Sample records for adult rat cerebellum

  1. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats.

    PubMed

    Chaâbane, M; Ghorbel, I; Elwej, A; Mnif, H; Boudawara, T; Chaâbouni, S Ellouze; Zeghal, N; Soudani, N

    2017-08-01

    Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg -1 body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na + /K + -ATPase and Mg 2+ -ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells' layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.

  2. A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats.

    PubMed

    Eluwa, M A; Inyangmme, I I; Akpantah, A O; Ekanem, T B; Ekong, M B; Asuquo, O R; Nwakanma, A A

    2013-09-01

    Carbonated drinks are widely consumed because of their taste and their ability to refresh and quench thirst. These carbonated drinks also exist in the form of diet drinks, for example Diet Coke®, Pepsi®, extra. A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of female albino Wistar rats was investigated. Fifteen adult female Wistar rats weighing between 180-200 g were divided into 3 groups; designated as groups A, B and C, and each group consisted of five rats. Group A was the Control group and received distilled water, while groups B and C were the experimental groups. Group B was administered 50 ml of regular soda (RS), and group C was administered 50 ml of diet soda (DS) each per day for 21 days, and the rats were sacrificed on Day 22, and their cerebellums excised and preserved. Histological result of the sections of the cerebellum showed shrunken and degenerated Purkinje cells with hypertrophied dendrites, especially in the DS group, which was less in the RS group compared to the control group. These results suggest that diet soda has adverse effect on the cerebellum of adult female albino Wistar rats.

  3. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  4. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    PubMed

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Study of the nitric oxide system in the rat cerebellum during aging.

    PubMed

    Blanco, Santos; Molina, Francisco J; Castro, Lourdes; Del Moral, Maria L; Hernandez, Raquel; Jimenez, Ana; Rus, Alma; Martinez-Lara, Esther; Siles, Eva; Peinado, Maria A

    2010-06-24

    The cerebellum is the neural structure with the highest levels of nitric oxide, a neurotransmitter that has been proposed to play a key role in the brain aging, although knowledge concerning its contribution to cerebellar senescence is still unclear, due mainly to absence of integrative studies that jointly evaluate the main factors involved in its cell production and function. Consequently, in the present study, we investigate the expression, location, and activity of nitric oxide synthase isoenzymes; the protein nitration; and the production of nitric oxide in the cerebellum of adult and old rats. Our results show no variation in the expression of nitric oxide synthase isoforms with aging, although, we have detected some changes in the cellular distribution pattern of the inducible isoform particularly in the cerebellar nuclei. There is also an increase in nitric oxide synthase activity, as well as greater protein-nitration levels, and maintenance of nitrogen oxides (NOx) levels in the senescent cerebellum. The nitric oxide/nitric oxide synthases system suffers from a number of changes, mainly in the inducible nitric oxide synthase distribution and in overall nitric oxide synthases activity in the senescent cerebellum, which result in an increase of the protein nitration. These changes might be related to the oxidative damage detected with aging in the cerebellum.

  6. Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na(+), K (+))- and Mg ( 2+ )-ATPase activities of adult rat hypothalamus and cerebellum.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-03-01

    Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p < 0.001) and the Na(+), K(+)-ATPase activities (-26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (-17%, p < 0.001) and Na(+), K(+)-ATPase (-27%, p < 0.001). Mg(2+)-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

  7. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  8. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The

  9. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  10. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats - An animal model of autism.

    PubMed

    Olexová, Lucia; Štefánik, Peter; Kršková, Lucia

    2016-08-26

    Anxiety is one of the associated symptoms of autism spectrum disorder. According to the literature, increases in anxiety are accompanied by GABAergic system deregulation. The aim of our study, performed using an animal model of autism in the form of rats prenatally treated with valproic acid (VPA rats), was to investigate changes in anxiety-like behaviour and the gene expression of molecules that control levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Anxiety-like behaviours were investigated using zone preferences in the open field test. The levels of the 65 and 67kDa enzymes of l-glutamic acid decarboxylase (GAD) mRNAs and type 1 GABA transporter (GAT1) were evaluated in the amygdala, as well as GABA producing enzymes in the cortex layer of the cerebellum. Our research showed that adult VPA rats spent less time in the inner zone of the testing chamber and more time in the outer zone of the testing chamber in the open field test. We also found that adult VPA rats had increased expression of GAT1 in the amygdala, as well as decreased levels of GAD65 and GAD67 mRNA in the cerebellum compared to control animals. These findings support the existence of a relationship between increased anxiety-like behaviour and changes in the regulation of the GABAergic system in VPA rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  12. Gross morphometric reduction of rats' cerebellum by gamma irradiation was mitigated by pretreatment with Vernonia amygdalina leaf extract.

    PubMed

    Owoeye, O; Farombi, E O; Onwuka, S K

    2011-01-01

    The methanolic extract of Vernonia amygdalina (M) or "bitter leaf" is known for its antioxidant activity, and antioxidants are noted to mitigate radiation damage in tissues. The aim of the present study was to observe the radioprotective effect of M on the cerebellum of gamma irradiated rats using alpha-tocopherol (TOCO) as a reference antioxidant. Forty-two male Wistar rats (n=42) weighing 200-240 g were taken for the study. The study comprised of seven groups, with each group comprising of six (n=6) rats i.e. control, M at 250, and 500 mg/kg/day, radiation only, radiation plus M at 250, and 500 mg/kg/day, and TOCO. After 14 days of treatment administered via oral gavage, rats were irradiated with a single dose of 2.0 Gy of gamma rays on the 15-th day and euthanized the next day. Rats cerebella were removed, fixed in 10% formalin saline, weighed and vernier caliper used to obtain cerebellar dimensions as follows: (i) maximum width, (ii) rostrocaudal dimension, and (iii) dorsoventral extent. Data were analyzed using ANOVA with post-test. Gamma radiation caused a statistically significant reduction of the relative weight of the rats' whole brain, relative weight of the cerebellum, the maximum width, rostrocaudal dimension, and dorsoventral extent of the cerebellum. However, pretreatment with M and TOCO significantly mitigated these effects. This study demonstrated that administration of M and TOCO before 2.0 Gy gamma irradiation reduced significantly the radiation induced gross morphometry changes in rats' cerebellum, suggesting that M may qualify for consideration as a medicinal radioprotector.

  13. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake.

    PubMed

    Oliveira, Suelen A; Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz Aparecida; Lizarte Neto, Fermino Sanches; Novais, Paulo Cezar; Tirapelli, Luiz Fernando; Oishi, Jorge Camargo; Takase, Luiz Fernando; Stefanini, Maira Aparecida; Martinez, Marcelo; Martinez, Francisco Eduardo

    2014-12-01

    Ethanol alters motricity, learning, cognition, and cellular metabolism in the cerebellum. We evaluated the effect of ethanol on apoptosis in Golgi, Purkinje, and granule cells of the cerebellum in adult rats. There were two groups of 20 rats: a control group that did not consume ethanol and an experimental group of UChA rats that consumed ethanol at 10% (<2 g ethanol/kg body weight/day). At 120 days old, rats were anesthetized and decapitated, and their cerebella were collected and fixed. Cerebellar sections were subjected to immunohistochemistry for terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL), caspase-3, X-linked inhibitor of apoptosis protein (XIAP), and insulin-like growth factor 1-receptor (IGF-1R); real-time PCR (RT-PCR) to determine caspase-3, XIAP, and IGF-1R gene expression; and transmission electron microscopy (TEM). We identified fragmentation of DNA and an increase in caspase-3 protein and XIAP in Purkinje cells, whereas granule cells exhibited increased caspase-3 and XIAP. IGF-1R expression was unchanged. There was no significant difference in gene expression of caspase-3, XIAP, and IGF-1R. There were an increase in lipid droplets, a reduction in the cellular cytoplasm in electron-dense nuclei, and changes in the myelin sheath in the cerebellar cortex. In conclusion, our data demonstrated that ethanol induced apoptosis in the Purkinje and granule cells of the cerebellum of adult UChA rats.

