Sample records for adult postnatal day

  1. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function

    PubMed Central

    Rebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Caffrey Cagliostro, Martha K.; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Ansorge, Mark S.

    2014-01-01

    Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2–P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2–P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors. PMID:25209278

  2. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome.

    PubMed

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.

  3. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis

    PubMed Central

    Coleman, Leon G.; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5g/kg, s.c., 2 hours apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV+IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology. PMID:22572057

  4. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  5. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    PubMed Central

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012

  6. Postnatal Loss of Hap1 Reduces Hippocampal Neurogenesis and Causes Adult Depressive-Like Behavior in Mice

    PubMed Central

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-01-01

    Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. PMID:25875952

  7. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice.

    PubMed

    Xiang, Jianxing; Yan, Sen; Li, Shi-Hua; Li, Xiao-Jiang

    2015-04-01

    Depression is a serious mental disorder that affects a person's mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.

  8. Oral methylphenidate alleviates the fine motor dysfunction caused by chronic postnatal manganese exposure in adult rats.

    PubMed

    Beaudin, Stéphane A; Strupp, Barbara J; Lasley, Stephen M; Fornal, Casimir A; Mandal, Shyamali; Smith, Donald R

    2015-04-01

    Developmental manganese (Mn) exposure is associated with motor dysfunction in children and animal models, but little is known about the underlying neurochemical mechanisms or the potential for amelioration by pharmacotherapy. We investigated whether methylphenidate (MPH) alleviates fine motor dysfunction due to chronic postnatal Mn exposure, and whether Mn exposure impairs brain extracellular dopamine (DA) and norepinephrine (NE) in the prefrontal cortex (PFC) and striatum in adult animals. Rats were orally exposed to 0 or 50 mg Mn/kg/day from postnatal day 1 until the end of the study (PND 145). The staircase test was used to assess skilled forelimb function. Oral MPH (2.5 mg/kg/day) was administered daily 1 h before staircase testing for 16 days. DA and NE levels were measured by dual probe microdialysis. Results show that Mn exposure impaired reaching and grasping skills and the evoked release of DA and NE in the PFC and striatum of adult rats. Importantly, oral MPH treatment fully alleviated the fine motor deficits in the Mn-exposed animals, but did not affect forelimb skills of control rats not exposed to Mn. These results suggest that catecholaminergic hypofunctioning in the PFC and striatum may underlie the Mn-induced fine motor dysfunction, and that oral MPH pharmacotherapy is an effective treatment approach for alleviating this dysfunction in adult animals. The therapeutic potential of MPH for the treatment of motor dysfunction in Mn-exposed children and adults appears promising pending further characterization of MPH efficacy in other functional areas (eg, attention) believed to be affected by developmental Mn exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    PubMed

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  10. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  11. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice

    USDA-ARS?s Scientific Manuscript database

    Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1...

  12. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  13. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice.

    PubMed

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I; Basselin, Mireille

    2014-05-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents. Published by Elsevier Ltd.

  14. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  15. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  18. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development.

    PubMed

    Storer, Mekayla A; Gallagher, Denis; Fatt, Michael P; Simonetta, Jaclin V; Kaplan, David R; Miller, Freda D

    2018-05-08

    Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Postnatal Vitamin D Intake Modulates Hippocampal Learning and Memory in Adult Mice

    PubMed Central

    Liang, Qiujuan; Cai, Chunhui; Duan, Dongxia; Hu, Xinyu; Hua, Wanhao; Jiang, Peicheng; Zhang, Liu; Xu, Jun; Gao, Zhengliang

    2018-01-01

    Vitamin D (VD) is a neuroactive steroid crucial for brain development, function and homeostasis. Its deficiency is associated with numerous brain conditions. As such, VD and its variants are routinely taken by a broad of groups with/without known VD deficiency. In contrast, the harmful effects of VD overdose have been poorly studied. Similarly, the developmental stage-specific VD deficiency and overdose have been rarely explored. In the present work, we showed that postnatal VD supplementation enhanced the motor function transiently in the young adult, but not in the older one. Postnatal VD intake abnormality did not impact the anxiety and depressive behavior but was detrimental to spatial learning and hippocampus-dependent memory. At the molecular level we failed to observe an obvious and constant change with the neural development and activity-related genes examined. However, disrupted developmental expression dynamics were observed for most of the genes, suggesting that the altered neural development dynamics and therefore aberrant adult plasticity might underlie the functional deficits. Our work highlights the essence of VD homeostasis in neural development and adult brain function. Further studies are needed to determine the short- and long-term effects VD intake status may have on brain development, homeostasis, and diseases. PMID:29666565

  20. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week.

    PubMed

    Nikodemova, Maria; Kimyon, Rebecca S; De, Ishani; Small, Alissa L; Collier, Lara S; Watters, Jyoti J

    2015-01-15

    During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    PubMed

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  2. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development.

    PubMed

    Linden, D C; Guillery, R W; Cucchiaro, J

    1981-12-01

    The anterograde transport of 3H proline and of horseradish peroxidase has been used to study the retinogeniculate pathway in normal adult ferrets and in young ferrets during postnatal development. the lateral geniculate nucleus in adults shows a characteristic "carnivore" pattern, with layers A, A1, C, C1, C2, and C3, and a medial interlaminar nucleus recognizable either cytoarchitectonically or on the basis ofth retinogeniculate innervation. In addition, there is a well-defined, rather large perigeniculate nucleus. At birth the lateral geniculate nucleus is unlaminated and essentially all parts are reached by afferents from both eyes. The crossed component is by far the larger. It extends from the optic tract medially well into the perigeniculate field, in contrast to the uncrossed component which barely reaches the perigeniculate field. During the first 3 postnatal days the uncrossed fibers restrict their arbors to a small posterior and medial region, the precursor of the biocular segment of the nucleus. The crossed fibers gradually retreat from the region within which the uncrossed fibers have concentrated. Between the fourth and eighth postnatal days the field occupied by the ipsilateral component expands again to form a major focus that will define lamina A1 and a minor focus that will define C1. At this stage the crossed and the uncrossed fibers overlap at the borders of lamina A1 and the whole region of lamina C1 is also occupied by arbors of the crossed component. The perigeniculate field becomes clearly distinguishable from the lateral geniculate nucleus and the medial interlaminar nucleus is becoming clearly recognizable between days 3 and 8. Between days 8 and 15 the cytoarchitectonic borders between layers A and A1 become clearly defined, but the retinogeniculate axons from each eye still extend across this border. These axons retreat into their appropriate lamina after the 15th postnatal day an the nucleus reaches its essentially adult structure by

  3. The day of your surgery - adult

    MedlinePlus

    Same-day surgery - adult; Ambulatory surgery - adult; Surgical procedure - adult; Preoperative care - day of surgery ... meet with them at an appointment before the day of surgery or on the same day of ...

  4. Postnatal light alters hypothalamic-pituitary-adrenal axis function and induces a depressive-like phenotype in adult mice.

    PubMed

    Coleman, Georgia; Gigg, John; Canal, Maria Mercè

    2016-11-01

    The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long-term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic-pituitary-adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24-h light-dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression- and anxiety-related behaviour. Results showed that LL- and DD-raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL-raised mice showed increased corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL-raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD-raised mice. Taken together, these data suggest that altered postnatal light environments have long-term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Life course structural equation model of the effects of prenatal and postnatal growth on adult blood pressure.

    PubMed

    Kaakinen, Marika; Sovio, Ulla; Hartikainen, Anna-Liisa; Pouta, Anneli; Savolainen, Markku J; Herzig, Karl-Heinz; Elliott, Paul; De Stavola, Bianca; Läärä, Esa; Järvelin, Marjo-Riitta

    2014-12-01

    Fetal and postnatal growth have been associated with adult blood pressure (BP), but findings about the relative importance of growth at different stages of life on BP are inconsistent. The study population comprised 5198 participants from the Northern Finland Birth Cohort 1966 with data on birth weight, height and weight measurements until adolescence, systolic and diastolic BP at 31 years and several covariates. Structural equation modelling was used in the analysis. Negative direct effects of birth weight on adult systolic BP were observed (standardised regression coefficients: -0.08 (-0.14 to -0.03) in males and -0.04 (-0.09 to 0.01) in females, equalling -1.99 (-3.32 to -0.65) and -1.01 (-2.33 to 0.32) mm Hg/kg, respectively). Immediate postnatal growth was associated with adult BP only indirectly via growth later in life. In contrast, growth from adiposity rebound onwards had large direct, indirect and total effects on adult BP. Current body mass index was the strongest growth-related predictor of adult BP (0.36 (0.30 to 0.41) in males and 0.31 (0.24, 0.37) in females, equalling 1.29 (1.09 to 1.48) and 0.81 (0.63 to 0.99) mm Hg/(kg/m(2)), respectively). Our path analytical approach provides evidence for the importance of both fetal growth and postnatal growth, especially from adiposity rebound onwards, in determining adult BP, together with genetic predisposition and behavioural factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Effects of acute postnatal exposure to 3,3',4,4'-tetrachlorobiphenyl on sperm function and hormone levels in adult rats.

    PubMed

    Hsu, Ping-Chi; Guo, Yueliang Leon; Li, Mei-Hui

    2004-02-01

    Polychlorinated biphenyls (PCBs) are considered potential endocrine disruptors due to their ability to act as estrogens, antiestrogens and goitrogens. The aim of this study is to ascertain whether acute postnatal treatment with 3,3',4,4'-tetrachlorobiphenyl (CB 77) affects sperm function and hormone levels in adult rats. Male Sprague-Dawley rats received CB 77 by ip injection of 2 or 20 mg/kg at day 21 and sacrificed at day 112. At day 112, right and left testis weights were significantly increased, whereas sperm count, motility, total motile sperm count, curvilinear velocity, average path velocity, straight-line velocity, and beat-cross frequency for motile sperm were significantly decreased in rats treated with 20 mg/kg CB 77. Sperm-oocyte penetration rate was significantly reduced in rats treated with either 2 or 20 mg/kg CB 77. There was high sperm acrosome reaction rate (ARR) in the 20 mg/kg CB 77-treated rats. There was a significant increase in thyroid-stimulating hormone level in the 20 mg/kg CB 77 group. However, no changes were seen in serum testosterone, thyroid hormones, or prolactin concentrations at day 112. In summary, this study showed that postnatal exposure to CB 77 might affect spermatogenesis, motility, ARR, and ability of fertilizing oocytes in mature rats. These results suggest that the sperm functions may be more susceptible or adapt less readily than the thyroid functions to endocrine disruption caused by dioxin-like PCB congeners.

  7. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    PubMed

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  8. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    PubMed Central

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  9. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    PubMed

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  10. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  11. Relative importance of prenatal and postnatal androgen action in determining growth of the penis and anogenital distance in the rat before, during and after puberty.

    PubMed

    van den Driesche, S; Scott, H M; MacLeod, D J; Fisken, M; Walker, M; Sharpe, R M

    2011-12-01

    Experimental animal studies show that measurement of anogenital distance (AGD) and/or penis length may provide lifelong 'read-outs' of foetal androgen exposure during the masculinization programming window (MPW). However, variation in postnatal androgen exposure may complicate interpretation of such measurements. This is important to clarify if such measurements are to be applied to humans. The present aim was to evaluate effects of prenatal and/or postnatal manipulation of androgen production/action on growth of AGD and the penis in rats. Pregnant rats were treated daily before (e13.5-e21.5) and after birth (postnatal days 1-15) with either vehicle, 500 mg/kg di(n-butyl) phthalate (DBP) or 100 mg/kg flutamide (postnatal only) in prenatal + postnatal treatment combinations (N = 6 treatment combinations); DBP impairs androgen production whereas flutamide impairs androgen action. Male offspring were killed on postnatal day 8 (prepuberty), 25 (early puberty) or 90 (adulthood) when AGD was measured, the penis dissected out and its weight and length measured; plasma testosterone and ventral prostate weight were measured at day 90 to assess endogenous androgen exposure. In controls, penis length, girth and AGD increased 2.2-, 5.3-and 5.9-fold respectively from day 8 to day 90. Significant inhibition of penis growth and final length and girth was induced by treatments that inhibited postnatal androgen action. Conversely, growth and ultimate (adult) AGD was inhibited by prenatal inhibition of androgen production whereas postnatal androgen inhibition had negligible effect. Nevertheless, AGD and penis length were highly correlated at every age (R(2) > 0.33; p < 0.0001). However, altered endogenous androgen exposure may confound interpretation of changes in adults exposed prenatally/postnatally to DBP/flutamide. We conclude that AGD provides a lifelong guide to prenatal androgen exposure (in the MPW) whereas penis size reflects both prenatal + postnatal androgen exposure. At

  12. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    PubMed

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment.

    PubMed

    Coleman, Leon G; Jarskog, L Fredrik; Moy, Sheryl S; Crews, Fulton T

    2009-09-01

    The prefrontal cortex (PFC) is associated with higher cognitive functions including attention and working memory and has been implicated in the regulation of impulsivity as well as the pathology of complex mental illnesses. N-methyl D-aspartate (NMDA) antagonist treatment with dizocilpine induces cell death which is greatest in the frontal cortex on post-natal day seven (P7), however the long-term structural and behavioral effects of this treatment are unknown. This study investigates both the acute neurotoxicity of P7 dizocilpine and the persistent effects of this treatment on pyramidal cells and parvalbumin interneurons in the adult PFC, a brain region involved in the regulation of impulsivity. Dizocilpine treatment on P7 increased cleaved caspase-3 immunoreactivity (IR) in the PFC on P8. In adult mice (P82), P7 dizocilpine treatment resulted in 50% fewer parvalbumin-positive interneurons (p<0.01) and 42% fewer layer V pyramidal neurons (p<0.01) in the PFC. Double immunohistochemistry revealed cleaved caspase-3 IR in both GAD67 IR interneurons and GAD67 (-) neurons. Following dizocilpine treatment at P7, adults showed reduced time in the center of the open field suggesting increased anxiety-like behavior. These findings indicate that early brain insults affecting glutamatergic neurotransmission lead to persistent brain pathology that could contribute to impulsivity and cognitive dysfunction.

  14. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, R. Clark; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ 85721; BIO5 Institute, University of Arizona, Tucson, AZ 85721

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airwaymore » reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.« less

  15. The postnatal 5-HT1A receptor regulates adult anxiety and depression differently via multiple molecules.

    PubMed

    Ishikawa, Chihiro; Shiga, Takashi

    2017-08-01

    Serotonin (5-HT) and the 5-HT 1A receptor during development are known to modulate anxiety and depression in later life. However, the brain mechanisms linking the postnatal 5-HT system and adult behavior remain unknown. Here, we examined the effects of pharmacological 5-HT 1A receptor activation during the postnatal period on anxiety and depression-like behavior in adult BALB/c male mice. To elucidate the underlying mechanisms, we measured mRNA expression of the 5-HT 1A receptor, brain-derived neurotrophic factor (BDNF), GABA A receptor subunits, and AMPA receptor subunits in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Treatment with the selective 5-HT reuptake inhibitor (fluoxetine) and 5-HT 1A receptor agonist (8-OH-DPAT) during the postnatal period decreased anxiety-like behavior in adulthood, whereas only 8-OH-DPAT treatment increased depression-like behavior. Concomitantly with the behavioral effects, postnatal treatment with fluoxetine and 8-OH-DPAT decreased the mRNA expression of the GABA A receptor α3 subunit in the mPFC and ventral hippocampus in adulthood, while 8-OH-DPAT, but not fluoxetine, decreased the mRNA expression of the 5-HT 1A receptor and BDNF in the mPFC and the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. On the basis of the correlative changes between behavior and mRNA expression, these results suggest that the GABA A receptor α3 subunit in the mPFC and ventral hippocampus may regulate anxiety-like behavior. In contrast, depression-like behavior may be regulated by the 5-HT 1A receptor and BDNF in the mPFC and by the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. In summary, activation of the 5-HT 1A receptor during the postnatal period may reduce anxiety levels, but increase depression levels during adulthood via different multiple molecules in the mPFC and ventral hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. MEAL PARAMETERS AND VAGAL GASTROINTESTINAL AFFERENTS IN MICE THAT EXPERIENCED EARLY POSTNATAL OVERNUTRITION

    PubMed Central

    Biddinger, Jessica E.; Fox, Edward A.

    2010-01-01

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component - the vagus nerve - has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal-size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 hour/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. PMID:20403369

  17. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  19. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE PAGES

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; ...

    2017-02-01

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  20. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    PubMed

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups.

  1. Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior.

    PubMed

    Eppolito, Amy K; Bachus, Susan E; McDonald, Craig G; Meador-Woodruff, James H; Smith, Robert F

    2010-01-01

    Animal models of prenatal nicotine exposure clearly indicate that nicotine is a neuroteratogen. Some of the persisting effects of prenatal nicotine exposure include low birth weight, behavioral changes and deficits in cognitive function, although few studies have looked for neurobehavioral and neurochemical effects that might persist throughout the lifespan. Pregnant rats were given continuous infusions of nicotine (0.96mg/kg/day or 2.0mg/kg/day, freebase) continuing through the third trimester equivalent, a period of rapid brain development. Because the third trimester equivalent occurs postnatally in the rat (roughly the first week of life) nicotine administration to neonate pups continued via maternal milk until postnatal day (P) 10. Exposure to nicotine during pre- and early postnatal development had an anxiogenic effect on adult rats (P75) in the elevated plus maze (EPM), and blocked extinction learning in a fear conditioning paradigm, suggesting that pre- and postnatal nicotine exposure affect anxiety-like behavior and cognitive function well into adulthood. In contrast, nicotine exposure had no effect on anxiety-like behaviors in the EPM in adolescent animals (P30). Analysis of mRNA for the alpha4, alpha7, and beta2 subunits of nicotinic acetylcholine receptors revealed lower expression of these subunits in the adult hippocampus and medial prefrontal cortex following pre- and postnatal nicotine exposure, suggesting that nicotine altered the developmental trajectory of the brain. These long-term behavioral and neurochemical changes strengthen the case for discouraging cigarette smoking during pregnancy and clearly indicate that the use of the patch as a smoking cessation aid during pregnancy is not a safe alternative.

  2. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  3. Adult Day Services

    MedlinePlus

    ... views of various members of the National Adult Day Services Association. 2. U.S. Health Care Costs: Background Brief , The Henry J. Kaiser Family Foundation (2008) (www.kaiseredu.org); excerpt ...

  4. Validation of the Edinburgh Postnatal Depression Scale (EPDS) for screening of major depressive episode among adults from the general population.

    PubMed

    Matijasevich, Alicia; Munhoz, Tiago N; Tavares, Beatriz Franck; Barbosa, Ana Paula Pereira Neto; da Silva, Diego Mello; Abitante, Morgana Sonza; Dall'Agnol, Tatiane Abreu; Santos, Iná S

    2014-10-08

    Standardized questionnaires designed for the identification of depression are useful for monitoring individual as well as population mental health. The Edinburgh Postnatal Depression Scale (EPDS) has originally been developed to assist primary care health professionals to detect postnatal depression, but several authors recommend its use outside of the postpartum period. In Brazil, the use of the EPDS for screening depression outside the postpartum period and among non-selected populations has not been validated. The present study aimed to assess the validity of the EPDS as a screening instrument for major depressive episode (MDE) among adults from the general population. This is a validation study that used a population-based sampling technique to select the participants. The study was conducted in the city of Pelotas, Brazil. Households were randomly selected by two stage conglomerates with probability proportional to size. EPDS was administered to 447 adults (≥20 years). Approximately 17 days later, participants were reinterviewed by psychiatrics and psychologists using a structured diagnostic interview (Mini International Neuropsychiatric Interview, MINI). We calculated the sensitivity and specificity of each cutoff point of EPDS, and values were plotted as a receiver operator characteristic curve. The best cutoff point for screening depression was ≥8, with 80.0% (64.4 - 90.9%) sensitivity and 87.0% (83.3 - 90.1%) specificity. Among women the best cutoff point was ≥8 too with values of sensitivity and specificity of 84.4% (67.2 - 94.7%) and 81.3% (75.5 - 86.1%), respectively. Among men, the best cutoff point was ≥7 (75% sensitivity and 89% specificity). The EPDS was shown to be suitable for screening MDE among adults in the community.

  5. Lack of behavioral sensitization to repeated cocaine administration from postnatal days 1 to 10.

    PubMed

    Meyer, J S; Yacht, A C

    1993-09-01

    This research determined whether sensitization (or tolerance) to the behavioral effects of cocaine in rat pups would occur following repeated cocaine administration. Rats were injected daily with 20 mg/kg of cocaine HCl s.c. from postnatal day 1 to day 10, injected with saline vehicle only, or left untreated during this period. On day 11, animals from each group were challenged with either 0, .625, 1.25, or 2.50 mg/kg of cocaine and their behavioral responses were recorded. Prior cocaine treatment did not influence the acute effects of cocaine on ultrasonic vocalizations or on any observed motor responses. In contrast, the cocaine- and saline-treated pups differed in a similar manner from the untreated control group on several behavioral measures. These results indicate that the sensitizing effects of repeated cocaine administration are not manifested during the neonatal period. However, the stimulation (stress) of handling and injection may alter the subsequent responsivity of infant rats to a cocaine challenge.

  6. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy

    PubMed Central

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R.; Krah, Nathan M.; Dennison, Roberta J.; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D.; Smith, Lois E.H.

    2010-01-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r2 = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome. PMID:21056995

  7. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy.

    PubMed

    Stahl, Andreas; Chen, Jing; Sapieha, Przemyslaw; Seaward, Molly R; Krah, Nathan M; Dennison, Roberta J; Favazza, Tara; Bucher, Felicitas; Löfqvist, Chatarina; Ong, Huy; Hellström, Ann; Chemtob, Sylvain; Akula, James D; Smith, Lois E H

    2010-12-01

    In clinical studies, postnatal weight gain is strongly associated with retinopathy of prematurity (ROP). However, animal studies are needed to investigate the pathophysiological mechanisms of how postnatal weight gain affects the severity of ROP. In the present study, we identify nutritional supply as one potent parameter that affects the extent of retinopathy in mice with identical birth weights and the same genetic background. Wild-type pups with poor postnatal nutrition and poor weight gain (PWG) exhibit a remarkably prolonged phase of retinopathy compared to medium weight gain or extensive weight gain pups. A high (r(2) = 0.83) parabolic association between postnatal weight gain and oxygen-induced retinopathy severity is observed, as is a significantly prolonged phase of proliferative retinopathy in PWG pups (20 days) compared with extensive weight gain pups (6 days). The extended retinopathy is concomitant with prolonged overexpression of retinal vascular endothelial growth factor in PWG pups. Importantly, PWG pups show low serum levels of nonfasting glucose, insulin, and insulin-like growth factor-1 as well as high levels of ghrelin in the early postoxygen-induced retinopathy phase, a combination indicative of poor metabolic supply. These differences translate into visual deficits in adult PWG mice, as demonstrated by impaired bipolar and proximal neuronal function. Together, these results provide evidence for a pathophysiological correlation between poor postnatal nutritional supply, slow weight gain, prolonged retinal vascular endothelial growth factor overexpression, protracted retinopathy, and reduced final visual outcome.

  8. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.

    PubMed

    Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E

    1998-10-01

    Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press

  9. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  10. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats.

    PubMed

    Meyer, F; Peterschmitt, Y; Louilot, A

    2009-05-01

    Latent inhibition has been found to be disrupted in patients with acute schizophrenia. Striatal dopaminergic dysregulation is commonly acknowledged in schizophrenia. This disease may be consecutive to a functional disconnection between integrative regions, stemming from neurodevelopmental failures. Various anomalies suggesting early abnormal brain development have been described in the entorhinal cortex (ENT) and ventral subiculum (SUB) of patients. This study examines the consequences of a neonatal transitory blockade of the left ENT or left SUB for latent inhibition-related dopamine responses in the anterior part of the dorsal striatum using in-vivo voltammetry in freely moving adult rats. Reversible inactivation of both structures in different animals was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the functional neonatal disconnection of the ENT or SUB caused the behavioural latent inhibition expression in pre-exposed (PE)-TTX-conditioned adult rats to disappear. After postnatal inactivation of the SUB, PE-TTX-conditioned rats displayed a reversal of the latent inhibition-related striatal dopamine responses, whereas after neonatal blockade of the ENT, dopamine changes in PE-TTX-conditioned rats monitored in the anterior striatum were between those observed in PE-phosphate-buffered-saline-conditioned and non-PE-TTX-conditioned animals. These data suggest that neonatal functional inactivation of the SUB disrupts latent inhibition-related striatal dopamine responses in adult animals more than that of the ENT. They may help improve understanding of the pathophysiology of schizophrenia.

  11. Effects of short-duration electromagnetic radiation on early postnatal neurogenesis in rats: Fos and NADPH-d histochemical studies.

    PubMed

    Orendáčová, Judita; Orendáč, Martin; Mojžiš, Miroslav; Labun, Ján; Martončíková, Marcela; Saganová, Kamila; Lievajová, Kamila; Blaško, Juraj; Abdiová, Henrieta; Gálik, Ján; Račeková, Eniko

    2011-11-01

    The immediate effects of whole body electromagnetic radiation (EMR) were used to study postnatal neurogenesis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of Wistar rats of both sexes. Newborn postnatal day 7 (P7) and young adult rats (P28) were exposed to pulsed electromagnetic fields (EMF) at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm(2) for 2 h. Post-irradiation changes were studied using immunohistochemical localization of Fos and NADPH-d. We found that short-duration exposure induces increased Fos immunoreactivity selectively in cells of the SVZ of P7 and P28 rats. There were no Fos positive cells visible within the RMS of irradiated rats. These findings indicate that some differences exist in prerequisites of proliferating cells between the SVZ and RMS regardless of the age of the rats. Short-duration exposure also caused praecox maturation of NADPH-d positive cells within the RMS of P7 rats. The NADPH-d positive cells appeared several days earlier than in age-matched controls, and their number and morphology showed characteristics of adult rats. On the other hand, in the young adult P28 rats, EMR induced morphological signs typical of early postnatal age. These findings indicate that EMR causes age-related changes in the production of nitric oxide (NO), which may lead to different courses of the proliferation cascade in newborn and young adult neurogenesis. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis

    PubMed Central

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production. PMID:29511358

  13. Neuronal Subtype Generation During Postnatal Olfactory Bulb Neurogenesis.

    PubMed

    Angelova, Alexandra; Tiveron, Marie-Catherine; Cremer, Harold; Beclin, Christophe

    2018-01-01

    In the perinatal and adult forebrain, regionalized neural stem cells lining the ventricular walls produce different types of olfactory bulb interneurons. Although these postnatal stem cells are lineage related to their embryonic counterparts that produce, for example, cortical, septal, and striatal neurons, their output at the level of neuronal phenotype changes dramatically. Tiveron et al. investigated the molecular determinants underlying stem cell regionalization and the gene expression changes inducing the shift from embryonic to adult neuron production. High-resolution gene expression analyses of different lineages revealed that the zinc finger proteins, Zic1 and Zic2, are postnatally induced in the dorsal olfactory bulb neuron lineage. Functional studies demonstrated that these factors confer a GABAergic and calretinin-positive phenotype to neural stem cells while repressing dopaminergic fate. Based on these findings, we discuss the molecular mechanisms that allow acquisition of new traits during the transition from embryonic to adult neurogenesis. We focus on the involvement of epigenetic marks and emphasize why the identification of master transcription factors, that instruct the fate of postnatally generated neurons, can help in deciphering the mechanisms driving fate transition from embryonic to adult neuron production.

  14. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  15. Fast and efficient: postnatal growth and energy expenditure in an Arctic-breeding waterbird, the Red-throated Loon (Gavia stellata)

    USGS Publications Warehouse

    Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.

    2015-01-01

    Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.

  16. (+/-)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the morris water maze after exposure of rats to different five-day intervals from birth to postnatal day twenty.

    PubMed

    Vorhees, Charles V; Schaefer, Tori L; Skelton, Matthew R; Grace, Curtis E; Herring, Nicole R; Williams, Michael T

    2009-01-01

    During postnatal days (PD) 11-20, (+/-)3,4-methylenedioxymethamphetamine (MDMA) treatment impairs egocentric and allocentric learning, and reduces spontaneous locomotor activity; however, it does not have these effects during PD 1-10. How the learning impairments relate to the stress hyporesponsive period (SHRP) is unknown. To test this association, the preweaning period was subdivided into 5-day periods from PD 1-20. Separate pups within each litter were injected subcutaneously with 0, 10, 15, 20, or 25 mg/kg MDMA x4/day on PD 1-5, 6-10, 11-15, or 16-20, and tested as adults. The 3 highest MDMA dose groups showed reduced locomotor activity during the first 10 min (of 60 min), especially in the PD 1-5 and 6-10 dosing regimens. MDMA groups in all dosing regimens showed impaired allocentric learning in the Morris water maze (on acquisition and reversal, all MDMA groups were affected; on the small platform phase, the 2 high-dose groups were affected). No effects of MDMA were found on anxiety (elevated zero maze), novel object recognition, or egocentric learning (although a nonsignificant trend was observed). The Morris maze results did not support the idea that the SHRP is critical to the effects of MDMA on allocentric learning. However, since no effects on egocentric learning were found, but were apparent after PD 11-20 treatment, the results show that these 2 forms of learning have different exposure-duration sensitivities. 2009 S. Karger AG, Basel.

  17. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine.

    PubMed

    Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván

    2009-02-01

    Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.

  18. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21.

    PubMed

    He, Zhen; Paule, Merle G; Ferguson, Sherry A

    2012-01-01

    Perinatal treatment with relatively high doses of bisphenol A (BPA) appears to have little effect on volume of the rodent sexually dimorphic nucleus of the preoptic area (SDN-POA). However, doses more relevant to human exposures have not been examined. Here, effects of pre- and post-natal treatment with low BPA doses on SDN-POA volume of postnatal day (PND) 21 Sprague-Dawley rats were evaluated. Pregnant rats were orally gavaged with vehicle, 2.5 or 25.0 μg/kg BPA, or 5.0 or 10.0 μg/kg ethinyl estradiol (EE₂) on gestational days 6-21. Beginning on the day after birth, offspring were orally treated with the same dose their dam had received. On PND 21, offspring (n=10-15/sex/group; 1/sex/litter) were perfused and volume evaluation was conducted blind to treatment. SDN-POA outline was delineated using calbindin D28K immunoreactivity. Pairwise comparisons of the significant treatment by sex interaction indicated that neither BPA dose affected female volume. However, females treated with 5.0 or 10.0 μg/kg EE₂ exhibited volumes that were larger than same-sex controls, respectively (p<0.001). Males treated with either BPA dose or 10.0 μg/kg/day EE₂ had larger volumes than same-sex controls (p<0.006). These data indicate that BPA can have sex-specific effects on SDN-POA volume and that these effects manifest as larger volumes in males. Sensitivity of the methodology as well as the treatment paradigm was confirmed by the expected EE₂-induced increase in female volume. These treatment effects might lead to organizational changes within sexually dimorphic neuroendocrine pathways which, if persistent, could theoretically alter adult reproductive physiology and socio-sexual behavior in rats. Published by Elsevier Inc.

  19. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    PubMed

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59.

    PubMed

    Türedi, Sibel; Kerimoğlu, Gökçen; Mercantepe, Tolga; Odacı, Ersan

    2017-09-01

    To investigate the effect on male rat kidney and bladder tissues of exposure to 900-megahertz (MHz) electromagnetic field (EMF) applied on postnatal days 22-59, inclusive. Twenty-four male Sprague Dawley rats, aged 21 days, were used. These were divided equally into one of three groups, control (CG), sham (SG) or EMF (EMFG). CG was not exposed to any procedure. SG rats were kept inside a cage, without being exposed to the effect of EMF, for 1 h a day on postnatal days 22-59, inclusive. EMFG rats were exposed to continuous 900-MHz EMF for 1 h a day under the same conditions as those for the SG rats. Rats were sacrificed on postnatal day 60, and the kidney and bladder tissues were removed. Tissues were stained with hematoxylin and eosin (H&E) and Masson trichrome for histomorphological evaluation. The TUNEL method was used to assess apoptosis. Transmission electron microscopy (TEM) was also used for the kidney tissue. Oxidant/antioxidant parameters were studied in terms of biochemical values. The findings showed that tissue malondialdehyde increased in EMFG compared to CG and SG in both kidney (p = 0.004 and p = 0.004, respectively) and bladder tissue (p = 0.004, p = 0.006, respectively), while catalase and glutathione levels decreased compared to CG (p = 0.004; p = 0.004, respectively) and SG (p = 0.004; p = 0.004, respectively). In the EMF group, pathologies such as dilatation and vacuolization in the distal and proximal tubules, degeneration in glomeruli and an increase in cells tending to apoptosis were observed in kidney tissue. In bladder tissue, degeneration in the transitional epithelium and stromal irregularity and an increase in cells tending to apoptosis were observed in EMFG. Additionally, EMFG samples exhibited glomerular capillary degeneration with capillary basement membranes under TEM. We conclude that continuous exposure to the effect of 900-MHz EMF for 1 h a day on postnatal days 22-59, inclusive, causes an

  1. Mouse models for the study of postnatal cardiac hypertrophy.

    PubMed

    Del Olmo-Turrubiarte, A; Calzada-Torres, A; Díaz-Rosas, G; Palma-Lara, I; Sánchez-Urbina, R; Balderrábano-Saucedo, N A; González-Márquez, H; Garcia-Alonso, P; Contreras-Ramos, A

    2015-06-01

    The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH), in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP) isoproterenol (ISO) was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB), neonates (7-15 days) and young adults (6 weeks of age). Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR), alpha and beta myosins (α-MHC, β-MHC) and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS). Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  2. ChAT-like immunoreactivity of olivocochlear fibres on rat outer hair cells during the postnatal development.

    PubMed

    Roth, B; Dannhof, B; Bruns, V

    1991-01-01

    Several studies present a great deal of information about putative efferent neurotransmitters and their distribution in the adult and developing cochlea. Anatomical mapping of outer hair cell efferent fibres during ontogeny is still not available. Using quantitative electron microscopy in combination with immunocytochemistry, the distribution of ChAT-like immunoreactivity in the developing rat was investigated. Adult-like immunoreactivity in the whole cochlea is first observed in 30-day-old rats. We localized the adult-like immunoreactivity in all efferent fibres and synapses of the outer hair cells along the entire cochlear duct. An adult-like reaction in the whole cochlea could be observed on the 25th day after birth in two out of three cases. On the 20th postnatal day, no adult-like ChAT immunoreactivity was found, with the exception of one case where labelling was seen in the basal region only. The adult-like ChAT immunoreactivity on the 30th day, 2-3 weeks after the onset of hearing, is the latest maturation of all features of the organ of Corti so far investigated. Synaptogenesis of the outer hair cell efferents reaches an adult-like appearance already on the 16th day after birth.

  3. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor

    PubMed Central

    Abi Ghanem, Charly; Degerny, Cindy; Hussain, Rashad; Liere, Philippe; Pianos, Antoine; Tourpin, Sophie; Habert, René; Schumacher, Michael

    2017-01-01

    The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. PMID:29107990

  4. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  5. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  6. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoid-programmed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet.

    PubMed

    Zulkafli, Intan S; Waddell, Brendan J; Mark, Peter J

    2013-09-01

    Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.

  7. Manipulation of pre and postnatal androgen environments and anogenital distance in rats.

    PubMed

    Kita, Diogo H; Meyer, Katlyn B; Venturelli, Amanda C; Adams, Rafaella; Machado, Daria L B; Morais, Rosana N; Swan, Shanna H; Gennings, Chris; Martino-Andrade, Anderson J

    2016-08-10

    We examined the anogenital distance (AGD) plasticity in rats through the manipulation of the androgen environment in utero and during puberty. Dams were treated from gestation days 13-20 with vehicle, flutamide (20mg/kg/day), di-(2-ethylhexyl) phthalate (DEHP, 750mg/kg/day), or testosterone (1.0mg/kg/day). After weaning, male pups were randomly assigned to one of four postnatal groups, which received the same treatments given prenatally. Sixteen treatment groups were established based on the combination of pre- and postnatal exposures. The postnatal treatments were conducted from postnatal days 23-53. In utero flutamide and DEHP exposure significantly shortened male AGD, although this effect was more pronounced in flutamide-exposed rats. Postnatal flutamide, DEHP, and testosterone induced slight but significant reductions in male AGD. Our study indicates that AGD is a stable anatomical landmark that reflects the androgen action in utero, although it can also be slightly responsive to changes in the androgen environment following pubertal exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Behavioral alterations induced in rats by a pre- and postnatal exposure to 2,4-dichlorophenoxyacetic acid.

    PubMed

    Bortolozzi, A A; Duffard, R O; Evangelista de Duffard, A M

    1999-01-01

    The purpose of this study was to determine whether the behavioral development pattern was altered by a pre- and postnatal exposure to 2,4-Dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg/day of 2,4-D from gestation day (GD) 16 to postnatal day (PND) 23. After weaning, the pups were assigned to one of the two subgroups: T1 (fed with untreated diet until PND 90) and T2 (maintained with 2,4-D diet until PND 90). Effects on offsprings were evaluated with a neurotoxicological test battery. Neuromotor reflexes, spontaneous motor activity, serotonin syndrome, circling, and catalepsy were analyzed during various postnatal ages. 2,4-D neonatal exposure induced delay of the ontogeny of righting reflex and negative geotaxis accompanied by motor abnormalities, stereotypic behaviors (excessive grooming and vertical head movements), and hyperactivity in the open field. Adult rats of both sexes (T2 group) showed a diminution of ambulation and rearing, while excessive grooming responses were only observed in T2 males. Besides, these animals manifested serotonin syndrome behaviors, catalepsy, and right-turning preference. Some behaviors were reversible, but others were permanent, and some were only expressed after pharmacological challenges.

  9. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  10. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment.

    PubMed

    Molina-Jiménez, Tania; Limón-Morales, Ofelia; Bonilla-Jaime, Herlinda

    2018-03-01

    Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life

    PubMed Central

    Hathway, G J; Koch, S; Low, L; Fitzgerald, M

    2009-01-01

    Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624

  12. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits

    PubMed Central

    Niwa, Minae; Kamiya, Atsushi; Murai, Rina; Kubo, Ken-ichiro; Gruber, Aaron J; Tomita, Kenji; Lu, Lingling; Tomisato, Shuta; Jaaro-Peled, Hanna; Seshadri, Saurav; Hiyama, Hideki; Huang, Beverly; Kohda, Kazuhisa; Noda, Yukihiro; O’Donnell, Patricio; Nakajima, Kazunori; Sawa, Akira; Nabeshima, Toshitaka

    2011-01-01

    SUMMARY Adult brain function and behavior are influenced by neuronal network formation during development. Genetic susceptibility factors for adult psychiatric illnesses, such as Neuregulin-1 and Disrupted-in-Schizophrenia-1 (DISC1), influence adult high brain functions, including cognition and information processing. These factors have roles during neurodevelopment and are likely to cooperate, forming “pathways” or “signalosomes.” Here we report the potential to generate an animal model via in utero gene transfer in order to address an important question of how nonlethal deficits in early development may affect postnatal brain maturation and high brain functions in adulthood, which are impaired in various psychiatric illnesses, such as schizophrenia. We show that transient knockdown of DISC1 in the pre- and peri-natal stages, specifically in a lineage of pyramidal neurons mainly in the prefrontal cortex, leads to selective abnormalities in postnatal mesocortical dopaminergic maturation and behavioral abnormalities associated with disturbed cortical neurocircuitry after puberty. PMID:20188653

  13. 38 CFR 59.160 - Adult day health care requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Adult day health care... (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.160 Adult day health care requirements. As a condition for receiving a grant and grant funds under this part for an adult day health care...

  14. 38 CFR 59.160 - Adult day health care requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Adult day health care... (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.160 Adult day health care requirements. As a condition for receiving a grant and grant funds under this part for an adult day health care...

  15. 38 CFR 59.160 - Adult day health care requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Adult day health care... (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.160 Adult day health care requirements. As a condition for receiving a grant and grant funds under this part for an adult day health care...

  16. 38 CFR 59.160 - Adult day health care requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Adult day health care... (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.160 Adult day health care requirements. As a condition for receiving a grant and grant funds under this part for an adult day health care...

  17. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  18. Effect of Sustained Postnatal Systemic Inflammation on Hippocampal Volume and Function in Mice

    PubMed Central

    Malaeb, Shadi N.; Davis, Jonathan M.; Pinz, Ilka M.; Newman, Jennifer L.; Dammann, Olaf; Rios, Maribel

    2014-01-01

    Background Premature infants are at risk for persistent neurodevelopmental impairment. Children born preterm often exhibit reduced hippocampal volumes that correlate with deficits in working memory. Perinatal inflammation is associated with preterm birth and brain abnormalities. Here we examine the effects of postnatal systemic inflammation on the developing hippocampus in mice. Methods Pups received daily intraperitoneal injections of lipopolysaccharide (LPS) or saline between days 3–13. Ex-vivo magnetic resonance imaging (MRI) and microscopic analysis of brain tissue was performed on day 14. Behavioral testing was conducted at 8–9 weeks of age. Results MR and microscopic analysis revealed a 15–20% reduction in hippocampal volume in LPS-treated mice compared to controls. Behavioral testing revealed deficits in hippocampal-related tasks in LPS-treated animals. Adult mice exposed to LPS during the postnatal period were unable to select a novel environment when re-placed within a 1-minute delay, were less able to remember a familiar object after a 1-hour delay and had impaired retention of associative fear learning after 24 hours. Conclusion Systemic inflammation sustained during the postnatal period contributes to reduced hippocampal volume and deficits in hippocampus-dependent working memory. These findings support the novel and emerging concept that sustained systemic inflammation contributes to neurodevelopmental impairment among preterm infants. PMID:25003911

  19. 7 CFR 226.19a - Adult day care center provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Adult day care center provisions. 226.19a Section 226..., DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM Operational Provisions § 226.19a Adult day care center provisions. (a) Adult day care centers may participate in the Program...

  20. 7 CFR 226.19a - Adult day care center provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 4 2012-01-01 2012-01-01 false Adult day care center provisions. 226.19a Section 226..., DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM Operational Provisions § 226.19a Adult day care center provisions. (a) Adult day care centers may participate in the Program...

  1. 7 CFR 226.19a - Adult day care center provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Adult day care center provisions. 226.19a Section 226..., DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM Operational Provisions § 226.19a Adult day care center provisions. (a) Adult day care centers may participate in the Program...

  2. Postnatal Ontogeny of the Circadian Expression of the Adrenal Clock Genes and Corticosterone Rhythm in Male Rats.

    PubMed

    Roa, Silvia Liliana Ruiz; Martinez, Edson Zangiacomi; Martins, Clarissa Silva; Antonini, Sonir Rauber; de Castro, Margaret; Moreira, Ayrton Custódio

    2017-05-01

    The postnatal synchronization of the circadian variation of the adrenal clock genes in mammals remains unknown. We evaluated the postnatal ontogeny of daily variation of clock genes (Clock/Bmal1/Per1/Per2/Per3/Cry1/Cry2/Rorα/Rev-Erbα) and steroidogenesis-related genes (Star and Mc2r) in rat adrenals and its relationship with the emergence of plasma corticosterone rhythm using cosinor analysis. Plasma corticosterone circadian rhythm was detected from postnatal day (P)1, with morning acrophase, between zeitgeber time (ZT)0 and ZT2. From P14, there was a nocturnal acrophase of corticosterone at ZT20, which was associated with pups' eye opening. From P3 there was a circadian variation of the mRNA expression of Bmal1, Per2, Per3, and Cry1 genes with morning acrophase, whereas Rev-Erbα had nocturnal acrophase. From P14, Bmal1, Per2, Per3, and Cry1 acrophases advanced by approximately 10 hours, as compared with early neonatal days, becoming vespertine-nocturnal. In all postnatal ages, Per2 and Cry1 circadian profiles were synchronized in phase with the circadian rhythm of plasma corticosterone, whereas Bmal1 was in antiphase. An adult-like Star circadian rhythm profile was observed only from P21. In conclusion, our original data demonstrated a progressive postnatal maturation of the circadian variation of the adrenal clock genes in synchrony with the development of the corticosterone circadian rhythm in rats. Copyright © 2017 Endocrine Society.

  3. Sex Differences in Early Postnatal Microglial Colonization of the Developing Rat Hippocampus Following a Single-Day Alcohol Exposure.

    PubMed

    Ruggiero, M J; Boschen, K E; Roth, T L; Klintsova, A Y

    2018-06-01

    Microglia are involved in various homeostatic processes in the brain, including phagocytosis, apoptosis, and synaptic pruning. Sex differences in microglia colonization of the developing brain have been reported, but have not been established following alcohol insult. Developmental alcohol exposure represents a neuroimmune challenge that may contribute to cognitive dysfunction prevalent in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. Most studies have investigated neuroimmune activation following adult alcohol exposure or following multiple exposures. The current study uses a single day binge alcohol exposure model (postnatal day [PD] 4) to examine sex differences in the neuroimmune response in the developing rat hippocampus on PD5 and 8. The neuroimmune response was evaluated through measurement of microglial number and cytokine gene expression at both time points. Male pups had higher microglial number compared to females in many hippocampal subregions on PD5, but this difference disappeared by PD8, unless exposed to alcohol. Expression of pro-inflammatory marker CD11b was higher on PD5 in alcohol-exposed (AE) females compared to AE males. After alcohol exposure, C-C motif chemokine ligand 4 (CCL4) was significantly increased in female AE pups on PD5 and PD8. Tumor necrosis factor-α (TNF-α) levels were also upregulated by AE in males on PD8. The results demonstrate a clear difference between the male and female neuroimmune response to an AE challenge, which also occurs in a time-dependent manner. These findings are significant as they add to our knowledge of specific sex-dependent effects of alcohol exposure on microglia within the developing brain.

  4. Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez–Arguelles, D.B.; Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4; McIntosh, M.

    Di-(2-ethylhexyl) phthalate (DEHP) is used industrially to add flexibility to polyvinyl chloride (PVC) polymers and is ubiquitously found in the environment, with evidence of prenatal, perinatal and early infant exposure in humans. In utero exposure to DEHP decreases circulating testosterone levels in the adult rat. In addition, DEHP reduces the expression of the angiotensin II receptors in the adrenal gland, resulting in decreased circulating aldosterone levels. The latter may have important effects on water and electrolyte balance as well as systemic arterial blood pressure. Therefore, we determined the effects of in utero exposure to DEHP on systemic arterial blood pressuremore » in the young (2 month-old) and older (6.5 month-old) adult rats. Sprague-Dawley pregnant dams were exposed from gestational day 14 until birth to 300 mg DEHP/kg/day. Blood pressure, heart rate, and activity data were collected using an intra-aortal transmitter in the male offspring at postnatal day (PND) 60 and PND200. A low (0.01%) and high-salt (8%) diet was used to challenge the animals at PND200. In utero exposure to DEHP resulted in reduced activity at PND60. At PND200, systolic and diastolic systemic arterial pressures as well as activity were reduced in response to DEHP exposure. This is the first evidence showing that in utero exposure to DEHP has cardiovascular and behavioral effects in the adult male offspring. Highlights: ► In utero exposure to 300 mg DEHP/kg/day decreases activity at postnatal day 60. ► In utero exposure to DEHP decreases aldosterone levels at postnatal day 200. ► In utero exposure to DEHP decreases systolic blood pressure at postnatal day 200. ► An 8% salt diet recovers the decreased blood pressure at postnatal day 200.« less

  5. Effects of prenatal binge-like ethanol exposure and maternal stress on postnatal morphological development of hippocampal neurons in rats.

