophy after posterior lumbar surgery; a longer retraction time caused more severe multifidus injury and atrophy. Muscle fibers can be regenerated postoperatively, and denervation might be the reason for muscle atrophy.

  14. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds.

    PubMed

    Iwamoto, Yoshitaka; Takahashi, Makoto; Shinkoda, Koichi

    2017-08-02

    Agonist and antagonist muscle co-contractions during motor tasks are greater in the elderly than in young adults. During normal walking, muscle co-contraction increases with gait speed in young adults, but not in elderly adults. However, no study has compared the effects of speed on muscle co-contraction of the ankle joint during dynamic postural control in young and elderly adults. We compared muscle co-contractions of the ankle joint between young and elderly subjects during a functional stability boundary test at different speeds. Fifteen young adults and 16 community-dwelling elderly adults participated in this study. The task was functional stability boundary tests at different speeds (preferred and fast). Electromyographic evaluations of the tibialis anterior and soleus were recorded. The muscle co-contraction was evaluated using the co-contraction index (CI). There were no statistically significant differences in the postural sway parameters between the two age groups. Elderly subjects showed larger CI in both speed conditions than did the young subjects. CI was higher in the fast speed condition than in the preferred speed condition in the young subjects, but there was no difference in the elderly subjects. Moreover, after dividing the analytical range into phases (acceleration and deceleration phases), the CI was larger in the deceleration phase than in the acceleration phase in both groups, except for the young subjects in the fast speed conditions. Our results showed a greater muscle co-contraction of the ankle joint during dynamic postural control in elderly subjects than in young subjects not only in the preferred speed condition but also in the fast speed condition. In addition, the young subjects showed increased muscle co-contraction in the fast speed condition compared with that in the preferred speed condition; however, the elderly subjects showed no significant difference in muscle co-contraction between the two speed conditions. This indicates

  15. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo

    PubMed Central

    Juhas, Mark; Engelmayr, George C.; Fontanella, Andrew N.; Palmer, Gregory M.; Bursac, Nenad

    2014-01-01

    Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration. PMID:24706792

  16. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.

    PubMed

    Jones, Sarah; Man, William D-C; Gao, Wei; Higginson, Irene J; Wilcock, Andrew; Maddocks, Matthew

    2016-10-17

    This review is an update of a previously published review in the Cochrane Database of Systematic Reviews Issue 1, 2013 on Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.Patients with advanced progressive disease often experience muscle weakness, which can impact adversely on their ability to be independent and their quality of life. In those patients who are unable or unwilling to undertake whole-body exercise, neuromuscular electrical stimulation (NMES) may be an alternative treatment to enhance lower limb muscle strength. Programmes of NMES appear to be acceptable to patients and have led to improvements in muscle function, exercise capacity, and quality of life. However, estimates regarding the effectiveness of NMES based on individual studies lack power and precision. Primary objective: to evaluate the effectiveness of NMES on quadriceps muscle strength in adults with advanced disease. Secondary objectives: to examine the safety and acceptability of NMES, and its effect on peripheral muscle function (strength or endurance), muscle mass, exercise capacity, breathlessness, and health-related quality of life. We identified studies from searches of the Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), and Database of Abstracts of Reviews of Effects (DARE) (the Cochrane Library), MEDLINE (OVID), Embase (OVID), CINAHL (EBSCO), and PsycINFO (OVID) databases to January 2016; citation searches, conference proceedings, and previous systematic reviews. We included randomised controlled trials in adults with advanced chronic respiratory disease, chronic heart failure, cancer, or HIV/AIDS comparing a programme of NMES as a sole or adjunct intervention to no treatment, placebo NMES, or an active control. We imposed no language restriction. Two review authors independently extracted data on study design, participants, interventions, and outcomes. We assessed risk of bias using

  17. Cell Migration During Heart Regeneration in Zebrafish

    PubMed Central

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2018-01-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, preexisting cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. PMID:27085002

  18. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    PubMed Central

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the

  19. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    PubMed Central

    Rovira, Mireia; Arrey, Gerard; Planas, Josep V.

    2017-01-01

    Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic

  20. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.