  14. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.E.; Matthews, P.S.

    1984-09-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum,more » cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats.« less

  15. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway.

    PubMed

    Singh, Santosh; Trigun, Surendra K

    2010-09-01

    Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.

  16. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Christinal, Johnson; Anusha, Chandran

    2012-08-01

    Methyl mercury (MeHg) is a ubiquitous environmental pollutant leading to neurological and developmental deficits in animals and human beings. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. The objective of the present study was to investigate whether Bacopa monniera extract (BME) could potentially inhibit MeHg-induced toxicity in the cerebellum of rat brain. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) for 21 days. After the treatment period, we observed that MeHg exposure significantly inhibited the activities of superoxide dismutase, catalase, glutathione peroxidase, and increased the glutathione reductase activity in cerebellum. It was also found that the level of thiobarbituric acid-reactive substances was increased with the concomitant decrease in the glutathione level in MeHg-induced rats. These alterations were prevented by the administration of BME. Behavioral interference in the MeHg-exposed animals was evident through a marked deficit in the motor performance in the rotarod task, which was completely recovered to control the levels by BME administration. The total mercury content in the cerebellum of MeHg-induced rats was also increased which was measured by atomic absorption spectrometry. The levels of NO(2) (-) and NO(3) (-) in the serum were found to be significantly increased in the MeHg-induced rats, whereas treatment with BME significantly decreased their levels in serum to near normal when compared to MeHg-induced rats. These findings strongly implicate that BM has potential to protect brain from oxidative damage resulting from MeHg-induced neurotoxicity in rat.

  17. Study of the Role of CREB, BDNF, and VGF Neuropeptide in Long Term Antidepressant Activity of Crocin in the Rat Cerebellum

    PubMed Central

    Razavi, Bibi Marjan; Sadeghi, Mahdieh; Abnous, Khalil; Vahdati Hasani, Faezeh; Hosseinzadeh, Hossein

    2017-01-01

    Antidepressant activity of crocin, saffron main component, has been established before. Based on previous study, it is suggested that elevation in the levels of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide could be considered as one probable molecular mechanisms involved in antidepressant activity of long term crocin administration in the rat hippocampus. In this study we further investigated whether the antidepressant activity of crocin in long term administration was associated with alteration in these factors in the rat cerebellum. Crocin (12.5, 25 and 50 mg/kg/day) and imipramine (10 mg/kg/day) were administered interaperitoneally for 21 days to rats. At the end of experiment, animals were sacrificed and cerebellums were dissected. BDNF, VGF, CREB, and phospho-CREB (P-CREB) protein and mRNA levels in the rat cerebellum were evaluated using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the current study significant increases in mRNA and protein levels of VGF, CREB and (BDNF) in long term crocin treatment were not observed in the rat cerebellum. Although a slight increase was observed in protein level of P-CREB compared to normal saline, but it was not significant. It is concluded that antidepressant activity of crocin might be partially mediated to CREB. Moreover, other factors rather than BDNF and VGF neuropeptides may alter following long term crocin treatment in the cerebellum. To understand the precise mechanism of crocin antidepressant effects in the cerebellum, longer duration of crocin treatment in further studies is recommended. PMID:29552054

  18. Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism.

    PubMed

    Nicholson, J L; Altman, J

    1972-05-05

    The number of synapses in the molecular layer of the rat cerebellum is reduced by early hypo-and hyperthyroidism within 30 days. Hypothyroidism retards synaptogenesis after 10 days, while hyperthyroidism accelerates synaptogenesis initially, but by 21 days the number of synapses is reduced. The sensitivity of developing synapses to thyroid hormone may permit analysis of the events triggering synaptogenesis.

  19. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats.

    PubMed

    Sherin, A; Peeyush, K T; Naijil, G; Chinthu, R; Paulose, C S

    2010-11-20

    Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment. 2010 Elsevier Inc. All rights reserved.

  20. Hippocampus and cerebellum function following imipenem treatment in male and female rats: evaluation of sex differences during developmental stage.

    PubMed

    Golchin, Leila; Golchin, Lale; Vahidi, Ali Asghar; Shabani, Mohammad

    2013-02-15

    The B-Lactam antibiotics have been suggested to have some degree of neurotoxicity in experimental animals as well as in clinical situations. This study has been elucidated the alteration in hippocampal and cerebellum function following adolescent imipenem exposure in male and female rats. Hippocampus and cerebellum related behavioral dysfunction in imipenem -treated [intraperitoneally, 40 and 80 mg/kg/day for one week from 23-day-old] rats were analyzed using explorative, motor function, learning and memory tasks [grasping, rotarod, open field shuttle box and Morris water maze tests]. Exposure to imipenem especially in high dosage impaired the motor coordination in male and female rats. There weren't any differences in grasping time in male and female rats. When the rearing and grooming frequency of their recorded in open field test, both males and females were dramatically affected by exposure to imipenem. Compared to the saline, male and female rats trained one week after imipenem injection showed significant memory deficits in the shuttle box and Morris water maze tests. Results in this study suggested that animals treated with imipenem suffer from motor activity and cognitive impairment. However, hippocampal and cerebellum functions of male and female rats were profoundly affected by exposure to imipenem while no sex-differences in the most variable were evident.

  1. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    PubMed

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Stereological studies of the effects of sodium benzoate or ascorbic acid on rats` cerebellum.

    PubMed

    Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied

    2014-12-01

    To evaluate the cerebellar structure in sodium benzoate (NaB) or ascorbic acid (AA) treated rats. This experimental study was conducted between May and September 2013 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats received distilled either water, NaB (200mg/kg/day), AA (100mg/kg/day), or NaB+AA. The hemispheres were removed after 28 days and underwent quantitative study. The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei; the total number of the Purkinje, Bergman, granule, neurons, and glial cells of the molecular layer; and neurons and glial cells of the intracerebellar nuclei reduced by 21-52% in the NaB-treated rats compared with the distilled water group (p=0.004). The total number of the Purkinje, Bergman, Golgi, and granule cells was 29-45% higher in the AA-treated rats compared with the distilled water group (p=0.05). However, these measures reduced by 17-50% in the NaB+AA-treated rats compared with the distilled water group (p=0.004). The NaB+AA group did not induce any significant structural changes in comparison with the NaB group (p>0.05). The NaB exposure with or without AA treatment could alter the cerebellum. Yet, AA could prevent the loss of some cells in the cerebellum

  3. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A.