    PubMed

    Jakubowska-Dogru, Ewa; Elibol, Birsen; Dursun, Ilknur; Yürüker, Sinan

    2017-10-01

    Alcohol is one of the most commonly used drugs of abuse negatively affecting human health and it is known as a potent teratogen responsible for fetal alcohol syndrome (FAS), which is characterized by cognitive deficits especially pronounced in juveniles but ameliorating in adults. Searching for the potential morphological correlates of these effects, in this study, we compared the course of developmental changes in the morphology of principal hippocampal neurons in fetal-alcohol (A group), intubated control (IC group), and intact control male rats (C group) over a protracted period of the first two postnatal months. Ethanol was administered to the pregnant Wistar dams intragastrically, throughout gestation days (GD) 7-20, at a total dose of 6g/kg/day resulting in the mean blood alcohol concentration (BAC) of 246.6±40.9mg/dl. Ten morphometric parameters of Golgi-stained hippocampal neurons (pyramidal and granule) from CA1, CA3, and DG areas were examined at critical postnatal days (PD): at birth (PD1), at the end of the brain growth spurt period (PD10), in juveniles (PD30), and in young adults (PD60). During postnatal development, the temporal pattern of morphometric changes was shown to be region-dependent with most significant alterations observed between PD1-30 in the CA region and between PD10-30 in the DG region. It was also parameter-dependent with the soma size (except for CA3 pyramids), number of primary dendrites, dendrite diameter, dendritic tortuosity and the branch angle demonstrating little changes, while the total dendritic field area, dendritic length, number of dendritic bifurcations, and spine density being highly increased in all hippocampal regions during the first postnatal month. Moderate ethanol intoxication and the maternal intubation stress during gestation, showed similar, transient effects on the neuron development manifested as a smaller soma size in granule cells, reduced dendritic parameters and lower spine density in pyramidal neurons

  6. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants.

    PubMed

    Doyle, Lex W; Cheong, Jeanie L; Ehrenkranz, Richard A; Halliday, Henry L

    2017-10-24

    Bronchopulmonary dysplasia remains a major problem in neonatal intensive care units. Persistent inflammation in the lungs is the most likely underlying pathogenesis. Corticosteroids have been used to prevent or treat bronchopulmonary dysplasia because of their potent anti-inflammatory effects. To examine the relative benefits and adverse effects of systemic postnatal corticosteroids commenced within the first seven days of life for preterm infants at risk of developing bronchopulmonary dysplasia. For the 2017 update, we used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1); MEDLINE via PubMed (January 2013 to 21 February 2017); Embase (January 2013 to 21 February 2017); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (January 2013 to 21 February 2017). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. For this review, we selected RCTs examining systemic postnatal corticosteroid treatment within the first seven days of life (early) in high-risk preterm infants. Most studies evaluated the use of dexamethasone, but we also included studies that assessed hydrocortisone, even when used primarily for management of hypotension. We used the GRADE approach to assess the quality of evidence.We extracted and analysed data regarding clinical outcomes that included mortality, bronchopulmonary dysplasia, death or bronchopulmonary dysplasia, failure to extubate, complications during primary hospitalisation, and long-term health outcomes. We included 32 RCTs enrolling a total of 4395 participants. The overall risk of bias of included studies was probably low, as all were RCTs, and most trials used rigorous methods. Investigators reported significant benefits for the following outcomes overall: lower rates of failure to extubate, decreased

  7. The Effect of Congenital and Postnatal Hypothyroidism on Depression-Like Behaviors in Juvenile Rats.

    PubMed

    Özgür, Erdoğan; Gürbüz Özgür, Börte; Aksu, Hatice; Cesur, Gökhan

    2016-12-01

    The aim of this study was to investigate depression-like behaviors of juvenile rats with congenital and postnatal hypothyroidism. Twenty-seven newborn rat pups were used. First, 6-month-old Wistar Albino female rats were impregnated. Methimazole (0.025% wt/vol) was given to dam rats from the first day of pregnancy until postnatal 21 days (P21) to generate pups with congenital hypothyroidism (n=8), whereas in the postnatal hypothyroidism group (n=10), methimazole was given from P0 to P21. In the control group (n=9), dam rats were fed ad libitum and normal tap water. Offspring were fed with breast milk from their mothers. The behavioral parameters were measured with the juvenile forced swimming test (JFST). The procedure of JFST consisted of two sessions in two consecutive days: the 15-minute pre-test on day 1 and the 5-minute test on day 2. Increased immobility and decreased climbing duration were observed in both congenital and postnatal hypothyroidism groups. Decreased swimming duration was detected in the postnatal hypothyroidism group. Both hypothyroidism groups had a lower body weight gain compared with the control group, while the congenital hypothyroidism group had the lowest body weight. Our results showed that hypothyroidism had negative effects on depression-like behavior as well as on growth and development. Both congenital and postnatal hypothyroidism caused an increase in immobility time in JFST. New studies are required to understand the differing results on depression-like behavior between congenital and postnatal hypothyroidism.

  8. Postnatal changes in skin water content in preterm infants.

    PubMed

    Ishiguro, Akio; Fujinuma, Sumie; Motojima, Yukiko; Oka, Shuntaro; Komaki, Takeshi; Saito, Aya; Kawasaki, Hidenori; Araki, Shunsuke; Kanai, Masayo; Sobajima, Hisanori; Tamura, Masanori

    2015-09-01

    Preterm infants have immature skin, which contributes to skin problems. Very little is known about postnatal changes in the skin, despite the clinical importance of this issue. To assess temporal changes in skin water content in preterm infants. A prospective observational study. Infants admitted to the neonatal intensive care unit were included in this study. Skin water content was measured at five different skin regions using dielectric methods at a depth of 1.5mm. Skin water content was measured on postnatal day 1 in 101 infants, and the correlation between skin water content and gestational week was analyzed. Measurements were also made on postnatal days 2, 3, and 7, and every 7days thereafter until the corrected age of 37weeks in 87 of the 101 infants. Temporal changes were statistically analyzed after dividing participants into seven groups by gestational age. On postnatal day 1, skin water content correlated inversely with gestational age at all skin regions. Skin water content decreased significantly over time, converging to the level of term infants by the corrected age of 32-35weeks. Skin water content at a depth of 1.5mm was related to corrected age and reached the level of term infants by the corrected age of approximately 32-35weeks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  10. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood

    PubMed Central

    Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.

    2013-01-01

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326

  11. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype.

    PubMed

    Sexton, Timothy J; Bleckert, Adam; Turner, Maxwell H; Van Gelder, Russell N

    2015-06-21

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose

  12. Postnatal change in sulcal length asymmetry in cerebrum of cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Sakamoto, Kazuhito; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Noritaka, Imai; Sakata-Haga, Hiromi; Yoshihiro, Fukui

    2014-02-01

    The purpose of this study was to determine the timing of the onset of adult-type sulcal length asymmetry during postnatal development of the male cynomolgus monkey cerebrum. The monkey brain has already reached adult size by 3 months of age, although the body weight only represents 1/8 of the adult body weight by that time. The fronto-occipital length and the cerebral width also reached adult levels by that postnatal age with no left/right bias. Consistently, lengths of the major primary sulci reached adult levels by 3 months of age, and then decreased slightly in sexually mature monkeys (4-6.5 years of age). Asymmetry quotient analysis showed that sulcal length asymmetry patterns gradually changed during postnatal development. The male adult pattern of sulcal length asymmetry was acquired after 24 months of age. In particular, age-dependent rightward lateralization of the arcuate sulcal length was revealed during cerebral maturation by three-way ANOVA. The results suggest that the regional difference in cerebral maturation from adolescence to young adulthood modifies the sulcal morphology with characteristic asymmetric patterns in male cynomolgus monkeys. Copyright © 2013 Wiley Periodicals, Inc.

  13. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  14. Enhancing Quality of Life of Families Who Use Adult Day Services: Short- and Long-Term Effects of the Adult Day Services Plus Program

    ERIC Educational Resources Information Center

    Gitlin, Laura N.; Reever, Karen; Dennis, Marie P.; Mathieu, Esther; Hauck, Walter W.

    2006-01-01

    Purpose: This study examined the short- and long-term effects of Adult Day Services Plus (ADS Plus), a low-cost care management intervention designed to enhance family caregiver well-being, increase service utilization, and decrease nursing home placement of impaired older adults enrolled in adult day care. Design and Methods: We used a…

  15. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.

    PubMed

    Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K

    2004-01-01

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P < 0.05) and the histology of the cords that formed were abnormal as compared to vehicle-treated organs. Pregnant rats were exposed to vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P < 0.01), but testis weight was not affected. The adult P60 sperm motility was significantly lower in vinclozolin exposed males (P < 0.01). In addition, apoptotic germ cell number in testis of vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion

  16. Formation of alveoli in rats: postnatal effect of prenatal dexamethasone.

    PubMed

    Massaro, G D; Massaro, D

    1992-07-01

    We administered a glucocorticosteroid (dexamethasone) or its diluent to pregnant rats on gestation days 17, 18, and 19. In male offspring we determined the lung's gas exchange surface area (S(a)), the average volume (v) of gas exchange saccules at age 2 days and alveoli at age 14 days, and their number (N) on these days. S(a), v, and N at 2 days and v at 14 days were not affected by the prenatal administration of dexamethasone. However, S(a) and N were lower in 14-day-old pups from dexamethasone-treated dams than in pups from diluent-treated dams. In separate experiments we found the responsiveness to prenatal dexamethasone, as a depressor of the postnatal increase in S(a), appeared earlier in female than male fetuses; it was present in female but not in male fetuses on days 16-18 and was found in male fetuses on days 17-19. We conclude 1) prenatal administration of dexamethasone diminishes the postnatal increase in S(a), 2) responsiveness to this action of dexamethasone occurs earlier in gestation in female than in male fetuses, and 3) prenatal dexamethasone does not effect the postnatal volume of an average alveolus but diminishes their number in male pups.

  17. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  18. Update on Postnatal Steroids.

    PubMed

    Halliday, Henry L

    2017-01-01

    Antenatal steroid treatment to enhance fetal lung maturity and surfactant treatment to prevent or treat respiratory distress syndrome have been major advances in perinatal medicine in the past 40 years contributing to improved outcomes for preterm infants. Use of postnatal steroids to prevent or treat chronic lung disease in preterm infants has been less successful and associated with adverse neurodevelopmental outcomes. Although early (in the first week of life) postnatal steroid treatment facilitates earlier extubation and reduces the risk of chronic lung disease, it is associated with adverse effects, such as hyperglycemia, hypertension, gastrointestinal bleeding and perforation, hypertrophic cardiomyopathy, growth failure, and cerebral palsy, and cannot be recommended. Early treatment with hydrocortisone may also improve survival without chronic lung disease, but concerns remain about possible adverse effects such as gastrointestinal perforation and sepsis, particularly in very preterm infants. Early inhaled budesonide also reduces the incidence of chronic lung disease but there are concerns that this may occur at the expense of increased risk of death. More studies of early low-dose steroids with adequate long-term follow-up are needed before they can be recommended for the prevention of chronic lung disease. Late (after the first week of life) postnatal steroids may have a better benefit-to-harm ratio than early steroids. A Cochrane Review shows that late steroid treatment reduces chronic lung disease, the combination of death and chronic lung disease at both 28 days and 36 weeks' corrected age, and the need for later rescue dexamethasone. Adverse effects include hyperglycemia, hypertension, hypertrophic cardiomyopathy, and severe retinopathy of prematurity but without an increase in blindness. Long-term neurodevelopmental effects are not significantly increased by late postnatal steroid treatment. Current recommendations are that postnatal steroid treatment

  19. MiR-34a Regulates Axonal Growth of Dorsal Root Ganglia Neurons by Targeting FOXP2 and VAT1 in Postnatal and Adult Mouse.

    PubMed

    Jia, Longfei; Chopp, Michael; Wang, Lei; Lu, Xuerong; Zhang, Yi; Szalad, Alexandra; Zhang, Zheng Gang

    2018-04-10

    Hyperglycemia impairs nerve fibers of dorsal root ganglia (DRG) neurons, leading to diabetic peripheral neuropathy (DPN). However, the molecular mechanisms underlying DPN are not fully understood. Using a mouse model of type II diabetes (db/db mouse), we found that microRNA-34a (miR-34a) was over-expressed in DRG, sciatic nerve, and foot pad tissues of db/db mice. In vitro, high glucose significantly upregulated miR-34a in postnatal and adult DRG neurons, which was associated with inhibition of axonal growth. Overexpression and attenuation of miR-34a in postnatal and adult DRG neurons suppressed and promoted, respectively, axonal growth. Bioinformatic analysis suggested that miR-34a putatively targets forkhead box protein P2 (FOXP2) and vesicle amine transport 1 (VAT1), which were decreased in diabetic tissues and in cultured DRG neurons under high glucose conditions. Dual-luciferase assay showed that miR-34a downregulated FOXP2 and VAT1 expression by targeting their 3' UTR. Gain-of- and loss-of-function analysis showed an inverse relation between augmentation of miR-34a and reduction of FOXP2 and VAT1 proteins in postnatal and adult DRG neurons. Knockdown of FOXP2 and VAT1 reduced axonal growth. Together, these findings suggest that miR-34a and its target genes of FOXP2 and VAT1 are involved in DRG neuron damage under hyperglycemia.

  20. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    PubMed Central

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  1. Beneficial effects of postnatal choline supplementation on long-Term neurocognitive deficit resulting from fetal-Neonatal iron deficiency.

    PubMed

    Kennedy, Bruce C; Tran, Phu V; Kohli, Maulika; Maertens, Jamie J; Gewirtz, Jonathan C; Georgieff, Michael K

    2018-01-15

    Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits. Copyright © 2017. Published by Elsevier B.V.

  2. PROLACTIN REGULATES LIVER GROWTH DURING POSTNATAL DEVELOPMENT IN MICE.

    PubMed

    Moreno-Carranza, Bibiana; Bravo-Manríquez, Marco; Baez, Arelí; Ledesma-Colunga, María G; Ruiz-Herrera, Xarubet; Reyes-Ortega, Pamela; De Los Ríos, Ericka A; Macotela, Yazmín; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2018-02-21

    The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration and its levels are high in the circulation of newborn infants, but whether PRL plays a role on neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 weeks after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice (Prlr-/-) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation (cyclin D1, Ccnd1) and angiogenesis (platelet/endothelial cell adhesion molecule 1, Pecam1) markers relative to Prlr+/+ mice. However, the LBW increases in Prlr-/- mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 (Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.

  3. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  4. 38 CFR 52.61 - General requirements for adult day health care program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adult day health care program. 52.61 Section 52.61 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.61 General requirements for adult day health care program. Adult day health care must be a...

  5. 38 CFR 52.61 - General requirements for adult day health care program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adult day health care program. 52.61 Section 52.61 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.61 General requirements for adult day health care program. Adult day health care must be a...

  6. 38 CFR 52.61 - General requirements for adult day health care program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adult day health care program. 52.61 Section 52.61 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.61 General requirements for adult day health care program. Adult day health care must be a...

  7. 38 CFR 52.61 - General requirements for adult day health care program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adult day health care program. 52.61 Section 52.61 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.61 General requirements for adult day health care program. Adult day health care must be a...

  8. 38 CFR 52.61 - General requirements for adult day health care program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adult day health care program. 52.61 Section 52.61 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.61 General requirements for adult day health care program. Adult day health care must be a...

  9. Adult attachment style and cortisol responses across the day in older adults

    PubMed Central

    Kidd, Tara; Hamer, Mark; Steptoe, Andrew

    2013-01-01

    The association between cortisol and adult attachment style, an important indicator of social relationships, has been relatively unexplored. Previous research has examined adult attachment and acute cortisol responses to stress in the laboratory, but less is known about cortisol levels in everyday life. The present study examined adult romantic attachment style and cortisol responses across the day. Salivary cortisol was collected at six time points during the course of the day in 1,807 healthy men and women from a subsample of the Whitehall II cohort. Significant associations were found between attachment on cortisol across the day and slope of cortisol decline. The lowest cortisol output was associated with fearful attachment, with preoccupied attachment having the highest levels and a flatter cortisol profile. The results tentatively support the proposition that attachment style may contribute to HPA dysregulation. PMID:23808770

  10. Anandamide-CB1 Receptor Signaling Contributes to Postnatal Ethanol-Induced Neonatal Neurodegeneration, Adult Synaptic and Memory Deficits

    PubMed Central

    Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S.

    2013-01-01

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable to the third trimester human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1) and CB1Rs protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1 and CB1R proteins respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs prior to ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knockout mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2-phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders. PMID:23575834

  11. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  12. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): temporal organization.

    PubMed

    Favaro, Livio; Gnone, Guido; Pessani, Daniela

    2013-03-01

    In spite of all the information available on adult bottlenose dolphin (Tursiops truncatus) biosonar, the ontogeny of its echolocation abilities has been investigated very little. Earlier studies have reported that neonatal dolphins can produce both whistles and burst-pulsed sounds just after birth and that early-pulsed sounds are probably a precursor of echolocation click trains. The aim of this research is to investigate the development of echolocation signals in a captive calf, born in the facilities of the Acquario di Genova. A set of 81 impulsive sounds were collected from birth to the seventh postnatal week and six additional echolocation click trains were recorded when the dolphin was 1 year old. Moreover, behavioral observations, concurring with sound production, were carried out by means of a video camera. For each sound we measured five acoustic parameters: click train duration (CTD), number of clicks per train, minimum, maximum, and mean click repetition rate (CRR). CTD and number of clicks per train were found to increase with age. Maximum and mean CRR followed a decreasing trend with dolphin growth starting from the second postnatal week. The calf's first head scanning movement was recorded 21 days after birth. Our data suggest that in the bottlenose dolphin the early postnatal weeks are essential for the development of echolocation abilities and that the temporal features of the echolocation click trains remain relatively stable from the seventh postnatal week up to the first year of life. © 2013 Wiley Periodicals, Inc.

  13. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep.

    PubMed

    Manikkam, Mohan; Crespi, Erica J; Doop, Douglas D; Herkimer, Carol; Lee, James S; Yu, Sunkyung; Brown, Morton B; Foster, Douglas L; Padmanabhan, Vasantha

    2004-02-01

    Alterations in the maternal endocrine, nutritional, and metabolic environment disrupt the developmental trajectory of the fetus, leading to adult diseases. Female offspring of rats, subhuman primates, and sheep treated prenatally with testosterone (T) develop reproductive/metabolic defects during adult life similar to those that occur after intrauterine growth retardation. In the present study we determined whether prenatal T treatment produces growth-retarded offspring. Cottonseed oil or T propionate (100 mg, im) was administered twice weekly to pregnant sheep between 30-90 d gestation (term = 147 d; cottonseed oil, n = 16; prenatal T, n = 32). Newborn weight and body dimensions were measured the day after birth, and postnatal weight gain was monitored for 4 months in all females and in a subset of males. Consistent with its action, prenatal T treatment produced females and males with greater anogenital distances relative to controls. Prenatal T treatment reduced body weights and heights of newborns from both sexes and chest circumference of females. Prenatally T-treated females, but not males, exhibited catch-up growth during 2-4 months of postnatal life. Plasma IGF-binding protein-1 and IGF-binding protein-2, but not IGF-I, levels of prenatally T-treated females were elevated in the first month of life, a period when the prenatally T-treated females were not exhibiting catch-up growth. This is suggestive of reduced IGF availability and potential contribution to growth retardation. These findings support the concept that fetal growth retardation and postnatal catch-up growth, early markers of future adult diseases, can also be programmed by prenatal exposure to excess sex steroids.

  14. The effects of prenatal and postnatal (via nursing) exposure to alcohol in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekvasil, N.; Baggio, C.

    Pregnant and post-partum rats were given daily doses of 20% alcohol during days 13-21 gestation and postnatal days 3-12, respectively. Following exposure, all rat pups, were tested for balance, blood pressure, right and left cerebral hemisphere weights, and cerebellar weight. Results were grouped according to exposure and gender. The postnatal group was the only one to demonstrate difficulties with balance. The mean arterial pressure in males exposed postnatally was significantly lower than the control and prenatal males. Females exposed postnatally had a significantly higher blood pressure than control females. Within the postnatal group, males had a significantly lower blood pressuremore » than the females. Prenatal and control females differed significantly for left cerebral hemisphere (LCH) weight with the prenatal weighing less. Male pups exposed prenatally had significantly heavier LCH than the postnatal and control males. For both males and females, postnatal LCH weights did not differ from those of the control pups. Within the prenatal group, the LCH weight in females was significantly lower than in males. Mean cerebellar weights were significantly lower in postnatal animals compared to control animals. A major finding of this study is that the effect of alcohol exposure on rat pups depends on gender and developmental age.« less

  15. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  16. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis.

    PubMed

    Laplagne, Diego A; Kamienkowski, Juan E; Espósito, M Soledad; Piatti, Verónica C; Zhao, Chunmei; Gage, Fred H; Schinder, Alejandro F

    2007-05-01

    Neurogenesis in the dentate gyrus of the hippocampus follows a unique temporal pattern that begins during embryonic development, peaks during the early postnatal stages and persists through adult life. We have recently shown that dentate granule cells born in early postnatal and adult mice acquire a remarkably similar afferent connectivity and firing behavior, suggesting that they constitute a homogeneous functional population [Laplagne et al. (2006)PLoS Biol., 4, e409]. Here we extend our previous study by comparing mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and gamma-aminobutyric acid (GABA)ergic synaptic inputs. For this purpose, dividing neuroblasts of the ventricular wall were retrovirally labeled with green fluorescent protein at embryonic day 15 (E15), and progenitor cells of the subgranular zone were labeled with red fluorescent protein in the same mice at postnatal day 42 (P42, adulthood). Electrophysiological properties of mature neurons born at either stage were then compared in the same brain slices. Evoked and spontaneous GABAergic postsynaptic responses of perisomatic and dendritic origin displayed similar characteristics in both neuronal populations. Miniature GABAergic inputs also showed similar functional properties and pharmacological profile. A comparative analysis of the present data with our previous observations rendered no significant differences among GABAergic inputs recorded from neurons born in the embryonic, early postnatal and adult mice. Yet, embryo-born neurons showed a reduced membrane excitability, suggesting a lower engagement in network activity. Our results demonstrate that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.

  17. Examining Japanese women's preferences for a new style of postnatal care facility and its attributes.

    PubMed

    Shen, Junyi; Nakashima, Takako; Karasawa, Izumi; Furui, Tatsuro; Morishige, Kenichiro; Saijo, Tatsuyoshi

    2018-05-21

    Perinatal care in rural Japan is currently facing a crisis because of the lack of medical staff, especially obstetricians. In this study, a new style of postnatal care facility that combines both medical and nonmedical support is considered. Contrary to most postnatal care facilities in Japan, this new postnatal care facility accepts a puerperant from the cooperating maternity facility soon after birth (≤2 days). We conducted a hypothetical choice experiment to investigate whether this new postnatal care facility could be accepted by women in Gero City, Hida, Gifu Prefecture and how these women evaluate different kinds of postnatal care services. The results show that after a 2-day hospital stay, women from Gero City preferred to move to the new postnatal care facility over the other alternatives (continued hospitalization or discharge home). In addition, the estimated choice probabilities for selecting the postnatal care facility under different scenarios show a high level of acceptance for this new postnatal care facility. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats.

    PubMed

    Bartolomé, Iris; Llidó, Anna; Darbra, Sònia; Pallarès, Marc

    2018-06-21

    Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse. Copyright © 2018. Published by Elsevier Inc.

  19. Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices.

    PubMed

    Othman, Haifa; Ammari, Mohamed; Rtibi, Kaïs; Bensaid, Noura; Sakly, Mohsen; Abdelmelek, Hafedh

    2017-06-01

    The present work investigated the effects of prenatal exposure to radiofrequency waves of conventional WiFi devices on postnatal development and behavior of rat offspring. Ten Wistar albino pregnant rats were randomly assigned to two groups (n=5). The experimental group was exposed to a 2.45GHz WiFi signal for 2h a day throughout gestation period. Control females were subjected to the same conditions as treated group without applying WiFi radiations. After delivery, the offspring was tested for physical and neurodevelopment during its 17 postnatal days (PND), then for anxiety (PND 28) and motricity (PND 40-43), as well as for cerebral oxidative stress response and cholinesterase activity in brain and serum (PND 28 and 43). Our main results showed that the in-utero WiFi exposure impaired offspring neurodevelopment during the first seventeen postnatal days without altering emotional and motor behavior at adult age. Besides, prenatal WiFi exposure induced cerebral oxidative stress imbalance (increase in malondialdehyde level (MDA) and hydrogen peroxide (H 2 O 2 ) levels and decrease in catalase (CAT) and superoxide dismutase (SOD) activities) at 28 but not 43days old, also the exposure affected acethylcolinesterase activity at both cerebral and seric levels. Thus, the current study revealed that maternal exposure to WiFi radiofrequencies led to various adverse neurological effects in the offspring by affecting neurodevelopment, cerebral stress equilibrium and cholinesterase activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development

    PubMed Central

    Martin, Lee J.; Cork, Linda C.

    2014-01-01

    We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm3 during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but

  1. Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development

    PubMed Central

    Cerpa, Veronica J.; Wu, Yuanming; Bravo, Eduardo; Teran, Frida A.; Flynn, Rachel S.; Richerson, George B.

    2016-01-01

    Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1–7 (P1–P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p < 0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1bf/f/p and WT mice were equal to each other, but were both much less than adult WT mice. By P21 the HCVR of WT mice increased to near adult levels, but the HCVR of Lmx1bf/f/p mice had not changed, and was 42% less than WT mice. Primary cell cultures were prepared from the ventromedial medulla of neonatal mice, and patch-clamp recordings were made from neurons identified as serotonergic by expression of a reporter gene. In parallel with developmental changes of the HCVR in vivo, 5-HT neurons had little chemosensitivity to acidosis until 12 days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia. PMID:27619736

  2. Postnatal development of retinal projections in the brushtailed possum, Trichosurus vulpecula.

    PubMed

    Sanderson, K J; Dixon, P G; Pearson, L J

    1982-10-01

    The postnatal development of retinal projections was studied in the brushtailed possum, Trichosurus vulpecula. [3H]proline was injected into one eye of 13 young possums aged 24-84 days in order to trace retinal pathways. The dorsal lateral geniculate nucleus (LGNd) can be identified in Nissl material at 19 days but not at 9-10 days. By 40 days some cytoarchitectural lamination of the LGNd is apparent and by 71 days the adult pattern of cell layers is present. At 24 days retinal fibers occupy by lateral part of the LGNd on both sides of the brain. By 38-40 days the retinal fibers fill be contralateral LGNd and the binocular part of the ipsilateral LGNd and there is a beginning of the segregation of retinal fibers into left and right eye territories. By 49-50 days a partial segregation is achieved, and complete segregation by 71 days. At 9-10 days the superior colliculus is not differentiated into layers and there is a thick zone of cell proliferation around the ventricle. By 23 days the superior colliculus has well-defined cell layers and there is still some indication of cell proliferation around the ventricle. By 40 days, the superior colliculus shows little evidence of cell proliferation. At 24 days retinal fibers fill the superficial layers of the contralateral optic tectum and are lightly distributed through the superficial layers of the rostral half of the ipsilateral tectum. By 38 days the ipsilateral retinal input is restricted to the deeper layers of the tectum. These results show that the adult pattern of retinal projections to the LGNd and optic tectum develops a number of weeks before eye opening occurs (at 90-120 days).

  3. Preservation of chromosomal integrity in murine spermatozoa derived from gonocytes and spermatogonial stem cells surviving prenatal and postnatal exposure to γ-rays in mice.

    PubMed

    Watanabe, Hiroyuki; Kohda, Atsushi; Komura, Jun-Ichiro; Tateno, Hiroyuki

    2017-07-01

    Pre- and postnatal male mice were acutely (659-690 mGy/min) and continuously (0.303 mGy/min) exposed to 2 Gy γ-rays to evaluate spermatogenic potential and chromosome damage in their germ cells as adults. Acute irradiation on Days 15.5, 16.5, and 17.5 post-coitus affected testicular development, as a result of massive quiescent gonocyte loss; the majority of the seminiferous tubules in these testes were devoid of germ cells. Acute irradiation on Days 18.5 and 19.5 post-coitus had less effect on testicular development and spermatogenesis, even though germ cells were quiescent gonocytes on these days. Adverse effects on testicular development and spermatogenesis were observed following continuous irradiation between Days 14.5 and 19.5 post-coitus. Exposure to acute and continuous postnatal irradiation after the differentiation of spermatogonial stem cells and spermatogonia resulted in nearly all of the seminiferous tubules exhibiting spermatogenesis. Neither acute nor continuous irradiation was responsible for the increased number of multivalent chromosomes in primary-spermatocyte descendents of the exposed gonocytes. In contrast, a significant increase in cells with multivalent chromosomes was observed following acute irradiation on Days 4 and 11 post-partum. No significant increases in unstable structural chromosomal aberrations or aneuploidy in spermatozoa were observed, regardless of cell stage at irradiation or the radiation dose-rate. Thus, murine germ cells that survive prenatal and postnatal irradiation can restore spermatogenesis and produce viable spermatozoa without chromosome damage. These findings may provide a better understanding of reproductive potential following accidental, environmental, or therapeutic irradiation during the prenatal and postnatal periods in humans. © 2017 Wiley Periodicals, Inc.

  4. Postnatal fate of the ultimobranchial remnants in the rat thyroid gland.

    PubMed

    Vázquez-Román, Victoria; Utrilla, José C; Fernández-Santos, José M; Conde, Esperanza; Bernabé, Reyes; Sampedro, Consuelo; Martín-Lacave, Inés

    2013-07-01

    The ultimobranchial follicles (UBFs) are considered embryonic remnants from the ultimobranchial body (UBB). They are follicular structures that vary in size and appearance depending on the age of the rat. The main objective of this article was to study the progressive changes in shape, size, and frequency of the UBFs in the postnatal rat, from birth to old-age. To accomplish that objective, a systematic morphometric and incidental study of the UBF has been carried out in 110 Wistar rats of different ages and both sexes, divided into three groups: 1) young rats (5-90-day-old); 2) adult rats (6-15-month-old), and 3) old rats (18-24-month-old). The glands were serially sectioned and immunostained for calcitonin at five equidistant levels. According to our results, UBFs were observed in all thyroid glands but a more exhaustive sampling was occasionally necessary in male rats. In young rats, immature UBFs predominantly appeared whereas in adult rats, mature UBFs with cystic appearance and variable luminal content prevailed. We frequently found spontaneous anomalous UBFs in old rats, which we have termed as "ultimobranchial cystadenomata." Additionally, in young rats, UBF areas significantly increased with age and they were larger when compared to that of normal thyroid follicles. Likewise, in adult rats, UBFs were significantly larger than normal thyroid follicles but only in female rats. In general, UBFs in females were also significantly larger than those found in male rats. Finally, all these differences related to UBFs together with a higher incidence in females of UB cystadenomata suggest a sexual dimorphism in regard to the destiny of these embryonic remnants during postnatal thyroid development. Copyright © 2013 Wiley Periodicals, Inc.

  5. Postnatal epigenetic modification of glucocorticoid receptor gene in preterm infants: a prospective cohort study

    PubMed Central

    Kantake, Masato; Yoshitake, Hiroshi; Ishikawa, Hitoshi; Araki, Yoshihiko; Shimizu, Toshiaki

    2014-01-01

    Objective To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA. Design A prospective cohort study, comparison of epigenetic differences in the glucocorticoid receptor (GR) gene between healthy term and preterm infants. Setting Neonatal Intensive Care Unit in a Japanese University Hospital. Participants A cohort of 40 (20 term and 20 preterm) infants was recruited on the day of birth, and peripheral blood was obtained from each infant at birth and on postnatal day 4. Main outcome measures The methylation rates in the 1-F promoter region of the GR gene using the Mquant method. Results The methylation rate increased significantly between postnatal days 0 and 4 in preterm infants but remained stable in term infants. Thus, the methylation rate was significantly higher in preterm than in term infants at postnatal day 4. Several perinatal parameters were significantly correlated with this change in the methylation rate. Logistic regression analysis revealed that methylation rates at postnatal day 4 predicted the occurrence of later complications that required glucocorticoid administration during the neonatal period. No gene polymorphism was detected within the GR promoter region analysed. Conclusions Although further large-scale studies are needed to detect the environmental factors that explain the difference in epigenetic modification among infants after birth, our data show that the postnatal environment influences epigenetic programming of GR expression through methylation of the GR gene promoter in premature infants, which may result in relative glucocorticoid insufficiency during the postnatal period. PMID:25023132

  6. The Process of Adult Day Service Use*

    PubMed Central

    Gaugler, Joseph E.

    2013-01-01

    The objective of this study was to examine why and how families and older adults utilize adult day services. The current study included three months of participant observation in one rural and one suburban adult day service program in an upper-Midwestern region of the United States as well as semi-structured interviews with 14 family members of clients and 12 staff members from these programs. Several key constructs emerged that organized the multiple sources of qualitative data including programmatic philosophy, positioning, and environment of ADS; clients’ and family members’ reasons for use; the process of ADS use by families and clients; and pathways to family/client psychosocial and client functional outcomes. A number of inter-related themes emerged within each construct. The constructs identified and their potential associations among each other were used to expand upon and refine prior conceptualizations of ADS to frame future clinical and research efforts. PMID:24239404

  7. Postnatal development of autonomic and sensory innervation of thoracic hairy skin in the rat. A histochemical, immunocytochemical, and radioenzymatic study.

    PubMed

    Schotzinger, R J; Landis, S C

    1990-05-01

    Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in

  8. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides

    PubMed Central

    Girard, Beatrice; Peterson, Abbey; Malley, Susan; Vizzard, Margaret A.

    2016-01-01

    The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2= 0.996–0.998; p ≤ 0.01) increases in Sub and CGRP expression in the urothelium and significantly (p ≤ 0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1 μg/ml), significantly (p ≤ 0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder

  9. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Structural stabilization of CNS synapses during postnatal development in rat cortex.

    PubMed

    Khaing, Zin Z; Fidler, Lazar; Nandy, Nina; Phillips, Greg R

    2006-07-01

    CNS synapses are produced rapidly upon pre- and post-synaptic recruitment. However, their composition is known to change during development and we reasoned that this may be reflected in the gross biochemical properties of synapses. We found synaptic structure in adult cortical synaptosomes to be resistant to digestion with trypsin in the presence and absence of calcium ions, contrasting with previous observations. We evaluated the divalent cation dependence and trypsin sensitivities of synapses using synaptosomes from different developmental stages. In contrast to adult synapses, at postnatal day (P) 10 EDTA treatment eliminated approximately 60% of the synapses, and trypsin and EDTA, together, eliminated all junctions. Trypsinization in the presence of calcium eliminated approximately 60% of the junctions at P10. By P35, all synapses were calcium independent, whereas full trypsin resistance was not attained until P49. To compare the calcium dependence and trypsin sensitivity of synapses in another region of the adult brain, we examined synapses from adult (P50) hippocampus. Adult hippocampus maintained a population of synapses that resembled that of P35 cortex. Our results show that synapses are modified over a long time period in the developing cortex. We propose a model in which the addition of synergistic calcium-dependent and -independent adhesive systems stabilize synapses.

  11. Fetal Nicotine Exposure Increases Preference for Nicotine Odor in Early Postnatal and Adolescent, but Not Adult, Rats

    PubMed Central

    Mantella, Nicole M.; Kent, Paul F.; Youngentob, Steven L.

    2013-01-01

    Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse. PMID:24358374

  12. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    PubMed

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.

  13. Differential Effects of Ethanol on c-Jun N-Terminal Kinase, 14-3-3 Proteins, and Bax in Postnatal Day 4 and Postnatal Day 7 Rat Cerebellum

    PubMed Central

    Heaton, Marieta Barrow; Paiva, Michael; Kubovic, Stacey; Kotler, Alexandra; Rogozinski, Jonathan; Swanson, Eric; Madorsky, Vladimir; Posados, Michelle

    2011-01-01

    These studies investigated ethanol effects on upstream cellular elements and interactions which contribute to Bax-related apoptosis in neonatal rat cerebellum at ages of peak ethanol sensitivity (postnatal day 4 [P4]), compared to later ages of relative resistance (P7). Analyses were made of basal levels of the pro-apoptotic c-jun N-termimal kinase (JNK), Bax, and the 14-3-3 anchoring proteins, as well as the responsiveness of these substances to ethanol at P4 versus P7. Dimerization of Bax with 14-3-3 was also investigated at the two ages following ethanol treatment, a process which sequesters Bax in the cytosol, thus inhibiting its mitochondrial translocation and disruption of the mitochondrial membrane potential. Cultured cerebellar granule cells were used to examine the protective potential of JNK inhibition on ethanol-mediated cell death. Basal levels of JNK were significantly higher at P4 than P7, but no differences in the other proteins were found. Activated JNK, and cytosolic and mitochondrially-translocated Bax were increased in P4 but not P7 animals following ethanol exposure, while protective 14-3-3 proteins were increased only at P7. Ethanol treatment resulted in decreases in Bax:14-3-3 heterodimers at P4, but not at P7. Inhibition of JNK activity in vitro provided partial protection against ethanol neurotoxicity. Thus, differential temporal vulnerability to ethanol in this CNS region correlates with differences in both levels of apoptosis-related substances (e.g., JNK), and differential cellular responsiveness, favoring apoptosis at the most sensitive age and survival at the resistant age. The upstream elements contributing to this vulnerability can be targets for future therapeutic strategies. PMID:22169498

  14. Adult day health care evaluation study: methodology and implementation. Adult Day Health Care Evaluation Development Group.

    PubMed Central

    Hedrick, S C; Rothman, M L; Chapko, M; Inui, T S; Kelly, J R; Ehreth, J

    1991-01-01

    The Adult Day Health Care Evaluation Study was developed in response to a congressional mandate to study the medical efficacy and cost effectiveness of the Adult Day Health Care (ADHC) effort in the Department of Veterans Affairs (VA). Four sites providing ADHC in VA facilities are participating in an ongoing randomized controlled trial. Three years of developmental work prior to the study addressed methodological issues that were problematic in previous studies. This developmental work resulted in the methodological approaches described here: (1) a patient recruitment process that actively recruits and screens all potential candidates using empirically developed admission criteria based on predictors of nursing home placement in VA; (2) the selection and development of measures of medical efficacy that assess a wide range of patient and caregiver outcomes with sufficient sensitivity to detect small but clinically important changes; and (3) methods for detailed, accurate, and efficient measurement of utilization and costs of health care within and outside VA. These approaches may be helpful to other researchers and may advance the methodological sophistication of long-term care program evaluation. PMID:1991678

  15. Fetal MRI versus postnatal imaging in the MR-compatible incubator.

    PubMed

    Bekiesinska-Figatowska, Monika; Romaniuk-Doroszewska, Anna; Duczkowska, Agnieszka; Duczkowski, Marek; Iwanowska, Beata; Szkudlińska-Pawlak, Sylwia

    2016-09-01

    One of the aims of fetal magnetic resonance imaging (MRI) is to avoid postnatal scanning. However, clinicians sometimes wish to have postnatal confirmation of prenatal findings. This study's purpose was to check whether there was indeed the added value of neonatal MRI performed in the MR-compatible incubator (INC) after fetal examination. Material consists of 25 neonates (14 girls) who underwent prenatal and postnatal MRI in a 1.5 T scanner, the latter in INC. Mean time of prenatal MRI was 30th gestational week, of postnatal MRI-16th day of life. In 14 cases (56 %) postnatal findings were the same as prenatal ones. In 11 (44 %) postnatal MRI showed some different/new/more precise results, in two the differences were attributed to other factors than the advantage of postnatal MRI over prenatal one. Altogether then postnatal results were partly discordant with prenatal ones in 9/25 cases (36 %). In most cases there was no added value of postnatal MRI as compared to prenatal one. This value lied in small details that could not have been noticed on prenatal MRI or required contrast medium administration to be noticed. On the other hand, MR examination performed with use of the dedicated neonatal coils in the MR-compatible incubator is a safe and reliable method of visualization of these small details with better spatial resolution thus helping to establish final diagnosis, treatment plan and prognosis.

  16. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    PubMed

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  17. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    PubMed

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  18. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats

    PubMed Central

    Torres-Reveron, Annelyn; Gray, Jason D.; Melton, Jay T.; Punsoni, Michael; Tabori, Nora E.; Ward, Mary J.; Frys, Kelly; Iadecola, Costantino; Milner, Teresa A.

    2009-01-01

    To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, I.P.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7 to 35. Thirty-nine days after the last MPH administration (PND76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7–11/group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6 ± 1.2 to 126 ± 1.8 mmHg; p<0.05), assessed on PND130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6/group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. PMID:19100815

  20. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  1. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    PubMed

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  2. Diabetes and Adult Day Health Services

    ERIC Educational Resources Information Center

    Dabelko, Holly I.; DeCoster, Vaughn A.

    2007-01-01

    The purpose of this study is to provide a profile of individuals with diabetes who receive services in adult day centers. This exploratory study uses an administrative data set (N = 280) from five programs in central Ohio to examine four areas: demographics, health and mental health, financial and social resources, and disenrollment status. Older…

  3. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats.

    PubMed

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole

    2014-09-01

    A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice.

    PubMed

    Fredriksson, A; Eriksson, P; Archer, T

    2006-02-01

    C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only

  5. Clinical presentation of postnatal and non-postnatal depressive episodes.

    PubMed

    Cooper, Carly; Jones, Lisa; Dunn, Emma; Forty, Liz; Haque, Sayeed; Oyebode, Femi; Craddock, Nick; Jones, Ian

    2007-09-01

    The relationship of postnatal (postpartum) depression (PND) to episodes of depression occurring at other times is not well understood. Despite a number of studies of clinical presentation, there is little consistency in the literature. We have undertaken within- and between-individual comparisons of the clinical presentation of postnatal (PN) and non-postnatal (NPN) depressive episodes in women with recurrent depression. In a sample of well-characterized, parous women meeting DSM-IV and ICD-10 criteria for recurrent major depressive disorder, the clinical presentation of episodes of major depression with onset within 4 weeks of giving birth (PND group, n=50) were compared with (i) the non-postnatal episodes of women with PND, and (ii) episodes of major depression in parous women who had not experienced episodes of mood disorder in relation to childbirth (NPND group, n=132). In addition, the non-postnatal episodes of the PND group of women were compared with the depressive episodes of the NPND group. The small number of differences found between PN and NPN depressive episodes, such as reduced early morning wakening in postnatal episodes, are likely to be explicable by the context of having a new baby rather than by any difference in the nature of the underlying depression. The results do not point to substantial differences in clinical presentation between episodes of major depression occurring in relation to childbirth and at other times. Other avenues of research are therefore required to demonstrate a specific relationship between childbirth and depression.

  6. Synaptic Proteins Are Tonotopically Graded in Postnatal and Adult Type I and Type II Spiral Ganglion Neurons

    PubMed Central

    Flores-Otero, Jacqueline; Davis, Robin L.

    2011-01-01

    Inherent in the design of the mammalian auditory system is the precision necessary to transduce complex sounds and transmit the resulting electrical signals to higher neural centers. Unique specializations in the organ of Corti are required to make this conversion, such that mechanical and electrical properties of hair cell receptors are tailored to their specific role in signal coding. Electrophysiological and immunocytochemical characterizations have shown that this principle also applies to neurons of the spiral ganglion, as evidenced by distinctly different firing features and synaptic protein distributions of neurons that innervate high- and low-frequency regions of the cochlea. However, understanding the fine structure of how these properties are distributed along the cochlear partition and within the type I and type II classes of spiral ganglion neurons is necessary to appreciate their functional significance fully. To address this issue, we assessed the localization of the postsynaptic AMPA receptor subunits GluR2 and GluR3 and the presynaptic protein synaptophysin by using immunocytochemical labeling in both postnatal and adult tissue. We report that these presynaptic and postsynaptic proteins are distributed oppositely in relation to the tonotopic map and that they are equally distributed in each neuronal class, thus having an overall gradation from one end of the cochlea to the other. For synaptophysin, an additional layer of heterogeneity was superimposed orthogonal to the tonotopic axis. The highest anti-synaptophysin antibody levels were observed within neurons located close to the scala tympani compared with those located close to the scala vestibuli. Furthermore, we noted that the protein distribution patterns observed in postnatal preparations were largely retained in adult tissue sections, indicating that these features characterize spiral ganglion neurons in the fully developed ear. PMID:21452215

  7. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  8. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    PubMed

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  9. Active retinitis in an infant with postnatally acquired cytomegalovirus infection.

    PubMed

    Piersigilli, F; Catena, G; De Gasperis, M R; Lozzi, S; Auriti, C

    2012-07-01

    Congenital cytomegalovirus (CMV) is frequently associated with active retinitis. In contrast, in the immunocompetent neonate with postnatally acquired CMV infection retinitis is rarely present and usually does not progress. We describe the case of an infant with postnatal CMV infection and active retinitis diagnosed at 20 days of life. Owing to the rapid progression of the retinitis, therapy with intravenous ganciclovir was performed, with prompt regression of the retinitis. Therapy was then continued with oral valganciclovir for one further week. Although very unusual, CMV retinitis has to be taken into consideration in neonates with early postnatally acquired CMV infection, as an early diagnosis and treatment may be crucial to avoid visual impairment.

  10. Impact of maternal and postnatal zinc dietary status on the prostate of pubescent and adult rats.

    PubMed

    Camora, Lucas F; Silva, Ana Priscila G; Santos, Sérgio A A; Justulin, Luis A; Perobelli, Juliana E; Barbisan, Luis Fernando; Scarano, Wellerson R

    2017-11-01

    Zinc is important for cell physiology and alteration of its levels during development can modulate a series of biological events. The aim of this study was to investigate whether dietary zinc deficiency or supplementation during morphogenesis and early postnatal development could interfere in prostate maturation. Pregnant rats were exposed to a standard diet (NZ:35 mg Zn/kg chow), low-zinc diet (LZ:3 mg of Zn/kg chow) and zinc-supplemented diet (HZ:180 mg/Kg chow) from gestational day 10 (GD10) through postnatal day 21 (PND21). After weaning, male offspring were divided into three groups that were submitted to the same food conditions as their mothers until PND53. The animals were euthanized at PND53 and PND115. The ventral prostate was removed, weighed and its fragments were subjected to histological, western blot and zymography analysis. PND53: body and prostate weight were lower in LZ compared to NZ; the epithelial compartment was reduced while the stromal compartment was increased in LZ compared to NZ; there was an increase in the amount of collagen and reduction in AR and SIRT1 expression in LZ compared to NZ. PND115: body weight was lower in LZ compared to NZ and prostate weight was similar among the groups; peripheral physiological hyperplasia was observed, as well as an increased epithelial proliferation index and reduced PAR4 expression in LZ and HZ compared to NZ. Zinc deficiency during prostate morphogenesis and differentiation is potentially harmful to its morphology, however, by restoring the standard dietary environment, the gland responds to the new microenvironment independent of the previous dietary condition. © 2017 International Federation for Cell Biology.

  11. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers

    PubMed Central

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-01-01

    The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399

  12. The role of self-esteem instability in the development of postnatal depression: A prospective study testing a diathesis-stress account.