    PubMed

    Mathew, Jobin; Peeyush Kumar, T; Khan, Reas S; Paulose, C S

    2010-04-01

    In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (P<0.001) in the cerebellum of epileptic rats compared with control rats. Epileptic rats exhibit deficits in radial arm and Y-maze performance. Treatment with B. monnieri and bacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Insulin and growth hormone-releasing peptide-6 (GHRP-6) have differential beneficial effects on cell turnover in the pituitary, hypothalamus and cerebellum of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Granado, Miriam; García-Cáceres, Cristina; Tuda, María; Frago, Laura M; Chowen, Julie A; Argente, Jesús

    2011-04-30

    Poorly controlled type1 diabetes is associated with hormonal imbalances and increased cell death in different tissues, including the pituitary, hypothalamus and cerebellum. In the pituitary, lactotrophs are the cell population with the greatest increase in cell death, whereas in the hypothalamus and cerebellum astrocytes are most highly affected. Insulin treatment can delay, but does not prevent, diabetic complications. As ghrelin and growth hormone (GH) secretagogues are reported to prevent apoptosis in different tissues, and to modulate glucose homeostasis, a combined hormonal treatment may be beneficial. Hence, we analyzed the effect of insulin and GH-releasing peptide 6 (GHRP-6) on diabetes-induced apoptosis in the pituitary, hypothalamus and cerebellum of diabetic rats. Adult male Wistar rats were made diabetic by streptozotocin injection (65 mg/kg ip) and divided into four groups from diabetes onset: those receiving a daily sc injection of saline (1 ml/kg/day), GHRP-6 (150 μg/kg/day), insulin (1-8U/day) or insulin plus GHRP-6 for 8 weeks. Control non-diabetic rats received saline (1 ml/kg/day). Diabetes increased cell death in the pituitary, hypothalamus and cerebellum (P<0.05). In the pituitary, insulin treatment prevented diabetes-induced apoptosis (P<0.01), as well as the decline in prolactin and GH mRNA levels (P<0.05). In the hypothalamus, neither insulin nor GHRP-6 decreased diabetes-induced cell death. However, the combined treatment of insulin+GHRP-6 prevented the diabetes induced-decrease in glial fibrillary acidic protein (GFAP) levels (P<0.05). In the cerebellum, although insulin treatment increased GFAP levels (P<0.01), only the combined treatment of insulin+ GHRP-6 decreased diabetes-induced apoptosis (P<0.05). In conclusion, insulin and GHRP-6 exert tissue specific effects in STZ-diabetic rats and act synergistically on some processes. Indeed, insulin treatment does not seem to be effective on preventing some of the diabetes-induced alterations

  5. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  6. Protective effect of α-lipoic acid against α-cypermethrin-induced changes in rat cerebellum.

    PubMed

    Elsawy, H; Al-Omair, M A; Sedky, A; Al-Otaibi, L

    2017-12-01

    Alfa cypermethrin is a pyrethroids extensively used as ectoparasiticide in domestic animals, insecticidal spray on cotton, vegetables and other crops and to kill cockroaches, fleas and termites in house and other buildings. Previous studies have shown the adverse effect of α -cypermethrin on brain. This study was planned to evaluate the possible role of α-lipoic acid in α -cypermethrin induced toxicity in brain of male albino rats. Rats were divided into four groups. The control, α-cypermethrin, α-lipoic acid and α -cypermethrin plus α-lipoic acid treated groups. The duration of the experiment was four weeks. Our results showed that the administration of α-cypermethrin caused a significant decreased in γ- aminobutyric acid level, acetylcholinesterase, catalase, superoxide dismutase activities and increase in lipid peroxidation in cerebellum. Furthermore, the co-administration of α-lipoic acid mitigates the toxicity of α-cypermethrin by partially normalizing the biochemical parameters. The biochemical observations were supported by histopathological examinations. The findings of this investigation suggest that α-lipoic acid may play a protective role against α-cypermethrin induced toxicity in cerebellum of treated rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  9. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  10. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  11. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  12. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber)

    PubMed Central

    Sarko, Diana K.; Leitch, Duncan B.; Catania, Kenneth C.

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats’ behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment. PMID:24302898

  13. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.

    PubMed

    Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M

    2011-12-01

    Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Effects of cobalt on membrane ATPases, oxidant, and antioxidant values in the cerebrum and cerebellum of suckling rats.

    PubMed

    Garoui, Elmouldi; Ben Amara, Ibtissem; Driss, Dorra; Elwej, Awatef; Chaabouni, Semia Ellouze; Boudawara, Tahia; Zeghal, Najiba

    2013-09-01

    Chronic overexposure to cobalt (Co) may result in neurotoxic effects, but the mechanism of Co-induced neurotoxicity is not yet well established. Our study was conducted to determine whether Co is associated to the induction of central nervous system damage in pregnant rats and their progeny. Twelve pregnant female rats were randomly divided into 2 groups: group I served as controls and group II received Co (350 mg/L, orally). Treatments started from the 14th day of pregnancy until day 14 after delivery. Co concentration in plasma was higher in the treated groups than in the controls. Exposure to Co also increased the levels of MDA, PCO, H2O2, and AOPP, while Na(+)K(+)-ATPase and Mg(2+)-ATPase, AChE, and BuChE activities decreased in the cerebrum and cerebellum of suckling pups. A smear without ladder formation on agarose gel was also shown in the cerebrum and cerebellum, indicating random DNA degradation. A reduction in GPx, SOD, CAT, GSH, NPSH, and vitamin C values was observed. The changes were confirmed by histological results. In conclusion, these data showed that the exposure of pregnant and lactating rats to Co resulted in the development of oxidative stress and the impairment of defense systems in the cerebrum and cerebellum of their suckling pups.

  15. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    PubMed

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  16. Gene transfer to the cerebellum.

    PubMed

    Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2010-12-01

    There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.

  17. The Cerebellum as a Novel Tinnitus Generator

    PubMed Central

    Bauer, Carol A.; Wisner, Kurt; Sybert, Lauren T.; Brozoski, Thomas J.

    2012-01-01

    The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic-trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments: The PFLwas surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus. PMID:23418634

  18. The cerebellum as a novel tinnitus generator.

    PubMed

    Bauer, Carol A; Kurt, Wisner; Sybert, Lauren T; Brozoski, Thomas J

    2013-01-01

    The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments:The PFL was surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus.

  19. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  20. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum.

    PubMed

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T; Muriach, Borja; Sánchez-Villarejo, María V; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J; Barcia, Jorge M; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  1. Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by a BTS antenna model.