    PubMed

    Franck, Erik; Vanderhasselt, Marie-Anne; Goubert, Liesbet; Loeys, Tom; Temmerman, Marleen; De Raedt, Rudi

    2016-03-01

    Understanding vulnerability factors involved in the development of postnatal depression has important implications for theory and practice. In this prospective study, we investigated whether self-esteem instability during pregnancy would better predict postnatal depressive symptomatology than level of self-esteem. In addition, going beyond former studies, we tested the possible origin of this instability, examining whether day-to-day fluctuations in self-esteem could be explained by fluctuations in mood state, and whether this day-to-day self-esteem reactivity would predict postnatal depressive symptoms. 114 healthy never-depressed women were tested during the late second or third trimester of their gestation (Time 1) and at 12 weeks after delivery (Time 2). Day-to-day levels of self-esteem and depressed mood state were assessed at Time 1. At Time 2, postnatal depressive symptoms were assessed. The results show that, after controlling for initial depressive symptomatology, age and socio-economic status, postnatal depressive symptomatology at 12 weeks after childbirth could be predicted by self-esteem instability and not level of self-esteem. In addition, multi-level analyses demonstrated that these changes in day-to-day levels of self-esteem are associated with changes in day-to-day levels of depressed mood state and that those subjects with greater prenatal self-esteem reactivity upon depressed mood report higher levels of depressive symptoms post-partum. We used paper and pencil day-to-day measures of state self-esteem, which can be subject to bias. These results provide evidence for a diathesis-stress account of postnatal depression, highlighting the importance of a multi-dimensional view of self-esteem and the predictive role of self-esteem instability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Delirium in older adults attending adult day care and family caregiver distress.

    PubMed

    Bull, Margaret J

    2011-06-01

    BACKGROUND; Delirium is a critical, costly, frequently reversible problem in older adults. Findings of previous studies indicate that delirium occurs in up to 65% of hospitalised older adults and up to 80% of terminally ill patients. Few studies address the frequency of delirium in community dwelling older adults and the extent to which delirium symptoms create distress for their family caregivers. To determine the frequency of delirium in older people attending two adult day centers (ADC) in the United States and identify the extent to which delirium symptoms were associated with family caregivers' mental health symptoms, and ways of coping with the older adults' care. A descriptive, cross-sectional design was used. Thirty older adults and their family caregivers were randomly selected from the rosters of the ADC. Only 6.7% of the older adults had a positive screen for delirium. The majority of family caregivers (96.6%) stated that they had no knowledge of delirium prior to participating in this study. Both older adults and their family caregivers need education about delirium symptoms and risks. © 2010 Blackwell Publishing Ltd.

  14. Comparative ontogeny in humans and chimpanzees: similarities, differences and paradoxes in postnatal growth and development of the skull.

    PubMed

    Bastir, Markus; Rosas, Antonio

    2004-12-01

    The hypothesis of retarded development is a classic and controversial issue in human evolution. It depends directly on the understanding of ontogenetic trajectories and their basic constituents: timing, rate and associated patterns of maturation. In the present study, we applied geometric morphometrics to investigate postnatal ontogeny in human and chimpanzee skulls (N = 302). We evaluated postnatal ontogenetic rates, based on comparisons of properties of size and shape in adults. At different dental ages the percentage of the adult mean size (growth) and adult mean shape (development) was used to quantify patterns of maturation. We found significantly higher levels of ontogenetic maturity in humans than chimpanzees during pre-M1 and M1 eruption. However, during this ontogenetic period the human increments were lower than those of chimpanzees suggesting lower rates. During and after M2-eruption species did not differ in their ontogenetic trajectories. The results indicate that higher prenatal and lower peri- and postnatal maturation rates characterize human ontogeny when compared with chimpanzees. If mandibular ontogeny is considered alone, a paradox was found. Whereas growth maturation proceeded in an expected trajectory continuously approximating 100% adult mean size, developmental maturity was different. After M1-eruption in both species the morphological distance, which had increased before, became reduced again, and reached adult mean shape in a second developmental peak. Such a tendency was found in humans and chimpanzees. This indicates that both size and shape maturation must be considered to understand the complexity of postnatal mandibular ontogeny.

  15. Postnatal development of the myenteric plexus in cat stomach.

    PubMed

    Lolova, I; Itsev, D

    1983-01-01

    The postnatal development of the myenteric plexus in cat stomach has been studied at birth, on the 14th, 30th, 45th and 180th postnatal days, using light- and electronmicroscopic methods. In newborn kittens the main network of the Auerbach plexus is well formed, but the myenteric ganglia are composed of nerve cells with different maturity and a scarce neuropile. During the first two postnatal weeks the dimensions of the ganglia increase owing to the increase of the nerve bodies and the rising number of glials cells and intercellular fibres. This is accompanied by a potentiation of the AChE-activity, mainly in the nerve cell bodies and to a lesser extent in the neuropile. Impregnation reveals different in calibre and form nerve fibres and terminals. Different ultrastructural types of neurones are identified on the 14th day. Later development is expressed in the formation of large compact ganglia and thick connecting strands. The number of AChE-positive fibres in the neuropile increases. Owing to the increase in the cell organelles and their more advanced maturity, it is possible to define the ultrastructural type of an ever increasing number of neurones.

  16. QuickStats: Percentage of Adult Day Services Center Participants, by Selected Diagnoses

    MedlinePlus

    ... MMWR ) MMWR Share Compartir QuickStats: Percentage of Adult Day Services Center Participants,* by Selected Diagnoses † — National Study ... which is the estimated number of enrolled adult day services center participants in the United States on ...

  17. Early postnatal effects of noopept and piracetam on declarative and procedural memory of adult male and female rats.

    PubMed

    Trofimov, S S; Voronina, T A; Guzevatykh, L S

    2005-06-01

    We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity.

  18. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth.

    PubMed

    Yu, Pujiao; Wang, Hongbao; Xie, Yuan; Zhou, Jinzhe; Yao, Jianhua; Che, Lin

    2016-01-01

    The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  19. Home-based versus hospital-based postnatal care: a randomised trial.

    PubMed

    Boulvain, Michel; Perneger, Thomas V; Othenin-Girard, Véronique; Petrou, Stavros; Berner, Michel; Irion, Olivier

    2004-08-01

    To compare a shortened hospital stay with midwife visits at home to usual hospital care after delivery. Randomised controlled trial. Maternity unit of a Swiss teaching hospital. Four hundred and fifty-nine women with a single uncomplicated pregnancy at low risk of caesarean section. Women were randomised to either home-based (n= 228) or hospital-based postnatal care (n= 231). Home-based postnatal care consisted of early discharge from hospital (24 to 48 hours after delivery) and home visits by a midwife; women in the hospital-based care group were hospitalised for four to five days. Breastfeeding 28 days postpartum, women's views of their care and readmission to hospital. Women in the home-based care group had shorter hospital stays (65 vs 106 hours, P < 0.001) and more midwife visits (4.8 vs 1.7, P < 0.001) than women in the hospital-based care group. Prevalence of breastfeeding at 28 days was similar between the groups (90%vs 87%, P= 0.30), but women in the home-based care group reported fewer problems with breastfeeding and greater satisfaction with the help received. There were no differences in satisfaction with care, women's hospital readmissions, postnatal depression scores and health status scores. A higher percentage of neonates in the home-based care group were readmitted to hospital during the first six months (12%vs 4.8%, P= 0.004). In low risk pregnancies, early discharge from hospital and midwife visits at home after delivery is an acceptable alternative to a longer duration of care in hospital. Mothers' preferences and economic considerations should be taken into account when choosing a policy of postnatal care.

  20. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice.

    PubMed

    Khairinisa, Miski Aghnia; Takatsuru, Yusuke; Amano, Izuki; Kokubo, Michifumi; Haijima, Asahi; Miyazaki, Wataru; Koibuchi, Noriyuki

    2018-01-01

    Thyroid hormones (THs) play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU) treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm) in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21). First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups). As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  1. Effect of neonatal ovariectomy and estradiol treatment on corticosterone release in response to stress in the adult female rat.

    PubMed

    McCormick, Cheryl M

    2011-01-01

    Although organizational effects of sex hormones in early life on hypothalamic-pituitary-adrenal function have been reported for males, the findings are mixed for females, likely the result of not controlling for adult gonadal status. In experiment 1, females were ovariectomized (OVX) either on postnatal day 1 or as adults and given estradiol benzoate (EB) and progesterone implants or not as adults. Corticosterone release in response to restraint stress was responsive to hormonal replacement irrespective of timing of OVX: without replacement, both OVX groups had lower corticosterone concentrations after restraint stress than did OVX groups with replacement and gonadally intact females. Thus, neonatal OVX did not alter the activational effects of sex hormones in adulthood. In a second experiment, females administered a dose of EB on postnatal day 1 had a more rapid decline of corticosterone concentrations after restraint as adults compared to oil-treated females, irrespective of whether they were OVX as neonates or as adults (all groups were given estradiol replacement as adults). Thus, evidently there are organizational effects of the sex hormonal milieu of the neonatal female, although this is a modest effect compared to previous reports in males.

  2. Permanent effects of postnatal administration of beta-adrenergic ligands on the volume of sexually dimorphic nucleus of the preoptic area (SDN-POA) in rats.

    PubMed

    Izdebska-Straszak, Grazyna; Gubala, Elzbieta; Jedrzejowska-Szypulka, Halina; Klencki, Mariusz; Wiczkowski, Andrzej; Jarzab, Barbara

    2006-01-01

    beta-adrenergic ligands have been shown to influence sexual differentiation of the brain. In the present study we document that short postnatal treatment with beta-adrenergic agonists or antagonists may permanently reverse the morphological sex of the brain, as judged by the volume of sexually dimorphic nucleus of the preoptic area (SDN-POA). Female rats treated by beta(2)-adrenergic stimulating ligands exhibit an increased, male type SDN-POA volume while male rats treated by beta1-adrenergic antagonists show a decreased, female type of SDN-POA volume. To analyze the volume of SDN-POA of adult rats after postnatal administration of betaadrenergic ligands. From the second day of life, over 5 consecutive days, all the neonates were injected subcutaneously with the following drugs: isoproterenol, salbutamol, metoprolol alprenolol or saline. SDN-POA volumes were estimated planimetrically on serial brain slides. In male rats the mean volume of SDN-POA was 9.97 +/- 1.66 x 10(-3) mm(3), in female rats the respective volume reached 4.02 +/- 1.26 x 10(-3) mm(3) only and was 2.5 times lower, the difference being highly statistically significant. Postnatal administration of isoproterenol remained without effect in male rats but diminished the SDN-POA volume in female rats, thus increasing the sexual dimorphism. The disappearance of sexual dimorphism was noted in rats treated postnatally with salbutamol. This effect was due to the increase in SDN-POA volumes in female rats, up to 9.81 +/- 2.64 x 10(-3) mm(3), the levels approaching the male type of POA differentiation. Postnatal alprenolol treatment influenced the sexual dimorphism of the brain by decreasing the SDN-POA volume reached by adult males. In fact, in rats treated postnatally with alprenolol, the volume of the nucleus reached only 4,44 +/- 1,61 x 10(-3) mm(3), being not statistically different from female nuclei. The effect of metoprolol pretreatment was similar to alprenolol. Male volumes of SDN-POA were restored

  3. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life

    PubMed Central

    Xiao, Lan; Kish, Vincent L.; Benders, Katherine M.

    2016-01-01

    Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life. PMID:26503133

  4. Post natal use of analgesics: comparisons between conventional postnatal wards and a maternity hotel.

    PubMed

    Nordeng, Hedvig; Eskild, Anne; Nesheim, Britt-Ingjerd

    2010-04-01

    To investigate factors related to analgesic use after delivery, and especially whether rates of analgesic use were different in a midwife-managed maternity hotel as compared to conventional postnatal wards. One maternity hotel and two conventional postnatal wards at Ullevål University Hospital in Oslo, Norway. Data were obtained from hospital records for 804 women with vaginal deliveries. Postnatal analgesic use. Overall, approximately half the women used analgesics after vaginal delivery in both conventional postnatal wards and maternity hotel. The factors that were significantly associated with use of analgesics postnatally in multivariate analysis were multiparity, having a non-Western ethnicity, smoking in pregnancy, younger age, instrumental delivery, analgesic use during labour, maternal complications post partum, and duration of postnatal stay 4 days or more. The use of analgesics is determined by socio-demographic and obstetric factors rather than the organisation of the ward.

  5. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers.

    PubMed

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-11-01

    The presence of 137 Cesium ( 137 Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137 Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l -1 ) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (-11%) levels, but only for the rats exposed to 137 Cs intake in adulthood. Large changes in 17β-estradiol (-69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Changes in fine structure of pericytes and novel desmin-immunopositive perivascular cells during postnatal development in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Horiguchi, Kotaro; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2013-09-01

    Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary. These two types of perivascular cells differ in fine structure. The present study attempted to characterize the morphological features of pituitary pericytes and novel desmin-immunopositive perivascular cells during postnatal development, in particular their role in collagen synthesis. Desmin immunostaining revealed numerous perivascular cells at postnatal day 5 (P5) and P10. Transmission electron microscopy showed differences in the fine structure of the two cell types, starting at P5. Pericytes had well-developed rough endoplasmic reticulum and Golgi apparatus at P5 and P10. The novel desmin-immunopositive perivascular cells exhibited dilated cisternae of rough endoplasmic reticulum at P5-P30. In addition, during early postnatal development in the gland, a number of type I and III collagen-expressing cells were observed, as were high expression levels of these collagen mRNAs. We conclude that pituitary pericytes and novel desmin-immunopositive perivascular cells contain well-developed cell organelles and that they actively synthesize collagens during the early postnatal period.

  7. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions

    PubMed Central

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald

    2017-01-01

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478

  8. Should prenatal hydronephrosis that resolves before birth be followed postnatally? Analysis and comparison to persistent prenatal hydronephrosis.

    PubMed

    Scarborough, Patrick L; Ferrara, Elizabeth; Storm, Douglas W

    2015-09-01

    Prenatal ultrasonography has greatly enhanced detection of congenital genitourinary abnormalities. However, although persistent prenatal hydronephrosis (PPH) is typically imaged and followed postnatally, it remains unclear if prenatal hydronephrosis that resolves in utero (RPH) should be similarly managed. We determined postnatal abnormalities associated with RPH and compared these to those associated with PPH. We performed a retrospective review of all consecutive patients evaluated for prenatal hydronephrosis over 24 months. Patients were followed prenatally with serial ultrasounds and postnatally with ultrasonography and a voiding cystourethrogram. Of the consecutive 165 patients enrolled in the study, 72 had RPH. The average prenatal anterior-posterior renal pelvis length was significantly longer in patients with PPH (5.5 mm) than in those with RPH (4.9 mm) (p = 0.01). Recurrent postnatal hydronephrosis occurred in 44% of patients with RPH, with eventual resolution in 34% of those affected. In comparison, 29% of PPH cases resolved postnatally. Mean time to resolution was statistically shorter for PPH (116 days) than for RPH (175 days) (p = 0.01). Seven PPH patients required surgery, while no RPH patients needed intervention (difference was statistically significant). A significant number of RPH children had postnatal hydronephrosis. Despite a slower resolution time, no children with RPH required intervention. Although RPH may recur postnatally, the significantly lower chance of intervention being required suggests that these children may not require postnatal imaging.

  9. How many steps/day are enough? For older adults and special populations

    PubMed Central

    2011-01-01

    Older adults and special populations (living with disability and/or chronic illness that may limit mobility and/or physical endurance) can benefit from practicing a more physically active lifestyle, typically by increasing ambulatory activity. Step counting devices (accelerometers and pedometers) offer an opportunity to monitor daily ambulatory activity; however, an appropriate translation of public health guidelines in terms of steps/day is unknown. Therefore this review was conducted to translate public health recommendations in terms of steps/day. Normative data indicates that 1) healthy older adults average 2,000-9,000 steps/day, and 2) special populations average 1,200-8,800 steps/day. Pedometer-based interventions in older adults and special populations elicit a weighted increase of approximately 775 steps/day (or an effect size of 0.26) and 2,215 steps/day (or an effect size of 0.67), respectively. There is no evidence to inform a moderate intensity cadence (i.e., steps/minute) in older adults at this time. However, using the adult cadence of 100 steps/minute to demark the lower end of an absolutely-defined moderate intensity (i.e., 3 METs), and multiplying this by 30 minutes produces a reasonable heuristic (i.e., guiding) value of 3,000 steps. However, this cadence may be unattainable in some frail/diseased populations. Regardless, to truly translate public health guidelines, these steps should be taken over and above activities performed in the course of daily living, be of at least moderate intensity accumulated in minimally 10 minute bouts, and add up to at least 150 minutes over the week. Considering a daily background of 5,000 steps/day (which may actually be too high for some older adults and/or special populations), a computed translation approximates 8,000 steps on days that include a target of achieving 30 minutes of moderate-to-vigorous physical activity (MVPA), and approximately 7,100 steps/day if averaged over a week. Measured directly and

  10. Effect of cross-fostering on seizures in adult male offspring of methamphetamine-treated rat mothers.

    PubMed

    Slamberová, R; Hrubá, L; Bernásková, K; Matejovská, I; Rokyta, R

    2010-10-01

    Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play a role in the effect of stimulants in the genesis of epileptic seizures. Our previous studies showed that prenatal methamphetamine (MA) exposure induced long-term changes in seizure susceptibility. The aim of the present study was to investigate the effect of cross-fostering on the prenatal and postnatal MA-exposed rats, respectively, on their seizures in adulthood. Bicuculline (GABA(A) receptor antagonist), NMDA (NMDA receptor agonist) and flurothyl (a convulsant gas) were used to induce seizures in adult male offsprings. Female dams were injected with MA (5 mg/kg daily) or physiological saline (S) for approx. 9 week [about 3 week prior to impregnation, for the entire gestation period (22 days) and in preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposure) of adult male rats were tested in each seizure test: C/C; C/S; C/MA; S/C; S/S; S/MA; MA/C; MA/S; MA/MA. The present study demonstrates that the effect of prenatal and/or postnatal MA exposure is seizure model specific. In addition, our data show that there is an effect of cross-fostering on seizures; particularly, the effect of prenatal MA exposure shown in animals fostered by control mothers is no longer apparent in animals fostered postnatally by MA-treated mothers. Such effect of postnatal treatment is not manifested in prenatal controls. In summary, it seems that: (1) prenatal MA exposure alters seizure susceptibility more than postnatal MA exposure; (2) especially in seizures induced by chemicals that affect GABAergic system (bicuculline, flurothyl) notable effect of adoption (cross-fostering) is apparent; (3) in seizure models that are

  11. Lack of toxic effect of technical azadirachtin during postnatal development of rats.

    PubMed

    Srivastava, M K; Raizada, R B

    2007-03-01

    Azadirachtin, a biopesticide has been evaluated for its possible toxic effects during postnatal development of rats over two generations. Rats were fed 100, 500 and 1000ppm technical azadirachtin through diet which is equivalent to 5, 25 and 50mg/kg body weight of rats. Technical azadirachtin has not produced any adverse effects on reproductive function and data were comparable to control animals over two generations. There were no toxicological effect in parent rats as evidenced by clinical signs of toxicity, enzymatic parameters like AST, ALT, ALP, S. bilirubin, S. cholesterol, total protein and histopathology of liver, brain, kidney and testes/ovary. The litters of F(1B) and F(2B) generations were devoid of any morphological, visceral and teratological changes. The percent cumulative loss and growth index of pups were also comparable to respective controls in successive growth period of 0, 4, 7, 14 and 21 days in two generations. There were no major malformations in fetuses while some insignificant minor skeletal variations like missing 5th sternebrae and bipartite thoracic centre found were not compound or dose related. No significant pathomorphological changes were observed in liver, kidney, brain and gonads of F(2B) pups. In conclusion rats fed technical azadirachtin showed no evidence of cumulative effects on postnatal development and reproductive performance over two generations. Absence of any major adverse reproductive effects in adults as well as in 21 days old pups of F(2B) generation suggest the safe use of technical azadirachtin as a biopesticide.

  12. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    PubMed

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  13. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    PubMed

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    PubMed

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Coverage, quality of and barriers to postnatal care in rural Hebei, China: a mixed method study.

    PubMed

    Chen, Li; Qiong, Wu; van Velthoven, Michelle Helena; Yanfeng, Zhang; Shuyi, Zhang; Ye, Li; Wei, Wang; Xiaozhen, Du; Ting, Zhang

    2014-01-18

    Postnatal care is an important link in the continuum of care for maternal and child health. However, coverage and quality of postnatal care are poor in low- and middle-income countries. In 2009, the Chinese government set a policy providing free postnatal care services to all mothers and their newborns in China. Our study aimed at exploring coverage, quality of care, reasons for not receiving and barriers to providing postnatal care after introduction of this new policy. We carried out a mixed method study in Zhao County, Hebei Province, China from July to August 2011. To quantify the coverage, quality of care and reasons for not using postnatal care, we conducted a household survey with 1601 caregivers of children younger than two years of age. We also conducted semi-structured interviews with 24 township maternal and child healthcare workers to evaluate their views on workload, in-service training and barriers to postnatal home visits. Of 1442 (90% of surveyed caregivers) women who completed the postnatal care survey module, 8% received a timely postnatal home visit (within one week after delivery) and 24% of women received postnatal care within 42 days after delivery. Among women who received postnatal care, 37% received counseling or guidance on infant feeding and 32% on cord care. 24% of women reported that the service provider checked jaundice of their newborns and 18% were consulted on danger signs and thermal care of their newborns. Of 991 mothers who did not seek postnatal care within 42 days after birth, 65% of them said that they did not knew about postnatal care and 24% of them thought it was unnecessary. Qualitative findings revealed that staff shortages and inconvenient transportation limited maternal and child healthcare workers in reaching out to women at home. In addition, maternal and child healthcare workers said that in-service training was inadequate and more training on postnatal care, hands-on practice, and supervision were needed. Coverage

  16. Integrating Behavioral Psychology Services into Adult Day Programming for Individuals with Dementia

    ERIC Educational Resources Information Center

    LeBlanc, Linda A.

    2010-01-01

    Many individuals with dementia and problem behavior are served in nursing home settings long before health issues necessitate constant medical care. Alternative community-based adult day health care programs allow individuals with dementia to remain in their home with their families at a substantially reduced cost; however, many adult day programs…

  17. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing.

    PubMed

    Wu, Shengru; Liu, Yanli; Guo, Wei; Cheng, Xi; Ren, Xiaochun; Chen, Si; Li, Xueyuan; Duan, Yongle; Sun, Qingzhu; Yang, Xiaojun

    2018-06-27

    The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log 2 fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. This study provides a catalog of mRNAs and

  18. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  19. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    PubMed Central

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights. PMID:27257993

  20. Postnatal glucocorticoid-induced hypomyelination, gliosis, neurologic deficits are dose-dependent, preparation-specific, and reversible

    PubMed Central

    Zia, Muhammad TK; Vinukonda, Govindaiah; Vose, Linnea; Bhimavarapu, Bala B.R.; Iacobas, Sanda; Pandey, Nishi K.; Beall, Ann Marie; Dohare, Preeti; LaGamma, Edmund F.; Iacobas, Dumitru A.; Ballabh, Praveen

    2014-01-01

    Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5 mg/kg/day) or low (0.2 mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and Mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in

  1. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    PubMed Central

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  2. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    PubMed

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  3. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.

  4. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review.

    PubMed

    Grayson, B; Barnes, S A; Markou, A; Piercy, C; Podda, G; Neill, J C

    Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely

  5. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. Inferior Vena Cava Oxygen Saturation during the First Three Postnatal Days in Preterm Newborns with and without Patent Ductus Arteriosus

    PubMed Central

    Yapakçı, Ece; Ecevit, Ayşe; İnce, Deniz Anuk; Gökdemir, Mahmut; Tekindal, M. Agah; Gülcan, Hande; Tarcan, Aylin

    2014-01-01

    Background: Inferior vena cava (IVC) oxygen saturation as an indicator of mixed venous oxygenation may be valuable for understanding postnatal adaptations in newborn infants. It is unknown how this parameter progresses in critically ill premature infants. Aims: To investigate IVC oxygen saturation during the first three days of life in preterm infants with and without patent ductus arteriosus (PDA). Study Design: Case-control study. Methods: Twenty-seven preterm infants were admitted to the Neonatal Intensive Care. Preterm infants with umbilical venous catheterization were included in the study. Six umbilical venous blood gas values were obtained from each infant during the first 72 hours of life. Preterm infants in the study were divided into two groups. Haemodynamically significant PDA was diagnosed by echocardiography in 11 (41%) infants before the 72nd hour of life in the study group and ibuprofen treatment was started, whereas 16 (59%) infants who didn’t have haemodynamically significant PDA were included in the control group. Results: In the entire group, the highest value of mean IVC oxygen saturation was 79.9% at the first measurement and the lowest was 64.8% at the 72nd hour. Inferior vena cava oxygen saturations were significantly different between the study and control groups. Post-hoc analysis revealed that the first and 36th hour measurements made the difference (p=0.01). Conclusion: Inferior vena cava oxygen saturation was found to be significantly different between preterm infants with and without PDA. Further studies are needed to understand the effect of foetal shunts on venous oxygenation during postnatal adaptation in newborn infants. PMID:25337418

  7. Postnatal development of leukocyte subset composition and activity in dogs.

    PubMed

    Toman, M; Faldyna, M; Knotigova, P; Pokorova, D; Sinkora, J

    2002-09-10

    The aim of the presentation is to summarise our data on the counts and activity of circulating canine leukocytes at birth and on their changes in the first 3 months of life. On day 1, neutrophil counts were almost three times higher than lymphocyte counts. During the first week of life, a decrease of neutrophil and an increase of lymphocyte counts, resulting in a predominance of lymphocytes, were observed. Neutrophil counts reached values comparable with those in adults in 1 month. Lymphocyte counts were higher than those in adults during the first 3 months. From birth to the age of 3 months, the phagocytic activity of neutrophils was nonsignificantly higher than in young adults. When compared with adults, the peripheral blood of new-born pups contained a lower proportion of T lymphocytes (detected by CD3 and CD5 markers), with a very low percentage of CD8(+) cells and a higher proportion of CD21(+) B lymphocytes. The counts of individual subsets levelled out during the first 3 months of life, although the proportion of CD21(+) B cells remained higher all the time. Lymphocytes of new-born pups were able to respond to nonspecific mitogen stimulation. Spontaneous proliferation in vitro was higher during the first week of life. Although in vitro stimulation of lymphocytes with Concanavalin A in some pups was comparable with that of adult dogs, mean activity was weaker. Pups with zero or very low levels of maternal antibodies were able to develop specific immune responses to a parvovirus antigen as early as at 2 weeks of age. On the basis of these data, we assume that pups are born with an immune system that can respond to external stimuli. Nevertheless its development continues in the postnatal period and some parameters differ from adult values for at least 3 months after birth.

  8. Palisade Endings of Extraocular Muscles Develop Postnatally Following Different Time Courses.

    PubMed

    Blumer, Roland; Streicher, Johannes; Davis-López de Carrizosa, María A; de la Cruz, Rosa R; Pastor, Angel M

    2017-10-01

    To analyze in a frontal-eyed mammal (cat) the postnatal development of palisade endings in extraocular muscles (EOMs) and to compare the spatiotemporal and quantitative patterns of palisade endings among individual rectus muscles. Cats of different ages ranging from birth to adult stage were studied. EOM whole-mount preparations were fluorescently labeled using six combinations of triple staining and analyzed in the confocal laser scanning microscope. Palisade endings developed postnatally and passed in each rectus muscle through the same, three developmental steps but in a heterochronic sequence and to a different final density per muscle. Specifically, palisade ending development was first completed in the medial rectus and later in the inferior, lateral, and superior rectus. The highest density of palisade endings was observed in the medial rectus and the lowest in the lateral rectus whereas values for the inferior and superior rectus were in between. Palisade endings expressed high levels of growth associated protein 43 during development and were supplied by axons that established motor terminals. Cats open their eyes 7 to 10 days after birth and later develop a complex three-dimensional visuomotor climbing and jumping behavior depending on accurate binocular vision and fine tuning of the ocular movements. Our findings indicate that palisade ending development correlates with important landmarks in visuomotor behavior and provide support for our previous notion that palisade endings play an important role for convergence eye movements in frontal-eyed species.

  9. Widespread neuronal degeneration in rats following oral administration of methylmercury during the postnatal developing phase: a model of fetal-type minamata disease.

    PubMed

    Sakamoto, M; Wakabayashi, K; Kakita, A; Hitoshi Takahashi; Adachi, T; Nakano, A

    1998-02-16

    The neurotoxicity of methylmercury (MeHg) treatment during the postnatal developing phase in rats was studied. Rats on postnatal day 1 were orally administered 5 mg/kg/day methylmercury chloride (MMC) for more than 30 consecutive days. Body weight loss began 26 days after MMC was administered, and severe paralysis of the hind-limbs and unsteadiness appeared subsequently. Histopathologically, the widespread neuronal degeneration was observed in the cerebral neocortex, neostriatum, red nucleus, brainstem, cerebellum and spinal dorsal root ganglia on day 32. The widespread distribution of the lesions was quite similar to that in fetal cases of MeHg intoxication in Minamata, Japan. These findings suggest that MMC treatment during the postnatal development phase in rats produce a good model of fetal-type Minamata disease. Copyright 1998 Elsevier Science B.V.

  10. Validity of a Self-Administered 3-Day Physical Activity Recall in Young Adults

    ERIC Educational Resources Information Center

    Han, Jennifer L.; Dinger, Mary K.

    2009-01-01

    Background: Most physical activity recall questionnaires assess activity over a 7-day period. However, questionnaires have been validated in adolescents and adults using shorter recall timeframes. Purpose: The purpose of this study was to assess the validity of a self-administered 3-day physical activity recall instrument (3DR) in young adults.…

  11. Pre- and Post-Natal Maternal Depressive Symptoms in Relation with Infant Frontal Function, Connectivity, and Behaviors

    PubMed Central

    Soe, Ni Ni; Wen, Daniel J.; Poh, Joann S.; Li, Yue; Broekman, Birit F. P.; Chen, Helen; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D.; Meaney, Michael J.; Rifkin-Graboi, Anne; Qiu, Anqi

    2016-01-01

    This study investigated the relationships between pre- and early post-natal maternal depression and their changes with frontal electroencephalogram (EEG) activity and functional connectivity in 6- and 18-month olds, as well as externalizing and internalizing behaviors in 24-month olds (n = 258). Neither prenatal nor postnatal maternal depressive symptoms independently predicted neither the frontal EEG activity nor functional connectivity in 6- and 18-month infants. However, increasing maternal depressive symptoms from the prenatal to postnatal period predicted greater right frontal activity and relative right frontal asymmetry amongst 6-month infants but these finding were not observed amongst 18-month infants after adjusted for post-conceptual age on the EEG visit day. Subsequently increasing maternal depressive symptoms from the prenatal to postnatal period predicted lower right frontal connectivity within 18-month infants but not among 6-month infants after controlling for post-conceptual age on the EEG visit day. These findings were observed in the full sample and the female sample but not in the male sample. Moreover, both prenatal and early postnatal maternal depressive symptoms independently predicted children’s externalizing and internalizing behaviors at 24 months of age. This suggests that the altered frontal functional connectivity in infants born to mothers whose depressive symptomatology increases in the early postnatal period compared to that during pregnancy may reflect a neural basis for the familial transmission of phenotypes associated with mood disorders, particularly in girls. PMID:27073881

  12. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    PubMed

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  13. How many days of monitoring predict physical activity and sedentary behaviour in older adults?

    PubMed Central

    2011-01-01

    Background The number of days of pedometer or accelerometer data needed to reliably assess physical activity (PA) is important for research that examines the relationship with health. While this important research has been completed in young to middle-aged adults, data is lacking in older adults. Further, data determining the number of days of self-reports PA data is also void. The purpose of this study was to examine the number of days needed to predict habitual PA and sedentary behaviour across pedometer, accelerometer, and physical activity log (PA log) data in older adults. Methods Participants (52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years) wore a Yamax Digiwalker SW-200 pedometer and an ActiGraph 7164 accelerometer while completing a PA log for 21 consecutive days. Mean differences each instrument and intensity between days of the week were examined using separate repeated measures analysis of variance for with pairwise comparisons. Spearman-Brown Prophecy Formulae based on Intraclass Correlations of .80, .85, .90 and .95 were used to predict the number of days of accelerometer or pedometer wear or PA log daily records needed to represent total PA, light PA, moderate-to-vigorous PA, and sedentary behaviour. Results Results of this study showed that three days of accelerometer data, four days of pedometer data, or four days of completing PA logs are needed to accurately predict PA levels in older adults. When examining time spent in specific intensities of PA, fewer days of data are needed for accurate prediction of time spent in that activity for ActiGraph but more for the PA log. To accurately predict average daily time spent in sedentary behaviour, five days of ActiGraph data are needed. Conclusions The number days of objective (pedometer and ActiGraph) and subjective (PA log) data needed to accurately estimate daily PA in older adults was relatively consistent. Despite no statistical differences between days for total PA by the

  14. How many days of monitoring predict physical activity and sedentary behaviour in older adults?

    PubMed

    Hart, Teresa L; Swartz, Ann M; Cashin, Susan E; Strath, Scott J

    2011-06-16

    The number of days of pedometer or accelerometer data needed to reliably assess physical activity (PA) is important for research that examines the relationship with health. While this important research has been completed in young to middle-aged adults, data is lacking in older adults. Further, data determining the number of days of self-reports PA data is also void. The purpose of this study was to examine the number of days needed to predict habitual PA and sedentary behaviour across pedometer, accelerometer, and physical activity log (PA log) data in older adults. Participants (52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years) wore a Yamax Digiwalker SW-200 pedometer and an ActiGraph 7164 accelerometer while completing a PA log for 21 consecutive days. Mean differences each instrument and intensity between days of the week were examined using separate repeated measures analysis of variance for with pairwise comparisons. Spearman-Brown Prophecy Formulae based on Intraclass Correlations of .80, .85, .90 and .95 were used to predict the number of days of accelerometer or pedometer wear or PA log daily records needed to represent total PA, light PA, moderate-to-vigorous PA, and sedentary behaviour. Results of this study showed that three days of accelerometer data, four days of pedometer data, or four days of completing PA logs are needed to accurately predict PA levels in older adults. When examining time spent in specific intensities of PA, fewer days of data are needed for accurate prediction of time spent in that activity for ActiGraph but more for the PA log. To accurately predict average daily time spent in sedentary behaviour, five days of ActiGraph data are needed. The number days of objective (pedometer and ActiGraph) and subjective (PA log) data needed to accurately estimate daily PA in older adults was relatively consistent. Despite no statistical differences between days for total PA by the pedometer and ActiGraph, the magnitude of

  15. Pre- and postnatal toxicity induced in guinea pigs by N-nitrosomethylurea.

    PubMed

    Hasumi, K; Wilber, J H; Berkowitz, J; Wilber, R G; Epstein, S S

    1975-10-01

    Oral administration of N-nitrosomethylurea at maximally tolerated doses to guinea pigs on alternate days from days 34-58 of pregnancy induced prenatal toxicity, as evidenced by a high frequency of stillbirths and intrauterine growth retardation, and postnatal toxicity, as evidenced by stunting and progressive mortality. Similar administration of N-nitrosomethylurethane at maximally tolerated doses did not induce such toxic effects.

  16. Neonatal nicotine exposure alters leptin signaling in the hypothalamus-pituitary-thyroid axis in the late postnatal period and adulthood in rats.

    PubMed

    Santos-Silva, A P; Moura, E G; Pinheiro, C R; Rios, A S; Abreu-Villaça, Y; Passos, M C F; Oliveira, E; Lisboa, P C

    2010-07-31

    Postnatal nicotine exposure causes precocious primary hypothyroidism and programs for overweight, hyperleptinemia and secondary hypothyroidism in adulthood. As leptin and thyroid hormones share the ability to increase energy expenditure, we studied the effects of maternal nicotine exposure during lactation on the leptin signaling in the hypothalamus-pituitary-thyroid axis of suckling and adult offspring. Two days after delivery, osmotic minipumps were implanted in lactating rats, and nicotine (NIC, 6 mg/kg/day s.c.) or saline (C) was administered for 14days. Offspring were killed at 15 and 180 days-old. Proteins belonging to leptin signaling were analyzed by Western blot. Significant differences had p<0.05. In the hypothalamus, NIC offspring showed higher OB-R and pSTAT-3 content (+58%,+1.34x) at 15 days, and lower OB-R, JAK-2 and pSTAT-3 (-61%, -42%, -56%) at 180 days. In the pituitary gland, NIC offspring showed lower JAK-2 content (-52%) at 15 days, but no differences in adulthood. In the thyroid gland, the NIC group presented lower OB-R, JAK-2 and STAT-3 (-44%, -50%, -47%) and higher pSTAT-3 expression (+80%) at 15 days. At 180 days-old, NIC offspring presented higher thyroid OB-R (+1.54x) and lower pSTAT-3 content (-34%). Neonatal primary hypothyroidism induced by maternal nicotine exposure during lactation may be partially explained by decreased leptin signaling in the thyroid, though the early stimulation of the central leptin pathway did not prevent the thyroid dysfunction. Long-term effects of postnatal nicotine exposure on leptin signaling in the hypothalamus and thyroid appear to involve central and peripheral leptin resistance in adulthood. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Prenatal and postnatal cocaine exposure predict teen cocaine use

    PubMed Central

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  18. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    PubMed

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  19. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration

    PubMed Central

    Walters, Brad; Zuo, Jian

    2012-01-01

    The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally postmitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent in at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea. PMID:23164734

  20. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate

  1. Adolescent silymarin treatment increases anxiety-like behaviors in adult mice.

    PubMed

    Kosari-Nasab, Morteza; Rabiei, Afshin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-08-01

    Adolescence is one of the most important periods of brain development in mammals. There is increasing evidence that some medicines during this period can affect brain and behavioral functions in adulthood. Silymarin (SM), a mixture of flavonolignans extracted from the milk thistle Silybum marianum, is known as a hepatoprotective, anti-inflammatory, and neuroprotective drug. Although researchers have extensively studied the effects of SM during adulthood, to date there is no information on the effects of this drug during the stages of brain development on behavioral functions in adulthood. In the current study, we investigated the effects of adolescent SM treatment on body weight and anxiety-like behaviors in adult male and female mice. Adolescent NMRI mice (postnatal day 30-50) were treated orally with water or SM (50 and 100 mg/kg). Animals were weighed during drug treatment and were then subjected to open field, elevated plus maze, and light-dark box tests from postnatal day 70. The results indicated that adolescent SM treatment increased anxiety-like behaviors in open field, elevated plus maze, and light-dark box in adult mice, while not altering body weight. Collectively, these findings suggest that adolescent SM treatment may have profound effects on the development of brain and behavior in adulthood.

  2. Early Postnatal Cardiomyocyte Proliferation Requires High Oxidative Energy Metabolism.

    PubMed

    de Carvalho, Ana Elisa Teófilo Saturi; Bassaneze, Vinícius; Forni, Maria Fernanda; Keusseyan, Aline Alfonso; Kowaltowski, Alicia Juliana; Krieger, José Eduardo

    2017-11-13

    Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.

  3. Role of Neurotrophins on Postnatal Neurogenesis in the Thalamus: Prenatal Exposure to Ethanol

    PubMed Central

    Mooney, Sandra M.; Miller, Michael W.

    2011-01-01

    A second wave of neuronal generation occurs in the ventrobasal nucleus of the rat thalamus (VB) during the first three postnatal weeks. The present study tested the hypotheses (1) that postnatal neurogenesis in the VB is neurotrophin-regulated and (2) that ethanol-induced changes in this proliferation are mediated by neurotrophins. The first studies examined the effects of neurotrophins on the numbers of cycling cells in ex vivo preparations of the VB from three-day-old rats. The proportion of cycling (Ki-67-positive) VB cells was higher in cultured thalamic slices treated with neurotrophins than in controls. Interestingly, this increase occurred with nerve growth factor (NGF) alone or with a combination of NGF and brain-derived neurotrophic factor (BDNF), but not with BDNF alone. Based on these data, the VBs from young offspring of pregnant rats fed an ethanol-containing or an isocaloric non-alcoholic liquid diet were examined between postnatal day (P) 1 and P31. Studies used enzyme-linked immunosorbent assays and immunoblots to explore the effects of ethanol on the expression of neurotrophins, their receptors, and representative signaling proteins. Ethanol altered the expression of neurotrophins and receptors throughout the first postnatal month. Expression of NGF increased, but there was no change in the expression of BDNF. The high affinity receptors (TrkA and TrkB) were unchanged but ethanol decreased expression of the low affinity receptor, p75. One downstream signaling protein, extracellular signal-regulated kinase (ERK), decreased but Akt expression was unchanged. Thus, postnatal cell proliferation in the VB of young rat pups is neurotrophin-responsive and is affected by ethanol. PMID:21277941

  4. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm

    PubMed Central

    Aye, Christina Y L; Lewandowski, Adam J; Lamata, Pablo; Upton, Ross; Davis, Esther; Ohuma, Eric O; Kenworthy, Yvonne; Boardman, Henry; Wopperer, Samuel; Packham, Alice; Adwani, Satish; McCormick, Kenny; Papageorghiou, Aris T; Leeson, Paul

    2017-01-01

    Background Adults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development. Methods Cardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes. Results At birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001). Conclusion Preterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health. PMID:28399117

  5. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.

    PubMed

    Aye, Christina Y L; Lewandowski, Adam J; Lamata, Pablo; Upton, Ross; Davis, Esther; Ohuma, Eric O; Kenworthy, Yvonne; Boardman, Henry; Wopperer, Samuel; Packham, Alice; Adwani, Satish; McCormick, Kenny; Papageorghiou, Aris T; Leeson, Paul

    2017-07-01

    BackgroundAdults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development.MethodsCardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes.ResultsAt birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001).ConclusionPreterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health.

  6. The effects of pre- and postnatal exposure to the nonsteroidal antiandrogen flutamide on testis descent and morphology in the Albino Swiss rat

    PubMed Central

    KASSIM, NORMADIAH M.; McDONALD, S. W.; REID, O.; BENNETT, N. K.; GILMORE, D. P.; PAYNE, A. P.

    1997-01-01

    Exposure of male Albino Swiss rats to the nonsteroidal antiandrogen flutamide during the period from gestational day (d) 10 to birth resulted in feminisation of the external genitalia and the suppression of growth of the male reproductive tract. In adulthood, testes were found to be located in diverse positions. True cryptorchidism occurred in 10% of cases, whereas 50% of testes descended to the scrotum and 40% were located in a suprainguinal ectopic region. Varying degrees of tubule abnormality were seen in the testes of flutamide-treated animals, ranging from completely normal tubules with full spermatogenesis (and the expected frequency of the stages of spermatogenesis) to severely abnormal tubules lined with Sertoli cells only. For each individual testis, the overall severity of tubule damage was strongly correlated with its adult location, with intra-abdominal testes worst affected and scrotally-located testes least; only the latter contained normal tubules. Similarly, intra-abdominal testes were the smallest in weight and contained the least testosterone. By contrast, postnatal treatment of male rats with flutamide from birth to postnatal d 14 did not impair development of the external genitalia, the process of testicular descent or adult spermatogenesis. These findings confirm that androgen blockade during embryonic development interferes with testicular descent but also demonstrate that (1) prenatal flutamide treatment per se has a detrimental effect on adult testis morphology but (2) the degree of abnormality of the testes is strongly influenced by location. PMID:9183680

  7. Offspring psychopathology following preconception, prenatal, and postnatal maternal bereavement stress

    PubMed Central

    Class, Quetzal A.; Abel, Kathryn M.; Khashan, Ali S.; Rickert, Martin E.; Dalman, Christina; Larsson, Henrik; Hultman, Christina M.; Långström, Niklas; Lichtenstein, Paul; D’Onofrio, Brian M.

    2013-01-01

    Background Preconception, prenatal, and postnatal maternal stress are associated with increased offspring psychopathology, but findings are inconsistent and need replication. We estimated associations between maternal bereavement stress and offspring autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, schizophrenia, suicide attempt, and completed suicide. Methods Using Swedish registers, we conducted the largest population-based study to date examining associations between stress exposure in 738,144 offspring born 1992–2000 for childhood outcomes and 2,155,221 offspring born 1973–1997 for adult outcomes with follow-up through 2009. Maternal stress was defined as death of a first degree relative during 6 months before conception, across pregnancy, or the first two postnatal years. Cox proportional survival analyses were used to obtain hazard ratios (HR) in unadjusted and adjusted analyses. Results Marginal increased risk of bipolar disorder and schizophrenia following preconception bereavement stress was not significant. Third trimester prenatal stress increased risk of ASD (adjusted HR=1.58, 95% CI: 1.15–2.17) and ADHD (adjusted HR=1.31, 95% CI: 1.04–1.66). First postnatal year stress increased risk for offspring suicide attempt (adjusted HR=1.13, 95% CI: 1.02–1.25) and completed suicide (adjusted HR=1.51, 95% CI: 1.08–2.11). Bereavement stress during the second postnatal year increased risk of ASD (adjusted HR=1.30, 95% CI: 1.09–1.55). Conclusions Further research is needed on associations between preconception stress and psychopathological outcomes. Prenatal bereavement stress increases risk of offspring ASD and ADHD. Postnatal bereavement stress moderately increases risk of offspring suicide attempt, completed suicide, and ASD. Smaller previous studies may have overestimated associations between early stress and psychopathological outcomes. PMID:23591021

  8. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  9. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.

    PubMed

    Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia

    2012-04-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.

  10. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".

  11. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning.

    PubMed

    Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W

    2016-01-01

    The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats.

    PubMed

    Pochettino, Aristides A; Bongiovanni, Bettina; Duffard, Ricardo O; Evangelista de Duffard, Ana María

    2013-01-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used in agriculture and forestry since the 1940s. 2,4-D has been shown to produce a wide range of adverse effects-from embryotoxicity and teratogenicity to neurotoxicity-on animal and human health. The purpose of this study was to determine the possible effects of pre- and postnatal exposure to 2,4-D on oxidative stress in ventral prostate, ovary and breast. Pregnant rats were daily exposed to oral doses of 70 mg/kg/day of 2,4-D from 16 days of gestation up to 23 days after delivery. Then, the pups were sacrificed by decapitation at postnatal day (PND) 45, 60, or 90. Antioxidant enzyme activities and some parameters of the oxidative stress were assessed in ventral prostate, breast, and ovary. Results show that 2,4-D produced three different effects. First, it increased the concentration of some radical oxygen species and the rates of lipid peroxidation and protein oxidation in ventral prostate, thereby causing oxidative stress at all ages studied. Although an increase in the activity of some antioxidant enzymes was detected, this seemed to have been not enough to counteract the oxidative stress. Second, 2,4-D promoted the oxidative stress in the breasts, mainly during puberty and adulthood, probably because the developing gland is more sensitive to xenobiotics than the adult organ. Third, 2,4-D altered the activity of some antioxidant enzymes and increased lipid peroxide concentration in the ovary. This effect could reflect the variety of ovarian cell types and their different responses to endocrine changes during development. Copyright © 2011 Wiley Periodicals, Inc.

  13. Day-to-Day Variability of Postural Sway and Its Association With Cognitive Function in Older Adults: A Pilot Study

    PubMed Central

    Leach, Julia M.; Mancini, Martina; Kaye, Jeffrey A.; Hayes, Tamara L.; Horak, Fay B.

    2018-01-01

    Introduction: Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods: A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results: Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion: This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest. PMID:29780319

  14. Day-to-Day Variability of Postural Sway and Its Association With Cognitive Function in Older Adults: A Pilot Study.

    PubMed

    Leach, Julia M; Mancini, Martina; Kaye, Jeffrey A; Hayes, Tamara L; Horak, Fay B

    2018-01-01

    Introduction : Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods : A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results : Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion : This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest.

  15. The expression of Per1 and Aa-nat genes in the pineal gland of postnatal rats.

    PubMed

    Wongchitrat, Prapimpun; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri

    2012-12-01

    The circadian rhythm of melatonin synthesis is controlled by the master clock, suprachiasmatic nucleus (SCN). The level of melatonin changes throughout the aging process. The SCN's rhythm is driven by autoregulatory feedback loop composed of a set of clock genes families and their corresponding proteins. The Period (Per1), one of clock gene develops gradually during postnatal ontogenesis in the rat SCN and is also expressed in the pineal gland. It is of interest to study the relationship between the postnatal development of Per1 and Aa-nat, genes that produce the rate-limiting enzyme in melatonin synthesis, in the pineal. Daily profiles of mRNA expression of Per1 and Aa-nat were analyzed in the pineal gland of pups at postnatal ages 4 (P4), P8, P16 and P32, at puberty age of 6 weeks; and in 8 week-old adult rats by real-time PCR. As early as P4, Per1 and Aa-nat mRNAs were expressed and existed at relatively high levels during the nighttime. They gradually increased until puberty and decreased at 8 weeks of age. Additionally, the nocturnal changes of Per1 and Aa-nat mRNA levels in the rat pineal gland from P4 to adults were strongly correlated at r = 0.97 (p < 0.01). The present data indicate that there is a close relationship between the expression pattern of Per1 and that of melatonin synthesis during the development of postnatal rats.

  16. Risk Factors for 30-Day Readmission in Adults with Sickle Cell Disease.

    PubMed

    Brodsky, Max A; Rodeghier, Mark; Sanger, Maureen; Byrd, Jeannie; McClain, Brandi; Covert, Brittany; Roberts, Dionna O; Wilkerson, Karina; DeBaun, Michael R; Kassim, Adetola A

    2017-05-01

    Readmission to the hospital within 30 days is a measure of quality care; however, only few modifiable risk factors for 30-day readmission in adults with sickle cell disease are known. We performed a retrospective review of the medical records of adults with sickle cell disease at a tertiary care center, to identify potentially modifiable risk factors for 30-day readmission due to vasoocclusive pain episodes. A total of 88 patients ≥18 years of age were followed for 3.5 years between 2010 and 2013, for 158 first admissions for vasoocclusive pain episodes. Of these, those subsequently readmitted (cases) or not readmitted (controls) within 30 days of their index admissions were identified. Seven risk factors were included in a multivariable model to predict readmission: age, sex, hemoglobin phenotype, median oxygen saturation level, listing of primary care provider, type of health insurance, and number of hospitalized vasoocclusive pain episodes in the prior year. Mean age at admission was 31.7 (18-59) years; median time to readmission was 11 days (interquartile range 20 days). Absence of a primary care provider listed in the electronic medical record (odds ratio 0.38; 95% confidence interval, 0.16-0.91; P = .030) and the number of vasoocclusive pain episodes requiring hospitalization in the prior year were significant risk factors for 30-day readmission (odds ratio 1.30; 95% confidence interval, 1.16-1.44; P <.001). Improved discharge planning and ensuring access to a primary care provider may decrease the 30-day readmission rate in adults with sickle cell disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Calorie restriction and corticosterone elevation during lactation can each modulate adult male fear and anxiety-like behaviour.

    PubMed

    Govic, Antonina; Bell, Veronica; Samuel, Anil; Penman, Jim; Paolini, Antonio G

    2014-09-01

    Early life events, such as calorie restriction (CR) and elevated glucocorticoids, can calibrate the lifelong behavioural and physiological profile of an individual. Stress reactivity in adulthood is particularly sensitive to early life events; however, the consequence to fear and anxiety-like behaviour is less clear. Consequently, the current study sought to examine the effects of post-natal CR and glucocorticoid elevation, long considered powerful programming stimuli, on the subsequent fear and anxiety behaviour of the adult offspring. Rat dams received either corticosterone (200 μg/ml) supplementation in drinking water (CORT) or a 25% CR from post-natal day (PND) 1 to 11. Responses to the elevated plus maze (EPM), open field and a predator odour (TMT; 2,5-dihydro-2,4,5-trimethylthiazoline) were characterised in the adult male offspring. Both treatment conditions resulted in enhanced fear responses to TMT, characterised by heightened risk assessment and increased avoidance of TMT. CORT nursed offspring further demonstrated an anxiogenic profile in the open field. Basal hypothalamic-pituitary-adrenal function was unchanged in CORT adult offspring, whilst corticosterone concentration was elevated by post-natal CR. CR and CORT treated dams both exhibited greater anxiety-like behaviour in the EPM. A modest and temporary enhancement of maternal care was observed in CR and CORT treated dams, with CR dams further exhibiting rapid pup retrieval latencies. The results indicate enhanced emotionality in the adult male progeny of dams exposed to CR and corticosterone supplementation during the post-natal period. The modest enhancement of maternal care observed by both treatments is unlikely to have influenced the behavioural profile of the offspring. Copyright © 2014. Published by Elsevier Inc.

  18. Postnatal expression and androgen regulation of HOXBES2 homeoprotein in rat epididymis.

    PubMed

    Prabagaran, Esakki; Hegde, Uma C; Moodbidri, Sudhir B; Bandivdekar, Atmaram H; Raghavan, Vijaya P

    2007-01-01

    The multifunctional and androgen-regulated epididymis is known to provide a conducive microenvironment for the maturation and storage of mature spermatozoa. HOXB2 homeodomain-containing epididymis-specific sperm protein (HOXBES2), a molecule first reported by our group, exhibits cell- and region-specific expression. It was found in the cytoplasm of the principal epithelial cells with maximum in the distal segments of the rat epididymis. The present study was undertaken to determine whether HOXBES2 expression is regulated by androgens and postnatal epididymal development. Toward this, the epididymis was disallowed access to circulating androgens either by chemical or biologic castration. In bilaterally orchidectomized animals, the levels of immunoreactive HOXBES2 declined to <5 % of those seen in sham-operated animals. Exogenous dihydrotestosterone (DHT) supplementation (250 microg/kg body weight) for 7 days restored the expression levels to >or= 90 % of that observed in intact animals. Ethylene dimethane sulfonate (EDS) administration completely abolished HOXBES2 expression in the epididymis, and supplementation with DHT or DHT + estradiol for 10 days re-established HOXBES2 expression to near normalcy. However, in the estradiol alone-supplemented EDS-treated group, HOXBES2 remained undetected. The unaltered HOXBES2 expression following efferent duct ligation suggested that HOXBES2 is not critically dependent on testicular factors. During postnatal development, protein expression in the epididymis begins to appear from day 40 and 50 and increased from day 60 onward, coinciding with the mature levels of circulating androgens and the well-differentiated epididymis. Thus, the data obtained from this study suggests that HOXBES2 expression could be regulated by androgens, and its expression level is closely associated with the postnatal development of the epididymis.

  19. Prenatal and postnatal cocaine exposure predict teen cocaine use.

    PubMed

    Delaney-Black, Virginia; Chiodo, Lisa M; Hannigan, John H; Greenwald, Mark K; Janisse, James; Patterson, Grace; Huestis, Marilyn A; Partridge, Robert T; Ager, Joel; Sokol, Robert J

    2011-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n=316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Postnatal cocaine exposure: effects on behavior of rats in forced swim test.

    PubMed

    Magalhães, Ana; Tavares, Maria Amélia; de Sousa, Liliana

    2002-06-01

    Exposure to cocaine in early periods of postnatal life has adverse effects on behavior, namely, it induces the display of anxiety and fear-like behaviors that are associated with stress and depression. This study examined the effects of early developmental cocaine exposure in several categories of behavior observed in forced swim test. Male and female Wistar rats were given 15 mg/kg of cocaine hydrochloride/body weight/day, subcutaneously, in two daily doses, from postnatal day (PND) 1 to PND27. Controls were saline injected in the same protocol. In PND26-PND27, rats were placed in a swimming pool during 5 min in two sessions. The categories of behavior studied in this work included horizontal and vertical rotation, vibrissae clean, head clean, fast and slow swim, struggling, floating, sliding, diving, head-diving, and wagging head. Results showed differences in the frequencies of several behavioral categories that allowed the discrimination of the behaviors that may constitute "behavioral despair" indicators, as well as which behaviors are most affected by cocaine exposure. Cocaine groups were less active and more immobile than controls. These results suggest that postnatal exposure to cocaine can produce depression-like effects and affect the ability of these animals to cope with stress situations.

  1. A Comparative Analysis of the Functional Disability Levels of Adult Day Care, Adult Day Health and ICF-Level Nursing Home Elderly in Hawaii.

    ERIC Educational Resources Information Center

    Hayashida, Cullen T.

    This study compared the functional disability levels of participants in adult day centers with patients in intermediate care facilities (ICFs). A three-page questionnaire measuring demographics, social resources, physical health, mental health, and activities of daily living as assessed by the Activities of Daily Living scale and the Instrumental…

  2. Effects of prenatal exposure to WIFI signal (2.45GHz) on postnatal development and behavior in rat: Influence of maternal restraint.

    PubMed

    Othman, Haifa; Ammari, Mohamed; Sakly, Mohsen; Abdelmelek, Hafedh

    2017-05-30

    The present study was carried out to investigate the potential combined influence of maternal restraint stress and 2.45GHz WiFi signal exposure on postnatal development and behavior in the offspring of exposed rats. 24 pregnant albino Wistar rats were randomly assigned to four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint occurred 2h/day along gestation till parturition. The pups were evaluated for physical development and neuromotor maturation. Moreover, elevated plus maze test, open field activity and stationary beam test were also determined on postnatal days 28, 30 and 31, respectively. After behavioral tests, the rats were anesthetized and their brains were removed for biochemical analysis. Our main findings showed no detrimental effects on gestation progress and outcomes at delivery in all groups. Subsequently, WiFi and restraint, per se and mainly in concert altered physical development of pups with slight differences between genders. Behaviorally, the gestational WiFi irradiation, restraint and especially the associated treatment affected the neuromotor maturation mainly in male progeny. At adult age, we noticed anxiety, motor deficit and exploratory behavior impairment in male offspring co-exposed to WiFi radiation and restraint, and in female progeny subjected to three treatments. The biochemical investigation showed that, all three treatments produced global oxidative stress in brain of both sexes. As for serum biochemistry, phosphorus, magnesium, glucose, triglycerides and calcium levels were disrupted. Taken together, prenatal WiFi radiation and restraint, alone and combined, provoked several behavioral and biochemical impairments at both juvenile and adult age of the offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The impact of postnatal leuprolide acetate treatment on reproductive characteristics in a rodent model of polycystic ovary syndrome.

    PubMed

    Serrano Mujica, Lady Katerine; Bertolin, Kalyne; Bridi, Alessandra; Glanzner, Werner Giehl; Rissi, Vitor Braga; de Camargo, Flávia de Los Santos; Zanella, Renato; Prestes, Osmar Damian; Moresco, Rafael Noal; Antoniazzi, Alfredo Quites; Dias Gonçalves, Paulo Bayard; Premaor, Melissa Orlandin; Comim, Fabio Vasconcellos

    2017-02-15

    In this study, a GnRH agonist, leuprolide acetate (LA), was given as a single depot injection before 48 h of life to Wistar female rats allotted to prenatal (E16-18) and postnatal androgenization (day 5 of life) by the use of testosterone propionate, looking for reproductive endpoints. Remarkably, a single injection of LA increased the estrus cycles in the postnatal group (PostN) from 0% to 25% of the estrus cycles in the postnatal LA treated group (PostN L). LA also reduced the serum testosterone levels and cysts and atretic follicles in PostN L in contrast with rats (>100 days) from the PostN group (p = 0.04). Prenatally androgenized rats (PreN) exhibited significant modifications in the hypothalamic genes, such as Gnrh. To the best of our knowledge, this is the first study to show that blockage of the GnRH axis with leuprolide acetate depot prevented the development of typical features (anovulation, cysts, atretic follicles) in a postnatal testosterone propionate rat model of PCOS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Staff Morale in Day Care Centres for Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mascha, Katerina

    2007-01-01

    Background: Levels of burnout, job satisfaction and intended turnover of staff working in day care centres for adults with intellectual disabilities are investigated in relation to role clarity, staff support and supervision, and coping strategies used by staff. Materials and methods: Thirty six direct-care staff of four day care centres in the UK…

  5. Semicomprehensive analysis of the postnatal age-related changes in the mRNA expression of sex steroidogenic enzymes and sex steroid receptors in the male rat hippocampus.

    PubMed

    Kimoto, Tetsuya; Ishii, Hirotaka; Higo, Shimpei; Hojo, Yasushi; Kawato, Suguru

    2010-12-01

    Although sex steroids play a crucial role in the postnatal brain development, the age-related changes in the hippocampal steroidogenesis remain largely unknown. We performed comprehensive investigations for the mRNA expressions of 26 sex steroidogenic enzymes/proteins and three sex steroid receptors in the male rat hippocampus, at the ages of postnatal day (PD) 1, PD4, PD7, PD10, PD14, 4 wk, and 12 wk (adult), by RT-PCR/Southern blotting analysis. The relative expression levels of these enzymes/receptors at PD1 were Srd5a1 > Star > Ar ∼ Hsd17b4 ∼ Hsd17b1 ∼ Hsd17b7 ∼ Esr1 ∼ Srd5a2 > Hsd17b3 > Esr2 > Cyp11a1 > Cyp17a1 > Cyp19a1 ∼ Hsd17b2 > 3β-hydroxysteroid dehydrogenase I. The mRNA levels of essential enzymes for progesterone/testosterone/estradiol metabolisms (Cyp17a1, Hsd17b7, and Cyp19a1) were approximately constant between PD1 and PD14 and then declined toward the adult levels. Cyp11a1 increased during PD4-PD14 and then considerably decreased toward the adult level (∼8% of PD1). Hsd17b1, Hsd17b2, and 3β-hydroxysteroid dehydrogenase I mRNA decreased approximately monotonously. Hsd17b3 increased to approximately 200% of PD1 during PD4-PD14 and was maintained at this high level. The 5α-reductase mRNA was maintained constant (Srd5a1) or decreased monotonically (Srd5a2) toward the adult level. The Esr1 level peaked at PD4 and decreased toward the adult level, whereas Ar greatly increased during PD1-PD14 and was maintained at this high level. The Star and Hsd17b4 levels were maintained constant from neonate to adult. These results suggest that the hippocampal sex steroidogenic properties are substantially altered during the postnatal development processes, which might contribute to brain sexual maturation.

  6. Pre- and Early-Postnatal Nutrition Modify Gene and Protein Expressions of Muscle Energy Metabolism Markers and Phospholipid Fatty Acid Composition in a Muscle Type Specific Manner in Sheep

    PubMed Central

    Hou, Lei; Kongsted, Anna H.; Ghoreishi, Seyed M.; Takhtsabzy, Tasnim K.; Friedrichsen, Martin; Hellgren, Lars I.; Kadarmideen, Haja N.; Vaag, Allan; Nielsen, Mette O.

    2013-01-01

    We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole

  7. A qualitative study of the acceptability of routine screening of postnatal women using the Edinburgh Postnatal Depression Scale.

    PubMed Central

    Shakespeare, Judy; Blake, Fiona; Garcia, Jo

    2003-01-01

    BACKGROUND: Screening for postnatal depression using the Edinburgh Postnatal Depression Scale (EPDS) has been widely recommended and implemented in primary care, although little is known about how acceptable it is to women. AIM: To explore the acceptability to women of postnatal screening by health visitors with the EPDS. DESIGN OF STUDY: Qualitative interview study. SETTING: Postnatal patients from 22 general practices within the area of Oxford City Primary Care Group. METHOD: Thirty-nine postnatal women from a purposive sample were interviewed, chosen on the basis of different general practices, EPDS results at eight weeks and eight months postnatal, and whether 'listening visits' were received. The interviews were analysed using the constant comparative method. RESULTS: Just over half of the women interviewed found screening with the EPDS less than acceptable, whatever their postnatal emotional health. The main themes identified were problems with the process of screening and, in particular, the venue, the personal intrusion of screening and stigma. The women interviewed had a clear preference for talking about how they felt, rather than filling out a questionnaire. CONCLUSION: For this sample, routine screening with the EPDS was less than acceptable for the majority of women. This is of concern, as universal screening with the EPDS for the detection of postnatal depression is already recommended and widespread in primary care. PMID:14601337

  8. Postnatal Development of Intrinsic Horizontal Axons in Macaque Inferior Temporal and Primary Visual Cortices.

    PubMed

    Wang, Quanxin; Tanigawa, Hisashi; Fujita, Ichiro

    2017-04-01

    Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days.

    PubMed

    Lespay-Rebolledo, Carolyne; Perez-Lobos, Ronald; Tapia-Bustos, Andrea; Vio, Valentina; Morales, Paola; Herrera-Marschitz, Mario

    2018-06-29

    The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA

  10. Postnatal depression screening in a paediatric primary care setting in Italy.

    PubMed

    Clavenna, Antonio; Seletti, Elena; Cartabia, Massimo; Didoni, Anna; Fortinguerra, Filomena; Sciascia, Teresa; Brivio, Luca; Malnis, Daniela; Bonati, Maurizio

    2017-01-25

    Postnatal depression is a non-psychotic depressive disorder that begins within 4 weeks of childbirth and occurs in 13% of mothers and 10% of fathers. A prospective study with the aim to evaluate the prevalence of postnatal depression by screening parents with the Edinburgh Postnatal Depression Scale (EPDS) in the Italian paediatric primary care setting was performed. Mothers and fathers of infants born between 1 February and 31 July 2012, living in Italy's Milan-1 local health unit area, represented the target population of this pilot study. Parents attending well-child visits at any of the family paediatricians' offices between 60 to 90 days postpartum were asked to participate in the screening and to fill out the EPDS questionnaire. A cut-off score of 12 was used to identify parents with postnatal depression symptoms. Maternal and paternal socio-demographic variables and information concerning pregnancy and delivery were also collected. To investigate the association between screening positivity (dependent variable) and socio-demographic variables and factors related to pregnancy and delivery, a Pearson's χ2 test was used. Moreover, a stepwise multivariate logistic regression was carried out to evaluate the risk factors that most influence the probability of suffering from postnatal depression. In all, 126 out of 2706 (4.7%, 95% CI 3.9-5.5%) mothers and 24 out of 1420 (1.7%, 95% CI 1.0-2.4%) fathers were found to be positive for depressive symptoms. Women with mood disorders and anxiety during pregnancy were at increased risk of postpartum depression (OR 22.9, 95% CI 12.1-43.4). Only 11 mothers (8.7%) positive to EPDS screening attended a psychiatric service, and for 8 of them the diagnosis of postnatal depression was confirmed. The prevalence of postnatal depression was lower than previously reported. Routine screening resulted ineffective, since few mothers found positive for depression symptoms decided to attend psychiatric services.

  11. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  12. Patterns of Adult-Child Linguistic Interaction in Integrated Day Care Groups.

    PubMed

    Girolametto, Luigi; Hoaken, Lisa; Weitzman, Elaine; Lieshout, Riet van

    2000-04-01

    This study investigated the language input of eight childcare providers to children with developmental disabilities, including language delay, who were integrated into community day care centers. Structural and discourse features of the adults' language input was compared across two groups (integrated, typical) and two naturalistic day care contexts (book reading, play dough activity). The eight children with developmental disabilities and language delay were between 33-50 months of age; 32 normally developing peers ranged in age from 32-53 months of age. Adult-child interactions were transcribed and coded to yield estimates of structural indices (number of utterances, rate, mean length of utterances, ratio of different words to total words used (TTR) and discourse features (directive, interactive, language-modelling) of their language input. The language input addressed to the children with developmental disabilities was directive and not finely tuned to their expressive language levels. In turn, these children interacted infrequently with the adult or with the other children. Contextual comparisons indicated that the play dough activity promoted adult-child interaction that was less directive and more interaction-promoting than book reading, and that children interacted more frequently in the play-dough activity. Implications for speech-language pathologists include the need for collaborative consultation in integrated settings, modification of adult-child play contexts to promote interaction, and training childcare providers to use language input that promotes communication development.

  13. The Long-Term Economic Impact of in Utero and Postnatal Exposure to Malaria

    ERIC Educational Resources Information Center

    Barreca, Alan I.

    2010-01-01

    I use an instrumental-variables identification strategy and historical data from the United States to estimate the long-term economic impact of in utero and postnatal exposure to malaria. My research design matches adults in the 1960 Decennial Census to the malaria death rate in their respective state and year of birth. To address potential…

  14. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  15. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  16. Antenatal and postnatal depression in women with obesity: a systematic review.

    PubMed

    Steinig, Jana; Nagl, Michaela; Linde, Katja; Zietlow, Grit; Kersting, Anette

    2017-08-01

    Obesity and depression are prevalent complications during pregnancy and associated with severe health risks for the mother and the child. The co-occurrence of both conditions may lead to a particular high-risk group. This review provides a systematic overview of the association between pre-pregnancy obesity and antenatal or postnatal depression. We conducted a systematic electronic literature search for English language articles published between January 1990 and March 2017. Inclusion criteria were (a) adult pregnant women, (b) women with pre-pregnancy obesity and normal weight controls, (c) definition of obesity according to the IOM 1990/2009 criteria, (d) established depression measure, and (e) report on the association between pre-pregnancy obesity and antenatal or postnatal depression. Fourteen (eight prospective (PS), six cross-sectional (CS)) studies were included. One study reported data from a large community-based sample, and one reported cross-national data. Of 13 studies examining pre-pregnancy obesity and antenatal depression, 9 found a higher risk or higher levels of antenatal depression among women with obesity relative to normal weight (6 PS, 3 CS), while 4 studies found no association (2 PS, 2 CS). Of four studies examining pre-pregnancy obesity and postnatal depression, two studies found a positive association (two PS), one study (CS) reported different findings for different obesity classes, and one study found none (PS). The findings suggest that women with obesity are especially vulnerable to antenatal depression. There is a need to develop appropriate screening routines and targeted interventions to mitigate negative health consequences for the mother and the child. Research addressing the association between obesity and postnatal depression is too limited to draw solid conclusions. Results are mainly based on selective samples, and there is a need for further high-quality prospective studies examining the association between pre

  17. Day-to-day dynamics of experience–cortisol associations in a population-based sample of older adults

    PubMed Central

    Adam, Emma K.; Hawkley, Louise C.; Kudielka, Brigitte M.; Cacioppo, John T.

    2006-01-01

    In 156 older adults, day-to-day variations in cortisol diurnal rhythms were predicted from both prior-day and same-day experiences, to examine the temporal ordering of experience–cortisol associations in naturalistic environments. Diary reports of daily psychosocial, emotional, and physical states were completed at bedtime on each of three consecutive days. Salivary cortisol levels were measured at wakeup, 30 min after awakening, and at bedtime each day. Multilevel growth curve modeling was used to estimate diurnal cortisol profiles for each person each day. The parameters defining those profiles (wakeup level, diurnal slope, and cortisol awakening response) were predicted simultaneously from day-before and same-day experiences. Prior-day feelings of loneliness, sadness, threat, and lack of control were associated with a higher cortisol awakening response the next day, but morning awakening responses did not predict experiences of these states later the same day. Same-day, but not prior-day, feelings of tension and anger were associated with flatter diurnal cortisol rhythms, primarily because of their association with higher same-day evening cortisol levels. Although wakeup cortisol levels were not predicted by prior-day levels of fatigue and physical symptoms, low wakeup cortisol predicted higher levels of fatigue and physical symptoms later that day. Results are consistent with a dynamic and transactional function of cortisol as both a transducer of psychosocial and emotional experience into physiological activation and an influence on feelings of energy and physical well-being. PMID:17075058

  18. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons.

    PubMed

    Orts-Del'Immagine, Adeline; Trouslard, Jérôme; Airault, Coraline; Hugnot, Jean-Philippe; Cordier, Baptiste; Doan, Thierry; Kastner, Anne; Wanaverbecq, Nicolas

    2017-02-20

    The central canal along the spinal cord (SC.) and medulla is characterized by the presence of a specific population of neurons that contacts the cerebrospinal fluid (CSF). These medullo-spinal CSF-contacting neurons (CSF-cNs) are identified by the selective expression of the polycystin kidney disease 2-like 1 ionic channel (PKD2L1 or polycystin-L). In adult, they have been shown to express doublecortin (DCX) and Nkx6.1, two markers of juvenile neurons along with the neuron-specific nuclear protein (NeuN) typically expressed in mature neurons. They were therefore suggested to remain in a rather incomplete maturation state. The aim of this study was to assess whether such juvenile state is stable in postnatal animals or whether CSF-cNs may reach maturity at older stages than neurons in the parenchyma. We show, in the cervical SC. and the brainstem that, in relation to age, CSF-cN density declines and that their cell bodies become more distant from the cc, except in its ventral part. Moreover, in adults (from 1month) by comparison with neonatal mice, we show that CSF-cNs have evolved to a more mature state, as indicated by the increase in the percentage of cells positive for NeuN and of its level of expression. In parallel, CSF-cNs exhibit, in adult, lower DCX immunoreactivity and do not express PSA-NCAM and TUC4, two neurogenic markers. Nevertheless, CSF-cNs still share in adult characteristics of juvenile neurons such as the presence of phospho-CREB and DCX while NeuN expression remained low. This phenotype persists in 12-month-old animals. Thus, despite a pursuit of neuronal maturation during the postnatal period, CSF-cNs retain a durable low differentiated state. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  20. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    PubMed Central

    Lepeshko, Arina A.; Reshetnikov, Vasiliy V.

    2018-01-01

    Stressful events in an early postnatal period have critical implications for the individual's life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling), which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior. PMID:29619126

  1. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle

    PubMed Central

    Jiang, Weihua; Qin, Anqi X.; Bodell, Paul W.; Baldwin, Kenneth M.; Haddad, Fadia

    2012-01-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development. PMID:22262309

  2. Genetic control of postnatal human brain growth

    PubMed Central

    van Dyck, Laura I.; Morrow, Eric M.

    2017-01-01

    Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583

  3. Do associations between objectively-assessed physical activity and neighbourhood environment attributes vary by time of the day and day of the week? IPEN adult study.

    PubMed

    Cerin, Ester; Mitáš, Josef; Cain, Kelli L; Conway, Terry L; Adams, Marc A; Schofield, Grant; Sarmiento, Olga L; Reis, Rodrigo Siqueira; Schipperijn, Jasper; Davey, Rachel; Salvo, Deborah; Orzanco-Garralda, Rosario; Macfarlane, Duncan J; De Bourdeaudhuij, Ilse; Owen, Neville; Sallis, James F; Van Dyck, Delfien

    2017-03-20

    To more accurately quantify the potential impact of the neighbourhood environment on adults' physical activity (PA), it is important to compare environment-PA associations between periods of the day or week when adults are more versus less likely to be in their neighbourhood and utilise its PA resources. We examined whether, among adults from 10 countries, associations between objectively-assessed neighbourhood environment attributes and moderate-to-vigorous physical activity (MVPA) varied by time of the day and day of the week. The secondary aim was to examine whether such associations varied by employment status, gender and city. This cross-sectional study included 6,712 adults from 14 cities across 10 countries with ≥1 day of valid accelerometer-assessed MVPA and complete information on socio-demographic and objectively-assessed environmental characteristics within 0.5 and 1 km street-network buffers around the home. Accelerometer measures (MVPA min/h) were created for six time periods from early morning until late evening/night, for weekdays and weekend days separately. Associations were estimated using generalized additive mixed models. Time of the day, day of week, gender and employment status were significant moderators of environment-MVPA associations. Land use mix was positively associated with MVPA in women who were employed and in men irrespective of their employment status. The positive associations between MVPA and net residential density, intersection density and land use mix were stronger in the mornings of weekdays and the afternoon/evening periods of both weekdays and weekend days. Associations between number of parks and MVPA were stronger in the mornings and afternoon/evenings irrespective of day of the week. Public transport density showed consistent positive associations with MVPA during weekends, while stronger effects on weekdays were observed in the morning and early evenings. This study suggests that space and time constraints in adults

  4. Cognitive style, personality and vulnerability to postnatal depression.

    PubMed

    Jones, Lisa; Scott, Jan; Cooper, Caroline; Forty, Liz; Smith, Katherine Gordon; Sham, Pak; Farmer, Anne; McGuffin, Peter; Craddock, Nick; Jones, Ian

    2010-03-01

    Only some women with recurrent major depressive disorder experience postnatal episodes. Personality and/or cognitive styles might increase the likelihood of experiencing postnatal depression. To establish whether personality and cognitive style predicts vulnerability to postnatal episodes over and above their known relationship to depression in general. We compared personality and cognitive style in women with recurrent major depressive disorder who had experienced one or more postnatal episodes (postnatal depression (PND) group, n=143) with healthy female controls (control group, n=173). We also examined parous women with recurrent major depressive disorder who experienced no perinatal episodes (non-postnatal depression (NPND) group, n=131). The PND group had higher levels of neuroticism and dysfunctional beliefs, and lower self-esteem than the control group. However, there were no significant differences between the PND and NPND groups. Established personality and cognitive vulnerabilities for depression were reported by women with a history of postnatal depression, but there was no evidence that any of these traits or styles confer a specific risk for the postnatal onset of episodes.

  5. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism.

    PubMed

    Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise

    2015-07-15

    Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  7. Dirty and 40 days in the wilderness: Eliciting childbirth and postnatal cultural practices and beliefs in Nepal.

    PubMed

    Sharma, Sheetal; van Teijlingen, Edwin; Hundley, Vanora; Angell, Catherine; Simkhada, Padam

    2016-07-05

    Pregnancy and childbirth are socio-cultural events that carry varying meanings across different societies and cultures. These are often translated into social expectations of what a particular society expects women to do (or not to do) during pregnancy, birth and/or the postnatal period. This paper reports a study exploring beliefs around childbirth in Nepal, a low-income country with a largely Hindu population. The paper then sets these findings in the context of the wider global literature around issues such as periods where women are viewed as polluted (or dirty even) after childbirth. A qualitative study comprising five in-depth face-to-face interviews and 14 focus group discussions with mainly women, but also men and health service providers. The qualitative findings in Nepal were compared and contrasted with the literature on practices and cultural beliefs related to the pregnancy and childbirth period across the globe and at different times in history. The themes that emerged from the analysis included: (a) cord cutting & placenta rituals; (b) rest & seclusion; (c) purification, naming & weaning ceremonies and (d) nutrition and breastfeeding. Physiological changes in mother and baby may underpin the various beliefs, ritual and practices in the postnatal period. These practices often mean women do not access postnatal health services. The cultural practices, taboos and beliefs during pregnancy and around childbirth found in Nepal largely resonate with those reported across the globe. This paper stresses that local people's beliefs and practices offer both opportunities and barriers to health service providers. Maternity care providers need to be aware of local values, beliefs and traditions to anticipate and meet the needs of women, gain their trust and work with them.

  8. Tauroursodeoxycholic acid preserves photoreceptor structure and function in the rd10 mouse through post-natal day 30

    PubMed Central

    Phillips, M. Joe; Walker, Tiffany A.; Choi, Hee-young; Faulkner, Amanda E.; Kim, Moon K.; Sidney, Sheree; Boyd, Amber; Nickerson, John M.; Boatright, Jeffrey H.; Pardue, Machelle T.

    2008-01-01

    Purpose Retinitis Pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. While the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods followed by cones. Recently, the bile acid, tauroursodeoxycholic acid (TUDCA), has been shown to have anti-apoptotic properties in neurodegenerative diseases, including those of the retina. In this study we examine the efficacy of TUDCA on preserving rod and cone function and morphology at post-natal day 30 (P30) in the rd10 mouse, a model of RP. Methods Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every three days from P6-P30 and compared to vehicle (0.15M NaHCO3). At P30, retinal function was measured with electroretinography (ERG) and morphological preservation of the rods and cones assessed with immunohistochemistry. Results Dark-adapted ERG responses were two-fold greater in rd10 mice treated with TUDCA compared to vehicle, while light-adapted responses were two-fold larger in TUDCA-treated mice compared to controls, at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had five-fold more photoreceptors than vehicle-treated. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. Conclusions TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved both rod and cone function and greatly preserved overall photoreceptor numbers. PMID:18436848

  9. Day occupation is associated with psychopathology for adolescents and young adults with Down syndrome.

    PubMed

    Foley, Kitty-Rose; Jacoby, Peter; Einfeld, Stewart; Girdler, Sonya; Bourke, Jenny; Riches, Vivienne; Leonard, Helen

    2014-10-03

    Young adults with Down syndrome experience increased rates of emotional and behavioural problems compared with the general population. Most adolescents with Down syndrome living in Western Australia participate in sheltered employment as their main day occupation. Relationship between day occupation and changes in behaviour has not been examined. Therefore, the aim of this research was to explore any relationship between post school day occupations and changes in the young person's behaviour. The Down syndrome Needs Opinion Wishes database was used for case ascertainment of young adults aged 15 to 32 years with Down syndrome. Families of 118 young people in this population-based database completed questionnaires in 2004, 2009 and 2011. The questionnaires addressed both young person characteristics such as age, gender, presence of impairments, behaviour, functioning in activities of daily living, and family characteristics such as income and family functioning. Post-school day occupations in which the young people were participating included open and sheltered employment, training and day recreation programs. Change in behaviour of young adults who remained in the same post-school day occupation from 2009 to 2011 (n = 103) were examined in a linear regression model adjusting for confounding variables including age, gender, prior functioning and behaviour in 2004 and family income. In comparison to those young adults attending open employment from 2009 to 2011, those attending day recreation programs were reported to experience worsening in behaviour both in the unadjusted (effect size -0.14, 95% CI -0.24, -0.05) and adjusted models (effect size -0.15, 95% CI -0.29, -0.01). We found that the behaviour of those participating in open employment improved compared to those attending other day occupations. Further examination of the direction of this association is required.

  10. Expression pattern of Anosmin-1 during pre- and postnatal rat brain development.

    PubMed

    Clemente, Diego; Esteban, Pedro F; Del Valle, Ignacio; Bribián, Ana; Soussi-Yanicostas, Nadia; Silva, Augusto; De Castro, Fernando

    2008-09-01

    Anosmin-1 participates in the development of the olfactory and GnRH systems. Defects in this protein are responsible for both the anosmia and the hypogonadotrophic hypogonadism found in Kallmann's syndrome patients. Sporadically, these patients also manifest some neurological symptoms that are not explained in terms of the developmental defects in the olfactory system. We describe the pattern of Anosmin-1 expression in the central nervous system during rat development using a novel antibody raised against Anosmin-1 (Anos1). The areas with Anos1-stained neurons and glial cells were classified into three groups: (1) areas with immunoreactivity from embryonic day 16 to postnatal day (P) 15; (2) areas with Anosmin-1 expression only at postnatal development; (3) nuclei with immunoreactivity only at P15. Our data show that Anos1 immunoreactivity is detected in projecting neurons and interneurons within areas of the brain that may be affected in patients with Kallmann's syndrome that develop both the principal as well as sporadic symptoms.

  11. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling

    PubMed Central

    Feng, Bo; Tang, Yangshun; Chen, Bin; Xu, Cenglin; Wang, Yi; Dai, Yunjian; Wu, Dengchang; Zhu, Junmin; Wang, Shuang; Zhou, Yudong; Shi, Liyun; Hu, Weiwei; Zhang, Xia; Chen, Zhong

    2016-01-01

    It remains unclear how infantile febrile seizures (FS) enhance adult seizure susceptibility. Here we showed that the transient increase of interleukin-1β (IL-1β) after prolonged FS promoted adult seizure susceptibility, which was blocked by interleukin-1 receptor antagonist (IL-1Ra) within a critical time window. Postnatal administered IL-1β alone mimicked the effect of FS on adult seizure susceptibility. IL-1R1 knockout mice were not susceptible to adult seizure after prolonged FS or IL-1β treatment. Prolonged FS or early-life IL-1β treatment increased the expression of cannabinoid type 1 receptor (CB1R) for over 50 days, which was blocked by IL-1Ra or was absent in IL-1R1 knockout mice. CB1R antagonist, knockdown and endocannabinoid synthesis inhibitor abolished FS or IL-1β-enhanced seizure susceptibility. Thus, this work identifies a pathogenic role of postnatal IL-1β/IL-1R1 pathway and subsequent prolonged prominent increase of endocannabinoid signaling in adult seizure susceptibility following prolonged FS, and highlights IL-1R1 as a potential therapeutic target for preventing the development of epilepsy after infantile FS. PMID:26902320

  12. Pharmacokinetics of temozolomide given three times a day in pediatric and adult patients.

    PubMed

    Riccardi, Anna; Mazzarella, Giorgio; Cefalo, Graziella; Garrè, Maria Luisa; Massimino, Maura; Barone, Carlo; Sandri, Alessandro; Ridola, Vita; Ruggiero, Antonio; Mastrangelo, Stefano; Lazzareschi, Ilaria; Caldarelli, Massimo; Maira, Giulio; Madon, Enrico; Riccardi, Riccardo

    2003-12-01

    To characterize and compare pharmacokinetic parameters in children and adults treated with temozolomide (TMZ) administered for 5 days in three doses daily, and to evaluate the possible relationship between AUC values and hematologic toxicity. TMZ pharmacokinetic parameters were characterized in pediatric and adult patients with primary central nervous system tumors treated with doses ranging from 120 to 200 mg/m2 per day, divided into three doses daily for 5 days. Plasma levels were measured over 8 h following oral administration in a fasting state. A total of 40 courses were studied in 22 children (mean age 10 years, range 3-16 years) and in 8 adults (mean age 30 years, range 19-54 years). In all patients, a linear relationship was found between systemic exposure (AUC) and increasing doses of TMZ. Time to peak concentration, elimination half-life, apparent clearance and volume of distribution were not related to TMZ dose. No differences were seen among TMZ C(max), t(1/2), V(d) or CL/F in children compared with adults. Intra- and interpatient variability of systemic exposure were limited in both children and adults. No statistically significant differences were found between the AUCs of children who experienced grade 4 hematologic toxicity and children who did not. No difference appears to exist between pharmacokinetic parameters in adults and children when TMZ is administered in three doses daily. Hematologic toxicity was not related to TMZ AUC. AUC measurement does not appear to be of any use in optimizing TMZ treatment.

  13. Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice.

    PubMed

    Eulenburg, Volker; Retiounskaia, Marina; Papadopoulos, Theofilos; Gomeza, Jesús; Betz, Heinrich

    2010-07-01

    The glycine transporter 1 (GlyT1) is expressed in astrocytes and selected neurons of the mammalian CNS. In newborn mice, GlyT1 is crucial for efficient termination of glycine-mediated inhibitory neurotransmission. Furthermore, GlyT1 has been implicated in the regulation of excitatory N-methyl-D-asparate (NMDA) receptors. To evaluate whether glial and neuronal GlyT1 have distinct roles at inhibitory synapses, we inactivated the GlyT1 gene cell type-specifically using mice carrying floxed GlyT1 alleles GlyT1((+)/+)). GlyT1((+)/(+)) mice expressing Cre recombinase in glial cells developed severe neuromotor deficits during the first postnatal week, which mimicked the phenotype of conventional GlyT1 knock-out mice and are consistent with glycinergic over-inhibition. In contrast, Cre-mediated inactivation of the GlyT1 gene in neuronal cells did not result in detectable motor impairment. Notably, some animals deficient for glial GlyT1 survived the first postnatal week and did not develop neuromotor deficits throughout adulthood, although GlyT1 expression was efficiently reduced. Thus, glial GlyT1 is critical for the regulation of glycine levels at inhibitory synapses only during early postnatal life. Copyright 2010 Wiley-Liss, Inc.

  14. Both antenatal and postnatal inflammation contribute information about the risk of brain damage in extremely preterm newborns

    PubMed Central

    Yanni, Diana; Korzeniewski, Steven J.; Allred, Elizabeth N.; Fichorova, Raina N.; O'Shea, T. Michael; Kuban, Karl; Dammann, Olaf; Leviton, Alan

    2017-01-01

    Background Preterm newborns exposed to intrauterine inflammation are at increased risk of neurodevelopmental disorders. We hypothesized that adverse outcomes are more strongly associated with a combination of antenatal and postnatal inflammation than with either of them alone. Methods We defined antenatal inflammation as histologic inflammation in the placenta. We measured the concentrations of seven inflammation-related proteins in blood obtained on postnatal days 1, 7, and 14 from 763 infants born before 28 weeks of gestation. We defined postnatal inflammation as a protein concentration in the highest quartile on at least 2 days. We used logistic regression models to evaluate the contribution of antenatal and postnatal inflammation to the risk of neurodevelopmental disorders. Results The risk of white matter damage was increased when placental inflammation was followed by sustained elevation of CRP or ICAM-1. We found the same for spastic cerebral palsy when placental inflammation was followed by elevation of TNF-α or IL-8. The presence of both placental inflammation and elevated levels of IL-6, TNF-α, or ICAM-1 was associated with an increased risk for microcephaly. Conclusion Compared to a single hit, two inflammatory hits are associated with stronger risk for abnormal cranial ultrasound, spastic cerebral palsy, and microcephaly at 2 years. PMID:28549057

  15. Measurements of postnatal growth of the skull of Pan troglodytes verus using lateral cephalograms.

    PubMed

    Arnold, Wolfgang H; Protsch von Zieten, Reiner; Schmidt, Ekehard

    2003-03-01

    The postnatal growth of the viscerocranium in relation to the neurocranium of Pan troglodytes verus has been investigated using standardized lateral cephalograms. Sex and age were determined on the basis of cranial morphology and the skulls were divided into four age groups: infantile, juvenile, subadult and adult. The cephalograms were traced on transparencies and specific anatomical landmarks were identified for the measurement of lines angles and the area of the neurocranium and viscerocranium. The results showed that the skull of Pan troglodytes verus exhibits klinorhynchy. During postnatal growth it develops towards airorhynchy, but never shows true airorhynchy. In the infantile age group the measured area of the neurocranium is larger than that of the viscerocranium. The measured area of the viscerocranium increases until adulthood and is larger than that of the neurocranium in the subadult and adult group. From the results we conclude that in Pan troglodytes verus growth of the neurocranium seizes early in juvenile individuals, whereas the viscerocranium grows until adulthood. This may reflect an adaptation to the masticatory system.

  16. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Exploratory behavior in rats postnatally exposed to cocaine and housed in an enriched environment.

    PubMed

    Magalhães, Ana; Melo, Pedro; Alves, Cecília Juliana; Tavares, Maria Amélia; de Sousa, Liliana; Summavielle, Teresa

    2008-10-01

    Exposure to cocaine in early periods of postnatal life is usually associated with changes in development of neurotransmitter systems and structure of the central nervous system. Such changes are most likely correlated with behavioral alterations. Environmental enrichment conditions (EC) in early stages is a factor that affects structural and behavioral development. The purpose of this study is to examine the effects of EC on rats postnatally exposed to cocaine on exploratory behavior. Wistar rats were assigned to four groups-Group 1: pups exposed to cocaine hydrochloride (15 mg/kg body weight/day) s.c., in two daily doses, from postnatal day (PND) 1 to 28 and reared in EC; Group 2: pups exposed to cocaine as previously described and reared in a standard environmental conditions (SC); Group 3: pups saline-injected and reared in EC; and Group 4: pups saline-injected and reared in SC. On PND 21, 24, and 28, groups of four rats (to reduce anxiety) were placed for 10 minutes into an arena with several objects. The following exploratory behavioral categories were examined: object interaction, exploration, manipulation, approximation, and total time of object contact. Animals from Group 2 showed decreased object interaction and total contact on PND 21. Control offspring reared in EE showed decreases in exploratory behavior at all ages analyzed compared with the control SE group, while cocaine-exposed animals reared in EC showed decreased object interaction, object approximation, and total exploratory behavior. The results in this group suggest that EC improved information acquisition and memory processes in animals postnatally exposed to cocaine.

  18. Lepidium meyenii (Maca) increases litter size in normal adult female mice

    PubMed Central

    Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F

    2005-01-01

    Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility. PMID

  19. Lepidium meyenii (Maca) increases litter size in normal adult female mice.

    PubMed

    Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F

    2005-05-03

    Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility.

  20. Postnatal development of plasma amino acids in hyperphagic rats.

    PubMed

    Salvadó, M J; Segués, T; Arola, L

    1991-01-01

    The effect of feeding a highly palatable high-energy cafeteria diet on individual amino acid levels in plasma during postnatal development of the rat has been evaluated and compared to chow-fed controls. The cafeteria diet selected by the rats was hypercaloric and hyperlipidic, with practically the same amount of carbohydrate as the control diet, and slightly hyperproteic. In response to cafeteria feeding, significant decreases were observed in plasma serine and cysteine along the period studied. Significant changes with age during the growth period were shown by cafeteria-fed animals, which were not observed in control rats. Citrulline levels were lower on days 10 and 14 in cafeteria pups than in chow pups. Methionine was highest on day 30. Threonine was also higher at days 20 and 30, as was valine but with a nadir at day 10. Lysine showed maximal values on days 14 and 30.

  1. Three-dimensional distribution of tyrosine hydroxylase, vasopressin and oxytocin neurones in the transparent postnatal mouse brain.

    PubMed

    Godefroy, D; Dominici, C; Hardin-Pouzet, H; Anouar, Y; Melik-Parsadaniantz, S; Rostène, W; Reaux-Le Goazigo, A

    2017-12-01

    Over the years, advances in immunohistochemistry techniques have been a critical step in detecting and mapping neuromodulatory substances in the central nervous system. The better quality and specificity of primary antibodies, new staining procedures and the spectacular development of imaging technologies have allowed such progress. Very recently, new methods permitting tissue transparency have been successfully used on brain tissues. In the present study, we combined whole-mount immunostaining for tyrosine hydroxylase (TH), oxytocin (OXT) and arginine vasopressin (AVP), with the iDISCO+ clearing method, light-sheet microscopy and semi-automated counting of three-dimensionally-labelled neurones to obtain a (3D) distribution of these neuronal populations in a 5-day postnatal (P5) mouse brain. Segmentation procedure and 3D reconstruction allowed us, with high resolution, to map TH staining of the various catecholaminergic cell groups and their ascending and descending fibre pathways. We show that TH pathways are present in the whole P5 mouse brain, similar to that observed in the adult rat brain. We also provide new information on the postnatal distribution of OXT and AVP immunoreactive cells in the mouse hypothalamus, and show that, compared to AVP neurones, OXT neurones in the supraoptic (SON) and paraventricular (PVN) nuclei are not yet mature in the early postnatal period. 3D semi-automatic quantitative analysis of the PVN reveals that OXT cell bodies are more numerous than AVP neurones, although their immunoreactive soma have a volume half smaller. More AVP nerve fibres compared to OXT were observed in the PVN and the retrochiasmatic area. In conclusion, the results of the present study demonstrate the utility and the potency of imaging large brain tissues with clearing procedures coupled to novel 3D imaging technologies to study, localise and quantify neurotransmitter substances involved in brain and neuroendocrine functions. © 2017 British Society for

  2. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    PubMed

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX) + neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1 -/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  3. Decreased Sensitivity in Adolescent versus Adult Rats to the Locomotor Activating Effects of Toluene

    PubMed Central

    Bowen, Scott E.; Charlesworth, Jonathan D.; Tokarz, Mary E.; Jerry Wright, M.; Wiley, Jenny L.

    2007-01-01

    Volatile organic solvent (inhalant) abuse continues to be a major health concern throughout the world. Of particular concern is the abuse of inhalants by adolescents because of its toxicity and link to illicit drug use. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. While studies have assessed outcomes of exposure to inhalants in adult male animals, there is little research on the neurobehavioral effects of inhalants in female or younger animals. In attempt to address these shortcomings, we exposed male and female Long-Evans rats to 20 min of 0, 2,000, 4,000, or 8,000 parts per million (ppm) inhaled toluene for 10 days in rats aged postnatal (PN) day 28-39 (adolescent), PN44-PN55, or >PN70 (adult). Animals were observed individually in 29-l transparent glass cylindrical jars equipped with standard photocells that were used to measure locomotor activity. Toluene significantly increased activity as compared to air exposure in all groups of male and female rats with the magnitude of locomotor stimulation produced by 4000 ppm toluene being significantly greater for female adults than during any age of adolescence. The results demonstrate that exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous locomotor behavior in rats and that the expression of these effects appears to depend upon the postnatal age of testing and sex of the animal. PMID:17869480

  4. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  5. Pre- and postnatal exposure of mice to concentrated urban PM2.5 decreases the number of alveoli and leads to altered lung function at an early stage of life.