    PubMed

    Akbari, Abolfazl; Jelodar, Gholamali; Nazifi, Saeed

    2014-06-01

    Radio frequency wave (RFW) generated by base transceiver station has been reported to produce deleterious effects on the central nervous system function, possibly through oxidative stress. This study was conducted to evaluate the effect of RFW-induced oxidative stress in the cerebellum and encephalon and the prophylactic effect of vitamin C on theses tissues by measuring the antioxidant enzymes activity, including: glutathione peroxidase, superoxide dismutase, catalase, and malondialdehyde (MDA). Thirty-two adult male Sprague-Dawley rats were randomly divided into four equal groups. The control group; the control-vitamin C group received L-ascorbic acid (200 mg/kg of body weight/day by gavage) for 45 days. The RFW group was exposed to RFW and the RFW+ vitamin C group was exposed to RFW and received vitamin C. At the end of the experiment, all groups were killed and encephalon and cerebellum of all rats were removed and stored at -70 °C for measurement of antioxidant enzymes activity and MDA. The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p < 0.05). The protective role of vitamin C in the treated group improved antioxidant enzymes activity and reduced MDA compared with the test group (p < 0.05). It can be concluded that RFW causes oxidative stress in the brain and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  2. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Bacopa monnieri Extract (CDRI-08) Modulates the NMDA Receptor Subunits and nNOS-Apoptosis Axis in Cerebellum of Hepatic Encephalopathy Rats

    PubMed Central

    Mondal, Papia; Trigun, Surendra Kumar

    2015-01-01

    Hepatic encephalopathy (HE), characterized by impaired cerebellar functions during chronic liver failure (CLF), involves N-methyl-D-aspartate receptor (NMDAR) overactivation in the brain cells. Bacopa monnieri (BM) extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B) and its downstream mediators in cerebellum of rats with chronic liver failure (CLF), induced by administration of 50 mg/kg bw thioacetamide (TAA) i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS-) apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE. PMID:26413124

  4. Effect of Early Neonatal Exposure to Deltamethrin on the Purkinje Cell Number in Rat Cerebellum

    PubMed Central

    Asari, Mohd Asnizam; Abdullah, Mohammad Shukri; Abdullah, Suryati

    2008-01-01

    Deltamethrin is a widely used insecticide belonging to the class of pyrethroid. Although the neurotoxicity of pyrethroids including deltamethrin is well established, it is still unclear whether exposure to deltamethrin during neonatal period has any deleterious effect on the survival of the Purkinje cells in the cerebellum. In the study, we investigated the total number of Purkinje cells in experimental rats exposed to deltamethrin using a stereological method, the fractionator. Deltamethrin in a dose of 1 mg/kg/day (corresponds to 20% of LD50 ) was administered through oral gavage to male pups from 2nd to 5th postnatal day (PND). At PND 21 the animals were sacrificed and their cerebelli were removed. The cerebelli were systematically sampled using the fractionator method and stained with cresyl fast violet. The number of the Purkinje cells was counted for each cerebellum. The results showed that there was no significant difference in the total number of Purkinje cells in the deltamethrin-treated group as compared to the control animals. This suggests that deltamethrin exposure at the current dosage during the neonatal period do not have any significant effect on the survival of the Purkinje cells in the cerebellum. PMID:22570585

  5. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  6. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    EPA Science Inventory

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  7. Amphiphysin I but not dynamin I nor synaptojanin mRNA expression increased after repeated methamphetamine administration in the rat cerebrum and cerebellum.

    PubMed

    Hamamura, Mitsuko; Okouchi, Jiro; Ozawa, Hidetoshi; Kimuro, Yoshihiko; Iwaki, Akiko; Fukumaki, Yasuyuki

    2013-07-01

    Dopamine increases/decreases synaptic vesicle recycling and in schizophrenia the proteins/mRNA is decreased. We isolated cDNA clone, similar to amphiphysin 1 (vesicle protein) mRNA from the neocortex of rats injected repeatedly with methamphetamine using polymerase chain reaction (PCR) differential display. This clone is highly homologous to the 3' region of the human amphiphysin gene. PCR extension study using a primer specific for the rat amphiphysin 1 gene and a primer located within the clone revealed that it is the 3' UTR region of the rat amphiphysin 1 gene. Furthermore, in situ hybridization revealed that amphiphysin 1 mRNA is expressed in the cerebrum, medial thalamus, hippocampus and cerebellum. In the cerebellum, amphiphysin mRNA expression was confined to upper granule cell layer. Repeated methamphetamine administration increased amphiphysin I mRNA expression in both anterior part of the cerebrum, and the cerebellum. However, the repeated administration did not alter mRNA expression of the other vesicle proteins, synaptotagmin I, synapsin I, synaptojanin and dynamin I, we conclude that the repeated administration selectively increased amphiphysin 1 mRNA expression. Thus, amphiphysin 1 does not work as synaptic recycling, but it is suggested, as a part of pathogenesis of brain tissue injury (under Ca²⁺ and Mg²⁺ devoid environment) in repeated methamphetamine-injected states, the gene regulate actin-asssembly, learning, cell stress signaling and cell polarity.

  8. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  9. Morphological and immunohistochemical analysis of apoptosis in the cerebellum of rats subjected to focal cerebral ischemia with or without alcoholism model.

    PubMed

    Carvalho, Camila Albuquerque Melo de; Tirapelli, Daniela Pretti da Cunha; Rodrigues, Andressa Romualdo; Lizarte, Fermino Sanches; Novais, Paulo Cézar; Silva, Jairo Pinheiro; Carlotti, Carlos Gilberto; Colli, Benedicto Oscar; Tirapelli, Luís Fernando

    2016-09-01

    To evaluated histopathological changes, morphometric and expression of proteins CASPASE-3, BCL-2 and XIAP related to apoptosis in the cerebellum after induction of temporary focal cerebral ischemia followed by reperfusion, with or without a model of chronic alcoholism. Fifty Wistar rats were used and divided into: control group (C), sham group (S), ischemic group (I), alcoholic group (A), and ischemic and alcoholic group (IA). The cerebellum samples collected were stained for histopathological and morphometric analysis and immunohistochemistry study. Histopathological changes were observed a greater degree in animals in groups A and IA. The morphometric study showed no difference in the amount of cells in the granular layer of the cerebellum between the groups. The expression of CASPASE-3 was higher than BCL-2 and XIAP in the groups A and IA. We observed correlation between histopathological changes and the occurrence of apoptosis in cerebellar cortex.

  10. Effect of hypo- and hyperthyroidism on hexokinase in the developing cerebellum of the rat.

    PubMed

    Gutekunst, D I; Wilson, J E

    1981-05-01

    Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition. distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.

  11. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study.

    PubMed

    Uyanıkgil, Yiğit; Turgut, Mehmet; Baka, Meral

    2017-02-01

    Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.

  12. The Cerebellum, Sensitive Periods, and Autism

    PubMed Central

    Wang, Samuel S.-H.; Kloth, Alexander D.; Badura, Aleksandra

    2014-01-01

    Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism. Specific cerebellar zones influence neocortical substrates for social interaction, and we propose that sensitive-period disruption of such internal brain communication can account for autism's key features. PMID:25102558

  13. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction. © 2015 Society for the Study of Addiction.

  14. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    PubMed

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  15. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats.

    PubMed

    Heimfarth, Luana; Delgado, Jeferson; Mingori, Moara Rodrigues; Moresco, Karla Suzana; Pureur, Regina Pessoa; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2018-03-01

    Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3β(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca 2+ -dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS. Copyright © 2017 Elsevier B.V. All rights

  16. Role of cerebellum in deglutition and deglutition disorders.

    PubMed

    Rangarathnam, Balaji; Kamarunas, Erin; McCullough, Gary H

    2014-12-01

    The objective of this review is to gather available evidence regarding the role of the cerebellum in swallowing-related functions. We reviewed literature on cerebellar functions related to healthy swallowing, patterns of dysphagia in individuals with cerebellar lesions, and the role of the cerebellum in therapeutic intervention of neurogenic dysphagia since 1980. A collective understanding of these studies suggests that both hemispheres of the cerebellum, predominantly the left, participate in healthy swallowing. Also, it appears that the cerebellum contributes to specific physiological functions within the entire act of swallowing, but this is not clearly understood. The understanding of patterns of dysphagia in cerebellar lesions remains ambiguous with equivocal results across a small number of studies. The cerebellum appears to be involved in oral exercises for dysphagia in the relationship between oral movements in such exercises, and deglutition remains uncertain. There is increasing evidence to suggest successful use of transcranial magnetic stimulation of the cerebellum to improve neuromotor control of swallowing. Future studies should address activation of the cerebellum with swallowing of different consistencies and tastes in healthy adults to gain better insights. Studies should also investigate dynamics of neural activation during different stages of recovery from dysphagia following strokes to cortical centers to determine if the cerebellum plays a compensatory role during instances of increased neural demands.

  17. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    PubMed

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. [Thyroid hormones in the early postnatal development of the CNS: effect of hyperthyroidism on proliferative activity of white matter cells of rat cerebellum].

    PubMed

    Moskovkin, G N

    1976-01-01

    The effect of triiodothyronin on the proliferative activity of the white matter cells has been studied by means of radioautography in the cerebellum vermis and hemisphere of developing rats. The index of labelled nuclei and the mitotic index of the white matter glial elements in both the cerebellum regions of 7 and 10 days old hyperthyroid animals are markedly reduced. Besides, the general tendency was found towards the increase of the mitotic cycle duration in the white matter cells due to the lengthening of S and G2 + 1/2 M periods. The data obtained are discussed with respect to the importance of thyroid hormones for the CNS development.

  19. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.

    PubMed

    Rastogi, R B; Singhal, R L

    1976-09-01

    In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats

  20. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms.

    PubMed

    Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.

  1. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    PubMed

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  2. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    PubMed

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Ethanol Influences on Bax Associations with Mitochondrial Membrane Proteins in Neonatal Rat Cerebellum

    PubMed Central

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2012-01-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure, and focused on interactions between pro-apoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC), and adenine nucleotide translocator (ANT), of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that following ethanol exposure, Bax pro-apoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least two hours post-exposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment, and found such interactions were altered by ethanol treatment, but only at two-hours post-exposure, and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax, but not by a Bax channel blocker. Therefore, we conclude that at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex, and not channel formation independent of PTP constituents. PMID:22767450

  4. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Osorio, Cristina; Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studiesmore » showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the

  5. Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS.

    PubMed

    García-Arenas, Guadalupe; Ramírez-Amaya, Victor; Balderas, Israela; Sandoval, Jimena; Escobar, Martha L; Ríos, Camilo; Bermúdez-Rattoni, Federico

    2004-02-04

    It is well known that lead can affect several cognitive abilities in developing animals. In this work, we investigate the effects of different sub-chronic lead doses (0, 65, 125, 250 and 500 ppm of lead acetate in their drinking water for 14 days) in the performance of male adult rats in a water maze, cue maze and inhibitory avoidance tasks. We found that the acquisition of these tasks was not affected by lead, however, the highest dosage of lead (500 ppm) impaired memory consolidation in spatial and inhibitory avoidance tasks, but not in cue maze task while the 250 ppm dose only affected retrieval of spatial memory. Additionally, hippocampal long-term potentiation (LTP) induction in the perforant path after exposing adult rats to different doses of lead was studied. LTP induction was affected in a dose-dependent manner, and treatments of 250 and 500 ppm completely blocked LTP. We investigated the effects of lead intoxication on the activity of constitutive nitric oxide synthase (cNOS) in different brain regions of adult animals. The activity of cNOS was significantly inhibited in the hippocampus and cerebellum but not in the frontal cortex and brain stem, although lead had accumulated in all brain regions. These results suggest that lead intoxication can impair memory in adult animals and this impairment might be related with region-specific effects on cNOS activity.

  6. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    PubMed

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, p<0.01) and stressed rats (30%, p<0.01), respectively. CB₁ and CB₂ mRNA levels in brain stem were also greater in female rats than males (p<0.01, p<0.05, respectively). Repeated stress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (p<0.01), particularly in female rats as revealed by the significant gender × stress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats.

    PubMed

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  8. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    PubMed Central

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings. PMID:26649198

  9. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  10. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults.

    PubMed

    Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V

    2016-08-01

    The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

  11. Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats.

    PubMed

    de Andrade, Claudia Roberta; de Campos, Glenda Andréa Déstro; Tirapelli, Carlos Renato; Laurindo, Francisco R M; Haddad, Renato; Eberlin, Marcos N; de Oliveira, Ana Maria

    2010-01-01

    We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. Copyright 2010. Published by Elsevier Inc.

  12. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  13. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet.

    PubMed

    Augusto, Ricielle Lopes; Isaac, Alinny Rosendo; Silva-Júnior, Ivanildo Inácio da; Santana, David Filipe de; Ferreira, Diorginis José Soares; Lagranha, Claudia Jacques; Gonçalves-Pimentel, Catarina; Rodrigues, Marcelo Cairrão Araujo; Andrade-da-Costa, Belmira Lara da Silveira

    2017-02-01

    The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.

  14. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Royland, Joyce E.; Richards, Judy E.

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), {gamma}-glutamylcysteine synthetase ({gamma}-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)),more » and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at - 80 Degree-Sign C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene

  15. In vivo effects of phosphodiesterase inhibition on basal cyclic guanosine monophosphate levels in the prefrontal cortex, hippocampus and cerebellum of freely moving rats.

    PubMed

    Marte, Antonella; Pepicelli, Olimpia; Cavallero, Anna; Raiteri, Maurizio; Fedele, Ernesto

    2008-11-15

    We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.

  16. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia.

    PubMed

    Barkhuizen, M; Van de Berg, W D J; De Vente, J; Blanco, C E; Gavilanes, A W D; Steinbusch, H W M

    2017-04-01

    Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.

  17. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.

    PubMed

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2017-10-01

    Monoamine oxidases (MAOs) catalyze the metabolism of monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine, and are key regulators for brain function. In this study, we analyzed the activities of MAO-A and MAO-B in the cerebellum and frontal cortex from subjects with autism and age-matched control subjects. In the cerebellum, MAO-A activity in subjects with autism (aged 4-38 years) was significantly lower by 20.6% than in controls. When the subjects were divided into children (aged 4-12 years) and young adults (aged 13-38 years) subgroups, a significant decrease by 27.8% in the MAO-A activity was observed only in children with autism compared with controls. When the 95% confidence interval of the control group was taken as a reference range, reduced activity of MAO-A was observed in 70% of children with autism. In the frontal cortex, MAO-A activity in children with autism was also lower by 30% than in the control group, and impaired activity of MAO-A was observed in 55.6% of children with autism, although the difference between the autism and control groups was not significant when all subjects were considered. On the contrary, there was no significant difference in MAO-B activity in both the cerebellum and frontal cortex between children with autism and the control group as well as in adults. These results suggest impaired MAO-A activity in the brain of subjects with autism, especially in children with autism. Decreased activity of MAOs may lead to increased levels of monoaminergic neurotransmitters, such as serotonin, which have been suggested to have a critical role in autism. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain.