    PubMed

    de Barros Mendes Lopes, Thais; Groth, Espen E; Veras, Mariana; Furuya, Tatiane K; de Souza Xavier Costa, Natalia; Ribeiro Júnior, Gabriel; Lopes, Fernanda Degobbi; de Almeida, Francine M; Cardoso, Wellington V; Saldiva, Paulo Hilario Nascimento; Chammas, Roger; Mauad, Thais

    2018-06-04

    Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM 2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM 2.5 (from São Paulo, Brazil; target dose 600 μg/m 3 for 1 h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Early postnatal exposure to cigarette smoke impairs the antigen-specific T-cell responses in the spleen.

    PubMed

    Singh, Shashi P; Razani-Boroujerdi, Seddigheh; Pena-Philippides, Juan C; Langley, Raymond J; Mishra, Neerad C; Sopori, Mohan L

    2006-12-15

    Annually, approximately two million babies are exposed to cigarette smoke in utero and postnatally through cigarette smoking of their mothers. Exposure to mainstream cigarette smoke is known to impair both innate and adaptive immunities, and it has been hypothesized that the effects of in utero exposure to cigarette smoke on children's health might primarily stem from the adverse effects of cigarette smoke on the immune system. To simulate the environment that babies from smoking mothers encounter, we examined the effects of prenatal mainstream and postnatal sidestream cigarette smoke on spleen cell responses. Results show that postnatal exposure of newborn Balb/c mouse pups to sidestream cigarette smoke through the first 6 weeks of life strongly suppresses the antibody response of spleen cells to the T-cell-dependent antigen, sheep red blood cells. The reduction in the antibody response seen within 6 weeks of postnatal smoke exposure is much quicker than the published data on the time 25 weeks) required to establish reproducible immunosuppression in adult rats and mice. Moreover, the immunosuppression is not associated with significant changes in T-cell numbers or subset distribution. While the postnatal exposure to cigarette smoke did not affect the mitogenic response of T and B cells, the exposure inhibited the T cell receptor-mediated rise in the intracellular calcium concentration. These results suggest that the early postnatal period is highly sensitive to the immunosuppressive effects of environmental tobacco smoke, and the effects are causally associated with impaired antigen-mediated signaling in T cells.

  7. Comparison of Birth-and Conception-Based Definitions of Postnatal Age in Developmental and Reproductive Rodent Toxicity Studies: lnfluence of Gestation Length on Measurements of Offspring Body Weight and Puberty in Controls

    EPA Science Inventory

    Most laboratories conducting developmental and reproductive toxicity studies in rodents assign age by defining postnatal day (PND) 0 or 1 as the day of birth (DOB); i.e., gestation length affects PND and the timing of postnatal measurements. Some laboratories, however, define age...

  8. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress.

    PubMed

    Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane

    2017-07-15

    We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[ 14 C]-glutamate uptake and increased 45 Ca 2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

    PubMed

    Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2005-09-01

    Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.

  10. Melamine in prenatal and postnatal organs in rats.

    PubMed

    Chu, Ching Yan; Chu, Kai On; Ho, Chung Shun; Kwok, Sung Shing; Chan, Ho Ming; Fung, Kwok Pui; Wang, Chi Chiu

    2013-01-01

    Melamine can be transferred to fetus in utero through placenta and to infant ex utero by breast feeding. In this study, we characterized the pharmacokinetics of melamine in prenatal and postnatal organs in rats. Single bolus of melamine was administered to pregnant rats at different gestational stages and to infants at different postnatal stages. Distribution of melamine in maternal serum was about 30% higher in late pregnancy than that in early pregnancy; and it was 2 folds higher in postnatal serum in early infants in young adulthood. Distribution of melamine in all postnatal organs was higher than that in prenatal organs. Postnatal kidneys in early infants had the highest maximum concentration and the lowest clearance of melamine than the other postnatal organs. It may relate to the high vulnerability to the toxicity of melamine in this population. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  12. Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelstad, Marta, E-mail: maap@food.dtu.dk; Boberg, Julie; Hougaard, Karin Sorig

    Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T{sub 4}), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. Onmore » postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T{sub 4}) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T{sub 4} deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both

  13. Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol.

    PubMed

    Gabriel, Kara I; Glavas, Maria M; Ellis, Linda; Weinberg, Joanne

    2005-06-09

    Postnatal handling has been shown to attenuate some of the deficits in developmental outcome observed following prenatal ethanol exposure (E) although it appears to be ineffective at ameliorating the hypothalamic-pituitary-adrenal (HPA) hyperresponsiveness to stressors that has been observed in adult E animals. However, the effects of postnatal handling on central regulation of HPA activity in E animals, particularly with regard to alterations in steady-state hypothalamic corticotropin-releasing factor (CRF) activity, have not been examined. In the present study, offspring from E, pair-fed (PF), and ad-libitum-fed control (C) groups were exposed to daily handling during the first 2 weeks of life (H) or were left entirely undisturbed until weaning (NH). Basal CRF and arginine vasopressin (AVP) mRNA in the parvocellular portion of the paraventricular nucleus (pPVN) of the hypothalamus were assessed at 90-110 days of age. Prenatal ethanol exposure resulted in elevated basal pPVN CRF mRNA levels compared to those in ad-libitum-fed controls. Handling altered CRF mRNA levels in a sex-specific and prenatal treatment-specific manner. Females showed no significant effects of handling. In contrast, handling decreased CRF mRNA levels in PF and C but not E males compared to their NH counterparts. There were no effects of prenatal ethanol or postnatal handling on AVP mRNA levels. These findings indicate that prenatal ethanol exposure results in elevated basal CRF mRNA levels in adulthood and that handling appears to be ineffective in normalizing those elevations, supporting the suggestion that altered basal HPA regulation in E animals may, at least in part, underlie their HPA hyperresponsiveness to stressors.

  14. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project.

    PubMed

    Villar, José; Giuliani, Francesca; Bhutta, Zulfiqar A; Bertino, Enrico; Ohuma, Eric O; Ismail, Leila Cheikh; Barros, Fernando C; Altman, Douglas G; Victora, Cesar; Noble, Julia A; Gravett, Michael G; Purwar, Manorama; Pang, Ruyan; Lambert, Ann; Papageorghiou, Aris T; Ochieng, Roseline; Jaffer, Yasmin A; Kennedy, Stephen H

    2015-11-01

    Charts of size at birth are used to assess the postnatal growth of preterm babies on the assumption that extrauterine growth should mimic that in the uterus. The INTERGROWTH-21(st) Project assessed fetal, newborn, and postnatal growth in eight geographically defined populations, in which maternal health care and nutritional needs were met. From these populations, the Fetal Growth Longitudinal Study selected low-risk women starting antenatal care before 14 weeks' gestation and monitored fetal growth by ultrasonography. All preterm births from this cohort were eligible for the Preterm Postnatal Follow-up Study, which included standardised anthropometric measurements, feeding practices based on breastfeeding, and data on morbidity, treatments, and development. To construct the preterm postnatal growth standards, we selected all live singletons born between 26 and before 37 weeks' gestation without congenital malformations, fetal growth restriction, or severe postnatal morbidity. We did analyses with second-degree fractional polynomial regression models in a multilevel framework accounting for repeated measures. Fetal and neonatal data were pooled from study sites and stratified by postmenstrual age. For neonates, boys and girls were assessed separately. From 4607 women enrolled in the study, there were 224 preterm singleton births, of which 201 (90%) were enrolled in the Preterm Postnatal Follow-up Study. Variance component analysis showed that only 0·2% and 4·0% of the total variability in postnatal length and head circumference, respectively, could be attributed to between-site differences, justifying pooling the data from all study sites. Preterm growth patterns differed from those for babies in the INTERGROWTH-21(st) Newborn Size Standards. They overlapped with the WHO Child Growth Standards for term babies by 64 weeks' postmenstrual age. Our data have yielded standards for postnatal growth in preterm infants. These standards should be used for the assessment of

  16. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  17. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    PubMed

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  18. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.

    PubMed

    Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P

    2014-02-14

    Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1β, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood. Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart. These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.

  19. A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain.

    PubMed

    Chen, Peng-hui; Cai, Wen-qin; Wang, Li-yan; Deng, Qi-yue

    2008-12-03

    A widespread population of cells in CNS is identified by specific expression of the NG2 chondroitin sulphate proteoglycan and named as oligodendrocyte precursor cell (OPC). OPCs may possess stem cell-like characteristics, including multipotentiality in vitro and in vivo. It was proposed that OPCs in the CNS parenchyma comprise a unique population of glia, distinct from oligodendrocytes and astrocytes. This study confirmed that NG2 immunoreactive OPCs were continuously distributed in cerebral cortex and hippocampus during different postnatal developmental stages. These cells rapidly increased in number over the postnatal 7 days and migrate extensively to populate with abundant processes both in developing cortex and hippocampus. The morphology of OPCs exhibited extremely complex changes with the distribution of long distance primary process gradually increased from neonatal to adult CNS. Immunohistochemical studies showed that OPCs exhibited the morphological properties that can be distinguished from astrocytes. The electrophysiological properties showed that OPCs expressed a small amount of inward Na(+) currents which was distinguished from Na(+) currents in neurons owing to their lower Na-to-K conductance ratio and higher command voltage step depolarized maximum Na(+) current amplitude. These observations suggest that OPCs can be identified as the third type of macroglia because of their distribution in the CNS, the morphological development in process diversity and the electrophysiological difference from astrocyte.

  20. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  1. Prenatal and postnatal toxicity induced in guinea-pigs by nitrosomethylurea.

    PubMed

    Epstein, S S; Hasumi, K; Iobal, Z M

    1976-01-01

    Oral administration of NMU at maximally tolerated doses of guinea-pigs from day 34 to 58 of pregnancy induced embryotoxic effects, as evidenced by a high incidence of stillbirths and reduction in birth weight, and postnatal toxic effects, as evidenced by stunting, progressive mortality and extensive fatty degeneration of the liver in F1 progeny. Similar administration of NMUT at maximally tolerated doses did not induce such toxic effects.

  2. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    PubMed

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages. Copyright © 2011 Wiley Periodicals, Inc.

  3. Influence of socio-economic factors on emotional changes during the postnatal period.

    PubMed

    Wszołek, Katarzyna; Żak, Ewa; Żurawska, Joanna; Olszewska, Jolanta; Pięta, Beata; Bojar, Iwona

    2018-03-14

    The aim of the study was to identify socio-economic factors that may influence the emotional changes which occur among new mothers in the first days postpartum. A group of 541 women completed a questionnaire consisting of 30 multiple-choice questions, Edinburgh Postnatal Depression Scale (EPDS), and Hospital Anxiety and Depression Scale (HADS). Statistical calculations were performed with the use of Statistica v.10 and Cytel Studio v. 9.0.0. The findings revealed the presence of factors which might increase the risk of mood disorders during the postpartum period. Women who demonstrate warning symptoms should be screened for postnatal emotional changes and mood swings during their hospitalization after delivery. EPDS seems to be a suitable tool for early detection of emotional disturbances.

  4. Reduced impact of alcohol use on next-day tiredness in older relative to younger adults: A role for sleep duration.

    PubMed

    Lydon-Staley, David M; Ram, Nilam; Brose, Annette; Schmiedek, Florian

    2017-11-01

    Recent work has suggested that older adults may be less susceptible to the next-day effects of alcohol relative to younger adults. The effects of alcohol in younger adults may be mediated by sleep duration, but due to age differences in the contexts of alcohol use, this mediation process may not generalize to older adults. The present study examined age-group (younger vs. older adults) differences in how alcohol use influenced next-day tiredness during daily life. Reports of alcohol use, sleep duration, and next-day tiredness obtained on ∼101 days from 91 younger adults (ages 20-31 years) and 75 older adults (ages 65-80 years) were modeled using a multilevel, moderated mediation framework. Findings indicated that (a) greater-than-usual alcohol use was associated with greater-than-usual tiredness in younger adults only, (b) greater-than-usual alcohol use was associated with shorter-than-usual sleep duration in younger adults only, and (c) shorter-than-usual sleep duration was associated with greater tiredness in both younger and older adults. For the prototypical younger adult, a significant portion (43%) of the association between alcohol use and next-day tiredness could be explained assuming mediation through sleep duration, whereas there was no evidence of mediation for the prototypical older adult. Findings of age differences in the mediation process underlying associations among alcohol use, sleep, and tiredness provide insight into the mechanisms driving recent observations of reduced next-day effects of alcohol in older relative to younger adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    PubMed

    Albertoni Borghese, María F; Ortiz, María C; Balonga, Sabrina; Moreira Szokalo, Rocío; Majowicz, Mónica P

    2016-01-01

    Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day), a dual endothelin receptor antagonist (ERA). The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA) immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  6. Age-Related Differences in the Rate, Timing, and Diagnosis of 30-Day Readmissions in Hospitalized Adults With Asthma Exacerbation.

    PubMed

    Hasegawa, Kohei; Gibo, Koichiro; Tsugawa, Yusuke; Shimada, Yuichi J; Camargo, Carlos A

    2016-04-01

    Reducing hospital readmissions has attracted attention from many stakeholders. However, the characteristics of 30-day readmissions after asthma-related hospital admissions in adults are not known. It is also unclear whether older adults are at higher risk of 30-day readmission. To investigate the rate, timing, and principal diagnosis of 30-day readmissions in adults with asthma and to determine age-related differences. Retrospective cohort study of adults hospitalized for asthma exacerbation using the population-based inpatient samples of three states (California, Florida, and Nebraska) from 2005 through 2011. Patients were categorized into three age groups: younger (18-39 years), middle aged (40-64 years), and older (≥ 65 years) adults. Outcomes were 30-day all-cause readmission rate, timing, and principal diagnosis of readmission. Of 301,164 asthma-related admissions at risk for 30-day readmission, readmission rate was 14.5%. Compared with younger adults, older adults had significantly higher readmission rates (10.1% vs 16.5%; OR, 2.15 [95% CI, 2.07-2.23]; P < .001). The higher rate attenuated with adjustment (OR, 1.19 [95% CI, 1.13-1.26]; P < .001), indicating that most of the age-related difference is explained by sociodemographics and comorbidities. For all age groups, readmission rate was highest in the first week after discharge and declined thereafter. Overall, only 47.1% of readmissions were assigned respiratory diagnoses (asthma, COPD, pneumonia, and respiratory failure). Older adults were more likely to present with nonrespiratory diagnoses (41.7% vs 53.8%; P < .001). After asthma-related admission, 14.5% of patients had 30-day readmission with wide range of principal diagnoses. Compared with younger adults, older adults had higher 30-day readmission rates and proportions of nonrespiratory diagnoses. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. Does cross-fostering modify the prenatal effect of methamphetamine on learning of adult male rats?

    PubMed

    Hrubá, L; Schutová, B; Pometlová, M; Slamberová, R

    2009-01-01

    Our previous studies demonstrated that methamphetamine administered during gestation and lactation periods impairs maternal behavior, alters the functional development of rat pups and affects behavior in adulthood. The aim of our study was to investigate the effect of prenatal methamphetamine exposure and cross-fostering on learning tested in Morris water maze (MWM) in adult male rats. Mothers were daily exposed to injection of methamphetamine (MA) (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother received some of her own and some of the pups of mother with the opposite treatment. Based on the prenatal and postnatal treatments 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in MWM. Two types of tests were used: (1) "Place navigation test" (Learning) and (2) "Probe test" (Probe). In the test of learning, all animals fostered by methamphetamine-treated dams had longer latencies and trajectories, and bigger search error than the animals fostered by saline-treated control mother, regardless of prenatal exposure. Further, the animals prenatally exposed to methamphetamine swam slower than the animals prenatally exposed to saline, regardless of postnatal exposure in the test of learning and in the Probe test. Our results showed that neither prenatal nor postnatal methamphetamine exposure affected the Probe test. Our results showed that prenatal exposure to methamphetamine at dose of 5 mg/kg does not impair learning in the MWM, while postnatal exposure to methamphetamine from mothers' breastmilk and maternal care of mother exposed to methamphetamine impairs learning of adult male rats. On the other hand, the maternal care of control mothers does not impair learning of rat pups prenatally exposed to methamphetamine. The present study demonstrates that cross-fostering may affect learning in adulthood.

  8. Changes in gravity influence rat postnatal motor system development: from simulation to space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.; Heffernan, C.; Sulica, D.; Benavides, L.

    1997-01-01

    Our research examines the role of the environment in postnatal nervous system development. Recently we have been studying the effects of changes in gravity on the motor system of rats from postnatal day (P) 2 to 31 using kinematic analysis of swimming, walking, and righting reflexes. Using the tail suspension model of weightlessness we identified sensitive and critical periods of motor system development corresponding to the time during which a motor skill is first achieved. Motor performance in suspended animals was marked by slow swimming, walking, and air-righting, all of which were characterized by hindlimb extension. (Walton et al, Neurosci. 52,763,1992). The critical periods identified in these studies contributed to determining the age of animals for a small payload, NIH.R3. This 9-day mission (STS-72) included 2 litters at P5, P7, or P15 at launch. The P7-16 and P15-24 groups were studied post-flight. On the landing day (R+0) surface righting, swimming and walking were slower in flight compared to control animals. Differences were more marked in the younger animals and the hindlimbs were more affected than the forelimbs with marked, prolonged extension of, at least, the ankle joint angle. Readaptation to 1G was slower in the P7-16 group with righting reflexes adapting first, walking last. We have shown that gravity is an important factor in postnatal nervous system development and that its affect depends on the age of the animal, duration of the perturbation, and the motor function studied.

  9. Postnatal development of EEG patterns, catecholamine contents and myelination, and effect of hyperthyroidism in Suncus brain.

    PubMed

    Takeuchi, T; Sitizyo, K; Harada, E

    1998-03-01

    The postnatal development of the central nervous system (CNS) in house musk shrew in the early stage of maturation was studied. The electroencephalogram (EEG) and visual evoked potential (VEP) in association with catecholamine contents and myelin basic protein (MBP) immunoreactivity were carried out from the 1st to the 20th day of postnatal age. Different EEG patterns which were specific to behavioral states (awake and drowsy) were first recorded on the 5th day, and the total power which was obtained by power spectrum analysis increased after this stage. The latencies of all peaks in VEP markedly shortened between the 5th and the 7th day. Noradrenalin (NA) content of the brain showed a slight increase after the 3rd day, and reached maximum levels on the 7th day, which was delayed a few days compared to dopamine (DA). In hyperthyroidism, the peak latency of VEP was shortened and biosynthesis of NA in cerebral cortex and DA in hippocampus was accelerated. The most obvious change in MBP-immunoreactivity of the telencephalon occurred from the 7th to the 10th day. These morphological changes in the brain advanced at the identical time-course to those in the electrophysiological development and increment of DA and NA contents.

  10. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages

    PubMed Central

    Laugwitz, Karl-Ludwig; Moretti, Alessandra; Lam, Jason; Gruber, Peter; Chen, Yinhong; Woodard, Sarah; Lin, Li-Zhu; Cai, Chen-Leng; Lu, Min Min; Reth, Michael; Platoshyn, Oleksandr; Yuan, Jason X.-J.; Evans, Sylvia; Chien, Kenneth R.

    2017-01-01

    The purification, renewal and differentiation of native cardiac progenitors would form a mechanistic underpinning for unravelling steps for cardiac cell lineage formation, and their links to forms of congenital and adult cardiac diseases1–3. Until now there has been little evidence for native cardiac precursor cells in the postnatal heart4. Herein, we report the identification of isl1+ cardiac progenitors in postnatal rat, mouse and human myocardium. A cardiac mesenchymal feeder layer allows renewal of the isolated progenitor cells with maintenance of their capability to adopt a fully differentiated cardiomyocyte phenotype. Tamoxifen-inducible Cre/lox technology enables selective marking of this progenitor cell population including its progeny, at a defined time, and purification to relative homogeneity. Co-culture studies with neonatal myocytes indicate that isl1+ cells represent authentic, endogenous cardiac progenitors (cardioblasts) that display highly efficient conversion to a mature cardiac phenotype with stable expression of myocytic markers (25%) in the absence of cell fusion, intact Ca2+-cycling, and the generation of action potentials. The discovery of native cardioblasts represents a genetically based system to identify steps in cardiac cell lineage formation and maturation in development and disease. PMID:15703750

  11. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    PubMed Central

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  12. Friends in Passing: Social Interaction at an Adult Day Care Center.

    ERIC Educational Resources Information Center

    Williams, Barbara; Roberts, Pamela

    1995-01-01

    Participant observation study explored social interactions and friendships among cognitively impaired adult day-care participants. Found clients engage in a variety of social interactions and friendships, enabling them to maintain a sense of self and to adjust to group norms. Discussed general socializing, enduring friendships, helping…

  13. Developmental Programming: Postnatal Estradiol Modulation of Prenatally Organized Reproductive Neuroendocrine Function in Sheep

    PubMed Central

    Puttabyatappa, Muraly; Cardoso, Rodolfo C.; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2016-01-01

    Gestational testosterone (T) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. The present study investigated 1) the organizational contribution of prenatal estrogen excess and 2) the impact of postnatal exposure to E in modulating the effects of prenatal androgen excess (T and dihydrotestosterone [DHT]) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with T, DHT, E, or E plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), T, and DHT female offspring received a constant-release E implant postnatally. Findings revealed that 1) prenatal E-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and 2) prenatal ED-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal T excess. More importantly, continuous postnatal E-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E on tonic luteinizing hormone (LH) release, failed to amplify the E positive feedback and periovulatory defects induced by prenatal T-treatment. Our results indicate that disruptions in E positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal T-treatment are programmed predominantly during the prenatal life with postnatal exposure to E excess not contributing further to these disruptions. PMID:27222598

  14. In vivo analysis of Purkinje cell firing properties during postnatal mouse development

    PubMed Central

    Arancillo, Marife; White, Joshua J.; Lin, Tao; Stay, Trace L.

    2014-01-01

    Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories. PMID:25355961

  15. Retinal dehydrogenase gene expression in stomach and small intestine of rats during postnatal development and in vitamin A deficiency.

    PubMed

    Bhat, P V

    1998-04-17

    Retinal dehydrogenase (RALDH) catalyzes the oxidation of retinal to all-trans and 9-cis retinoic acid, which function as ligands controlling RAR and RXR nuclear receptor-signaling pathways. We have recently shown the expression of RALDH transcript in the stomach and small intestine by reverse transcription polymerase chain reaction [Bhat, P.V., Labrecque J., Dumas, F., Lacroix, A. and Yoshida, A. (1995) Gene 166, 303-306]. We have examined RALDH expression in the stomach and small intestine before and during postnatal development and in vitamin A deficiency by assaying for mRNA levels and protein as well as for enzyme activity. In -2 day fetuses, RALDH expression was high in the small intestine, whereas RALDH protein was not detectable in the stomach. However, expression of RALDH was seen in the stomach after birth, and gradually increased with age and reached the highest level at postnatal day 42. In the intestine, RALDH expression decreased postnatally. Vitamin A deficiency up-regulated RALDH expression in the stomach and small intestine, and administration of retinoids down-regulated the RALDH expression in these tissues. These results show the differential expression of RALDH in the stomach and small intestine during postnatal development, and that vitamin A status regulates the expression of RALDH gene in these tissues.

  16. Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants.

    PubMed

    Vollmer, Brigitte; Seibold-Weiger, Karin; Schmitz-Salue, Christine; Hamprecht, Klaus; Goelz, Rangmar; Krageloh-Mann, Ingeborg; Speer, Christian P

    2004-04-01

    In preterm infants there is a high risk of transmission of cytomegalovirus (CMV) via breast milk from seropositive mothers with reactivation of the virus during lactation. There is little information about the long term sequel of early postnatally acquired CMV infection in pre-term infants. This study aimed to investigate whether there was an increased frequency of impaired neurodevelopmental outcome and sensorineural hearing loss in preterm infants with postnatally acquired CMV infection through transmission by CMV-positive breast milk. Twenty-two preterm infants [median birth weight, 1020 g (range, 600 to 1870 g); median gestational age, 27.6 weeks (range, 23.6 to 32 weeks] with early postnatally acquired CMV infection by breast-feeding (onset of viruria between Days 23 and 190 postnatally) were compared with 22 CMV-negative preterm infants individually matched for gestational age, birth weight, gender, intracranial hemorrhage and duration of ventilation. At 2 to 4.5 years of age, follow-up assessments were conducted consisting of neurologic examination, neurodevelopmental assessment and detailed audiologic tests. None of the children had sensorineural hearing loss. There was no difference between the groups with regard to neurologic, speech and language or motor development. The results of this study suggest that early postnatally acquired CMV infection via CMV-positive breast milk does not have a negative effect on neurodevelopment and hearing in this group of patients. Because we studied a small number of infants, further follow-up studies are warranted in preterm infants with early postnatally acquired CMV infection.

  17. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    PubMed Central

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  18. Reaching Mothers and Babies with Early Postnatal Home Visits: The Implementation Realities of Achieving High Coverage in Large-Scale Programs

    PubMed Central

    Sitrin, Deborah; Guenther, Tanya; Murray, John; Pilgrim, Nanlesta; Rubayet, Sayed; Ligowe, Reuben; Pun, Bhim; Malla, Honey; Moran, Allisyn

    2013-01-01

    Background Nearly half of births in low-income countries occur without a skilled attendant, and even fewer mothers and babies have postnatal contact with providers who can deliver preventive or curative services that save lives. Community-based maternal and newborn care programs with postnatal home visits have been tested in Bangladesh, Malawi, and Nepal. This paper examines coverage and content of home visits in pilot areas and factors associated with receipt of postnatal visits. Methods Using data from cross-sectional surveys of women with live births (Bangladesh 398, Malawi: 900, Nepal: 615), generalized linear models were used to assess the strength of association between three factors - receipt of home visits during pregnancy, birth place, birth notification - and receipt of home visits within three days after birth. Meta-analytic techniques were used to generate pooled relative risks for each factor adjusting for other independent variables, maternal age, and education. Findings The proportion of mothers and newborns receiving home visits within three days after birth was 57% in Bangladesh, 11% in Malawi, and 50% in Nepal. Mothers and newborns were more likely to receive a postnatal home visit within three days if the mother received at least one home visit during pregnancy (OR2.18, CI1.46–3.25), the birth occurred outside a facility (OR1.48, CI1.28–1.73), and the mother reported a CHW was notified of the birth (OR2.66, CI1.40–5.08). Checking the cord was the most frequently reported action; most mothers reported at least one action for newborns. Conclusions Reaching mothers and babies with home visits during pregnancy and within three days after birth is achievable using existing community health systems if workers are available; linked to communities; and receive training, supplies, and supervision. In all settings, programs must evaluate what community delivery systems can handle and how to best utilize them to improve postnatal care access. PMID

  19. Postnatal Brain Growth Assessed by Sequential Cranial Ultrasonography in Infants Born <30 Weeks' Gestational Age.

    PubMed

    Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y

    2018-06-01

    Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of

  20. Antenatal and postnatal care practices among mothers in rural Bangladesh: A community based cross-sectional study.

    PubMed

    Shahjahan, Md; Chowdhury, Hasina Akhter; Al-Hadhrami, Ahmed Y; Harun, Golam Dostogir

    2017-09-01

    appropriate utilization of antenatal and postnatal care can prevent complications and ensures better maternal and child health care. Although under-five mortality in South Asia, including Bangladesh, has reduced substantially, the rate of neonatal mortality is still high. The study aims to identify factors associated with the practice of antenatal and/or postnatal care amongst mothers of newborns from a healthcare facility in a selected area of rural Bangladesh. RESEARCH DESIGN/SETTING: a community-based cross-sectional study was conducted among 360 postnatal mothers, who were within 42 days of delivery. The study was conducted at Madhupur Upazila (sub-district) in Tangail district of Bangladesh from January 2012 to June 2012. A structured questionnaire was used to collect relevant information from the study subjects. only one in seven (14.2%) of the mothers visited health care facility for 4 or more times to receive antenatal care. A higher proportion of mothers delivered at home, thirty-five percent of the respondents experienced post-delivery complications. About 18% of mothers received postnatal care from the health care facility. Several variables revealed significant associations in bivariate analyses; few variables remained significant for antenatal care and post-natal care categories in the multinomial logistic regression analysis. The likelihood of receiving either antenatal care or post-natal care (OR =0.30, 95% CI =0.10-0.96) was significantly lower among mothers who had either no education or less education (1-5 years of schooling); and was found significantly higher for women who watched TV (OR = 2.79; 95% CI = 1.45-5.37); family income showed significant association for receiving both antenatal care and postnatal care services as well. mother's education appears to have a strong and significant association with antenatal care and postnatal care practices in rural Bangladesh. Community based intervention and regular home visits by health care providers

  1. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    PubMed

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces

  2. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  3. From antenatal to postnatal depression: associated factors and mitigating influences.

    PubMed

    Redshaw, Maggie; Henderson, Jane

    2013-06-01

    Postnatal depression has a serious impact on new mothers and their children and families. Risk factors identified include a history of depression, multiparity, and young age. The study aimed to investigate factors associated with experiencing antenatal depression and developing subsequent postnatal depression. The study utilized survey data from 5332 women about their experience and well-being during pregnancy, in labor, and postnatally up to 3 months. Prespecified sociodemographic and clinical variables were tabulated against the incidence of antenatal depression and postnatal depression. Binary logistic regression was used to estimate the effects of the principal underlying variables. Risk factors for antenatal depression were multiparity, black and minority ethnic (BME) status, physical or mental health problems, living in a deprived area, and unplanned pregnancy. Different factors for postnatal depression were evident among women who had experienced antenatal depression: multiparity and BME status were protective, whereas being left alone in labor and experiencing poor postnatal health increased the risk of postnatal depression. This study confirms previous research on risk factors for antenatal depression and stresses the importance of continuous support in labor and vigilance in the postnatal period regarding the potential ill effects of continuing postnatal health problems.

  4. Brief postnatal exposure to phenobarbital impairs passive-avoidance learning and sensorimotor gating in rats

    PubMed Central

    Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.

    2014-01-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558

  5. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats.

    PubMed

    Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A

    2014-08-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Adult Day Health Center Participation and Health-Related Quality of Life

    ERIC Educational Resources Information Center

    Schmitt, Eva M.; Sands, Laura P.; Weiss, Sara; Dowling, Glenna; Covinsky, Kenneth

    2010-01-01

    Purpose: The purpose of this study was to assess the association between Adult Day Health Center (ADHC) participation and health-related quality of life. Design and Methods: Case-controlled prospective study utilizing the Medical Outcomes Survey Form 36 (SF-36) to compare newly enrolled participants from 16 ADHC programs with comparable…

  7. Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats.

    PubMed

    Hrubá, Lenka; Schutová, Barbora; Pometlová, Marie; Rokyta, Richard; Slamberová, Romana

    2010-03-17

    The aim of our study was to examine the effect of prenatal methamphetamine (MA) exposure and cross-fostering on cognitive functions of adult male rats tested in Morris water maze (MWM). Rat mothers were exposed daily to injection of MA (5mg/kg) or saline for 9 weeks: prior to impregnation, throughout gestation and lactation periods. Females without any injections were used as an absolute control. On postnatal day 1, pups were cross-fostered so that each mother raised 4 pups of her own and 8 pups from the mothers with the other two treatments. Four types of tests were used: (1) Place navigation test (Learning), (2) Probe test (Probe), (3) Retention memory test (Memory) and (4) Visible platform task. Our results demonstrate that the prenatal exposure to MA does not impact learning and memory, while postnatal exposure to MA shows impairments in cognition. In the test of learning, all animals fostered to MA-treated dams had longer latencies, bigger search error and used lower spatial strategies than the animals fostered to control or saline-treated mother, regardless of prenatal exposure. Regardless of postnatal exposure, the animals prenatally exposed to saline swam faster in all the tests than the animals prenatally exposed to MA and controls, respectively. This study indicates that postnatal but not prenatal exposure to MA affects learning in adult male rats. However, it is still not clear whether these impairments are due to a direct effect of MA on neuronal structure or due to an indirect effect of MA mediated by impaired maternal care. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Antenatal iron/folic acid supplements, but not postnatal care, prevents neonatal deaths in Indonesia: analysis of Indonesia Demographic and Health Surveys 2002/2003–2007 (a retrospective cohort study)

    PubMed Central

    Titaley, Christiana Rialine; Dibley, Michael John

    2012-01-01

    Objective This study aimed to assess the contribution of postnatal services to the risk of neonatal mortality, and the relative contributions of antenatal iron/folic acid supplements and postnatal care in preventing neonatal mortality in Indonesia. Design Retrospective cohort study. Setting and participants Data used in this study were the 2002–2007 Indonesia Demographic and Health Surveys, nationally representative surveys. The pooled data provided survival information of 26 591 most recent live-born infants within the 5-years prior to each interview. Primary outcomes Primary outcomes were early neonatal mortality, that is, deaths in the first week, and all neonatal mortality, that is, deaths in the first month of life. Exposures were antenatal iron/folic acid supplementation and postnatal care from days 1 to 7. Potential confounders were community, socio-economic status and birthing characteristics and perinatal healthcare. Cox regression was used to assess the association between study factors and neonatal mortality. Results Postnatal care services were not associated with newborn survival. Postnatal care on days 1–7 after birth did not reduce neonatal death (HR=1.00, 95% CI 0.55 to 1.83, p=1.00) and early postnatal care on day 1 was associated with an increased risk of early neonatal death (HR=1.27, 95% CI 0.69 to 2.32, p=0.44) possibly reflecting referral of ill newborns. Early postnatal care on day 1 was not protective for neonatal deaths on days 2–7 whether provided by doctors (HR 3.61, 95% CI 1.54 to 8.45, p<0.01), or by midwives or nurses (HR 1.38, 95% CI 0.53 to 3.57, p=0.512). In mothers who took iron/folic acid supplements during pregnancy, the risk of early neonatal death was reduced by 51% (HR=0.49, 95% CI 0.30 to 0.79, p<0.01). Conclusions We found no protective effect of postnatal care against neonatal deaths in Indonesia. However, important reductions in the risk of neonatal death were found for women who reported use of antenatal iron

  9. Inter-day Reliability of the IDEEA Activity Monitor for Measuring Movement and Non-Movement Behaviors in Older Adults.

    PubMed

    de la Cámara, Miguel Ángel; Higueras-Fresnillo, Sara; Martinez-Gomez, David; Veiga, Oscar L

    2018-05-29

    The inter-day reliability of the Intelligent Device for Energy Expenditure and Activity (IDEEA) has not been studied to date. The study purpose was to examine the inter-day variability and reliability on two consecutive days collected with the IDEEA, as well as to predict the number of days needed to provide a reliable estimate of several movement (walking and climbing stairs) and non-movement behaviors (lying, reclining, sitting) and standing in older adults. The sample included 126 older adults (74 women) who wore the IDEEA for 48-h. Results showed low variability between the two days and its reliability was from moderate (ICC=0.34) to high (ICC=0.80) in most of movement and non-movement behaviors analyzed. The Bland-Altman plots showed a high-moderate agreement between days and the Spearman-Brown formula estimated ranged from 1.2 and 9.1 days of monitoring with the IDEEA are needed to achieve ICCs≥0.70 in older adults for sitting and climbing stairs, respectively.

  10. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn.

    PubMed

    Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós

    2017-07-01

    The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.

  11. Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice.

    PubMed

    Sanchez Vega, Michelle C; Chong, Suyinn; Burne, Thomas H J

    2013-09-01

    Alcohol consumption during pregnancy has deleterious effects on the developing foetus ranging from subtle physical deficits to severe behavioural abnormalities and is encompassed under a broad umbrella term, foetal alcohol spectrum disorders (FASD). High levels of exposure show distinct effects, whereas the consequences of moderate exposures have been less well studied. The aim of this study was to examine the effects of a moderate dose ethanol exposure using an ad libitum drinking procedure during the first eight days of gestation in mice on the behavioural phenotype of adult offspring. Adult female C57Bl/6J mice were mated and exposed to either 10% (v/v) ethanol or water for the first 8 days of gestation (GD 0-8), and then offered water for the rest of gestation. Early developmental milestone achievement was assessed in offspring at postnatal days (P) 7, 14 and 21. Adult offspring underwent a comprehensive battery of behavioural tests to examine a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception, as well as spatial memory in a water maze. Ethanol-exposed mice had similar postnatal developmental trajectories to water-exposed mice. However, the ethanol-exposed mice showed increased hyperlocomotion at P 14, 21 and 70 (p<0.05). Increased exploration and heightened motivation were also observed in adult mice. Furthermore, ethanol-exposed mice showed a significant improvement in memory in the water maze. The main findings were that mice had persistent and long lasting alterations in behaviour, including hyperactivity and enhanced spatial memory. These data suggest that even moderate dose ethanol exposure in early gestation has long term consequences on brain function and behaviour in mice. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  13. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development.

    PubMed

    Ling, Wei; Chang, Lirong; Song, Yizhi; Lu, Tao; Jiang, Yuhua; Li, Youxiang; Wu, Yan

    2012-05-01

    Although the expression of NMDARs and synaptic-associated proteins has been widely studied, the temporospatial distribution of NMDAR subunits and synaptic proteins in different hippocampal subregions during postnatal development still lacks detailed information, and the relationship between NR1 or NR2 subunits and PSD-95 family proteins is controversial. In this study, we used immunofluorescent staining to assess NR1 or NR2A and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, P56. The results showed that from P0 to P56, NR1, NR2A, and PSD-95 expressions increased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Interestingly, although the expression of PSD-95 was positively correlated to both NR1 and NR2A, the NR1 and PSD-95 coexpressed puncta were greatest in CA3, while NR2A and PSD-95 coexpressed puncta were greatest in CA1, compared to other subregions. Surprisingly, at P21, among different strata of CA1, the area of highest expression of NR2A was dramatically changed from stratum pyramidale to stratum polymorphum and stratum moleculare, and returned to stratum pyramidale gradually on the later observed days again, indicating that P21 may be one critical timepoint during postnatal development in CA1. The specific temporospatial distribution pattern of NR1, NR2A, and PSD-95 might be related to the different physiological functions during postnatal development. Discovering the alteration of the relationship between PSD-95 and NMDAR subunits expression may be helpful for understanding mechanisms and therapy of neurodegenerative diseases. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year.

    PubMed

    Provenzale, James M; Liang, Luxia; DeLong, David; White, Leonard E

    2007-08-01

    The purpose of this study was to use diffusion-weighted and diffusion tensor imaging to investigate the status of cerebral white matter (WM) at term gestation and the rate of WM maturation throughout the first year of life in healthy infants. Fifty-three children (35 boys) ranging in age from 1.5 weeks premature to 51.5 weeks (mean age, 22.9 weeks) underwent conventional MRI, diffusion imaging in three directions (b = 1,000 s/mm2), and diffusion tensor imaging with gradient encoding in six directions, all on a 1.5-T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in three deep WM structures (posterior limb of internal capsule, genu, and splenium of corpus callosum) and two peripheral WM regions (associational WM underlying prefrontal and posterior parietal cortex) with a standard region of interest (44 +/- 4 cm2). ADC and FA were expressed as a percentage of corresponding values measured in a group of healthy young adults. Mean ADC and FA values for deep and peripheral WM were plotted against gestational age normalized to term. The data were fit best with a broken-line linear regression model with a breakpoint at 100 days. ADC and FA values at term were estimated according to the intercept of the initial linear period (before day 100) with day 0. The slope of the linear fits was used to determine the rate of WM maturation in both the early and the late (after day 100) periods. Multivariate analysis of variance tests were used to compare deep and peripheral WM structures at term and at representative early and late ages (days 30 and 200) and to compare rates of ADC and FA maturation in early and late periods within the first year. At term, peripheral WM was less mature than deep WM according to results of extrapolation of ADC and FA values in the first 100 days of life to day 0 (p < 0.01). Mean ADC and FA value (percentage of mean adult value) for peripheral WM were 1.32 x 10(-3) mm2/s (163%) and 0.16 (32%), respectively

  15. Developmental programming: postnatal estradiol modulation of prenatally organized reproductive neuroendocrine function in sheep.

    PubMed

    Puttabyatappa, Muraly; Cardoso, Rodolfo C; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2016-08-01

    Gestational testosterone (TS) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E2) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. This study investigated (1) the organizational contribution of prenatal estrogen excess and (2) the impact of postnatal exposure to E2 in modulating the effects of prenatal androgen excess (TS and dihydrotestosterone (DHT)) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with TS, DHT, E2, or E2 plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), TS, and DHT female offspring received a constant-release E2 implant postnatally. Findings revealed that (1) prenatal E2-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and (2) prenatal E2D-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal TS excess. More importantly, continuous postnatal E2-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E2 on tonic luteinizing hormone (LH) release, failed to amplify the E2-positive feedback and periovulatory defects induced by prenatal TS-treatment. Our results indicate that disruptions in E2-positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal TS-treatment are programmed predominantly during the prenatal life with postnatal exposure to E2 excess not contributing further to these disruptions. © 2016 Society for Reproduction and Fertility.

  16. Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders.

    PubMed

    Lino, Caroline A; da Silva, Ivson Bezerra; Shibata, Caroline E R; Monteiro, Priscilla de S; Barreto-Chaves, Maria Luiza M

    2015-11-15

    Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient.

    PubMed

    Nakamura, Kouichi; Watakabe, Akiya; Hioki, Hiroyuki; Fujiyama, Fumino; Tanaka, Yasuyo; Yamamori, Tetsuo; Kaneko, Takeshi

    2007-12-01

    Vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 show complementary distribution in neocortex; VGLUT1 is expressed mainly in axon terminals of neocortical neurons, whereas VGLUT2 is located chiefly in thalamocortical axon terminals. However, we recently reported a frequent colocalization of VGLUT1 and VGLUT2 at a subset of axon terminals in postnatal developing neocortex. We here quantified the frequency of colocalization between VGLUT1 and VGLUT2 immunoreactivities at single axon terminals by using the correlation coefficient (CC) as an indicator in order to determine the time course and spatial extent of the colocalization during postnatal development of mouse neocortex. The colocalization was more frequent in the primary somatosensory (S1) area than in both the primary visual (V1) and the motor areas; of area S1 cortical layers, colocalization was most evident in layer IV barrels at postnatal day (P) 7 and in adulthood. CC in layer IV showed a peak at P7 in area S1, and at P10 in area V1 though the latter peak was much smaller than the former. These results suggest that thalamocortical axon terminals contained not only VGLUT2 but also VGLUT1, especially at P7-10. Double fluorescence in situ hybridization confirmed coexpression of VGLUT1 and VGLUT2 mRNAs at P7 in the somatosensory thalamic nuclei and later in the thalamic dorsal lateral geniculate nucleus. As VGLUT1 is often used in axon terminals that show synaptic plasticity in adult brain, the present findings suggest that VGLUT1 is used in thalamocortical axons transiently during the postnatal period when plasticity is required.

  18. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation

    EPA Science Inventory

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...

  20. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Fetal over- and undernutrition differentially program thyroid axis adaptability in adult sheep.

    PubMed

    Johnsen, L; Lyckegaard, N B; Khanal, P; Quistorff, B; Raun, K; Nielsen, M O

    2018-05-01

    We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming. Twin-pregnant sheep ( n  = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood). Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE). In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T 3 , T 3 :T 4 and T 3 :TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH. Conclusions : The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk. © 2018 The authors.

  2. Fetal over- and undernutrition differentially program thyroid axis adaptability in adult sheep

    PubMed Central

    Johnsen, L; Lyckegaard, N B; Khanal, P; Quistorff, B; Raun, K; Nielsen, M O

    2018-01-01

    Objective We aimed to test, whether fetal under- or overnutrition differentially program the thyroid axis with lasting effects on energy metabolism, and if early-life postnatal overnutrition modulates implications of prenatal programming. Design Twin-pregnant sheep (n = 36) were either adequately (NORM), under- (LOW; 50% of NORM) or overnourished (HIGH; 150% of energy and 110% of protein requirements) in the last-trimester of gestation. From 3 days-of-age to 6 months-of-age, twin lambs received a conventional (CONV) or an obesogenic, high-carbohydrate high-fat (HCHF) diet. Subgroups were slaughtered at 6-months-of-age. Remaining lambs were fed a low-fat diet until 2½ years-of-age (adulthood). Methods Serum hormone levels were determined at 6 months- and 2½ years-of-age. At 2½ years-of-age, feed intake capacity (intake over 4-h following 72-h fasting) was determined, and an intravenous thyroxine tolerance test (iTTT) was performed, including measurements of heart rate, rectal temperature and energy expenditure (EE). Results In the iTTT, the LOW and nutritionally mismatched NORM:HCHF and HIGH:CONV sheep increased serum T3, T3:T4 and T3:TSH less than NORM:CONV, whereas TSH was decreased less in HIGH, NORM:HCHF and LOW:HCHF. Early postnatal exposure to the HCHF diet decreased basal adult EE in NORM and HIGH, but not LOW, and increased adult feed intake capacity in NORM and LOW, but not HIGH. Conclusions: The iTTT revealed a differential programming of central and peripheral HPT axis function in response to late fetal malnutrition and an early postnatal obesogenic diet, with long-term implications for adult HPT axis adaptability and associated consequences for adiposity risk. PMID:29794141

  3. Long term effects of PCBs (Phenoclor DP5) on rat microsomal enzymes, liver, and blood lipids after peri- and postnatal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poul, J.M.

    1992-02-01

    It was shown that activities of some hepatic drug metabolizing enzymes and parameters of lipid metabolism were modified in adult rats (PND100), after exposure to PCBs (Phenoclor DP5) during lactation. Perinatal or early postnatal treatment with inducers, like phenobarbital and phenytoin, seems to induce permanent effects on hepatic microsomal enzymes in adults though the drugs have completely disappeared from the body. Time course evolution of induction-related parameters and tissue residues of DP5, from weaning to PND100, have been studied the effects observed in adult rats at PND100 could be residual aspects of the important changes induced before weaning by acutemore » exposure via milk or consequences of the relative high concentrations of PCBs still present in tissues. The present study was designed to investigate the effects of DP5, administered peri- and postnatally, on microsomal enzyme activities and in vitro genotoxic activation of 2-aminofluorene and on liver and blood lipids, in adult rats at PND180 and PND300. Tissue residues of Phenoclor DP5 were measured in liver, fat and brain at the same periods.« less

  4. Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy.

    PubMed

    Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong

    2016-01-01

    The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.

  5. Evaluation of active living every day in adults with arthritis.

    PubMed

    Callahan, Leigh F; Cleveland, Rebecca J; Shreffler, Jack; Hootman, Jennifer M; Mielenz, Thelma J; Schoster, Britta; Brady, Teresa; Schwartz, Todd

    2014-02-01

    Adults with arthritis can benefit from participation in physical activity and may be assisted by organized programs. The purpose of this study was to evaluate the effectiveness of a 20-week behavioral lifestyle intervention, Active Living Every Day (ALED), for improvements in primary outcomes (physical activity levels, aerobic endurance, function, symptoms). A 20-week randomized controlled community trial was conducted in 354 adults. Outcomes were assessed at baseline and 20 weeks in the intervention and wait-list control groups. The intervention group was also assessed at 6 and 12 months. Mean outcomes were determined by multilevel regression models in the intervention and control groups at follow-up points. At 20 weeks, the intervention group significantly increased participation in physical activity, and improved aerobic endurance, and select measures of function while pain, fatigue and stiffness remained status quo. In the intervention group, significant improvements in physical activity at 20 weeks were maintained at 6 and 12 months, and stiffness decreased. ALED appears to improve participation in physical activity, aerobic endurance, and function without exacerbating disease symptoms in adults with arthritis.