    PubMed

    Sumathi, Thangarajan; Christinal, Johnson

    2016-07-01

    Methylmercury (MeHg) is highly toxic, and its principal target tissue in human is the nervous system, which has made MeHg intoxication a public health concern for many decades. Portulaca oleraceae (purslane), a member of the Portulacaceae family, is widespread as a weed and has been ranked the eighth most common plant in the world. In this study, we sought for potential beneficial effects of Portulaca oleracea ethanolic extract (POEE) against the neurotoxicity induced by MeHg in cerebellum and cortex of rats. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with POEE (4 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After MeHg exposure, we determine the mercury concentration by atomic absorption spectroscopy (AAS); mercury content was observed high in MeHg-induced group. POEE reduced the mercury content. We also observed that the activities of catalase, superoxide dismutase, glutathione peroxidase, and the level of glutathione were reduced. The levels of glutathione reductase and thiobarbituric acid reactive substance were found to be increased. The above biochemical changes were found to be reversed with POEE. Behavioral changes like decrease tail flick response, longer immobility time, and decreased motor activity were noted down during MeHg exposure. POEE pretreatment offered protection from these behavioral changes. MeHg intoxication also caused histopathological changes in cerebellum and cortex, which was found to be normalized by treatment with POEE. The present results indicate that POEE has protective effect against MeHg-induced neurotoxicity.

  19. Polychlorinated biphenyls impair blood-brain barrier integrity via disruption of tight junction proteins in cerebrum, cerebellum and hippocampus of female Wistar rats: neuropotential role of quercetin.

    PubMed

    Selvakumar, K; Prabha, R Lakshmi; Saranya, K; Bavithra, S; Krishnamoorthy, G; Arunakaran, J

    2013-07-01

    Polychlorinated biphenyls (PCBs) comprise a ubiquitous class of toxic substances associated with carcinogenic and tumor-promoting effects as well as neurotoxic properties. Reactive oxygen species, which is produced from PCBs, alters blood-brain barrier (BBB) integrity, which is paralleled by cytoskeletal rearrangements and redistribution and disappearance of tight junction proteins (TJPs) like claudin-5 and occludin. Quercetin, a potent antioxidant present in onion and other vegetables, appears to protect brain cells against oxidative stress, a tissue-damaging process associated with Alzheimer's and other neurodegenerative disorders. The aim of this study is to analyze the role of quercetin on oxidative stress markers and transcription of transmembrane and cytoplasmic accessory TJPs on cerebrum, cerebellum and hippocampus of female rats exposed to PCBs. Rats were divided into the following four groups. Group I: received only vehicle (corn oil) intraperitoneally (i.p.); group II: received Aroclor 1254 at a dose of 2 mg/kg body weight (bwt)/day (i.p); group III: received Aroclor 1254 (i.p.) and simultaneously quercetin 50 mg/kg bwt/day through gavage and group IV: received quercetin alone gavage. From the experiment, the levels of hydrogen peroxide, lipid peroxidation and thiobarbituric acid reactive substances were observed to increase significantly in cerebrum, cerebellum and hippocampus as 50%, 25% and 20%, respectively, after exposure to PCB, and the messenger RNA expression of TJP in rats exposed to PCBs is decreased and is retrieved to the normal level simultaneously in quercetin-treated rats. Hence, quercetin can be used as a preventive medicine to PCBs exposure and prevents neurodegenerative disorders.

  20. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  1. Cerebellum - function (image)

    MedlinePlus

    The cerebellum processes input from other areas of the brain, spinal cord and sensory receptors to provide precise timing ... the skeletal muscular system. A stroke affecting the cerebellum may cause dizziness, nausea, balance and coordination problems.

  2. Psychophysiological interaction between superior temporal gyrus (STG) and cerebellum: An fMRI study

    NASA Astrophysics Data System (ADS)

    Yusoff, A. N.; Teng, X. L.; Ng, S. B.; Hamid, A. I. A.; Mukari, S. Z. M.

    2016-03-01

    This study aimed to model the psychophysiological interaction (PPI) between the bilateral STG and cerebellum (lobule VI and lobule VII) during an arithmetic addition task. Eighteen young adults participated in this study. They were instructed to solve single-digit addition tasks in quiet and noisy backgrounds during an fMRI scan. Results showed that in both hemispheres, the response in the cerebellum was found to be linearly influenced by the activity in STG (vice-versa) for both in-quiet and in-noise conditions. However, the influence of the cerebellum on STG seemed to be modulated by noise. A two-way PPI model between STG and cerebellum is suggested. The connectivity between the two regions during a simple addition task in a noisy condition is modulated by the participants’ higher attention to perceive.

  3. Neuroimmune regulation of neurophysiology in the cerebellum.

    PubMed

    Gruol, Donna L

    2013-06-01

    Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.

  4. Neuroprotective effects of kolaviron against psycho-emotional stress induced oxidative brain injury in rats: The whisker removal model.

    PubMed

    Ibironke, G F; Fasanmade, A A

    2016-09-01

    The study investigated the neuroprotective potentials of kolaviron (a biflavonoid complex of Garcinia kola) against psycho-emotional stress induced oxidative brain injury in Wistar rats. Twenty-four adult Wistar rats (180-220g) randomly divided into four groups (1-1V,n=6) were used for the study . Group 1 served as control (non stressed), group 11 consisted of stressed rats induced by complete removal' of the whiskers around the mouth and the nose without anaesthesia. The rats in group 111 were pre- treated with 200mg/kg kolaviron per oral (p.o), daily for seven days before being subjected to the stress procedure' while group 1V rats also had 200mg/kg oral kolaviron alone without being stressed. The animals were later euthanized by cervical dislocation, cerebellum and frontal cortex removed and then subjected to biochemical and histopathological analysis. Whisker removal significantly(p<0.05) increased lipid peroxidation (U/mg protein) in the cerebellum (3.82±0.22 vs 6.50±0.41) and the cerebral cortex (14.57±2.50 vs 30.11± 4.70) compared with their controls, it also produced significant reductions 'in catalase activities (U/min/mg protein) in cerebellum (169.65±11.02 vs 87.72, p <0.001) and the cerebral cortex (264.5 ± 40.57 vs 122.71 ± 15.70,p< 0.001). Glutathione levels (U/mg protein) were similarly significantly (P<0.001) reduced in both cerebellum (132.40 ± 4.81 vs 37.60 ± 1.50) and the cerebral cortex (370.42 ±20.51 vs 120.51± 25.35) compared with their corresponding controls. There were also histological abnormalities like cellular degeneration and necrosis in both the frontal cortex and the cerebellum of the stressed rats. Pre- treatment with kolaviron not only reversed these biochemical alterations but also significantly attenuated these observed histopathological changes. The present study demonstrated the neuroprotective potential of kolaviron against psycho-emotional stress-induced oxidative brain injury through the inhibition of oxidative

  5. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    PubMed Central

    da Silva, Fernando B. R.; Cunha, Polyane A.; Ribera, Paula C.; Barros, Mayara A.; Cartágenes, Sabrina C.; Fernandes, Luanna M. P.; Teixeira, Francisco B.; Fontes-Júnior, Enéas A.; Prediger, Rui D.; Lima, Rafael R.; Maia, Cristiane S. F.

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  6. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats.