  6. Tooth-bone morphogenesis during postnatal stages of mouse first molar development

    PubMed Central

    Lungová, Vlasta; Radlanski, Ralf J; Tucker, Abigail S; Renz, Herbert; Míšek, Ivan; Matalová, Eva

    2011-01-01

    The first mouse molar (M1) is the most common model for odontogenesis, with research particularly focused on prenatal development. However, the functional dentition forms postnatally, when the histogenesis and morphogenesis of the tooth is completed, the roots form and the tooth physically anchors into the jaw. In this work, M1 was studied from birth to eruption, assessing morphogenesis, proliferation and apoptosis, and correlating these with remodeling of the surrounding bony tissue. The M1 completed crown formation between postnatal (P) days 0–2, and the development of the tooth root was initiated at P4. From P2 until P12, cell proliferation in the dental epithelium reduced and shifted downward to the apical region of the forming root. In contrast, proliferation was maintained or increased in the mesenchymal cells of the dental follicle. At later stages, before tooth eruption (P20), cell proliferation suddenly ceased. This withdrawal from the cell cycle correlated with tooth mineralization and mesenchymal differentiation. Apoptosis was observed during all stages of M1 postnatal morphogenesis, playing a role in the removal of cells such as osteoblasts in the mandibular region and working together with osteoclasts to remodel the bone around the developing tooth. At more advanced developmental stages, apoptotic cells and bodies accumulated in the cell layers above the tooth cusps, in the path of eruption. Three-dimensional reconstruction of the developing postnatal tooth and bone indicates that the alveolar crypts form by resorption underneath the primordia, whereas the ridges form by active bone growth between the teeth and roots to form a functional complex. PMID:21418206

  7. Anger in the context of postnatal depression: An integrative review.

    PubMed

    Ou, Christine H; Hall, Wendy A

    2018-05-20

    Contrary to social constructions of new motherhood as a joyous time, mothers may experience postnatal depression and anger. Although postnatal depression has been thoroughly studied, the expression of maternal anger in the context of postnatal depression is conceptually unclear. This integrative review investigated the framing of anger in the context of postnatal depression. After undertaking a search of CINAHL, Ovid-Medline, PsycInfo, and Web of Science, we identified qualitative (n = 7) and quantitative (n = 17) papers that addressed maternal anger and postnatal depression. We analyzed the data by developing themes. Our review indicated that anger was a salient mood disturbance for some postnatally depressed women with themes integrated as: (i) anger accompanying depression, (ii) powerlessness as a component of depression and anger, and (iii) anger occurring as a result of expectations being violated. Our findings indicate that anger can coexist with women's postnatal depression. Anger can be expressed toward the self and toward children and family members with negative relationship effects. We recommend that health care providers and researchers consider anger in the context of postnatal mood disturbances. © 2018 Wiley Periodicals, Inc.

  8. Early detection and treatment of postnatal depression in primary care.

    PubMed

    Davies, Bronwen R; Howells, Sarah; Jenkins, Meryl

    2003-11-01

    Postnatal depression has a relatively high incidence and gives rise to considerable morbidity. There is sound evidence supporting the use of the Edinburgh Postnatal Depression Scale as a screening tool for possible postnatal depression. This paper reports on a project developed by two health visitors and a community mental health nurse working in the United Kingdom. The aim of the project was to improve the early detection and treatment of postnatal depression in the population of the general practice to which they were attached. The health visitors screened for postnatal depression in the course of routine visits on four occasions during the first postpartum year. Women identified as likely to be suffering from postnatal depression were offered 'listening visits' as a first-line intervention, with referral on to the general practitioner and/or community mental health nurse if indicated. Data collected over 3 years showed that the project succeeded in its aim of enhancing early detection and treatment of postnatal depression. These findings replicate those of other studies. The data also showed that a substantial number of women were identified for the first time as likely to be suffering from postnatal depression at 12 months postpartum. Women screened for the first time at 12 months were at greater risk than those who had been screened earlier than this. Health visitors should screen for postnatal depression throughout the period of their contact with mothers, not solely in the immediate postnatal period. It is particularly important to screen women who, for whatever reason, were not screened when their child was younger. The knowledge and skills needed to use the Edinburgh Postnatal Depression Scale and provide first-line intervention and onward referral can be developed at practitioner level through close collaborative working.

  9. Determinants of postnatal care non-utilization among women in Nigeria.

    PubMed

    Somefun, Oluwaseyi Dolapo; Ibisomi, Latifat

    2016-01-11

    Although, there are several programs in place in Nigeria to ensure maternal and child health, maternal and neonatal mortality rates remain high with maternal mortality rates being 576/100,000 and neonatal mortality rates at 37/1000 live births (NDHS, 2013). While there are many studies on the utilization of maternal health services such as antenatal care and skilled delivery at birth, studies on postnatal care are limited. Therefore, the aim of this study is to examine the factors associated with the non-utilization of postnatal care among mothers in Nigeria using the Nigeria Demographic and Health Survey (NDHS) 2013. For analysis, the postnatal care uptake for 19,418 children born in the 5 years preceding the survey was considered. The dependent variable was a composite variable derived from a list of questions on postnatal care. A multinomial logistic regression model was applied to examine the adjusted and unadjusted determinants of non-utilization of postnatal care. Results from this study showed that 63% of the mothers of the 19,418 children did not utilize postnatal care services in the period examined. About 42% of the study population between 25 and 34 years did not utilize postnatal care and 61% of the women who did not utilize postnatal care had no education. Results from multinomial logistic regression show that antenatal care use, distance, education, place of delivery, region and wealth status are significantly associated with the non-utilization of postnatal care services. This study revealed the low uptake of postnatal care service in Nigeria. To increase mothers' utilization of postnatal care services and improve maternal and child health in Nigeria, interventions should be targeted at women in remote areas who don't have access to services and developing mobile clinics. In addition, it is crucial that steps should be taken on educating women. This would have a significant influence on their perceptions about the use of postnatal care services in

  10. Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus*

    PubMed Central

    Yang, Ping; Gandahi, Jameel Ahmed; Zhang, Qian; Zhang, Lin-li; Bian, Xun-guang; Wu, Li; Liu, Yi; Chen, Qiu-sheng

    2013-01-01

    Objective: Information regarding the development of the enteric nervous system (ENS) is important for understanding the functional abnormalities of the gut. Because fertilized chicken eggs provide easy access to embryos, chicken models have been widely used to study embryonic development of myenteric plexus; however, no study has been focused on the postnatal period. The aim of this study was to perform a qualitative and quantitative analysis of the nitrergic neurons in the myenteric plexus of developing chickens in the postnatal period. Methods: Whole-mount preparations of the myenteric plexus were made in 7-d, 15-d, and 40-d old (adult) chickens of either sex (n=15). The myenteric plexus was studied after nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry using light microscopy, digital photography, and Image-Pro Plus 6.0 software. The numbers of positively stained neurons and ganglia were counted in the duodenum, jejunum, ileum, caecum, and colon in the different age groups. Data were expressed as mean±standard deviation (SD), and statistical analysis was performed using a one-way analysis of variance (ANOVA) test. Results: The positively stained neurons showed various morphologies and staining intensities, and formed bead-shaped and U-shaped arrangements in the myenteric plexus. The densities of neurons and ganglia increased with age. However, the number of positive neurons per ganglion increased. The number of NADPH-d-positive neurons was highest in the colon, followed by the ileum, the jejunum, the duodenum, and the caeca in all age groups. Conclusions: Developmental changes in the myenteric plexus of chickens continue in the postnatal period, indicating that the maturation process of the gastrointestinal function is gradual. In addition, no significant difference is happening among different intestinal segments during postnatal development, suggesting that the function of different intestinal segments had been determined after

  11. Intestinal microbiota influence the early postnatal development of the enteric nervous system.

    PubMed

    Collins, J; Borojevic, R; Verdu, E F; Huizinga, J D; Ratcliffe, E M

    2014-01-01

    Normal gastrointestinal function depends on an intact and coordinated enteric nervous system (ENS). While the ENS is formed during fetal life, plasticity persists in the postnatal period during which the gastrointestinal tract is colonized by bacteria. We tested the hypothesis that colonization of the bowel by intestinal microbiota influences the postnatal development of the ENS. The development of the ENS was studied in whole mount preparations of duodenum, jejunum, and ileum of specific pathogen-free (SPF), germ-free (GF), and altered Schaedler flora (ASF) NIH Swiss mice at postnatal day 3 (P3). The frequency and amplitude of circular muscle contractions were measured in intestinal segments using spatiotemporal mapping of video recorded spontaneous contractile activity with and without exposure to lidocaine and N-nitro-L-arginine (NOLA). Immunolabeling with antibodies to PGP9.5 revealed significant abnormalities in the myenteric plexi of GF jejunum and ileum, but not duodenum, characterized by a decrease in nerve density, a decrease in the number of neurons per ganglion, and an increase in the proportion of myenteric nitrergic neurons. Frequency of amplitude of muscle contractions were significantly decreased in the jejunum and ileum of GF mice and were unaffected by exposure to lidocaine, while NOLA enhanced contractile frequency in the GF jejunum and ileum. These findings suggest that early exposure to intestinal bacteria is essential for the postnatal development of the ENS in the mid to distal small intestine. Future studies are needed to investigate the mechanisms by which enteric microbiota interact with the developing ENS. © 2013 John Wiley & Sons Ltd.

  12. Financial performance among adult day centers: results of a national demonstration program.

    PubMed

    Reifler, B V; Henry, R S; Rushing, J; Yates, M K; Cox, N J; Bradham, D D; McFarlane, M

    1997-02-01

    This paper describes the financial performance (defined as percent of total expenses covered by net operating revenue) of 16 adult day centers participating in a national demonstration program on day services for people with dementia, including examination of possible predictors of financial performance. Participating sites submitted quarterly financial and utilization reports to the National Program Office. Descriptive statistics summarize the factors believed to influence financial performance. Sites averaged meeting 35% of expenses from self-pay and 29% from government (mainly Medicaid) revenue, totaling 64% of all (cash plus in-kind) expenses met by operating revenue. Examination of center characteristics suggests that factors related to meeting consumer needs, such as being open a full day (i.e., 7:30 am to 6:00 pm) rather than shorter hours, and providing transportation, may be related to improved utilization and, thus, improved financial performance. Higher fees were not related to lower enrollment, census, or revenue. Adult day centers are able to achieve financial viability through a combination of operating (i.e., fee-for-service) and non-operating revenue. Operating revenue is enhanced by placing emphasis on consumer responsiveness, such as being open a full day. Because higher fees were not related to lower utilization, centers should set fees to reflect actual costs. The figure of 64% of expenses met by operating revenue is conservative inasmuch as sites included in-kind revenue as expenses in their budgeting calculations, and percent of cash expenses met by operating revenue would be higher (approximately 75% for this group of centers).

  13. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu; Cooney, Craig A.; Melnyk, Stepan B.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers ofmore » oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced

  14. Influence of Sex on Gestational Complications, Fetal-to-Neonatal Transition, and Postnatal Adaptation.

    PubMed

    Lorente-Pozo, Sheila; Parra-Llorca, Anna; Torres, Begoña; Torres-Cuevas, Isabel; Nuñez-Ramiro, Antonio; Cernada, María; García-Robles, Ana; Vento, Maximo

    2018-01-01

    Fetal sex is associated with striking differences during in utero development, fetal-to-neonatal transition, and postnatal morbidity and mortality. Male sex fetuses are apparently protected while in utero resulting in a higher secondary sex rate for males than for females. However, during fetal-to-neonatal transition and thereafter in the newborn period, female exhibits a greater degree of maturation that translates into a better capacity to stabilize, less incidence of prematurity and prematurity-associated morbidities, and better long-term outcomes. The present review addresses the influence of sex during gestation and postnatal adaptation that includes the establishment of an adult-type circulation, the initiation of breathing, endurance when confronted with perinatal hypoxia ischemia, and a gender-related different response to drugs. The intrinsic mechanisms explaining these differences in the perinatal period remain elusive and further experimental and clinical research are therefore stringently needed if an individual oriented therapy is to be developed.

  15. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  16. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: A model of post-partum stress and possible depression.

    PubMed

    Brummelte, Susanne; Pawluski, Jodi L; Galea, Liisa A M

    2006-09-01

    Post-partum stress and depression (PPD) have a significant effect on child development and behavior. Depression is associated with hypercortisolism in humans, and the fluctuating levels of hormones, including corticosterone, during pregnancy and the post-partum, may contribute to PPD. The present study was developed to investigate the effects of high-level corticosterone (CORT) post-partum in the mother on postnatal neurogenesis and behavior in the offspring. Sprague-Dawley dams were treated with either CORT (40 mg/kg) or sesame oil injections daily for 26 days beginning the day after giving birth. Dams were tested in the forced swim test (FST) and in the open field test (OFT) on days 24-26 post-partum. Results showed that the dams exposed to CORT expressed "depressive-like" behavior compared to controls, with decreased struggling behavior and increased immobility in the FST. To investigate the effects of treatment on hippocampal postnatal cell proliferation and survival in the offspring, males and females from treated dams were injected with BrdU (50 mg/kg) on postnatal day 21 and perfused either 24 h (cell proliferation) or 21 days (cell survival) later. Furthermore, male and female offspring from each litter were tested in adulthood on various behavioral tests, including the forced swim test, open field test, resistance to capture test and elevated plus maze. Intriguingly, male, but not female, offspring of CORT-treated dams exhibited decreased postnatal cell proliferation in the dentate gyrus. Both male and female offspring of CORT-treated dams showed higher resistance to capture and greater locomotor activity as assessed in the open field test. As high levels of CORT may be a characteristic of stress and/or depression, these findings support a model of 'CORT-induced' post-partum stress and possibly depression and demonstrate that the offspring of affected dams can exhibit changes in postnatal neurogenesis and behavior in adulthood.

  17. Postnatal experiences and support needs of first-time mothers in Singapore: a descriptive qualitative study.

    PubMed

    Ong, Shu Fen; Chan, Wai-Chi Sally; Shorey, Shefaly; Chong, Yap Seng; Klainin-Yobas, Piyanee; He, Hong-Gu

    2014-06-01

    to explore first-time mothers' postnatal experiences and support needs after hospital discharge in Singapore. a descriptive qualitative study was adopted in this study. Participants were recruited from a public tertiary hospital in Singapore. Semi-structured interviews were used for data collection and the interview transcripts were analysed using thematic analysis. a purposive sample of 13 English-speaking first-time mothers of age 21 years and above were interviewed within 7-11 days after their hospital discharge. five themes emerged from the thematic analysis: (1) mixed emotions: participants experienced anxiety, labile emotions and stress over infant care; (2) breast feeding concerns: low breast milk supply and physical discomfort; (3) social support: many participants had sufficient social support from family members except their husbands; (4) cultural postnatal practice: majority of participants followed traditional postnatal practices of their culture; and (5) professional support needs: participants needed more information, access to health care services and continuity of care. this study highlighted the importance of providing professional postnatal care to first-time mothers after their discharge from the hospital. Future studies are needed to explore new practices that will enhance the quality of maternity health care and promote positive maternal experiences and well-being in Singapore. there is a need for more innovative advertisement to promote antenatal classes and improve attendance rate. Health care providers should assist women in establishing proper breast feeding techniques. Alternative models of care in the postnatal period, such as midwifery-led care, could facilitate a more woman-centred approach. Postnatal home visits may be considered within the first week of the mothers' hospital discharge, which may be legislated by public health care policies. © 2013 Elsevier Ltd. All rights reserved.

  18. Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents.

    PubMed

    Halligan, Sarah L; Herbert, Joe; Goodyer, Ian; Murray, Lynne

    2007-07-01

    We have previously reported higher and more variable salivary morning cortisol in 13-year-old adolescents whose mothers were depressed in the postnatal period, compared with control group adolescents whose mothers did not develop postnatal depression (PND). This observation suggested a biological mechanism by which intrafamilial risk for depressive disorder may be transmitted. In the current article, we examined whether the cortisol disturbances observed at 13 years could predict depressive symptomatology in adolescents at 16 years of age. We measured self-reported depressive symptoms in 16-year-old adolescents who had (n = 48) or had not (n = 39) been exposed to postnatal maternal depression and examined their prediction by morning and evening cortisol indices obtained via 10 days of salivary collections at 13 years. Elevated morning cortisol secretion at 13 years, and particularly the maximum level recorded over 10 days of collection, predicted elevated depressive symptoms at 16 years over and above 13-year depressive symptom levels and other possible confounding factors. Morning cortisol secretion mediated an association between maternal PND and symptomatology in 16-year-old offspring. Alterations in steroid secretion observed in association with maternal PND may provide a mechanism by which risk for depression is transmitted from mother to offspring.

  19. Increased Postnatal Cardiac Hyperplasia Precedes Cardiomyocyte Hypertrophy in a Model of Hypertrophic Cardiomyopathy

    PubMed Central

    Farrell, Emily T.; Grimes, Adrian C.; de Lange, Willem J.; Armstrong, Annie E.; Ralphe, J. Carter

    2017-01-01

    Rationale: Hypertrophic cardiomyopathy (HCM) occurs in ~0.5% of the population and is a leading cause of sudden cardiac death (SCD) in young adults. Cardiomyocyte hypertrophy has been the accepted mechanism for cardiac enlargement in HCM, but the early signaling responsible for initiating hypertrophy is poorly understood. Mutations in cardiac myosin binding protein C (MYBPC3) are among the most common HCM-causing mutations. Ablation of Mybpc3 in an HCM mouse model (cMyBP-C−/−) rapidly leads to cardiomegaly by postnatal day (PND) 9, though hearts are indistinguishable from wild-type (WT) at birth. This model provides a unique opportunity to explore early processes involved in the dramatic postnatal transition to hypertrophy. Methods and Results: We performed microarray analysis, echocardiography, qPCR, immunohistochemistry (IHC), and isolated cardiomyocyte measurements to characterize the perinatal cMyBP-C−/− phenotype before and after overt hypertrophy. cMyBP-C−/− hearts showed elevated cell cycling at PND1 that transitioned to hypertrophy by PND9. An expanded time course revealed that increased cardiomyocyte cycling was associated with elevated heart weight to body weight ratios prior to cellular hypertrophy, suggesting that cell cycling resulted in cardiomyocyte proliferation. Animals heterozygous for the cMyBP-C deletion trended in the direction of the homozygous null, yet did not show increased heart size by PND9. Conclusions: Results indicate that altered regulation of the cell cycling pathway and elevated proliferation precedes hypertrophy in the cMyBP-C−/− HCM model, and suggests that increased cardiomyocyte number contributes to increased heart size in cMyBP-C−/− mice. This pre-hypertrophic period may reflect a unique time during which the commitment to HCM is determined and disease severity is influenced. PMID:28659827

  20. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection

    PubMed Central

    Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira

    2016-01-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339

  1. Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection.

    PubMed

    Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de

    2016-02-01

    Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.

  2. Risk factors for antenatal depression, postnatal depression and parenting stress

    PubMed Central

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-01-01

    Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program [1]. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Results Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors

  3. Risk factors for antenatal depression, postnatal depression and parenting stress.

    PubMed

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-04-16

    Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program 1. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26-32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10-12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors. Risk factor profiles for

  4. Antenatal risk factors for postnatal depression: a large prospective study.

    PubMed

    Milgrom, Jeannette; Gemmill, Alan W; Bilszta, Justin L; Hayes, Barbara; Barnett, Bryanne; Brooks, Janette; Ericksen, Jennifer; Ellwood, David; Buist, Anne

    2008-05-01

    This study measured antenatal risk factors for postnatal depression in the Australian population, both singly and in combination. Risk factor data were gathered antenatally and depressive symptoms measured via the beyondblue National Postnatal Depression Program, a large prospective cohort study into perinatal mental health, conducted in all six states of Australia, and in the Australian Capital Territory, between 2002 and 2005. Pregnant women were screened for symptoms of postnatal depression at antenatal clinics in maternity services around Australia using the Edinburgh Postnatal Depression Scale (EPDS) and a psychosocial risk factor questionnaire that covered key demographic and psychosocial information. From a total of 40,333 participants, we collected antenatal EPDS data from 35,374 women and 3144 of these had a score >12 (8.9%). Subsequently, efforts were made to follow-up 22,968 women with a postnatal EPDS. Of 12,361 women who completed postnatal EPDS forms, 925 (7.5%) had an EPDS score >12. Antenatal depression together with a prior history of depression and a low level of partner support were the strongest independent antenatal predictors of a postnatal EPDS score >12. The two main limitations of the study were the use of the EPDS (a self-report screening tool) as the measure of depressive symptoms rather than a clinical diagnosis, and the rate of attrition between antenatal screening and the collection of postnatal follow-up data. Antenatal depressive symptoms appear to be as common as postnatal depressive symptoms. Previous depression, current depression/anxiety, and low partner support are found to be key antenatal risk factors for postnatal depression in this large prospective cohort, consistent with existing meta-analytic surveys. Current depression/anxiety (and to some extent social support) may be amenable to change and can therefore be targeted for intervention.

  5. Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars.

    PubMed

    Baba, Otto; Ota, Masato S; Terashima, Tatsuo; Tabata, Makoto J; Takano, Yoshiro

    2015-05-01

    Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.

  6. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    PubMed

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.

  7. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Maternal nutrient restriction during late gestation and early postnatal growth in sheep differentially reset the control of energy metabolism in the gastric mucosa.

    PubMed

    Sebert, S P; Dellschaft, N S; Chan, L L Y; Street, H; Henry, M; Francois, C; Sharma, V; Fainberg, H P; Patel, N; Roda, J; Keisler, D; Budge, H; Symonds, M E

    2011-07-01

    Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.

  9. Postnatal exposure to N-ethyl-N-nitrosurea disrupts the subventricular zone in adult rodents.

    PubMed

    Capilla-Gonzalez, V; Gil-Perotin, S; Garcia-Verdugo, J M

    2010-12-01

    N-ethyl-N-nitrosurea (ENU), a type of N-nitrous compound (NOC), has been used as inductor for brain tumours due to its mutagenic effect on the rodent embryo. ENU also affected adult neurogenesis when administered during pregnancy. However, no studies have investigated the effect of ENU when exposured during adulthood. For this purpose, three experimental groups of adult mice were injected with ENU at different doses and killed shortly after exposure. When administered in adult mice, ENU did not form brain tumours but led to a disruption of the subventricular zone (SVZ), an adult neurogenic region. Analyses of the samples revealed a reduction in the numbers of neural progenitors compared with control animals, and morphological changes in ependymal cells. A significant decrease in proliferation was tested in vivo with 5-bromo-2-deoxyuridine administration and confirmed in vitro with a neurosphere assay. Cell death, assessed as active-caspase-3 reactivity, was more prominent in treated animals and cell death-related populations increased in parallel. Two additional groups were maintained for 45 and 120 days after five doses of ENU to study the potential regeneration of the SVZ, but only partial recovery was detected. In conclusion, exposure to ENU alters the organization of the SVZ and causes partial exhaustion of the neurogenic niche. The functional repercussion of these changes remains unknown, but exposure to NOCs implies a potential risk that needs further evaluation. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Handling alters cocaine-induced activity in adolescent but not adult male rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    The developmental period of adolescence is one that is characterized by increased levels of stress and vulnerability to drugs. Pre-test handling is an experimental manipulation that is used to acclimate animals prior to behavioral testing and exposure to a novel environment. Therefore, the present study was conducted in order to address the issue of pre-test handling of adolescent and adult male rats on subsequent cocaine-induced locomotor activity upon presentation to a novel environment. On days one through four, postnatal day (PND) 41–44 or PND 56–59, respectively, animals were handled b.i.d. for three minutes. On the fifth day, PND 45 or PND 60, animals were administered 30 mg/kg/ip cocaine or saline and immediately placed in a novel environment where locomotor activity was measured for 30 minutes. Cocaine increased locomotor activity similarly in all non-handled animals, regardless of age. Interestingly, adolescent animals expressed a differential effect when handled prior to an acute cocaine administration. Specifically, handling increased cocaine-induced locomotor activity in adolescent but not adult animals. These findings indicate that adolescent males that have been acclimated to the handling procedure experience significantly more behavioral reactivity than do adults to a high dose of cocaine upon exposure to a novel environment. PMID:15708784

  11. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. © 2015. Published by The Company of Biologists Ltd.

  12. The influence of early postnatal nutrition on retinopathy of prematurity in extremely low birth weight infants.

    PubMed

    Porcelli, Peter J; Weaver, R Grey

    2010-06-01

    Retinopathy of prematurity(ROP) is the most common serious ophthalmic disease in preterm infants. Human milk may provide a protective effect for ROP; however, beneficial effects of human milk preclude randomized trials. Therefore, we conducted a retrospective analysis comparing early postnatal nutrition with ROP development. Evaluate relationship between early postnatal nutriture and ROP surgery. Nutrition data was collected for inborn AGA infants, BW 700-1000 g. ROP surgery was the primary outcome variable. A single pediatric ophthalmologist supervised examinations. All infants received triweekly IM vitamin A as chronic lung disease prophylaxis (Tyson: NEJM, 1999). BW and gestational age were 867+/-85 g and 26.3+/-1.2 weeks (n=77, mean+/-1SD). ROP surgery infants(n=11) received more parenteral nutrition, 1648 mL, and less human milk, 13.8 mL/kg-day, and vitamin E, 1.4 mg/kg-day, during the second postnatal week. Human milk was a negative predictor for ROP surgery, odds ratio=0.94. Both groups met vitamin A recommendations; however, 74% was administered via IM injections. Neither group met vitamin E recommendations. Human milk feeding, parenteral nutrition volume and vitamin E intake were predictors for ROP surgery. IM vitamin A injections provided the majority of vitamin A; vitamin E administration was insufficient. Improving human milk feeding rates and vitamin dosing options may affect ROP surgery rates. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. How many steps/day are enough? for adults

    PubMed Central

    2011-01-01

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  14. How many steps/day are enough? For adults.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Brown, Wendy J; Clemes, Stacy A; De Cocker, Katrien; Giles-Corti, Billie; Hatano, Yoshiro; Inoue, Shigeru; Matsudo, Sandra M; Mutrie, Nanette; Oppert, Jean-Michel; Rowe, David A; Schmidt, Michael D; Schofield, Grant M; Spence, John C; Teixeira, Pedro J; Tully, Mark A; Blair, Steven N

    2011-07-28

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  15. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    PubMed

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  16. Day-to-day variations in the amplitude of the soil temperature cycle and impact on adult eclosion timing of the onion fly.

    PubMed

    Tanaka, Kazuhiro; Watari, Yasuhiko

    2017-06-01

    The onion fly Delia antiqua advances its eclosion timing with decreasing temperature amplitude to compensate for a depth-dependent phase delay of the zeitgeber. To elucidate whether or not naturally occurring day-to-day variations in the amplitude of soil temperature cycle disturb this compensatory response, we monitored daily variations in the temperature amplitude in natural soils and evaluated the impact on adult eclosion timing. Our results indicated that both median and variance of the soil temperature amplitude become smaller as depth increases. Insertion of a larger temperature fluctuation into the thermoperiod with smaller temperature amplitude induced a stronger phase delay, while insertion of a smaller temperature fluctuation into the thermoperiod with larger temperature amplitude had a weaker phase-advancing effect. It is therefore expected that larger diurnal temperature fluctuations disturb the compensatory response, particularly if they occur at deeper locations, while smaller temperature fluctuations do so only at shallower locations. Under natural conditions, however, the probability of occurrence of smaller or larger temperature fluctuations in shallower or deeper soils, respectively, is relatively small. Thus, naturally occurring day-to-day variations in the temperature amplitude rarely disturb the compensatory response, thereby having a subtle or negligible impact on adult eclosion timing.

  17. Dietary supplements for preventing postnatal depression.

    PubMed

    Miller, Brendan J; Murray, Linda; Beckmann, Michael M; Kent, Terrence; Macfarlane, Bonnie

    2013-10-24

    Postnatal depression is a medical condition that affects many women and the development of their infants. There is a lack of evidence for treatment and prevention strategies that are safe for mothers and infants. Certain dietary deficiencies in a pregnant or postnatal woman's diet may cause postnatal depression. By correcting these deficiencies postnatal depression could be prevented in some women. Specific examples of dietary supplements aimed at preventing postnatal depression include: omega-3 fatty acids, iron, folate, s-adenosyl-L-methionine, cobalamin, pyridoxine, riboflavin, vitamin D and calcium. To assess the benefits of dietary supplements for preventing postnatal depression either in the antenatal period, postnatal period, or both. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2013). Randomised controlled trials, involving women who were pregnant or who had given birth in the previous six weeks, who were not depressed or taking antidepressants at the commencement of the trials. The trials could use as intervention any dietary supplementation alone or in combination with another treatment compared with any other preventive treatment, or placebo, or standard clinical care. Two review authors independently assessed trials for inclusion and assessed the risk of bias for the two included studies. Two review authors extracted data and the data were checked for accuracy. We included two randomised controlled trials.One trial compared oral 100 microgram (µg) selenium yeast tablets with placebo, taken from the first trimester until birth. The trial randomised 179 women but outcome data were only provided for 85 women. Eighty-three women were randomised to each arm of the trial. Sixty-one women completed the selenium arm, 44 of whom completed an Edinburgh Postnatal Depression Scale (EPDS). In the placebo arm, 64 women completed the trial, 41 of whom completed an EPDS. This included study (n = 85) found selenium had an effect

  18. Postnatal Depression and Infant Health Practices among High-Risk Women

    ERIC Educational Resources Information Center

    Zajicek-Farber, Michaela L.

    2009-01-01

    Women's postnatal depressive symptoms have been associated with many adverse outcomes for children. The current study examined the frequency association with relative risk between postnatal depressive symptoms and mothers' use of preventative infant health practices. The study used the Edinburgh Postnatal Depression Scale (EPDS) and Parental…

  19. Crying babies, tired mothers - challenges of the postnatal hospital stay: an interpretive phenomenological study

    PubMed Central

    2010-01-01

    Background According to an old Swiss proverb, "a new mother lazing in childbed is a blessing to her family". Today mothers rarely enjoy restful days after birth, but enter directly into the challenge of combining baby- and self-care. They often face a combination of infant crying and personal tiredness. Yet, routine postnatal care often lacks effective strategies to alleviate these challenges which can adversely affect family health. We explored how new mothers experience and handle postnatal infant crying and their own tiredness in the context of changing hospital care practices in Switzerland. Methods Purposeful sampling was used to enroll 15 mothers of diverse parity and educational backgrounds, all of who had given birth to a full term healthy neonate. Using interpretive phenomenology, we analyzed interview and participant observation data collected during the postnatal hospital stay and at 6 and 12 weeks post birth. This paper reports on the postnatal hospital experience. Results Women's personal beliefs about beneficial childcare practices shaped how they cared for their newborn's and their own needs during the early postnatal period in the hospital. These beliefs ranged from an infant-centered approach focused on the infant's development of a basic sense of trust to an approach that balanced the infants' demands with the mother's personal needs. Getting adequate rest was particularly difficult for mothers striving to provide infant-centered care for an unsettled neonate. These mothers suffered from sleep deprivation and severe tiredness unless they were able to leave the baby with health professionals for several hours during the night. Conclusion New mothers often need permission to attend to their own needs, as well as practical support with childcare to recover from birth especially when neonates are fussy. To strengthen family health from the earliest stage, postnatal care should establish conditions which enable new mothers to balance the care of their

  20. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  1. Postnatal LPS Challenge Impacts Escape Learning and Expression of Plasticity Factors Mmp9 and Timp1 in Rats: Effects of Repeated Training.

    PubMed

    Trofimov, Alexander; Strekalova, Tatyana; Mortimer, Niall; Zubareva, Olga; Schwarz, Alexander; Svirin, Evgeniy; Umriukhin, Aleksei; Svistunov, Andrei; Lesch, Klaus-Peter; Klimenko, Victor

    2017-08-01

    Bacterial intoxication associated with inflammatory conditions during development can impair brain functions, in particular evolutionarily novel forms of memory, such as explicit learning. Little is known about the dangers of early-life inflammation on more basic forms of learning, for example, the acquisition of motor escape abilities, which are generally better preserved under pathological conditions. To address this limitation in knowledge, an inflammatory response was elicited in Wistar pups by lipopolysaccharide (LPS) injections (25 μg/kg) on postnatal days P15, P18 and P21. The acquisition of escape behaviour was tested from P77 by active avoidance footshock model and water maze. Open-field behaviour and blood corticosterone levels were also measured. Rat brain tissue was collected from pups 2 h post-injection and from adult rats which either underwent escape training on P77-P81 or remained untrained. mRNA levels of developmental brain plasticity factors MMP-9 and TIMP-1 were investigated in the medial prefrontal cortex and ventral/dorsal hippocampus. LPS-challenged rats displayed moderately deficient escape responses in both memory tests, increased freezing behaviour and, surprisingly, reduced blood cortisol levels. Mmp9 and Timp1, and their ratio to one another, were differentially altered in pups versus adult untrained rats but remained unchanged overall in rats trained in either learning task. Together, our data indicate that systemic pro-inflammatory response during early postnatal development has long-lasting effects, including on the acquisition of motor escape abilities and plasticity factor expression, into adulthood. Our data suggest that altered stress response could possibly mediate these deviations and repeated training might generate positive effects on plasticity under the employed conditions.

  2. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    PubMed

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  4. A Novel Role of Periostin in Postnatal Tooth Formation and Mineralization*

    PubMed Central

    Ma, Dedong; Zhang, Rong; Sun, Yao; Rios, Hector F.; Haruyama, Naoto; Han, Xianglong; Kulkarni, Ashok B.; Qin, Chunlin; Feng, Jian Q.

    2011-01-01

    Periostin plays multiple functions during development. Our previous work showed a critical role of this disulfide-linked cell adhesion protein in maintenance of periodontium integrity in response to occlusal load. In this study, we attempted to address whether this mechanical response molecule played a direct role in postnatal tooth development. Our key findings are 1) periostin is expressed in preodontoblasts, and odontoblasts; and the periostin-null incisor displayed a massive increase in dentin formation after mastication; 2) periostin is also expressed in the ameloblast cells, and an enamel defect is identified in both the adult-null incisor and molar; 3) deletion of periostin leads to changes in expression profiles of many non-collagenous protein such as DSPP, DMP1, BSP, and OPN in incisor dentin; 4) the removal of a biting force leads to reduction of mineralization, which is partially prevented in periostin-null mice; and 6) both in vitro and in vivo data revealed a direct regulation of periostin by TGF-β1 in dentin formation. In conclusion, periostin plays a novel direct role in controlling postnatal tooth formation, which is required for the integrity of both enamel and dentin. PMID:21131362

  5. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat.

    PubMed

    Altoama, Kassem; Yassine Mallem, Mohamed; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2015-07-05

    The aim of study was to evaluate the effects of nebivolol, a cardioselective beta-1 adrenergic receptor blocker of the third generation with vasodilatory properties, vs. bisoprolol on the genital circulation, uterine vasculature, fetal growth and postnatal development in pregnant Wistar rats. Non invasive measurements of systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR), and invasive measurement of genital blood flow (GBF) were taken in pregnant rats, by tail cuff and transonic probe methods respectively, after an oral treatment by gastric gavage with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) from day 11 to day 18 of pregnancy. Other morphometrical and histological measurements were performed on the ovarian and uterine arteries to evaluate the effect of nebivolol on the uterine vasculature. Furthermore, postnatal mortality and pup growth were recorded. The data demonstrated that nebivolol (compared with bisoprolol) induced a significant decrease in SBP, HR and GBF while DBP remained unchanged. Moreover, nebivolol increased the diameter and the length of ovarian and uterine arteries and the number of uterine artery segmental branches. The results also showed that the body weight gain of newborns in the nebivolol group was significantly lower vs. bisoprolol and vs. control with a higher mortality rate. The nebivolol action is not only limited to its favorable hemodynamic effects represented by a decrease in blood pressure, but it also produces adverse effects on fetal growth and postnatal development that may limit its therapeutic use in females during pregnancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3).

    PubMed

    Peeters, R P; Ng, L; Ma, M; Forrest, D

    2015-05-15

    Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system. Published by Elsevier Ireland Ltd.

  7. Tonsillectomy in children and in adults: changes in practice following the opening of a day-surgery unit with dedicated operating room.

    PubMed

    Bartier, S; Gharzouli, I; Kiblut, N; Bendimered, H; Cloutier, L; Salvan, D

    2018-05-30

    To study the impact of the opening of a day-surgery unit on the practice of tonsillectomy in adults and children in the light of the experience of our department, and to compare complications between day-surgery and conventional admission. A retrospective review was conducted of all tonsillectomies performed since the opening of a dedicated day-surgery room, using the ENT and emergency department data-bases. Between October 2013 and December 2014, 179 tonsillectomies were performed (51 in adults, 128 in children), including 108 day-surgeries. Between 2012 and 2014, the number of tonsillectomies increased by 12.7%, with an 18.27% increase in children and stable adult rate. Within 1 year, day-surgery became predominant for children (73.19%) and equaled conventional admission for adults (47.22%). For almost all patients without same-day discharge, the reasons were organizational or due to malorientation (comorbidity, or unsuitable home environment). Day-case tonsillectomy in children showed a 30-day complications rate comparable to those reported in the literature (8.3% postoperative hemorrhage), with a higher rate in adults (35.3%). Onset of complications was at a mean 6 days in adults and 9 days in children; only 2 patients developed complications between 6 and 24hours postoperatively. The present study showed that opening a day-surgery unit led to changes in practice, with most tonsillectomies now performed on an outpatient basis, without increased complications, and notably immediate complications. Outpatient tonsillectomy thus seems to be a solution of choice compared to conventional admission, in terms of cost saving and of patient comfort, without sacrificing safety. The dedicated operating room facilitates scheduling and thereby increasing turnover by reducing wait time. Copyright © 2018. Published by Elsevier Masson SAS.

  8. The Relationship between Prenatal and Postnatal Exposure to Polychlorinated Biphenyls (PCBs) and Cognitive, Neuropsychological, and Behavioral Deficits: A Critical Appraisal

    ERIC Educational Resources Information Center

    Cicchetti, Domenic V.; Kaufman, Alan S.; Sparrow, Sara S.

    2004-01-01

    Our purpose in this report is to evaluate scientifically that body of literature relating the effects of prenatal and postnatal exposure to polychlorinated biphenyls (PCBs) upon neurobehavioral, health-related, and cognitive deficits in neonates, developing infants, children, and adults. The data derive from seven cohorts: six cohorts of mothers…

  9. Impact of Adult Day Services on Behavioral and Psychological Symptoms of Dementia

    ERIC Educational Resources Information Center

    Femia, Elia E.; Zarit, Steven H.; Stephens, Mary Ann Parris; Greene, Rick

    2007-01-01

    Purpose: This study explored whether adult day service (ADS) use was associated with reductions in behavioral and psychological symptoms of dementia (BPSD) in individuals with dementia. Design and Methods: We used a quasi-experimental design to compare a group of 133 persons with dementia (PWDs) who initially enrolled in an ADS program to a…

  10. Maternal postnatal depression and child growth: a European cohort study

    PubMed Central

    2010-01-01

    Background Previous studies have reported postpartum depression to be associated with both positive and negative effects on early infant growth. This study examined the hypothesis that maternal postnatal depression may be a risk factor for later child growth faltering or overweight. Methods A total of 929 women and their children participating in a European multicenter study were included at a median age of 14 days. Mothers completed the Edinburgh postnatal depression scale (EPDS) at 2, 3 and 6 months after delivery. EPDS scores of 13 and above at any time were defined as maternal depression. Weight, length, triceps and subscapular skinfold thicknesses were measured, and body mass index (BMI) were calculated when the children were two years old and converted to standard deviation scores based on the WHO Multicentre Growth Reference Study (MGRS). Results Z-scores for weight-for-length at inclusion of infants of mothers with high EPDS scores (-0.55, SD 0.74) were lower than of those with normal scores (-0.36, SD 0.74; p = 0.013). BMI at age 24 months did not differ in the high (16.3 kg/m2, SD 1.3) and in the normal EPDS groups (16.2 kg/m2, SD 1.3; p = 0.48). All other anthropometric indices also did not differ between groups, with no change by multivariate adjustment. Conclusions We conclude that a high maternal postnatal depression score does not have any major effects on offspring growth in high income countries. PMID:20226021

  11. Postnatal Development of the Spheno-occipital Synchondrosis: A Histological Analysis.

    PubMed

    Dai, Jiewen; Lin, Yuheng; Ningjuan, Ouyang; Shi, Jun; Yu, Dedong; Shen, Guofang

    2017-09-01

    The spheno-occipital synchondrosis (SOS) in cranial base is an important growth center for the craniofacial skeleton, and also is a guide rail for development of the maxilla, midface, and mandible. Previous studies showed that SOS may be a treatment target for youngsters with midfacial hypoplasia and small cranial vault secondary to craniosynostosis. However, most of studies about the SOS are based on imaging data. In this study, we try to explore the characteristics of postnatal development of the mouse SOS based on histological analysis. Our findings showed that the width of the SOS in mice were gradually decreased from newborn mice to adult mice, and the SOS cartilage was gradually became small, then almost completely ossificated in adult mice. The resting and proliferative layers in SOS cartilage were gradually decreased, and almost only hypertrophic chondrocytes while no resting and proliferative layer chondrocytes in adult mice. The proliferative ability of SOS chondrocytes also gradually decreased. These findings will be of benefit for the further clinical treatment for patients with midfacial hypoplasia or small cranial vault secondary to craniosynostosis. Further evidence-based research about the clinical implication is necessary in future.

  12. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.

    PubMed

    Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C

    2016-12-01

    Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.

  13. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice.

    PubMed

    Schipper, Lidewij; Bouyer, Karine; Oosting, Annemarie; Simerly, Richard B; van der Beek, Eline M

    2013-12-01

    We previously reported that dietary lipid quality during early life can have long-lasting effects on metabolic health and adiposity. Exposure to a postnatal diet with low dietary omega-6 (n-6) or high omega-3 (n-3) fatty acid (FA) content resulted in reduced body fat accumulation when challenged with a moderate Western-style diet (WSD) beginning in adolescence. We determined whether this programming effect is accompanied by changes in hypothalamic neural projections or modifications in the postnatal leptin surge, which would indicate the altered development of hypothalamic circuits that control energy balance. Neonatal mice were subjected to a control diet (CTR) or experimental diet with altered relative n-6 and n-3 FA contents [ie, a diet with a relative reduction in n-6 fatty acid (LOW n-6) or a diet with a relative increase in n-3 fatty acid (HIGH n-3) compared with the CTR from postnatal day (PN) 2 to 42]. Compared with CTR mice, mice fed a LOW n-6 or HIGH n-3 during postnatal life showed significant reductions in the density of both orexigenic and anorexigenic neural projections to the paraventricular nucleus of the hypothalamus at PN 28. These impairments persisted into adulthood and were still apparent after the WSD challenge between PNs 42 and 98. However, the neuroanatomical changes were not associated with changes in the postnatal leptin surge. Although the exact mechanism remains to be elucidated, our data indicate that the quality of dietary FA during postnatal life affects the development of the central regulatory circuits that control energy balance and may do so through a leptin-independent mechanism.

  14. Neonatal handling reduces renal function in adult rats.

    PubMed

    Donadio, Márcio Vinícius Fagundes; Jacobs, Silvana; Corezola, Kizzy Ludnila; Melo, Denizar Alberto da Silva; Dias, Henrique Bregolin; Reichel, Carlos Luiz; Franci, Celso Rodrigues; Jeckel-Neto, Emilio Antonio; Lulhier, Francisco; Lucion, Aldo Bolten; de Oliveira, Jarbas Rodrigues; Sanvitto, Gilberto Luiz

    2009-01-01

    To evaluate the effects of neonatal handling on hydroelectrolytic balance in adult rats. The litters were divided into two groups: nonhandled and handled. The procedure consisted of handling the pups for 1 min/day in the first 10 days postnatally. When adults, animals had their body weight verified and were housed in individual metabolic cages. After a 24-hour period, urine samples were collected and the urinary and water intake volumes measured. Blood samples to determine osmolality, aldosterone, corticosterone, angiotensin II, creatinine, urea, sodium and potassium levels were collected. The kidneys were removed for histological assessment. Urinary osmolality, sodium, urea and creatinine were also measured and the creatinine clearance (CC) calculated. No difference between groups was found in the body weight. Handled animals showed a reduction in the total kidney wet weight, water intake, urinary volume, CC, plasma angiotensin II, corticosterone and aldosterone when compared to the nonhandled and an increase in the urinary osmolality and sodium excretion fraction. No differences in serum potassium and no evidence of structural changes were demonstrated by histological analysis. Neonatal handling induced long-lasting effects decreasing renal function without evidence of kidney structural changes. (c) 2009 S. Karger AG, Basel.

  15. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats.

    PubMed

    Glenn, Melissa J; Adams, Raven S; McClurg, Lauren

    2012-03-14

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats

    PubMed Central

    Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren

    2012-01-01

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146

  17. Prenatal and early postnatal depression and child maltreatment among Japanese fathers.

    PubMed

    Takehara, Kenji; Suto, Maiko; Kakee, Naoko; Tachibana, Yoshiyuki; Mori, Rintaro

    2017-08-01

    We investigated the association of paternal depression in the prenatal and early postnatal period with child maltreatment tendency at two months postpartum among Japanese fathers. This population-based longitudinal study recruited Japanese perinatal women and their partners living in Nishio City, Aichi, Japan. Of the 270 fathers who participated, 196 were included in the analysis. All data were collected via self-administrated questionnaires at four time points: 20 weeks' gestation and in the first few days, one month, and two months postpartum. Paternal depression was assessed using the Edinburgh Postnatal Depression Scale. Three definitions of paternal depression were coded based on participants' scores on this measure: prenatal, prior, and current. Child maltreatment tendency was evaluated using the Child Maltreatment Scale at two months postpartum. The associations of the three definitions of paternal depression and child maltreatment tendency were separately analyzed using logistic regression analysis. The prevalence of prenatal, prior, and current paternal depression was 9.7%, 10.2%, and 8.8%, respectively. According to the multivariate analysis, current paternal depression was significantly associated with child maltreatment tendency at two months postpartum (adjusted odds ratio: 7.77, 95% CI: 1.83-33.02). The other two types of depression, however, were not related to child maltreatment tendency. Thus, current paternal depression increased the risk of child maltreatment tendency in the postnatal period, suggesting that early detection and treatment of paternal depression might be useful for the prevention of child maltreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SCG postnatal remodelling--hypertrophy and neuron number stability--in Spix's yellow-toothed cavies (Galea spixii).

    PubMed

    Ladd, Aliny A B Lobo; Ladd, Fernando V Lobo; da Silva, Andrea A P; Oliveira, Moacir F; de Souza, Romeu R; Coppi, Antonio A

    2012-04-01

    Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Does Parenteral Nutrition Influence Electrolyte and Fluid Balance in Preterm Infants in the First Days after Birth?

    PubMed Central

    Elstgeest, Liset E.; Martens, Shirley E.; Lopriore, Enrico; Walther, Frans J.; te Pas, Arjan B.

    2010-01-01

    Background New national guidelines recommend more restricted fluid intake and early initiation of total parenteral nutrition (TPN) in very preterm infants. The aim was study the effect of these guidelines on serum sodium and potassium levels and fluid balance in the first three days after birth. Methods Two cohorts of infants <28 weeks gestational age, born at the Leiden University Medical Center in the Netherlands, were compared retrospectively before (2002–2004, late-TPN) and after (2006–2007, early-TPN) introduction of the new Dutch guideline. Outcome measures were serum sodium and potassium levels, diuresis, and changes in body weight in the first three postnatal days. Results In the first three postnatal days no differences between late-TPN (N = 70) and early-TPN cohort (N = 73) in mean (SD) serum sodium (141.1 (3.8) vs 141.0 (3.7) mmol/l) or potassium (4.3 (0.5) vs 4.3 (0.5) mmol/l) were found, but in the early-TPN cohort diuresis (4.5 (1.6) vs 3.2 (1.4) ml/kg/h) and loss of body weight were decreased (−6.0% (7.7) vs −0.8% (8.0)). Conclusions Initiation of TPN immediately after birth and restricted fluid intake in very preterm infants do not seem to influence serum sodium and potassium levels in first three postnatal days. Further research is needed to see if a decreased diuresis and loss of body weight in the first days is the result of a delayed postnatal adaptation or better energy balance. PMID:20140260

  20. A statewide review of postnatal care in private hospitals in Victoria, Australia.

    PubMed

    Rayner, Jo-Anne; McLachlan, Helen L; Forster, Della A; Peters, Louise; Yelland, Jane

    2010-05-28

    Concerns have been raised in Australia and internationally regarding the quality and effectiveness of hospital postnatal care, although Australian women receiving postnatal care in the private maternity sector rate their satisfaction with care more highly than women receiving public maternity care. In Victoria, Australia, two-thirds of women receive their maternity care in the public sector and the remainder in private health care sector. A statewide review of public hospital postnatal care in Victoria from the perspective of care providers found many barriers to care provision including the busyness of postnatal wards, inadequate staffing and priority being given to other episodes of care; however the study did not include private hospitals. The aim of this study was replicate the review in the private sector, to explore the structure and organisation of postnatal care in private hospitals and identify those aspects of care potentially impacting on women's experiences and maternal and infant care. This provides a more complete overview of the organisational structures and processes in postnatal care in all Victorian hospitals from the perspective of care providers. A mixed method design was used. A structured postal survey was sent to all Victorian private hospitals (n = 19) and key informant interviews were undertaken with selected clinical midwives, maternity unit managers and obstetricians (n = 11). Survey data were analysed using descriptive statistics and interview data analysed thematically. Private hospital care providers report that postnatal care is provided in very busy environments, and that meeting the aims of postnatal care (breastfeeding support, education of parents and facilitating rest and recovery for women following birth) was difficult in the context of increased acuity of postnatal care; prioritising of other areas over postnatal care; high midwife-to-woman ratios; and the number and frequency of visitors. These findings were similar to the

  1. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  2. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth

    PubMed Central

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A.; Andl, Thomas; Zhang, Yuhang

    2016-01-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. PMID:27462123

  3. Predictors of intelligence at the age of 5: family, pregnancy and birth characteristics, postnatal influences, and postnatal growth.

    PubMed

    Eriksen, Hanne-Lise Falgreen; Kesmodel, Ulrik Schiøler; Underbjerg, Mette; Kilburn, Tina Røndrup; Bertrand, Jacquelyn; Mortensen, Erik Lykke

    2013-01-01

    Parental education and maternal intelligence are well-known predictors of child IQ. However, the literature regarding other factors that may contribute to individual differences in IQ is inconclusive. The aim of this study was to examine the contribution of a number of variables whose predictive status remain unclarified, in a sample of basically healthy children with a low rate of pre- and postnatal complications. 1,782 5-year-old children sampled from the Danish National Birth Cohort (2003-2007) were assessed with a short form of the Wechsler Preschool and Primary Scale of Intelligence - Revised. Information on parental characteristics, pregnancy and birth factors, postnatal influences, and postnatal growth was collected during pregnancy and at follow-up. A model including study design variables and child's sex explained 7% of the variance in IQ, while parental education and maternal IQ increased the explained variance to 24%. Other predictors were parity, maternal BMI, birth weight, breastfeeding, and the child's head circumference and height at follow-up. These variables, however, only increased the explained variance to 29%. The results suggest that parental education and maternal IQ are major predictors of IQ and should be included routinely in studies of cognitive development. Obstetrical and postnatal factors also predict IQ, but their contribution may be of comparatively limited magnitude.

  4. Adolescent, but Not Adult, Binge Ethanol Exposure Leads to Persistent Global Reductions of Choline Acetyltransferase Expressing Neurons in Brain

    PubMed Central

    Vetreno, Ryan P.; Broadwater, Margaret; Liu, Wen; Spear, Linda P.; Crews, Fulton T.

    2014-01-01

    During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28–P48) and adult (P70–P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity. PMID:25405505

  5. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain.

    PubMed

    Vetreno, Ryan P; Broadwater, Margaret; Liu, Wen; Spear, Linda P; Crews, Fulton T

    2014-01-01

    During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.

  6. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  7. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Paternal postnatal depression in Ireland: Prevalence and associated factors.

    PubMed

    Philpott, Lloyd Frank; Corcoran, Paul

    2018-01-01

    it is well established that fatherhood has a long term positive and protective effect on men's health. However, there is also evidence that the transition to fatherhood can be complex and demanding and can lead to distress, anxiety and increased risk of depression. this study aimed to investigate the prevalence of paternal postnatal depression, and to examine associations with a range of demographic and clinical factors. a cross-sectional study design was used to collect primary data from 100 fathers, whose partner gave birth to an infant in the previous 12 months. Data were collected using the Edinburgh Postnatal Depression Scale. the prevalence of paternal postnatal depression was 12% using the Edinburgh Postnatal Depression Scale cut off score of 12 or above, when the cut off score was reduced to 9 or above the prevalence was 28%. The factors found to increase the risk of paternal postnatal depression included having an infant with sleep problems, a previous history of depression, a lack of social support, poor economic circumstances, not having paternity leave and not being married. the results add to the growing body of evidence that paternal postnatal mental health is a significant public health issue, and indicates a need for assessment and support for fathers during this life stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Developmental Injury to the Cerebellar Cortex Following Hydroxyurea Treatment in Early Postnatal Life: An Immunohistochemical and Electron Microscopic Study.

    PubMed

    Martí, Joaquín; Molina, Vanesa; Santa-Cruz, M C; Hervás, José P

    2017-02-01

    Postnatal development of the cerebellar cortex was studied in rats administered with a single dose (2 mg/g) of the cytotoxic agent hydroxyurea (HU) on postnatal day (P) 9 and collected at appropriate times ranging from 6 h to 45 days. Quantification of several parameters such as the density of pyknotic, mitotic, BrdU-positive, and vimentin-stained cells revealed that HU compromises the survival of the external granular layer (EGL) cells. Moreover, vimentin immunocytochemistry revealed overexpression and thicker immunoreactive glial processes in HU-treated rats. On the other hand, we also show that HU leads to the activation of apoptotic cellular events, resulting in a substantial number of dying EGL cells, as revealed by TUNEL staining and at the electron microscope level. Additionally, we quantified several features of the cerebellar cortex of rats exposed to HU in early postnatal life and collected in adulthood. Data analysis indicated that the analyzed parameters were less pronounced in rats administered with this agent. Moreover, we observed several alterations in the cerebellar cortex cytoarchitecture of rats injected with HU. Anomalies included ectopic placement of Purkinje cells and abnormities in the dendritic arbor of these macroneurons. Ectopic granule cells were also found in the molecular layer. These findings provide a clue for investigating the mechanisms of HU-induced toxicity during the development of the central nervous system. Our results also suggest that it is essential to avoid underestimating the adverse effects of this hydroxylated analog of urea when administered during early postnatal life.

  10. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  11. Why carers use adult day respite: a mixed method case study.

    PubMed

    Stirling, Christine M; Dwan, Corinna A; McKenzie, Angela R

    2014-06-06

    We need to improve our understanding of the complex interactions between family carers' emotional relationships with care-recipients and carers use of support services. This study assessed carer's expectations and perceptions of adult day respite services and their commitment to using services. A mixed-method case study approach was used with psychological contract providing a conceptual framework. Data collection was situated within an organisational case study, and the total population of carers from the organisation's day respite service were approached. Fifty respondents provided quantitative and qualitative data through an interview survey. The conceptual framework was expanded to include Maslow's hierarchy of needs during analysis. Carers prioritised benefits for and experiences of care-recipients when making day respite decisions. Respondents had high levels of trust in the service and perceived that the major benefits for care-recipients were around social interaction and meaningful activity with resultant improved well-being. Carers wanted day respite experiences to include all levels of Maslow's hierarchy of needs from the provision of physiological care and safety through to the higher levels of belongingness, love and esteem. The study suggests carers need to trust that care-recipients will have quality experiences at day respite. This study was intended as a preliminary stage for further research and while not generalizable it does highlight key considerations in carers' use of day respite services.

  12. The Effect of Telephone-Based Cognitive-Behavioral Therapy on Postnatal Depression: A Randomized Controlled Trial.

    PubMed

    Ngai, Fei-Wan; Wong, Paul Wai-Ching; Leung, Kwok-Yin; Chau, Pui-Hing; Chung, Ka-Fai

    2015-01-01

    Cognitive-behavioral therapy (CBT) is one of the most effective interventions for postnatal depression. However, few studies have evaluated the effect of CBT delivered via telephone for newborn mothers. The purpose of this study was to evaluate the efficacy of telephone-based CBT for postnatal depression at 6 weeks and 6 months postpartum. A multisite randomized controlled trial was conducted in the postnatal units at 3 regional hospitals in Hong Kong. A total of 397 women with an Edinburgh Postnatal Depression Scale (EPDS) score ≥10 on the second or third day postpartum were randomized to receive telephone-based CBT (n = 197) or standard care (n = 200). Primary outcome was the total EPDS score. A cutoff score of 9/10 on the EPDS was used to define women at risk of postnatal depression. Telephone-based CBT was associated with significantly lower depressive symptoms compared with standard care, when assessed at 6 weeks postpartum in the subgroups of mothers with minor depression (EPDS 10-12; difference = 1.90, 95% CI: 0.72-3.08; p = 0.002) and major depression (EPDS ≥13; difference = 5.00, 95% CI: 3.12-6.88; p < 0.001). The effect was sustained at 6 months postpartum in the subgroup with minor depression (difference = 1.20, 95% CI: 0.09-2.32; p = 0.034) but not significant in the subgroup with major depression (difference = 1.69, 95% CI: -0.10-3.47; p = 0.064). The proportion of women who satisfied our definition of postnatal depression was significantly lower in the intervention group at 6 weeks (difference = 23.3%, 95% CI: 13.7-33.0%; p < 0.001) and 6 months postpartum (difference = 11.4%, 95% CI: 1.9-20.8%; p = 0.019). Telephone-based CBT produced a significantly greater reduction in depressive symptoms than standard care during the postpartum period. © 2015 S. Karger AG, Basel.

  13. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Flatscher-Bader, Traute; Wilkins, Sarah J; Anderson, Greg J; Whitelaw, Emma; Chong, Suyinn

    2010-10-01

    Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism. © 2010 Wiley-Liss, Inc.

  14. [Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].

    PubMed

    Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye

    2011-04-01

    To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.

  15. Dmrt1 Expression Is Regulated by Follicle-Stimulating Hormone and Phorbol Esters in Postnatal Sertoli Cells*

    PubMed Central

    CHEN, JIANG KAI; HECKERT, LESLIE L.

    2006-01-01

    Dmrt1 is a recently described gene that is expressed exclusively in the testis and is required for postnatal testis differentiation. Here we describe the expression of Dmrt1 in postnatal rat testis and Sertoli cells. RNase protection analysis was used to examine Dmrt1 messenger RNA (mRNA) levels in intact testis during postnatal development and in primary cultures of Sertoli cells under various culture conditions. We show that Dmrt1 mRNA levels rise significantly beginning approximately 10 days after birth and remain elevated until after the third postnatal week. Thereafter, mRNA levels drop coincident with the proliferation of germ cells in the testis. In freshly isolated Sertoli cells, Dmrt1 mRNA levels were robust but decreased significantly when the cells were placed in culture for 24 h. Treatment of Sertoli cells with either FSH or 8-bromo-cAMP resulted in a significant rise in Dmrt1 mRNA levels. This cAMP response was sensitive to treatment with the transcriptional inhibitor actinomycin D but not to the translational inhibitor cycloheximide. The cAMP-dependent rise in Dmrt1 mRNA also required activation of protein kinase A, as mRNA induction was sensitive to the inhibitor H89. Studies also show that Dmrt1 expression was inhibited by phorbol esters (PMA) but only modestly effected by serum. PMID:11181532

  16. Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest

    PubMed Central

    O’Neill, Thomas J.; Mack, Christopher P.; Taylor, Joan M.

    2012-01-01

    The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state impacts normal heart development and pathologic myocardial remodeling, yet the signaling mechanisms that regulate this vital process are incompletely understood. Studies from our lab and others indicate that focal adhesion kinase (FAK) is a critical regulator of cardiac growth and remodeling and we found that expression of the endogenous FAK inhibitor, FAK-related non kinase (FRNK) coincided with postnatal cardiomyocyte arrest. Mis-expression of FRNK in the embryonic heart led to pre-term lethality associated with reduced cardiomyocyte proliferation and led us to speculate that the postnatal FRNK surge might be required to promote quiescence in this growth promoting environment. Herein, we provide strong evidence that endogenous FRNK contributes to post-mitotic arrest. Depletion of FRNK promoted DNA synthesis in post-natal day (P) 10 hearts accompanied by a transient increase in DNA content and multi-nucleation by P14, indicative of DNA replication without cell division. Interestingly, a reduction in tri- and tetra-nucleated cardiomyocytes, concomitant with an increase in bi-nucleated cells by P21, indicated the possibility that FRNK-depleted cardiomyocytes underwent eventual cytokinesis. In support of this conclusion, Aurora B-labeled central spindles (a hallmark of cytokinesis) were observed in tetra-nucleated P20 FRNK−/− but not wt cardiomyocytes, while no evidence of apoptosis was observed. Moreover, hearts from FRNK null mice developed ventricular enlargement that persisted until young adulthood which resulted from myocyte expansion rather than myocyte hypertrophy or interstitial growth. These data indicate that endogenous FRNK serves an important role in limiting DNA synthesis and regulating the un-coupling between DNA synthesis and cytokinesis in the post-natal myocardium. PMID:22555221

  17. Neonatal exposure to ethinylestradiol increases ventral prostate growth and promotes epithelial hyperplasia and inflammation in adult male gerbils.

    PubMed

    Falleiros-Júnior, Luiz R; Perez, Ana P S; Taboga, Sebastião R; Dos Santos, Fernanda C A; Vilamaior, Patrícia S L

    2016-10-01

    The aim of this study was to analyse morphologically the ventral prostate of adult Mongolian gerbils exposed to ethinylestradiol (EE) during the first week of postnatal development. Lactating females received daily, by gavage, doses of 10 μg/kg of EE diluted in 100 μl of mineral oil from the 1st to 10th postnatal day of the pups (EE group). In the control group (C), the lactating females received only the vehicle. Upon completing 120 days of age, the male offspring were euthanized and the prostates collected for analyses. We employed morphological, stereological-morphometrical, immunohistochemical and ultrastructural methods. The results showed that the postnatal exposure to EE doubled the prostatic complex weight, increasing the epithelial and stromal compartments, in addition to the secretory activity of the ventral lobe of the prostate. All glands exposed to EE showed strong stromal remodelling, and some foci of epithelial hyperplasia and inflammatory infiltrate in both luminal and epithelial or stromal compartments. Cells positive for anti-AR and anti-PCNA reactions increased into the epithelial and stromal tissues. ERα-positive cells, which are normally found in the stromal compartment of intact prostates, were frequently observed in the prostatic epithelium of treated animals. This study demonstrated that the exposure to EE during postnatal development causes histophysiological alterations in this gland, predisposing to the development of prostatic lesions during life. These results are important for public health, considering that women worldwide have commonly used EE. Moreover, the bioaccumulation of this chemical has increased in different ecosystems. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  18. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    PubMed

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: findings from a multi-cohort study.

    PubMed

    Hannam, K; Deere, K C; Hartley, A; Clark, E M; Coulson, J; Ireland, A; Moss, C; Edwards, M H; Dennison, E; Gaysin, T; Cooper, R; Wong, A; McPhee, J S; Cooper, C; Kuh, D; Tobias, J H

    2017-03-01

    This observational study assessed vertical impacts experienced in older adults as part of their day-to-day physical activity using accelerometry and questionnaire data. Population-based older adults experienced very limited high-impact activity. The accelerometry method utilised appeared to be valid based on comparisons between different cohorts and with self-reported activity. We aimed to validate a novel method for evaluating day-to-day higher impact weight-bearing physical activity (PA) in older adults, thought to be important in protecting against osteoporosis, by comparing results between four cohorts varying in age and activity levels, and with self-reported PA levels. Participants were from three population-based cohorts, MRC National Survey of Health and Development (NSHD), Hertfordshire Cohort Study (HCS) and Cohort for Skeletal Health in Bristol and Avon (COSHIBA), and the Master Athlete Cohort (MAC). Y-axis peaks (reflecting the vertical when an individual is upright) from a triaxial accelerometer (sampling frequency 50 Hz, range 0-16 g) worn at the waist for 7 days were classified as low (0.5-1.0 g), medium (1.0-1.5 g) or higher (≥1.5 g) impacts. There were a median of 90, 41 and 39 higher impacts/week in NSHD (age 69.5), COSHIBA (age 76.8) and HCS (age 78.5) participants, respectively (total n = 1512). In contrast, MAC participants (age 68.5) had a median of 14,322 higher impacts/week. In the three population cohorts combined, based on comparison of beta coefficients, moderate-high-impact activities as assessed by PA questionnaire were suggestive of stronger association with higher impacts from accelerometers (0.25 [0.17, 0.34]), compared with medium (0.18 [0.09, 0.27]) and low impacts (0.13 [0.07,0.19]) (beta coefficient, with 95 % CI). Likewise in MAC, reported moderate-high-impact activities showed a stronger association with higher impacts (0.26 [0.14, 0.37]), compared with medium (0.14 [0.05, 0.22]) and low impacts (0.03 [-0.02, 0

  20. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

    2001-01-01

    A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

  1. Developmental programming: postnatal estradiol amplifies ovarian follicular defects induced by fetal exposure to excess testosterone and dihydrotestosterone in sheep.

    PubMed

    Veiga-Lopez, A; Wurst, A K; Steckler, T L; Ye, W; Padmanabhan, V

    2014-04-01

    Excess of prenatal testosterone (T) induces reproductive defects including follicular persistence. Comparative studies with T and dihydrotestosterone (DHT) have suggested that follicular persistence is programmed via estrogenic actions of T. This study addresses the androgenic and estrogenic contributions in programming follicular persistence. Because humans are exposed to estrogenic environmental steroids from various sources throughout their life span and postnatal insults may also induce organizational and/or activational changes, we tested whether continuous postnatal exposure to estradiol (E) will amplify effects of prenatal steroids on ovarian function. Pregnant sheep were treated with T, DHT, E, or ED (E and DHT) from days 30 to 90 of gestation. Postnatally, a subset of the vehicle (C), T, and DHT females received an E implant. Transrectal ultrasonography was performed in the first breeding season during a synchronized cycle to monitor ovarian follicular dynamics. As expected, number of ≥8 mm follicles was higher in the T versus C group. Postnatal E reduced the number of 4 to 8 mm follicles in the DHT group. Percentage of females bearing luteinized follicles and the number of luteinized follicles differed among prenatal groups. Postnatal E increased the incidence of subluteal cycles in the prenatal T-treated females. Findings from this study confirm previous findings of divergences in programming effects of prenatal androgens and estrogens. They also indicate that some aspects of follicular dynamics are subject to postnatal modulation as well as support the existence of an extended organizational period or the need for a second insult to uncover the previously programmed event.

  2. Determinants of postnatal care use at health facilities in rural Tanzania: multilevel analysis of a household survey.

    PubMed

    Mohan, Diwakar; Gupta, Shivam; LeFevre, Amnesty; Bazant, Eva; Killewo, Japhet; Baqui, Abdullah H

    2015-10-30

    Postnatal care (PNC) for the mother and infant is a neglected area, even for women who give birth in a health facility. Currently, there is very little evidence on the determinants of use of postnatal care from health facilities in Tanzania. This study examined the role of individual and community-level variables on the use of postnatal health services, defined as a check up from a heath facility within 42 days of delivery, using multilevel logistic regression analysis. We analyzed data of 1931 women, who had delivered in the preceding 2-14 months, from a two-stage household survey in 4 rural districts of Morogoro region, Tanzania. Individual level explanatory variables included i) Socio-demographic factors: age, birth order, education, and wealth, ii) Factors related to pregnancy: frequency of antenatal visits, history of complications, mode of delivery, place of delivery care, and counseling received. Community level variables included community levels of family planning, health service utilization, trust, poverty and education, and distance to health facility. Less than one in four women in Morogoro reported having visited a health facility for postnatal care. Individual-level attributes positively associated with postnatal care use were women's education of primary level or higher [Odds Ratio (OR) 1.37, 95 % Confidence Interval (CI) 1.04-1.81], having had a caesarean section or forceps delivery (2.95, 1.8-4.81), and being counseled by a community health worker to go for postnatal care at a health facility (2.3, 1.36-3.89). Other positive associations included those recommended HIV testing for baby (1.94, 1.19-3.15), and whose partners tested for HIV (1.41, 1.07-1.86). High community levels of postpartum family planning usage (2.48, 1.15-5.37) and high level of trust in health system (1.77, 1.12-2.79) were two significant community-level predictors. Lower postnatal care use was associated with having delivered at a hospital (0.5, 0.33-0.76), health center (0

  3. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats.

    PubMed

    Counotte, Danielle S; Schiefer, Christopher; Shaham, Yavin; O'Donnell, Patricio

    2014-04-01

    There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.

  4. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size.

    PubMed

    Wojcik, S M; Rhee, J S; Herzog, E; Sigler, A; Jahn, R; Takamori, S; Brose, N; Rosenmund, C

    2004-05-04

    Quantal neurotransmitter release at excitatory synapses depends on glutamate import into synaptic vesicles by vesicular glutamate transporters (VGLUTs). Of the three known transporters, VGLUT1 and VGLUT2 are expressed prominently in the adult brain, but during the first two weeks of postnatal development, VGLUT2 expression predominates. Targeted deletion of VGLUT1 in mice causes lethality in the third postnatal week. Glutamatergic neurotransmission is drastically reduced in neurons from VGLUT1-deficient mice, with a specific reduction in quantal size. The remaining activity correlates with the expression of VGLUT2. This reduction in glutamatergic neurotransmission can be rescued and enhanced with overexpression of VGLUT1. These results show that the expression level of VGLUTs determines the amount of glutamate that is loaded into vesicles and released and thereby regulates the efficacy of neurotransmission.

  5. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    PubMed

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-07

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Intervention among new parents followed up by an interview study exploring their experiences of telemedicine after early postnatal discharge.

    PubMed

    Danbjørg, D B; Wagner, L; Kristensen, B R; Clemensen, J

    2015-06-01

    a move towards earlier postnatal discharge raises the challenge of finding new ways to support families when they are discharged early after childbirth. to explore how postnatal parents experienced the use of telemedicine following early discharge from hospital (i.e. 24 hours after childbirth) by investigating if they consider that their postnatal needs are met, and whether or not they experience a sense of security and parental self-efficacy. intervention followed by a qualitative interview study. The intervention took place on a postnatal ward with approximately 1000 births a year. An app including chat, a knowledgebase and automated messages was trialled between postnatal parents at home and the hospital. Parents had access to the app for seven days after discharge. 42 new mothers were recruited from the postnatal ward in accordance with the inclusion criteria (i.e. discharged within 24 hours of childbirth). Both parents were invited for interview. 42 sets of parents participated in the trial, and 28 sets agreed to be interviewed. Interviews (n=28) were conducted with 27 mothers and 11 fathers. Parents were interviewed together in 10 cases, 17 mothers were interviewed alone, and one father was interviewed alone. The data analysis was inspired by systematic text condensation based on Giorgi׳s descriptive phenomenological method. parents were confident in use of the app, and did not experience any barriers in contacting the nurses via asynchronous communication. Parents received timely information and guidance by communicating online, and felt that their follow-up support needs were met. parents viewed the app as a lifeline, and saw it as a means of informing and guiding them following early discharge from hospital after childbirth. As such, this app shows potential for enhancing self-efficacy and postnatal sense of security. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Telomere length dynamics differ in foetal and early post-natal human leukocytes in a longitudinal study.

    PubMed

    Holmes, Denise K; Bellantuono, Ilaria; Walkinshaw, Steve A; Alfirevic, Zarko; Johnston, Tracey A; Subhedar, Nimish V; Chittick, Rachel; Swindell, Richard; Wynn, Robert F

    2009-06-01

    Haemopoietic stem cells (HSC) undergo a process of self renewal to constantly maintain blood cell turnover. However, it has become apparent that adult HSC lose their self-renewal ability with age. Telomere shortening in peripheral blood leukocytes has been seen to occur with age and it has been associated with loss of HSC proliferative capacity and cellular ageing. In contrast foetal HSC are known to have greater proliferative capacity than post-natal stem cells. However it is unknown whether they undergo a similar process of telomere shortening. In this study we show a more accentuated rate of telomere loss in leukocytes from pre term infants compared to human foetuses of comparable age followed longitudinally for 8-12 weeks in a longitudinal study. Our results point to a difference in HSC behaviour between foetal and early postnatal life which is independent of age but may be influenced by events at birth itself.

  8. Zhx2 and Zbtb20: Novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer

    PubMed Central

    Peterson, Martha L.; Ma, Chunhong; Spear, Brett T.

    2012-01-01

    The mouse alpha-fetoprotein (AFP) gene is abundantly expressed in the fetal liver, normally silent in the adult liver but is frequently reactivated in hepatocellular carcinoma. The basis for AFP expression in the fetal liver has been studied extensively. However, the basis for AFP reactivation during hepatocarcinogenesis is not well understood. Two novel factors that control postnatal AFP repression, Zhx2 and Zbtb20, were recently identified. Here, we review the transcription factors that regulate AFP in the fetal liver, as well as Zhx2 and Zbtb20, and raise the possibility that the loss of these postnatal repressors may be involved in AFP reactivation in liver cancer. PMID:21216289

  9. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Predictors of Intelligence at the Age of 5: Family, Pregnancy and Birth Characteristics, Postnatal Influences, and Postnatal Growth

    PubMed Central

    Eriksen, Hanne-Lise Falgreen; Kesmodel, Ulrik Schiøler; Underbjerg, Mette; Kilburn, Tina Røndrup; Bertrand, Jacquelyn; Mortensen, Erik Lykke

    2013-01-01

    Parental education and maternal intelligence are well-known predictors of child IQ. However, the literature regarding other factors that may contribute to individual differences in IQ is inconclusive. The aim of this study was to examine the contribution of a number of variables whose predictive status remain unclarified, in a sample of basically healthy children with a low rate of pre- and postnatal complications. 1,782 5-year-old children sampled from the Danish National Birth Cohort (2003–2007) were assessed with a short form of the Wechsler Preschool and Primary Scale of Intelligence – Revised. Information on parental characteristics, pregnancy and birth factors, postnatal influences, and postnatal growth was collected during pregnancy and at follow-up. A model including study design variables and child’s sex explained 7% of the variance in IQ, while parental education and maternal IQ increased the explained variance to 24%. Other predictors were parity, maternal BMI, birth weight, breastfeeding, and the child’s head circumference and height at follow-up. These variables, however, only increased the explained variance to 29%. The results suggest that parental education and maternal IQ are major predictors of IQ and should be included routinely in studies of cognitive development. Obstetrical and postnatal factors also predict IQ, but their contribution may be of comparatively limited magnitude. PMID:24236109

  11. MafA is required for postnatal proliferation of pancreatic β-cells.

    PubMed

    Eto, Koki; Nishimura, Wataru; Oishi, Hisashi; Udagawa, Haruhide; Kawaguchi, Miho; Hiramoto, Masaki; Fujiwara, Toshiyoshi; Takahashi, Satoru; Yasuda, Kazuki

    2014-01-01

    The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling.

  12. Early postnatal response of the spinal nucleus of the bulbocavernosus and target muscles to testosterone in male gerbils.

    PubMed

    Hadi Mansouri, S; Siegford, Janice M; Ulibarri, Catherine

    2003-05-14

    This study examined the response of the spinal nucleus of the bulbocavernosus (SNB) and the bulbocavernosus (BC) muscle, to testosterone in male Mongolian gerbils (Meriones unguiculatus) during the early postnatal period. Male gerbil pups were given testosterone propionate (TP) or vehicle for 2 days, then perfused on postnatal day (PND) 3, 5, 10 or 15. The BC and levator ani (LA) muscles were removed, weighed, and sectioned. Cross-sections of BC muscle fibers were measured and muscle fiber morphology examined. Spinal cords were removed and coronally sectioned in order to count and measure the SNB motoneurons. Following TP treatment, male pups of all ages had significantly heavier BC-LA muscles and larger fibers in the BC muscle compared to age-matched controls. The increase in muscle weight following TP treatment was greatest at PND10, while fiber size increased to a similar degree at all ages suggesting that hyperplasia as well as hypertrophy was responsible for the increase in muscle mass at this time. SNB motoneurons increased significantly in number and size with age and TP treatment. We hypothesize that the increase in SNB motoneuron number during normal ontogeny that can be augmented by TP treatment and represents an unusual means of establishing sexual dimorphism in the nervous system of a mammal through cell recruitment to the motor pool of a postnatal animal.

  13. Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice.

    PubMed

    Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa

    2018-05-03

    Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  15. Age Differences in Day-To-Day Speed-Accuracy Tradeoffs: Results from the COGITO Study.

    PubMed

    Ghisletta, Paolo; Joly-Burra, Emilie; Aichele, Stephen; Lindenberger, Ulman; Schmiedek, Florian

    2018-04-23

    We examined adult age differences in day-to-day adjustments in speed-accuracy tradeoffs (SAT) on a figural comparison task. Data came from the COGITO study, with over 100 younger and 100 older adults, assessed for over 100 days. Participants were given explicit feedback about their completion time and accuracy each day after task completion. We applied a multivariate vector auto-regressive model of order 1 to the daily mean reaction time (RT) and daily accuracy scores together, within each age group. We expected that participants adjusted their SAT if the two cross-regressive parameters from RT (or accuracy) on day t-1 of accuracy (or RT) on day t were sizable and negative. We found that: (a) the temporal dependencies of both accuracy and RT were quite strong in both age groups; (b) younger adults showed an effect of their accuracy on day t-1 on their RT on day t, a pattern that was in accordance with adjustments of their SAT; (c) older adults did not appear to adjust their SAT; (d) these effects were partly associated with reliable individual differences within each age group. We discuss possible explanations for older adults' reluctance to recalibrate speed and accuracy on a day-to-day basis.

  16. The effects of delivery route and anesthesia type on early postnatal weight loss in newborns: the role of vasoactive hormones.

    PubMed

    Okumus, Nurullah; Atalay, Yildiz; Onal, Eray E; Turkyilmaz, Canan; Senel, Saliha; Gunaydin, Berrin; Pasaoglu, Hatice; Koc, Esin; Ergenekon, Ebru; Unal, Suna

    2011-01-01

    To investigate the effects of delivery route and maternal anesthesia type and the roles of vasoactive hormones on early postnatal weight loss in term newborns. Ninety-four term infants delivered vaginally (group 1, n=31), cesarean section (C/S) with general anesthesia (GA) (group 2, n=29), and C/S with epidural anesthesia (EA) (group 3, n=34) were included in this study. All infants were weighed at birth and on the second day of life and intravenous (IV) fluid infused to the mothers for the last 6 h prior to delivery was recorded. Serum electrolytes, osmolality, N-terminal proANP (NT-proANP), brain natriuretic peptide (BNP), aldosterone and plasma antidiuretic hormone (ADH) concentrations were measured at cord blood and on the second day of life. Our research showed that postnatal weight loss of infants was higher in C/S than vaginal deliveries (5.7% vs. 1.3%) (p < 0.0001) and in EA group than GA group (6.8% vs. 4.3%) (p < 0.0001). Postnatal weight losses were correlated with IV fluid volume infused to the mothers for the last 6 h prior to delivery (R = 0.814, p = 0.000) and with serum NT-proANP (R = 0.418, p = 0.000), BNP (R = 0.454, p = 0.000), and ADH (R = 0.509, p = 0.000) but not with aldosterone concentrations (p > 0.05). Large amounts of IV fluid given to the mothers who were applied EA prior to the delivery affect their offsprings' postnatal weight loss via certain vasoactive hormones.

  17. Why carers use adult day respite: a mixed method case study

    PubMed Central

    2014-01-01

    Background We need to improve our understanding of the complex interactions between family carers’ emotional relationships with care-recipients and carers use of support services. This study assessed carer’s expectations and perceptions of adult day respite services and their commitment to using services. Methods A mixed-method case study approach was used with psychological contract providing a conceptual framework. Data collection was situated within an organisational case study, and the total population of carers from the organisation’s day respite service were approached. Fifty respondents provided quantitative and qualitative data through an interview survey. The conceptual framework was expanded to include Maslow’s hierarchy of needs during analysis. Results Carers prioritised benefits for and experiences of care-recipients when making day respite decisions. Respondents had high levels of trust in the service and perceived that the major benefits for care-recipients were around social interaction and meaningful activity with resultant improved well-being. Carers wanted day respite experiences to include all levels of Maslow’s hierarchy of needs from the provision of physiological care and safety through to the higher levels of belongingness, love and esteem. Conclusion The study suggests carers need to trust that care-recipients will have quality experiences at day respite. This study was intended as a preliminary stage for further research and while not generalizable it does highlight key considerations in carers’ use of day respite services. PMID:24906239

  18. Measuring Physical Activity with Pedometers in Older Adults with Intellectual Disability: Reactivity and Number of Days

    ERIC Educational Resources Information Center

    Hilgenkamp, Thessa; Van Wijck, Ruud; Evenhuis, Heleen

    2012-01-01

    The minimum number of days of pedometer monitoring needed to estimate valid average weekly step counts and reactivity was investigated for older adults with intellectual disability. Participants (N = 268) with borderline to severe intellectual disability ages 50 years and older were instructed to wear a pedometer for 14 days. The outcome measure…

  19. Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla.

    PubMed

    Walker, Suellen M; Fitzgerald, Maria; Hathway, Gareth J

    2015-06-01

    Neonatal pain and injury can alter long-term sensory thresholds. Descending rostroventral medulla (RVM) pathways can inhibit or facilitate spinal nociceptive processing in adulthood. As these pathways undergo significant postnatal maturation, the authors evaluated long-term effects of neonatal surgical injury on RVM descending modulation. Plantar hind paw or forepaw incisions were performed in anesthetized postnatal day (P)3 Sprague-Dawley rats. Controls received anesthesia only. Hind limb mechanical and thermal withdrawal thresholds were measured to 6 weeks of age (adult). Additional groups received pre- and post-incision sciatic nerve levobupivacaine or saline. Hind paw nociceptive reflex sensitivity was quantified in anesthetized adult rats using biceps femoris electromyography, and the effect of RVM electrical stimulation (5-200 μA) measured as percentage change from baseline. In adult rats with previous neonatal incision (n = 9), all intensities of RVM stimulation decreased hind limb reflex sensitivity, in contrast to the typical bimodal pattern of facilitation and inhibition with increasing RVM stimulus intensity in controls (n = 5) (uninjured vs. neonatally incised, P < 0.001). Neonatal incision of the contralateral hind paw or forepaw also resulted in RVM inhibition of hind paw nociceptive reflexes at all stimulation intensities. Behavioral mechanical threshold (mean ± SEM, 28.1 ± 8 vs. 21.3 ± 1.2 g, P < 0.001) and thermal latency (7.1 ± 0.4 vs. 5.3 ± 0.3 s, P < 0.05) were increased in both hind paws after unilateral neonatal incision. Neonatal perioperative sciatic nerve blockade prevented injury-induced alterations in RVM descending control. Neonatal surgical injury alters the postnatal development of RVM descending control, resulting in a predominance of descending inhibition and generalized reduction in baseline reflex sensitivity. Prevention by local anesthetic blockade highlights the importance of neonatal perioperative analgesia.

  20. Infant frontal EEG asymmetry in relation with postnatal maternal depression and parenting behavior.

    PubMed

    Wen, D J; Soe, N N; Sim, L W; Sanmugam, S; Kwek, K; Chong, Y-S; Gluckman, P D; Meaney, M J; Rifkin-Graboi, A; Qiu, A

    2017-03-14

    Right frontal electroencephalogram (EEG) asymmetry associates with negative affect and depressed mood, which, among children, are predicted by maternal depression and poor parenting. This study examined associations of maternal depression and maternal sensitivity with infant frontal EEG asymmetry based on 111 mother-6-month-infant dyads. There were no significant effects of postnatal maternal depression or maternal sensitivity, or their interaction, on infant EEG frontal asymmetry. However, in a subsample for which the infant spent at least 50% of his/her day time hours with his/her mother, both lower maternal sensitivity and higher maternal depression predicted greater relative right frontal EEG asymmetry. Our study further showed that greater relative right frontal EEG asymmetry of 6-month-old infants predicted their greater negative emotionality at 12 months of age. Our study suggested that among infants with sufficient postnatal maternal exposure, both maternal sensitivity and mental health are important influences on early brain development.

  1. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio.

    PubMed

    Kovrižnych, Jevgenij A; Sotníková, Ružena; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-03-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.

  2. A post-weaning fish oil dietary intervention reverses adverse metabolic outcomes and 11β-hydroxysteroid dehydrogenase type 1 expression in postnatal overfed rats.

    PubMed

    Dai, Yanyan; Yang, Fan; Zhou, Nan; Sha, Lijun; Zhou, Shanshan; Wang, Junle; Li, Xiaonan

    2016-11-01

    Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.

  3. Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; Grings, Mateus; Moura, Alana Pimentel; Ritter, Luciana; Zanatta, Angela; Knebel, Lisiane Aurélio; Lobato, Vannessa Araujo; Pettenuzzo, Letícia Ferreira; Vargas, Carmen Regla; Leipnitz, Guilhian; Wajner, Moacir

    2012-12-01

    Hyperornithinemia is the biochemical hallmark of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disease clinically characterized by mental retardation whose pathogenesis is still poorly known. In the present work, we produced a chemical animal model of hyperornithinemia induced by a subcutaneous injection of saline-buffered Orn (2-5 μmol/g body weight) to rats. High brain Orn concentrations were achieved, indicating that Orn is permeable to the blood brain barrier. We then investigated the effect of early chronic postnatal administration of Orn on physical development and on the performance of adult rats in the open field, the Morris water maze and in the step down inhibitory avoidance tasks. Chronic Orn treatment had no effect on the appearance of coat, eye opening or upper incisor eruption, nor on the free-fall righting reflex and on the adult rat performance in the Morris water maze and in the inhibitory avoidance tasks, suggesting that physical development, aversive and spatial localization were not changed by Orn. However, Orn-treated rats did not habituate to the open field apparatus, implying a deficit of learning/memory. Motor activity was the same for Orn- and saline- injected animals. We also verified that Orn subcutaneous injections provoked lipid peroxidation in the brain, as determined by a significant increase of thiobarbituric acid-reactive substances levels. Our results indicate that chronic early postnatal hyperornithinemia may impair the central nervous system, causing minor disabilities which result in specific learning deficiencies.

  4. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth.

    PubMed

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A; Andl, Thomas; Zhang, Yuhang

    2016-10-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice

    PubMed Central

    Nielsen, Corinne M.; Cuervo, Henar; Ding, Vivianne W.; Kong, Yupeng; Huang, Eric J.; Wang, Rong A.

    2014-01-01

    Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis. PMID:25209249

  6. Postnatal Environmental Tobacco Smoke Exposure Related to Behavioral Problems in Children.

    PubMed

    Chastang, Julie; Baïz, Nour; Cadwallader, Jean Sébastien; Cadwalladder, Jean Sébastien; Robert, Sarah; Dywer, John L; Dywer, John; Charpin, Denis André; Caillaud, Denis; de Blay, Frédéric; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2015-01-01

    The purpose of this study was to examine the association between pre and post environmental tobacco smoke (ETS) exposure and behavioral problems in schoolchildren. In the cross-sectional 6 cities Study conducted in France, 5221 primary school children were investigated. Pre- and postnatal exposure to secondhand tobacco smoke at home was assessed using a parent questionnaire. Child's behavioral outcomes (emotional symptoms and conduct problems) were evaluated by the Strengths and Difficulties Questionnaire (SDQ) completed by the parents. ETS exposure during the postnatal period and during both pre- and postnatal periods was associated with behavioral problems in children. Abnormal emotional symptoms (internalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.72 (95% Confidence Interval (CI)= 1.36-2.17), whereas the OR was estimated to be 1.38 (95% CI= 1.12-1.69) in the case of postnatal exposure only. Abnormal conduct problems (externalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.94 (95% CI= 1.51-2.50), whereas the OR was estimated to be 1.47 (95% CI=1.17-1.84) in the case of postnatal exposure only. Effect estimates were adjusted for gender, study center, ethnic origin, child age, low parental education, current physician diagnosed asthma, siblings, preterm birth and single parenthood. Postnatal ETS exposure, alone or in association with prenatal exposure, increases the risk of behavioral problems in school-age children.

  7. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink.

    PubMed

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-16

    Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.

  8. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    PubMed Central

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with

  9. Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats.

    PubMed

    Ji, Chenlin; Dai, Yanyan; Jiang, Weiwei; Liu, Juan; Hou, Miao; Wang, Junle; Burén, Jonas; Li, Xiaonan

    2014-11-01

    Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Program factors that influence utilization of adult day care.

    PubMed Central

    Conrad, K J; Hughes, S L; Wang, S

    1992-01-01

    Health planners, policymakers, and providers urgently require methods and information that explain the factors that affect health services utilization. This information is especially critical for planning programs that are effective in maintaining the burgeoning elderly population in community care. In this study, correlation and regression analyses examined the characteristics of adult day care (ADC) centers that were associated with utilization as operationalized by demand for and actual attendance in 822 centers. Community, client population, services and activities, and structural characteristics were associated with demand per center whereas the social environment of the ADC center was not. The attendance rate was most strongly affected by services and activities and structural characteristics. The significance of the study, its limitations, and future directions for research are discussed. PMID:1399653

  11. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves

    NASA Astrophysics Data System (ADS)

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-06-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  12. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves.

    PubMed

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-06-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  13. Influence of different seasons during late gestation on Holstein cows' colostrum and postnatal adaptive capability of their calves

    NASA Astrophysics Data System (ADS)

    Trifković, Julijana; Jovanović, Ljubomir; Đurić, Miloje; Stevanović-Đorđević, Snežana; Milanović, Svetlana; Lazarević, Miodrag; Sladojević, Željko; Kirovski, Danijela

    2018-02-01

    Season may affect calves' thermal comfort and behavior, but the data related to the overall influence of seasonal variations on dams' colostrum and postnatal adaptive capability of calves are limited. The aim of this study was to measure the effects of a 49-day-long low air temperature (LAT) season (5.20 ± 0.46 °C mean air temperature) and a 53-day-long high air temperature (HAT) season (27.40 ± 0.39 °C mean air temperature) on dams' colostrum quality and physiological, biochemical, hormonal, and oxidative stress parameters of their calves during the first 7 days of life. The dams' colostrum was sampled at 2, 14, and 26 h after calving, before feeding of their calves. Calves' blood samples were taken before the first colostrum intake and on days 1, 2, 3, and 7 of life. Calves' physiological parameters were measured on days 0 and 7. HAT season significantly reduced the quality of dams' colostrum. The ingestion of the low-quality colostrum, combined with the thermal discomfort during HAT season, probably provoked impaired physiological, biochemical, hormonal, and oxidative stress parameters in samples taken from the post-colostral calves. Additionally, intravenous glucose tolerance test was performed on day 7, which suggested an enhanced insulin response in HAT season calves. This study highlights the importance of adequate supporting strategies for the care of the late gestation cows and postnatal calves during the HAT season.

  14. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    PubMed

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  15. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse.

    PubMed

    Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José

    2015-11-01

    The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

  16. Postnatal care utilization among urban women in northern Ethiopia: cross-sectional survey.

    PubMed

    Gebrehiwot, Genet; Medhanyie, Araya Abrha; Gidey, Gebreamlak; Abrha, Kidan

    2018-05-30

    Postnatal care service enables health professionals to identify post-delivery problems including potential complications for the mother with her baby and to provide treatments promptly. In Ethiopia, postnatal care service is made accessible to all women for free however the utilization of the service is very low. This study assessed the utilization of postnatal care services of urban women and the factors associated in public health facilities in Mekelle city, Tigrai Region, Northern Ethiopia. A facility based cross sectional study design was used to assess post natal service utilization. Using simple random sampling 367 women who visited maternal and child health clinics in Mekelle city for postnatal care services during January 27 to April 2014 were selected. Data was entered and analyzed using SPSS Version 20.0 software. A binary and multivariable logistic regression was used to identify risk factors associated with the outcome variables. P-value less than 0.05 is used to declare statistical significance. The prevalence of women who utilized postnatal care service was low (32.2%). Women who were private employees and business women were more likely to utilize postnatal care services (AOR = 6.46, 95% CI: 1.91-21.86) and (3.35, 95% CI: 1.10-10.19) respectively compared to house wives., Women who had history of one pregnancy were more likely to utilize the service (AOR = 3.19, 95% CI: 1.06-9.57) compared to women who had history of four and above pregnancies. Women who had knowledge of postnatal care service were also more likely to utilize postnatal care service (AOR = 14.46, 95% CI: 7.55-27.75) than women who lacked knowledge about the services. Postnatal care utilization in the study area is low. Knowledge on postnatal care services and occupation of women had positive impact on postnatal care service utilization. The Mekelle city administration health office and other stakeholders should support and encourage urban health extension workers and

  17. Measuring postnatal care contacts for mothers and newborns: An analysis of data from the MICS and DHS surveys

    PubMed Central

    Amouzou, Agbessi; Mehra, Vrinda; Carvajal–Aguirre, Liliana; Khan, Shane M.; Sitrin, Deborah; Vaz, Lara ME

    2017-01-01

    Background The postnatal period represents a vulnerable phase for mothers and newborns where both face increased risk of morbidity and death. WHO recommends postnatal care (PNC) for mothers and newborns to include a first contact within 24 hours following the birth of the child. However, measuring coverage of PNC in household surveys has been variable over time. The two largest household survey programs in low and middle–income countries, the UNICEF–supported Multiple Indicator Cluster Surveys (MICS) and USAID–funded Demographic and Health Surveys (DHS), now include modules that capture these measures. However, the measurement approach is slightly different between the two programs. We attempt to assess the possible measurement differences that might affect comparability of coverage measures. Methods We first review the standard questionnaires of the two survey programs to compare approaches to collecting data on postnatal contacts for mothers and newborns. We then illustrate how the approaches used can affect PNC coverage estimates by analysing data from four countries; Bangladesh, Ghana, Kygyz Republic, and Nepal, with both MICS and DHS between 2010–2015. Results We found that tools implemented todate by MICS and DHS (up to MICS round 5 and up to DHS phase 6) have collected PNC information in different ways. While MICS dedicated a full module to PNC and distinguishes immediate vs later PNC, DHS implemented a more blended module of pregnancy and postnatal and did not systematically distinguish those phases. The two survey programs differred in the way questions on postnatal care for mothers and newbors were framed. Subsequently, MICS and DHS surveys followed different methodological approach to compute the global indicator of postnatal contacts for mothers and newborns within two days following delivery. Regardless of the place of delivery, MICS estimates for postnatal contacts for mothers and newbors appeared consistently higher than those reported in DHS

  18. Changes in maternal self-efficacy, postnatal depression symptoms and social support among Chinese primiparous women during the initial postpartum period: A longitudinal study.