    PubMed

    da Silva, Fernando B R; Cunha, Polyane A; Ribera, Paula C; Barros, Mayara A; Cartágenes, Sabrina C; Fernandes, Luanna M P; Teixeira, Francisco B; Fontes-Júnior, Enéas A; Prediger, Rui D; Lima, Rafael R; Maia, Cristiane S F

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  7. Potential role of oxidative stress in mediating the effect of altered gravity on the developing rat cerebellum

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, Elizabeth M.; Nguon, Kosal; Sulkowski, Zachary L.; Lipinski, Boguslaw

    We have previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that exposure to hypergravity results in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. To test this hypothesis we compared cerebellar oxidative stress markers 3-nitrotyrosine (3-NT; an index of oxidative protein modification) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG; an index of oxidative DNA damage) between stationary control (SC) and rat neonates exposed to 1.65 G (HG) on a 24-ft centrifuge from gestational day (G) 8 to postnatal day (P) 21. The levels of 3-NT and 8-OH-dG were determined by specific ELISAs. We also compared the Purkinje cell number (stereorologically) and rotarod performance between the two groups. The levels of 3-NT were increased only in HG females on P6 and on P12 in the cerebellum, and only in HG females on P12 in the extracellabellar tissue. Limited cerebellar data suggests an increase in the levels of 8-OH-dG on P12 only in HG females. In extracerebellar tissue the increase in 8-OH-dG levels was observed in both HG males and HG females except on P6 when it was only observed in HG males. While preliminary, these data suggest that the effect of hypergravity on the developing brain is sex-dependent and may involve oxidative stress. Oxidative stress may, in turn, contribute to the decrease Purkinje cell number and impaired motor behavior observed in hypergravity-exposed rats.

  8. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  9. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.

    PubMed

    Roda, Elisa; Coccini, Teresa; Acerbi, Davide; Castoldi, Anna; Bernocchi, Graziella; Manzo, Luigi

    2008-05-01

    The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.

  10. Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat.

    PubMed

    Hisano, Setsuji; Sawada, Kazuhiko; Kawano, Michihiro; Kanemoto, Mizuki; Xiong, Guoxiang; Mogi, Koichi; Sakata-Haga, Hiromi; Takeda, Jun; Fukui, Yoshihiro; Nogami, Haruo

    2002-10-30

    Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) was studied in the cerebellum and precerebellar nuclei of rats using immunohistochemistry and in situ hybridization. DNPI/VGLUT2-stained mossy fibers were principally seen in the vermis (lobules I and VIII-X) and flocculus, whereas BNPI/VGLUT1-stained mossy fibers were localized throughout the cortex. Some vermal and floccular mossy fibers were stained for both transporters. High levels of DNPI/VGLUT2 mRNA hybridization signals were demonstrated in many neurons throughout the vestibular nuclear complex as well as the lateral reticular, external cuneate, inferior olivary and deep cerebellar nuclei. Significant BNPI/VGLUT1 mRNA signals were demonstrated in the lateral reticular nucleus and vestibular nuclear complex but not in the inferior olivary nucleus, indicating that climbing fibers have DNPI/VGLUT2 only. These results show that DNPI/VGLUT2 is expressed preferentially to vestibulo-, reticulo- and cuneocerebellar neurons, some of which also possess BNPI/VGLUT1, suggesting some differential and co-operative functions between DNPI/VGLUT2 and BNPI/VGLUT1 in the cerebellum.

  11. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    PubMed

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  12. Neurocircuitry of fear extinction in adult and juvenile rats.

    PubMed

    Ganella, Despina E; Nguyen, Ly Dao; Lee-Kardashyan, Luba; Kim, Leah E; Paolini, Antonio G; Kim, Jee Hyun

    2018-06-10

    In contrast to adult rodents, juvenile rodents fail to show relapse following extinction of conditioned fear. Using different retrograde tracers injected into the infralimbic cortex (IL) and the ventral hippocampus (vHPC) in conjunction with c-Fos and parvalbumin (PV) immunochemistry, we investigated the neurocircuitry of extinction in juvenile and adult rats. Regardless of fear extinction or retrieval, juvenile rats had more c-Fos+ neurons in the basolateral amygdala (BLA) compared to adults, and showed a higher proportion of c-Fos+ IL-projecting neurons. Adult rats had more activated vHPC-projecting BLA neurons following extinction compared to retrieval, a difference not observed in juvenile rats. The number of activated vHPC- or IL-projecting BLA neurons was significantly correlated with freezing levels in adult, but not juvenile, rats. We also identified neurons in the BLA that simultaneously project to the IL and vHPC activated in the retrieval groups at both ages. This study provides novel insight into the neural process underlying extinction, especially in the juvenile period. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation.

    PubMed

    Canterini, Sonia; Bosco, Adriana; Carletti, Valentina; Fuso, Andrea; Curci, Armando; Mangia, Franco; Fiorenza, Maria Teresa

    2012-03-01

    We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.

  14. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats

    PubMed Central

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501

  15. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Cheng, Jinping

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes weremore » not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.« less

  16. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Blattmann, Hans; Di Michiel, Marco; Slatkin, Daniel N.; Lyubimova, Nadia; Guzman, Raphael; Zimmermann, Werner; Birrer, Stephan; Bley, Tim; Kircher, Patrick; Stettler, Regina; Fatzer, Rosmarie; Jaggy, Andre; Smilowitz, Henry; Brauer, Elke; Bravin, Alberto; Le Duc, Geraldine; Nemoz, Christian; Renier, Michel; Thomlinson, William C.; Stepanek, Jiri; Wagner, Hans-Peter

    2001-12-01

    The cerebellum of the weanling piglet (Yorkshire) was used as a surrogate for the radiosensitive human infant cerebellum in a Swiss-led program of experimental microbeam radiation therapy (MRT) at the ESRF. Five weanlings in a 47 day old litter of seven, and eight weanlings in a 40 day old litter of eleven were irradiated in November, 1999 and June, 2000, respectively. A 1.5 cm-wide x 1.5 xm-high array of equally space approximately equals 20-30 micrometers wide, upright microbeams spaced at 210 micrometers intervals was propagated horizontally, left to right, through the cerebella of the prone, anesthetized piglets. Skin-entrance intra-microbeam peak adsorbed doses were uniform, either 150, 300, 425, or 600 gray (Gy). Peak and inter-microbeam (valley) absorbed doses in the cerebellum were computed with the PSI version of the Monte Carlo code GEANT and benchmarked using Gafchromic and radiochromic film microdosimetry. For approximately equals 66 weeks [first litter; until euthanasia], or approximately equals 57 weeks [second litter; until July 30, 2001] after irradiation, the littermates were developmentally, behaviorally, neurologically and radiologically normal as observed and tested by experienced farmers and veterinary scientists unaware of which piglets were irradiated or sham-irradiated. Morever, MRT implemented at the ESRF with a similar array of microbeams and a uniform skin-entrance peak dose of 625 Gy, followed by immunoprophylaxis, was shown to be palliative or curative in young adult rats bearing intracerebral gliosarcomas. These observations give further credence to MRT's potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous.

  18. A role for cerebellum in the hereditary dystonia DYT1

    PubMed Central

    Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal; Khodakhah, Kamran

    2017-01-01

    DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI: http://dx.doi.org/10.7554/eLife.22775.001 PMID:28198698

  19. Aberrant connections between climbing fibres and Purkinje cells induce alterations in the timing of an instrumental response in the rat.