    PubMed

    Zheng, Xujuan; Morrell, Jane; Watts, Kim

    2018-07-01

    There are many parenting problems during infancy for Chinese primiparous women. As an important determinant of good parenting, maternal self-efficacy (MSE) should be paid more attention by researchers. At present, the limitations of previous research examining MSE during infancy are that most studies were conducted with a homogeneous sample and there were few studies with Chinese women. Secondly, the trajectory of change in MSE, postnatal depression symptoms and social support for Chinese primiparous women was not clear during the initial postpartum period in earlier studies. This study aimed to describe changes in MSE, postnatal depression symptoms and social support among Chinese primiparous women in the first three months postnatally. A quantitative longitudinal study using questionnaires was conducted. Obstetric wards at three hospitals in Xiamen City, South-East China. In total, 420 Chinese primiparous women were recruited. Initial baseline questionnaires to measure socio-demographic and clinical characteristics at three days postnatally were distributed to participants face-to-face by the researcher on the postnatal ward. Follow-up questionnaires at six and 12 weeks postnatally were sent via e-mail by the researcher to participants, including the Self-efficacy in Infant Care Scale (SICS), the Edinburgh Postnatal Depression Scale (EPDS) and the Postpartum Social Support Scale (PSSS) to measure MSE, postnatal depression symptoms and social support, respectively. These were returned by participants via e-mail. Quantitative data were analysed using SPSS. The mean MSE score at six weeks postnatally was 74.92 (SD = 11.05), and increased to 77.78 (SD = 11.13) at 12 weeks postnatally. The mean social support scores at six and 12 weeks postnatally were 40.99 (SD = 9.31) and 43.00 (SD = 9.55). The mean EPDS scores decreased from 9.09 (SD = 4.33) at six weeks postnatally to 8.63 (SD = 4.40) at 12 weeks postnatally; the proportion of women with an

  19. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    PubMed

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina

    PubMed Central

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro

    2015-01-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607

  1. Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre- and postadolescent rats.

    PubMed

    Biasi, Elisabetta

    2010-11-29

    Prenatal supplementation of rat dams with dietary choline has been shown to provide their offspring with neuroprotection against N-methyl-d-aspartate (NMDA) antagonist-mediated neurotoxicity. This study investigated whether postnatal dietary choline supplementation exposure for 30 and 60 days of rats starting in a pre-puberty age would also induce neuroprotection (without prenatal exposure). Male and female Sprague-Dawley rats (postnatal day 30 of age) were reared for 30 or 60 concurrent days on one of the four dietary levels of choline: 1) fully deficient choline, 2) 1/3 the normal level, 3) the normal level, or 4) seven times the normal level. After diet treatment, the rats received one injection of MK-801 (dizocilpine 3mg/kg) or saline control. Seventy-two hours later, the rats were anesthetized and transcardially perfused. Their brains were then postfixed for histology with Fluorojade-C (FJ-C) staining. Serial coronal sections were prepared from a rostrocaudal direction from 1.80 to 4.2mm posterior to the bregma to examine cell degeneration in the retrosplenial and piriform regions. MK-801, but not control saline, produced significant numbers of FJ-C positive neurons, indicating considerable neuronal degeneration. Dietary choline supplementation or deprivation in young animals reared for 30-60days did not alter NMDA antagonist-induced neurodegeneration in the retrosplenial region. An interesting finding is the absence of the piriform cortex involvement in young male rats and the complete absence of neurotoxicity in both hippocampus regions and DG. However, neurotoxicity in the piriform cortex of immature females treated for 60days appeared to be suppressed by low levels of dietary choline. Published by Elsevier B.V.

  2. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    PubMed

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The Effects of Oral Ibuprofen on Medicinal Closure of Patent Ductus Arteriosus in Full-Term Neonates in the Second Postnatal Week

    PubMed Central

    Alipour, Mohammad Reza; Mozaffari Shamsi, Mansooreh; Namayandeh, Seyedeh Mahdieh; Pezeshkpour, Zohreh; Rezaeipour, Fatemeh; Sarebanhassanabadi, Mohammadtaghi

    2016-01-01

    Background The arterial ductus is a major communicative pathway which is naturally patent in the fetus, connecting the body of the major pulmonary artery to the descending aorta. Although usually closing on its own, the patent ductus arteriosus (PDA) may remain open in the second postnatal week due to a lack of prompt diagnosis in the initial days of life or an absence of prompt treatment. Objectives To prevent the untoward sequelae of patency of the ductus arteriosus, and to avoid invasive surgery at higher ages, the researchers in the present study embarked on determining the effects of oral ibuprofen during the second postnatal week on newborns with patent ductus arteriosus. Patients and Methods In this study, 70 neonates aged eight to 14 days, presenting at Khatam-al-Anbia clinic and the NICU ward of Shahid Sadoughi hospital in Yazd, Iran, who were diagnosed with PDA through auscultation of heart murmurs and echocardiography, were randomly assigned to two groups. The experimental group received oral ibuprofen of 10 mg/kg in day 1, 5 mg/kg in day 2, and 5 mg/kg in day 3 administered by their parents. The control group did not receive any drug. Parents were informed of the potential drug complications and side effects and asked to report them to the researchers if any occurred. Results After intervention, the patent ductus arteriosus was closed in 62.9% of the neonates in the experimental group (35 newborns) who received oral ibuprofen, while it was closed in 54.3% of the control neonates (35 newborns) who did not receive any drug (P = 0.628). No complications were observed in either of the neonatal groups. Conclusions Our findings showed that administration of oral ibuprofen had no significant effect on the medicinal closure of PDA in full-term neonates during the second postnatal week. PMID:27729962

  4. The Effects of Oral Ibuprofen on Medicinal Closure of Patent Ductus Arteriosus in Full-Term Neonates in the Second Postnatal Week.

    PubMed

    Alipour, Mohammad Reza; Mozaffari Shamsi, Mansooreh; Namayandeh, Seyedeh Mahdieh; Pezeshkpour, Zohreh; Rezaeipour, Fatemeh; Sarebanhassanabadi, Mohammadtaghi

    2016-08-01

    The arterial ductus is a major communicative pathway which is naturally patent in the fetus, connecting the body of the major pulmonary artery to the descending aorta. Although usually closing on its own, the patent ductus arteriosus (PDA) may remain open in the second postnatal week due to a lack of prompt diagnosis in the initial days of life or an absence of prompt treatment. To prevent the untoward sequelae of patency of the ductus arteriosus, and to avoid invasive surgery at higher ages, the researchers in the present study embarked on determining the effects of oral ibuprofen during the second postnatal week on newborns with patent ductus arteriosus. In this study, 70 neonates aged eight to 14 days, presenting at Khatam-al-Anbia clinic and the NICU ward of Shahid Sadoughi hospital in Yazd, Iran, who were diagnosed with PDA through auscultation of heart murmurs and echocardiography, were randomly assigned to two groups. The experimental group received oral ibuprofen of 10 mg/kg in day 1, 5 mg/kg in day 2, and 5 mg/kg in day 3 administered by their parents. The control group did not receive any drug. Parents were informed of the potential drug complications and side effects and asked to report them to the researchers if any occurred. After intervention, the patent ductus arteriosus was closed in 62.9% of the neonates in the experimental group (35 newborns) who received oral ibuprofen, while it was closed in 54.3% of the control neonates (35 newborns) who did not receive any drug (P = 0.628). No complications were observed in either of the neonatal groups. Our findings showed that administration of oral ibuprofen had no significant effect on the medicinal closure of PDA in full-term neonates during the second postnatal week.

  5. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  6. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    PubMed

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  7. [Thick and thin zones of the neurocranium, impressiones gyrorum and foramina parietalia in children and adults (author's transl)].

    PubMed

    Lang, J; Brückner, B

    1981-01-01

    At 102 skulls from adults and 67 skulls from children we have investigated 1) The postnatal changes of the thickness from basal parts of the Fossae craniales ant., med. et post. 2) The postnatal thickening and lateral shifting of the Processus clinoideus anterior. 3) The postnatal development at the superior side of the Canalis opticus. 4) Between the Os sphenoidale Clivus angle from newborn age to 17 years of life at 67 skulls. 5) The postnatal changes of the lateral angle at the Pars petrosa and its right-left-differences. 6) The postnatal thickening of the Calvaria (Squama frontalis - Tuber frontale, Os parietale - Tuber parietale). 7) The development, size and position of the Foramina parietalia. 8) The postnatal development of the Protuberantiae gyrorum and Sulci meningei.

  8. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sevoflurane-induced memory impairment in the postnatal developing mouse brain.

    PubMed

    Lu, Zhijun; Sun, Jihui; Xin, Yichun; Chen, Ken; Ding, Wen; Wang, Yujia

    2018-05-01

    The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.

  10. Sexually dimorphic effects of postnatal treatment on the development of activity-based anorexia in adolescent and adult rats.

    PubMed

    Hancock, Stephanie D; Grant, Virginia L

    2009-12-01

    Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is a marked feature of anorexia nervosa. Using a modified version of the activity-based animal model of anorexia nervosa, we examine whether factors known to affect HPA axis activity influence the development of activity-based anorexia (ABA). Male and female rats were subjected to maternal separation or handling procedures during the first two postnatal weeks and tested in a mild version of the ABA paradigm, comprised of 2-hr daily running wheel access followed by 1-hr food access, either in adolescence or adulthood. Compared to handled females, maternally separated females demonstrated greater increases in wheel running and a more pronounced running-induced suppression of food intake during adolescence, but not in adulthood. In contrast, it was only in adulthood that wheel running produced more prolonged anorexic effects in maternally separated than in handled males. These findings highlight the interplay between early postnatal treatment, sex of the animal, and developmental age on running, food intake, and rate of body weight loss in a mild version of the ABA paradigm.

  11. Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation.

    PubMed

    Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M

    2017-04-01

    Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  13. Developing a Set of Uniform Outcome Measures for Adult Day Services.

    PubMed

    Anderson, Keith A; Geboy, Lyn; Jarrott, Shannon E; Missaelides, Lydia; Ogletree, Aaron M; Peters-Beumer, Lisa; Zarit, Steven H

    2018-06-01

    Adult day services (ADS) provide care to adults with physical, functional, and/or cognitive limitations in nonresidential, congregate, community-based settings. ADS programs have emerged as a growing and affordable approach within the home and community-based services sector. Although promising, the growth of ADS has been hampered by a lack of uniform outcome measures and data collection protocols. In this article, the authors detail a recent effort by leading researchers and practitioners in ADS to develop a set of uniform outcome measures. Based upon three recent efforts to develop outcome measures, selection criteria were established and an iterative process was conducted to debate the merits of outcome measures across three domains-participant well-being, caregiver well-being, and health care utilization. The authors conclude by proposing a uniform set of outcome measures to (a) standardize data collection, (b) aid in the development of programming, and (c) facilitate the leveraging of additional funding for ADS.

  14. A mouse model with postnatal endolymphatic hydrops and hearing loss

    PubMed Central

    Megerian, Cliff A.; Semaan, Maroun T.; Aftab, Saba; Kisley, Lauren B.; Zheng, Qing Yin; Pawlowski, Karen S.; Wright, Charles G.; Alagramam, Kumar N.

    2010-01-01

    Endolymphatic hydrops (ELH), hearing loss and neuronal degeneration occur together in a variety of clinically significant disorders, including Meniere’s disease (MD). However, the sequence of these pathological changes and their relationship to each other are not well understood. In this regard, an animal model that spontaneously develops these features postnatally would be useful for research purposes. A search for such a model led us to the PhexHyp-Duk mouse, a mutant allele of the Phex gene causing X-linked hypophosphatemic rickets. The hemizygous male (PhexHyp-Duk/Y) was previously reported to exhibit various abnormalities during adulthood, including thickening of bone, ELH and hearing loss. The reported inner-ear phenotype was suggestive of progressive pathology and spontaneous development of ELH postnatally, but not conclusive. The main focuses of this report are to further characterize the inner ear phenotype in PhexHyp-Duk/Y mice and to test the hypotheses that (a) the PhexHyp-Duk/Y mouse develops ELH and hearing loss postnatally, and (b) the development of ELH in the PhexHyp-Duk/Y mouse is associated with obstruction of the endolymphatic duct (ED) due to thickening of the surrounding bone. Auditory brainstem response (ABR) recordings at various times points and histological analysis of representative temporal bones reveal that PhexHyp-Duk/Y mice typically develop adult onset, asymmetric, progressive hearing loss closely followed by the onset of ELH. ABR and histological data show that functional degeneration precedes structural degeneration. The major degenerative correlate of hearing loss and ELH in the mutants is the primary loss of spiral ganglion cells. Further, PhexHyp-Duk/Y mice develop ELH without evidence of ED obstruction, supporting the idea that ELH can be induced by a mechanism other than the blockade of longitudinal flow of endolymphatic fluid, and occlusion of ED is not a prerequisite for the development of ELH in patients. PMID:18289812

  15. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex

    NASA Technical Reports Server (NTRS)

    DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.

    2002-01-01

    The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.

  16. mRNA N6-methyladenosine methylation of postnatal liver development in pig.

    PubMed

    He, Shen; Wang, Hong; Liu, Rui; He, Mengnan; Che, Tiandong; Jin, Long; Deng, Lamei; Tian, Shilin; Li, Yan; Lu, Hongfeng; Li, Xuewei; Jiang, Zhi; Li, Diyan; Li, Mingzhou

    2017-01-01

    N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in the regulation of post-transcriptional protein coding gene expression. Liver is a vital organ and plays a major role in metabolism with numerous functions. Information concerning the dynamic patterns of mRNA m6A methylation during postnatal development of liver has been long overdue and elucidation of this information will benefit for further deciphering a multitude of functional outcomes of mRNA m6A methylation. Here, we profile transcriptome-wide m6A in porcine liver at three developmental stages: newborn (0 day), suckling (21 days) and adult (2 years). About 33% of transcribed genes were modified by m6A, with 1.33 to 1.42 m6A peaks per modified gene. m6A was distributed predominantly around stop codons. The consensus motif sequence RRm6ACH was observed in 78.90% of m6A peaks. A negative correlation (average Pearson's r = -0.45, P < 10-16) was found between levels of m6A methylation and gene expression. Functional enrichment analysis of genes consistently modified by m6A methylation at all three stages showed genes relevant to important functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. Genes with higher m6A methylation and lower expression levels at any particular stage were associated with the biological processes required for or unique to that stage. We suggest that differential m6A methylation may be important for the regulation of nutrient metabolism in porcine liver.

  17. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1.

    PubMed

    Spiroski, A M; Oliver, M H; Jaquiery, A L; Prickett, T C R; Espiner, E A; Harding, J E; Bloomfield, F H

    2017-12-12

    Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2  weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter

  18. Region-, age-, and sex-specific effects of fetal diazepam exposure on the postnatal development of neurosteroids

    PubMed Central

    Kellogg, Carol K.; Kenjarski, Thomas P.; Pleger, Gloria L.; Frye, Cheryl A.

    2013-01-01

    Fetal exposure to diazepam (DZ), a positive modulator of GABAA receptors and an agonist at mitochondrial benzodiazine receptors, induces long-term neural and behavioral effects. This study evaluated whether the early manipulation influenced the normal development of brain levels of neurosteroids or altered steroid action at GABAA receptors. Pregnant dams were injected over gestation days 14 through 20 with DZ (2.5 mg/kg) or the vehicle. Male and female offspring were analyzed at five postnatal ages. The levels of progesterone (P), dihydroprogesterone (DHP), 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), testosterone (T), dihydrotestosterone, and 5α-androstan-3α,17β diol were measured in the cerebral cortex and diencephalon. The results indicated that development of brain steroid levels and the impact of fetal DZ exposure were region- and sex-specific. Age-related changes in brain steroids did not mirror associated changes in circulating P and T. Age regulated the levels of all 3 progestins in the cerebral cortex, and fetal DZ exposure interacted with the development of P and DHP. The development of 3α,5α-THP in the cortex was markedly influenced by sex, with levels in males decreasing over postnatal development whereas they increased over postpubertal development in females. An adolescent surge in T levels was observed in male cortex and fetal DZ exposure prevented that surge. Steroid levels in the diencephalon were altered by age mainly in females, and DZ exposure had little effect in this region. The data support region-specific regulation of brain steroid synthesis. Only in the cerebral cortex are relevant mechanisms readily modifiable by fetal DZ exposure. However, neither sex nor fetal DZ exposure altered the response of GABAA receptors in adult cortex to neurosteroid. PMID:16376310

  19. Education and levels of salivary cortisol over the day in US adults.

    PubMed

    Dowd, Jennifer B; Ranjit, Nalini; Do, D Phuong; Young, Elizabeth A; House, James S; Kaplan, George A

    2011-02-01

    Dysregulation of the hypothalamic-pituitary-adrenal axis is hypothesized to be an important pathway linking socioeconomic position and chronic disease. This paper tests the association between education and the diurnal rhythm of salivary cortisol. Up to eight measures of cortisol (mean of 5.38 per respondent) over 2 days were obtained from 311 respondents, aged 18-70, drawn from the 2001-2002 Chicago Community Adult Health Study. Multi-level models with linear splines were used to estimate waking level, rates of cortisol decline, and area-under-the-curve over the day, by categories of education. Lower education (0-11 years) was associated with lower waking levels of cortisol, but not the rate of decline of cortisol, resulting in a higher area-under-the-curve for more educated respondents throughout the day. This study found evidence of lower cortisol exposure among individuals with less education and thus does not support the hypothesis that less education is associated with chronic over-exposure to cortisol.

  20. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  1. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  2. Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.

    PubMed

    Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola

    2011-08-01

    In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.

  3. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat.

    PubMed

    O'Connell, R A; Carberry, J; O'Halloran, K D

    2013-09-01

    What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the

  4. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  5. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  6. Estrogen Sensitivity of Target Genes and Expression of Nuclear Receptor Co-Regulators in Rat Prostate after Pre- and Postnatal Exposure to the Ultraviolet Filter 4-Methylbenzylidene Camphor

    PubMed Central

    Durrer, Stefan; Ehnes, Colin; Fuetsch, Michaela; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2007-01-01

    Background and objectives In previous studies, we found that the ultraviolet filter 4-methyl-benzylidene camphor (4-MBC) exhibits estrogenic activity, is a preferential estrogen receptor (ER)-β ligand, and interferes with development of female reproductive organs and brain of both sexes in rats. Here, we report effects on male development. Methods 4-MBC (0.7, 7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to offspring until adulthood. mRNA was determined in prostate lobes by real-time reverse transcription–polymerase chain reaction and protein was determined by Western blot analysis. Results 4-MBC delayed male puberty, decreased adult prostate weight, and slightly increased testis weight. Androgen receptor (AR), insulin-like growth factor-1 (IGF-1), ER-α, and ER-β expression in prostate were altered at mRNA and protein levels, with stronger effects in dorsolateral than ventral prostate. To assess sensitivity of target genes to estrogens, offspring were castrated on postnatal day 70, injected with 17β-estradiol (E2; 10 or 50 μg/kg, sc) or vehicle on postnatal day 84, and sacrificed 6 hr later. Acute repression of AR and IGF-1 mRNAs by E2, studied in ventral prostate, was reduced by 4-MBC exposure. This was accompanied by reduced co-repressor N-CoR (nuclear receptor co-repressor) protein in ventral and dorsolateral prostate, whereas steroid receptor coactivator-1 (SRC-1) protein levels were unaffected. Conclusions Our data indicate that 4-MBC affects development of male reproductive functions and organs, with a lowest observed adverse effect level of 0.7 mg/kg. Nuclear receptor coregulators were revealed as targets for endocrine disruptors, as shown for N-CoR in prostate and SRC-1 in uterus. This may have widespread effects on gene regulation. PMID:18174949

  7. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina

    PubMed Central

    Henning, Yoshiyuki; Szafranski, Karol

    2016-01-01

    The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in

  8. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  9. Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants.

    PubMed

    Senterre, Thibault; Rigo, Jacques

    2012-02-01

    To evaluate the influence of gestational age (GA) on cumulative nutritional deficit and postnatal growth in extremely preterm (EPT) infants after optimizing nutritional protocol as recently recommended. A prospective, nonrandomized, observational study in extremely preterm (EPT, <28 weeks) and very preterm (VPT, 28-30 weeks) infants. Eighty-four infants were included (BW: 978 ± 156 g, GA: 27.8 ± 1.3 weeks). Cumulative nutritional deficit increased during first week of life to -290 ± 84 and -285 ± 117 kcal/kg and -4.2 ± 3.1 and -4.8 ± 3.9 g/kg of protein in EPT and VPT groups, respectively. After 6 weeks, only cumulative energy deficit in EPT group remained significant (p < 0.05) even when 96% of theoretical energy intakes were provided. Weight z score decreased during first 3 days in average with initial weight loss, and then, the z score increased during the first 6 weeks of life in the majority (75%) of infants. Cumulative protein deficit during the first week of life was the major determinant of the postnatal growth during the first 6 weeks of life. Cumulative nutritional deficit may be drastically reduced in both EPT and VPT infants after optimizing nutritional policy during the first weeks of life, and the postnatal growth restriction could even be prevented. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  10. Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaglenova, Julia; Vaithianathan, Thirumalini; Carpenter, Mark; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2007-06-01

    Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.

  11. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  13. Factors that affect the postnatal increase in superior mesenteric artery blood flow velocity in very low birth weight preterm infants.

    PubMed

    Havranek, Thomas; Miladinovic, Branko; Wadhawan, Rajan; Carver, Jane D

    2012-04-15

    To identify factors related to the postnatal increase in superior mesenteric artery blood flow velocity (SMA BFV). SMA BFV was measured in 35 infants (birth weight 1047±246 g) on day of life (DOL) 1, 3, 5, 7 10 and 14. Latent curve modeling (LCM) was used to measure the longitudinal change in BFV for each subject, and the correlation between changes in BFV and baseline values. Non-parametric correlations were calculated between BFV and variables previously reported to be related to SMA BFV. There was significant variability in SMA BFV on DOL 1, a significant increase from DOL 1-14, and significant variability in the postnatal increase. Infants with higher enteral feeding volumes had greater increases, while infants receiving positive pressure ventilation or hyperalimentation had lower increases. Several clinical factors affect the postnatal increase in SMA BFV. The use of LCM is useful in longitudinal studies of very low birth weight (VLBW) infants, who are clinically and demographically heterogeneous.

  14. Sampling of prenatal and postnatal offspring from individual rat dams enhances animal use without compromising development

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.; Burden, H. W.; Hawes, N.; Ronca, A. E.

    1996-01-01

    To assess prenatal and postnatal developmental status in the offspring of a group of animals, it is typical to examine fetuses from some of the dams as well as infants born to the remaining dams. Statistical limitations often arise, particularly when the animals are rare or especially precious, because all offspring of the dam represent only a single statistical observation; littermates are not independent observations (biologically or statistically). We describe a study in which pregnant laboratory rats were laparotomized on day 7 of gestation (GD7) to ascertain the number and distribution of uterine implantation sites and were subjected to a simulated experience on a 10-day space shuttle flight. After the simulated landing on GD18, rats were unilaterally hysterectomized, thus providing a sample of fetuses from 10 independent uteruses, followed by successful vaginal delivery on GD22, yielding postnatal samples from 10 uteruses. A broad profile of maternal and offspring morphologic and physiologic measures indicated that these novel sampling procedures did not compromise maternal well-being and maintained normal offspring development and function. Measures included maternal organ weights and hormone concentrations, offspring body size, growth, organ weights, sexual differentiation, and catecholamine concentrations.

  15. Many apples a day keep the blues away--daily experiences of negative and positive affect and food consumption in young adults.

    PubMed

    White, Bonnie A; Horwath, Caroline C; Conner, Tamlin S

    2013-11-01

    Prior research has focused on the association between negative affect and eating behaviour, often utilizing laboratory or cross-sectional study designs. These studies have inherent limitations, and the association between positive affect and eating behaviour remains relatively unexplored. Therefore, the objective of this study was to investigate the bidirectional relationships between daily negative and positive affective experiences and food consumption in a naturalistic setting among healthy young adults. Daily diary study across 21 days (microlongitudinal, correlational design). A total of 281 young adults with a mean age of 19.9 (± 1.2) years completed an Internet-based daily diary for 21 consecutive days. Each day they reported their negative and positive affect, and their consumption of five specific foods. Hierarchical linear modelling was used to test same-day associations between daily affect and food consumption, and next-day (lagged) associations to determine directionality. Moderating effects of BMI and gender were also examined in exploratory analyses. Analyses of same-day within-person associations revealed that on days when young adults experienced greater positive affect, they reported eating more servings of fruit (p = .002) and vegetables (p < .001). Results of lagged analysis showed that fruits and vegetables predicted improvements in positive affect the next day, suggesting that healthy foods were driving affective experiences and not vice versa. Meaningful changes in positive affect were observed with the daily consumption of approximately 7-8 servings of fruit or vegetables. Eating fruit and vegetables may promote emotional well-being among healthy young adults. © 2013 The British Psychological Society.

  16. Feel the Fatigue and Be Active Anyway: Physical Activity on High-Fatigue Days Protects Adults With Arthritis From Decrements in Same-Day Positive Mood.

    PubMed

    Hegarty, Rosisin S M; Conner, Tamlin S; Stebbings, Simon; Treharne, Gareth J

    2015-09-01

    The present study examined whether daily physical activity moderated the within-person relationship between daily fatigue and positive or negative mood in patients with rheumatoid arthritis (RA) or osteoarthritis (OA). Participants were 142 patients, 70 with RA and 72 with OA (67.6% women). Participants completed daily diaries during 4 fixed time windows per day for 7 days. Each diary assessed fatigue, pain, and positive and negative mood. Participants wore pedometers throughout each day and recorded pedometer readings at the end of each day. Physical activity buffered the same-day relationship between daily fatigue and positive mood for both RA and OA participants. On high-fatigue days, large decrements in mood were noted, but this was mitigated on days when participants were more physically active. Being more physically active on high-fatigue days buffered the negative effect of fatigue on positive mood among adults with both OA and RA. These findings have implications for understanding the daily variations in fatigue and inform potential clinical interventions. © 2015, American College of Rheumatology.

  17. Lung parenchyma at maturity is influenced by postnatal growth but not by moderate preterm birth in sheep.

    PubMed

    Maritz, Gert; Probyn, Megan; De Matteo, Robert; Snibson, Ken; Harding, Richard

    2008-01-01

    We have recently shown that moderate preterm birth, in the absence of respiratory support, altered the structure of lung parenchyma in young lambs, but the long-term effects are unknown. To determine whether structural changes persist to maturity, and whether postnatal growth affects lung structure at maturity in sheep. At approximately 1.2 years after birth, lung parenchyma of sheep born 14 days before term (n = 7) was stereologically compared with that of controls born at term (n = 8, term approx. 146 days). Preterm birth per se had no significant effect on lung volume, alveolar number and size, and thicknesses of the alveolar walls and blood-gas barrier. After combining the preterm and term groups, we examined the effects of postnatal growth rates on lung parenchyma. Slower-growing sheep (SG; n = 7: 4 preterm, 3 term) were compared with faster-growing sheep (FG; n = 8: 3 preterm, 5 term). At approximately 1.2 years, the right lung volume, relative to body weight, was significantly lower in SG than FG sheep (p < 0.05) and alveolar number was significantly lower by approximately 44%. The total alveolar internal surface area of the right lung of SG sheep was 38% smaller than in FG sheep; it was also significantly lower when related to both lung and body weight. Our data suggest that moderate preterm birth does not cause persistent alterations in lung parenchyma. However, slow postnatal growth in low-birth-weight sheep results in smaller lungs with fewer alveoli and a lower alveolar surface area relative to body weight. Copyright (c) 2007 S. Karger AG, Basel.

  18. In vivo gene delivery to the postnatal ferret cerebral cortex by DNA electroporation.

    PubMed

    Borrell, Víctor

    2010-02-15

    Ferrets have been extensively used to unravel the neural mechanisms of coding and processing of visual information, and also to identify the developmental mechanisms underlying the emergence of such a complex and fine-tuned neural system. In recent years numerous tools have been generated that allow studying neural systems with unprecedented power. Unfortunately, because many of these tools are genetically encoded, they are having a limited impact on research involving "non-genetic" species, like ferret, cat and monkey. Here I show how in vivo electroporation can be performed in postnatal ferret kits to deliver genetic constructs to pyramidal neurons of the cerebral cortex. Electroporation of GFP- and DsRed-encoding plasmids results in labeling of cortical progenitors first, then migrating neurons, and finally differentiating neurons and their processes. This technique also allows for the genetic manipulation of cortical development in the ferret, as illustrated by electroporation of a dominant-negative form of Cdk5. In the mature brain of electroporated animals, expression of reporter genes reveals the detailed morphological traits of cortical pyramids, including their axonal and dendritic arborization, and dendritic spines. I also show that postnatal electroporation can be used for the transfection of a massive cortical territory, or it can be specifically directed to a subset of cortical areas, and even only to a few scattered pyramids along the cortical mantle. In vivo electroporation of postnatal ferrets is therefore an effective, rapid, simple and highly versatile method for delivering genetic constructs to this animal, optimal for both developmental studies and adult anatomical/functional studies. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

    PubMed

    Youssef, Mary; Krish, Varsha S; Kirshenbaum, Greer S; Atsak, Piray; Lass, Tamara J; Lieberman, Sophie R; Leonardo, E David; Dranovsky, Alex

    2018-05-09

    Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  20. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. Copyright © 2015. Published by Elsevier Inc.

  1. Barriers to utilization of postnatal care at village level in Klaten district, central Java Province, Indonesia.

    PubMed

    Probandari, Ari; Arcita, Akhda; Kothijah, Kothijah; Pamungkasari, Eti Poncorini

    2017-08-07

    Maternal health remains a persisting public health challenge in Indonesia. Postnatal complications, in particular, are considered as maternal health problems priority that should be addressed. Conducting adequate care for postnatal complications will improve the quality of life of mothers and babies. With the universal health coverage implementation, the Indonesian government provides free maternal and child health services close to clients at the village level, which include postnatal care. Our study aimed to explore barriers to utilization of postnatal care at the village level in Klaten district, Central Java Province, Indonesia. A qualitative study was conducted in March 2015 - June 2016 in Klaten district, Central Java, Indonesia. We selected a total of 19 study participants, including eight mothers with postnatal complications, six family members, and five village midwives for in-depth interviews. We conducted a content analysis technique on verbatim transcripts of the interviews using open code software. This study found three categories of barriers to postnatal care utilization in villages: mother and family members' health literacy on postnatal care, sociocultural beliefs and practices, and health service responses. Most mothers did not have adequate knowledge and skills regarding postnatal care that reflected how they lacked awareness and practice of postnatal care. Inter-generational norms and myths hindered mothers from utilizing postnatal care and from having adequate nutritional intake during the postnatal period. Mothers and family members conducted unsafe self-treatment to address perceived minor postnatal complication. Furthermore, social power from extended family influenced the postnatal care health literacy for mother and family members. Postnatal care in the village lacked patient-centered care practices. Additionally, midwives' workloads and capacities to conduct postnatal information, education and counseling were also issues. Despite the

  2. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  3. 76 FR 44573 - Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... DEPARTMENT OF AGRICULTURE Food and Nutrition Service Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service Payment Rates, and Administrative Reimbursement Rates for Sponsoring Organizations of Day Care Homes for the Period July 1, 2011 Through June 30, 2012...

  4. 78 FR 45176 - Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... DEPARTMENT OF AGRICULTURE Food and Nutrition Service Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service Payment Rates, and Administrative Reimbursement Rates for Sponsoring Organizations of Day Care Homes for the Period July 1, 2013 Through June 30, 2014...

  5. 76 FR 43254 - Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... DEPARTMENT OF AGRICULTURE Food and Nutrition Service Child and Adult Care Food Program: National Average Payment Rates, Day Care Home Food Service Payment Rates, and Administrative Reimbursement Rates for Sponsoring Organizations of Day Care Homes for the Period July 1, 2011 Through June 30, 2012...

  6. Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat.

    PubMed

    Genovese, P; Núñez, M E; Pombo, C; Bielli, A

    2010-04-01

    To test whether undernutrition during foetal to pre-pubertal life would have long lasting effects on testicular histology in adult male offspring, eleven adult Sprague-Dawley pregnant rats were divided into two groups: Control group, n = 4, fed ad libitum, during gestation and lactation (until 25 day post-partum). Underfed group pregnant females (n = 7) were kept in cages where only dams had access to food (standard rat chow, 33.5% of ad libitum intake of Control group pregnant dams). After parturition, litters were adjusted to either 14 (Underfed group) or eight (Control group) pups. Mothers were weighed weekly. At 25 day of age pups were weaned, housed at four animals per cage, fed ad libitum and weighed weekly until euthanized at 100 day of age. Testes were processed for standard histology and morphometrical evaluation. At weaning, mother weight was lower in underfed than in Control group (mean +/- SD): 214.1 +/- 26.2 g vs 361.9 +/- 33.1 g. Body weight at 100 days of age (254 +/- 26.9 g vs 342.4 +/- 10.2 g, p adult life, strongly suggesting lower daily sperm production.

  7. Choline-acetyltransferase-like immunoreactivity in the organ of Corti of the rat during postnatal development.

    PubMed

    Merchán Pérez, A; Gil-Loyzaga, P; Eybalin, M; Fernández Mateos, P; Bartolomé, M V

    1994-10-14

    The mammalian cochlea receives efferent innervation from neurons located in the superior olivary complex. This efferent olivocochlear innervation is divided in two separate systems, lateral and medial, which mainly innervate afferent dendrites connected to inner hair cells and the cell body of outer hair cells, respectively. Besides other substances, lateral and medial efferent terminals of the adult cochlea use acetylcholine (ACh) as a neurotransmitter. In this study, we have used immunocytochemistry to detect the presence of choline acetyltransferase (ChAT), the synthesizing enzyme of ACh, in efferent olivocochlear terminals during the development of the rat. The appearance and distribution of immunoreactivity to ChAT has been studied in developing rat cochleas from birth (postnatal day 1, P1) to adulthood. Attention was paid to the temporal relationships between the expression of ChAT, the presence of other putative neuroactive substances, the onset of hearing and other developmental phenomena. Our results indicate that ChAT-like immunoreactivity is already present at birth (P1) in the region of inner hair cells, that it appears at P3 in the outer hair cell area and that it reaches an adult pattern of distribution by P15. ACh may thus be present early in the developing cochlea, before the onset of hearing, as it also occurs with other putative transmitters/modulators such as enkephalins, CGRP or GABA. It is suggested that ACh could be involved in the modulation of sound-evoked potentials as soon as they appear, and in the regulation of other developmental phenomena such as neurite outgrowth or synaptogenesis.

  8. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  9. Filamin A Is a Regulator of Blood-Testis Barrier Assembly during Postnatal Development in the Rat Testis

    PubMed Central

    Su, Wenhui; Mruk, Dolores D.; Lie, Pearl P. Y.; Lui, Wing-yee

    2012-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis. A delay in its assembly during postnatal development leads to meiotic arrest. Also, a disruption of the BTB by toxicants in adult rats leads to a failure in spermatogonial differentiation. However, the regulation of BTB assembly remains unknown. Herein, filamin A, an actin filament cross-linker that is known to maintain and regulate cytoskeleton structure and function in other epithelia, was shown to be highly expressed during the assembly of Sertoli cell BTB in vitro and postnatal development of BTB in vivo, perhaps being used to maintain the actin filament network at the BTB. A knockdown of filamin A by RNA interference was found to partially perturb the Sertoli cell tight junction (TJ) permeability barrier both in vitro and in vivo. Interestingly, this down-regulating effect on the TJ barrier function after the knockdown of filamin A was associated with a mis-localization of both TJ and basal ectoplasmic specialization proteins. Filamin A knockdown also induced a disorganization of the actin filament network in Sertoli cells in vitro and in vivo. Collectively, these findings illustrate that filamin A regulates BTB assembly by recruiting these proteins to the microenvironment in the seminiferous epithelium to serve as the building blocks. In short, filamin A participates in BTB assembly by regulating protein recruitment during postnatal development in the rat testis. PMID:22872576

  10. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice.

    PubMed

    Li, Dan; Cen, Jin; Chen, Xiaotao; Conway, Edward M; Ji, Yuan; Hui, Lijian

    2013-12-01

    Hepatocytes possess a remarkable capacity to regenerate and reconstitute the parenchyma after liver damage. However, in the case of chronic injury, their proliferative potential is impaired and hepatic progenitor cells (HPCs) are activated, resulting in a ductular reaction known as oval cell response. Proapoptotic and survival signals maintain a precise balance to spare hepatocytes and progenitors from hyperplasia and cell death during regeneration. Survivin, a member of the family of inhibitor of apoptosis proteins (IAPs), plays key roles in the proliferation and apoptosis of various cell types. Here, we characterized the in vivo function of Survivin in regulating postnatal liver development and homeostasis using mice carrying conditional Survivin alleles. Hepatic perinatal loss of Survivin causes impaired mitosis, increased genome ploidy, and enlarged cell size in postnatal livers, which eventually leads to hepatocyte apoptosis and triggers tissue damage and inflammation. Subsequently, HPCs that retain genomic Survivin alleles are activated, which finally differentiate into hepatocytes and reconstitute the whole liver. By contrast, inducible ablation of Survivin in adult hepatocytes does not affect HPC activation and liver homeostasis during a long-life period. Perinatal Survivin deletion impairs hepatic mitosis in postnatal liver development, which induces HPC activation and reconstitution in the liver, therefore providing a novel HPC induction model. Copyright © 2013 by the American Association for the Study of Liver Diseases.

  11. Discrimination and avoidance learning in adult mice following developmental exposure to diisopropylfluorophosphate.

    PubMed

    Levi, Yifat; Kofman, Ora; Schwebel, Margalit; Shaldubina, Alona

    2008-02-01

    Exposure to acetylcholinesterase inhibitors during development was shown in the past to induce sex-dependent changes in locomotion and specific cognitive and emotional tests in rodents. Adult mice that had been treated with 0.5 mg/kg diisopropylfluorphosphate (DFP), on post-natal days 14-20 were tested on active avoidance and a set-shifting task. DFP pre-treatment did not affect the active avoidance task, but impaired performance on the extra-dimensional shift task. DFP-treated females showed more general deficits in the acquisition of simple discrimination, intra-dimensional shift, extra-dimensional shift and reversal learning. These data suggest that pre-weanling exposure to cholinesterase inhibitors may have long-term consequences on attentional capabilities.

  12. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  13. The behavioral effects of chronic sugar and/or caffeine consumption in adult and adolescent rats.

    PubMed

    Franklin, Jane L; Wearne, Travis A; Homewood, Judi; Cornish, Jennifer L

    2017-08-01

    Caffeine is a psychostimulant frequently consumed by adults and children, often in combination with high levels of sugar. Chronic pretreatment with either substance can amplify both amphetamine and cocaine-induced hyperactivity in rodents. The present study sought to elucidate whether age at the time of exposure to sugar and/or caffeine alters sensitivity to an acute illicit psychostimulant (methamphetamine, [METH]) challenge in adulthood. Adult and adolescent (Postnatal Day 35 on first day of treatment) male Sprague-Dawley rats were treated for 26 days with water, caffeine (0.6 g/L), 10% sucrose or their combination. Locomotor behavior was measured on the first and last day of treatment. Following 9-days treatment free, animals were challenged with saline (1 ml/kg, i.p.) or METH (1 mg/kg, i.p.) and locomotor activity was measured. During the treatment period, adolescent rats maintained a higher caffeine (mg/kg) dose than their adult counterparts. Adding sugar to caffeine increased adolescent consumption and the highest caffeine dose consumed was measured in these animals. Drinking sugar-sweetened caffeinated water or combination did not produce cross-sensitization to METH administration in either age group. Nevertheless, the finding that regular exposure through adolescence to caffeinated sugar-sweetened beverages could increase consumption of caffeine and sugar later in life is important, as there is a large body of evidence that has linked excess consumption of sugar-sweetened beverages to a broad range of other negative physical and mental health outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Use of Adult Day Care Centers: Do They Offset Utilization of Health Care Services?

    ERIC Educational Resources Information Center

    Iecovich, Esther; Biderman, Aya

    2013-01-01

    Purpose: Based on the medical offset effect, the goal of the study was to examine the extent to which users and nonusers of adult day care centers (ADCC) differ in frequency of use of out-patient health services (visits to specialists) and in-patient health services (number of hospital admissions, length of hospitalizations, and visits to…

  15. SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

    PubMed Central

    Pastor, Patricia; Cisternas, Pedro; Salazar, Katterine; Silva-Alvarez, Carmen; Oyarce, Karina; Jara, Nery; Espinoza, Francisca; Martínez, Agustín D.; Nualart, Francisco

    2013-01-01

    Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development, and proliferation and neural differentiation increase at day 21. In the human brain, a similar subventricular niche was observed at 1-month of postnatal development. Using immunohistochemistry, sodium-vitamin C cotransporter 2 (SVCT2) expression was detected in the subventricular zone (SVZ) and rostral migratory stream (RMS). Low co-distribution of SVCT2 and βIII-tubulin in neuroblasts or type-A cells was detected, and minimal co-localization of SVCT2 and GFAP in type-B or precursor cells was observed. Similar results were obtained in the human neurogenic niche. However, BrdU-positive cells also expressed SVCT2, suggesting a role of vitamin C in neural progenitor proliferation. Primary neurospheres prepared from rat brain and the P19 teratocarcinoma cell line, which forms neurospheres in vitro, were used to analyze the effect of vitamin C in neural stem cells. Both cell types expressed functional SVCT2 in vitro, and ascorbic acid (AA) induced their neural differentiation, increased βIII-tubulin and SVCT2 expression, and amplified vitamin C uptake. PMID:23964197

  16. Morphogenesis and maturation of the embryonic and postnatal intestine.

    PubMed

    Chin, Alana M; Hill, David R; Aurora, Megan; Spence, Jason R

    2017-06-01

    The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Exercise Is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats

    PubMed Central

    Mika, Agnieszka; Van Treuren, Will; González, Antonio; Herrera, Jonathan J.; Knight, Rob; Fleshner, Monika

    2015-01-01

    The mammalian intestine harbors a complex microbial ecosystem that influences many aspects of host physiology. Exposure to specific microbes early in development affects host metabolism, immune function, and behavior across the lifespan. Just as the physiology of the developing organism undergoes a period of plasticity, the developing microbial ecosystem is characterized by instability and may also be more sensitive to change. Early life thus presents a window of opportunity for manipulations that produce adaptive changes in microbial composition. Recent insights have revealed that increasing physical activity can increase the abundance of beneficial microbial species. We therefore investigated whether six weeks of wheel running initiated in the juvenile period (postnatal day 24) would produce more robust and stable changes in microbial communities versus exercise initiated in adulthood (postnatal day 70) in male F344 rats. 16S rRNA gene sequencing was used to characterize the microbial composition of juvenile versus adult runners and their sedentary counterparts across multiple time points during exercise and following exercise cessation. Alpha diversity measures revealed that the microbial communities of young runners were less even and diverse, a community structure that reflects volatility and malleability. Juvenile onset exercise altered several phyla and, notably, increased Bacteroidetes and decreased Firmicutes, a configuration associated with leanness. At the genus level of taxonomy, exercise altered more genera in juveniles than in the adults and produced patterns associated with adaptive metabolic consequences. Given the potential of these changes to contribute to a lean phenotype, we examined body composition in juvenile versus adult runners. Interestingly, exercise produced persistent increases in lean body mass in juvenile but not adult runners. Taken together, these results indicate that the impact of exercise on gut microbiota composition as well as

  18. The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India.

    PubMed

    Kattula, Deepthi; Sarkar, Rajiv; Sivarathinaswamy, Prabhu; Velusamy, Vasanthakumar; Venugopal, Srinivasan; Naumova, Elena N; Muliyil, Jayaprakash; Ward, Honorine; Kang, Gagandeep

    2014-07-23

    To estimate the burden and assess prenatal and postnatal determinants of illnesses experienced by children residing in a semiurban slum, during the first 1000 days of life. Community-based birth cohort Southern India Four hundred and ninety-seven children of 561 pregnant women recruited and followed for 2 years with surveillance and anthropometry. Incidence rates of illness; rates of clinic visits and hospitalisations; factors associated with low birth weight, various illnesses and growth. Data on 10 377.7 child-months of follow-up estimated an average rate of 14.8 illnesses/child-year. Gastrointestinal and respiratory illnesses were 20.6% and 47.8% of the total disease burden, respectively. The hospitalisation rate reduced from 46/100 child-years during infancy to 19/100 child-years in the second year. Anaemia during pregnancy (OR=2.3, 95% CI=1.08 to 5.18), less than four antenatal visits (OR=6.8, 95% CI=2.1 to 22.5) and preterm birth (OR=3.3, 95% CI=1.1 to 9.7) were independent prenatal risk factors for low birth weight. Female gender (HR=0.88, 95% CI=0.79 to 0.99) and 6 months of exclusive breast feeding (HR=0.76, 95% CI=0.66 to 0.88) offered protection against all morbidity. Average monthly height and weight gain were lower in female child and children exclusively breast fed for 6 months. The high morbidity in Indian slum children in the first 1000 days of life was mainly due to prenatal factors and gastrointestinal and respiratory illness. Policymakers need disease prevalence and pathways to target high-risk groups with appropriate interventions in the community. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Comparison of older adults' steps per day using NL-1000 pedometer and two GT3X+ accelerometer filters.

    PubMed

    Barreira, Tiago V; Brouillette, Robert M; Foil, Heather C; Keller, Jeffrey N; Tudor-Locke, Catrine

    2013-10-01

    The purpose of this study was to compare the steps/d derived from the ActiGraph GT3X+ using the manufacturer's default filter (DF) and low-frequency-extension filter (LFX) with those from the NL-1000 pedometer in an older adult sample. Fifteen older adults (61-82 yr) wore a GT3X+ (24 hr/day) and an NL-1000 (waking hours) for 7 d. Day was the unit of analysis (n = 86 valid days) comparing (a) GT3X+ DF and NL-1000 steps/d and (b) GT3X+ LFX and NL-1000 steps/d. DF was highly correlated with NL-1000 (r = .80), but there was a significant mean difference (-769 steps/d). LFX and NL-1000 were highly correlated (r = .90), but there also was a significant mean difference (8,140 steps/d). Percent difference and absolute percent difference between DF and NL-1000 were -7.4% and 16.0%, respectively, and for LFX and NL-1000 both were 121.9%. Regardless of filter used, GT3X+ did not provide comparable pedometer estimates of steps/d in this older adult sample.

  20. Exposure to alcohol during adolescence exerts long-term effects on stress response and the adult brain stress circuits.

    PubMed

    Allen, Camryn D; Grigoleit, Jan-Sebastian; Hong, Joonho; Bae, Sejin; Vaughan, Joan; Lee, Soon

    2016-12-17

    The hypothalamic-pituitary-adrenal (HPA) axis undergoes critical developments during adolescence. Therefore, stressors experienced during this period potentially have long-term effects on adult HPA axis function. We hypothesized that adolescent intermittent ethanol (AIE) exposure would affect adult HPA axis function, resulting in altered responses to an alcohol challenge in young adults or adults. To test these hypotheses, male rats were exposed to alcohol vapor for 6h per day from post-natal day (PND) 28-42, then acutely challenged with alcohol intragastrically (3.2-4.5g/kg) in young adults (PND 70) or adults (PND 90). Overall, we observed blunted HPA axis responses to an alcohol challenge due to AIE exposure. Specifically, AIE tended to inhibit the alcohol challenge-induced increase in plasma corticosterone (CORT) concentrations in young adult and adult rats. As well, AIE significantly blunted the alcohol challenge-induced arginine vasopressin (Avp) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus of adult rats. Results of the present study are similar to what we have previously shown, that these changes in PVN responsiveness may result from AIE-induced alterations in adrenergic neurons in brain stem regions C1-C3 known to project to the PVN. AIE elevated the number of colocalized c-fos/phenylethanolamine N-methyltransferase (PNMT)-positive cell bodies in the C1 region of adult rats. Together, these data suggest that AIE exposure produces alterations in male HPA axis responsiveness to administration of an acute alcohol challenge that may be long-lasting. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.