    PubMed

    Gaytán-Tocavén, Lorena; López-Vázquez, Miguel Ángel; Guevara, Miguel Ángel; Olvera-Cortés, María Esther

    2017-09-01

    Cerebellar participation in timing and sensory-motor sequences has been supported by several experimental and clinical studies. A relevant role of the cerebellum in timing of conditioned responses in the range of milliseconds has been demonstrated, but less is known regarding the role of the cerebellum in supra-second timing of operant responses. A dissociated role of the cerebellum and striatum in timing in the millisecond and second range had been reported, respectively. The climbing fibre-Purkinje cell synapse is crucial in timing models; thus, the aberrant connection between these cellular elements is a suitable model for evaluating the contribution of the cerebellum in timing in the supra-second range. The aberrant connection between climbing fibres and Purkinje cells was induced by administration of the antagonist of NMDA receptors MK-801 to Sprague-Dawley rats at postnatal days 7-14. The timing of an operant response with two fixed intervals (5 and 8 s) and egocentric sequential learning was evaluated in 60-day-old adult rats. The aberrant connections caused a reduced accuracy in the timing of the instrumental response that was more evident in the 8-s interval and a reduced number of successive correct responses (responses emitted in the correct second without any other response between them) in the 8-s interval. In addition, an inability to incorporate new information in a sequence previously learned in egocentric-based sequence learning was apparent in rats with aberrant CF-PC synapses. These results support a relevant role for the cerebellum in the fine-tuning of the timing of operant responses in the supra-second range.

  20. Cerebellum and apraxia.

    PubMed

    Mariën, Peter; van Dun, Kim; Verhoeven, Jo

    2015-02-01

    As early as the beginning of the nineteenth century, a variety of nonmotor cognitive and affective impairments associated with cerebellar pathology were occasionally documented. A causal link between cerebellar disease and nonmotor cognitive and affective disorders has, however, been dismissed for almost two centuries. During the past decades, the prevailing view of the cerebellum as a mere coordinator of autonomic and somatic motor function has changed fundamentally. Substantial progress has been made in elucidating the neuroanatomical connections of the cerebellum with the supratentorial association cortices that subserve nonmotor cognition and affect. Furthermore, functional neuroimaging studies and neurophysiological and neuropsychological research have shown that the cerebellum is crucially involved in modulating cognitive and affective processes. This paper presents an overview of the clinical and neuroradiological evidence supporting the view that the cerebellum plays an intrinsic part in purposeful, skilled motor actions. Despite the increasing number of studies devoted to a further refinement of the typology and anatomoclinical configurations of apraxia related to cerebellar pathology, the exact underlying pathophysiological mechanisms of cerebellar involvement remain to be elucidated. As genuine planning, organization, and execution disorders of skilled motor actions not due to motor, sensory, or general intellectual failure, the apraxias following disruption of the cerebrocerebellar network may be hypothetically considered to form part of the executive cluster of the cerebellar cognitive affective syndrome (CCAS), a highly influential concept defined by Schmahmann and Sherman (Brain 121:561-579, 1998) on the basis of four symptom clusters grouping related neurocognitive and affective deficits (executive, visuospatial, affective, and linguistic impairments). However, since only a handful of studies have explored the possible role of the cerebellum in

  1. Consensus Paper: Cerebellum and Emotion.

    PubMed

    Adamaszek, M; D'Agata, F; Ferrucci, R; Habas, C; Keulen, S; Kirkby, K C; Leggio, M; Mariën, P; Molinari, M; Moulton, E; Orsi, L; Van Overwalle, F; Papadelis, C; Priori, A; Sacchetti, B; Schutter, D J; Styliadis, C; Verhoeven, J

    2017-04-01

    Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.

  2. Gene expression in the developing cerebellum during perinatal hypo- and hyperthyroidism.

    PubMed

    Figueiredo, B C; Almazan, G; Ma, Y; Tetzlaff, W; Miller, F D; Cuello, A C

    1993-03-01

    The intensity of p75NGFR receptor-like immunoreactivity and the mRNAs encoding p75NGFR, T alpha 1 alpha-tubulin, GAP-43 and the myelin proteins MBP and PLP were measured in the developing cerebellum to study the effects of perinatal thyroid hormone imbalance in rats. Results compared to age-matched controls provide in vivo evidence for differential gene regulation by thyroid hormone in the developing cerebellum. We found that p75NGFR immunoreactivity was strikingly elevated in hypothyroid rats, whereas p75NGFR mRNA content remained only twice as high as that of control levels on postnatal day 15 (P15). When p75NGFR immunoreactivity was still elevated in hypothyroid rats, Purkinje cells exhibited proximal axonal varicosities, axonal twisting and differences in axonal caliber. The mRNAs encoding proteins involved with neurite growth-promoting elements, T alpha 1 alpha-tubulin and GAP-43, were also increased in hypothyroidism, possibly reflecting a neuronal response to a deficiency in, or damage to, cerebellar neurons, or a general delay in their down regulation. Similar increases were not observed for the myelin specific genes. MBP and PLP mRNAs were first detected on P2 of hyperthyroid rats, and they increased with age. Hypo- or hyperthyroidism did not affect the initial onset of MBP and PLP expression, however, hyperthyroidism increased levels of PLP and MBP mRNAs between P2 and P10. By contrast, the most consistent decrease in MBP and PLP mRNAs in rats with thyroid hormone deficiency was observed only on P10. At later times (P15 and P30), the two mRNA levels were similar to controls in all groups. These results are consistent with a role for thyroid hormone in the earlier stages of cerebellar myelination. Hypothryoidism led to specific increases in T alpha 1 alpha-tubulin and GAP-43 mRNAs, and in the immunoreactivity and mRNA levels of p75NGFR receptor--all changes that may play a role in the observed abnormal neuronal outgrowth.

  3. Cellular commitment in the developing cerebellum

    PubMed Central

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  4. Embodied cognitive evolution and the cerebellum.

    PubMed

    Barton, Robert A

    2012-08-05

    Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences--including tool use and language. There is no clear separation between sensory-motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control.

  5. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    PubMed

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  6. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum

    PubMed Central

    DiGirolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-01-01

    The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg−1, i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury. PMID:12871835

  7. Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum.

    PubMed

    Abdel-Rahman, A; Abou-Donia, Suzanne; El-Masry, Eman; Shetty, Ashok; Abou-Donia, Mohamed

    2004-01-23

    Exposure to a combination of stress and low doses of the chemicals pyridostigmine bromide (PB), DEET, and permethrin in adult rats, a model of Gulf War exposure, produces blood-brain barrier (BBB) disruption and neuronal cell death in the cingulate cortex, dentate gyrus, thalamus, and hypothalamus. In this study, neuropathological alterations in other areas of the brain where no apparent BBB disruption was observed was studied following such exposure. Animals exposed to both stress and chemical exhibited decreased brain acetylcholinesterase (AChE) activity in the midbrain, brainstem, and cerebellum and decreased m2 muscarinic acetylcholine (ACh) receptor ligand binding in the midbrain and cerebellum. These alterations were associated with significant neuronal cell death, reduced microtubule-associated protein (MAP-2) expression, and increased glial fibrillary acidic protein (GFAP) expression in the cerebral cortex and the hippocampal subfields CA1 and CA3. In the cerebellum, the neurochemical alterations were associated with Purkinje cell loss and increased GFAP immunoreactivity in the white matter. However, animals subjected to either stress or chemicals alone did not show any of these changes in comparison to vehicle-treated controls. Collectively, these results suggest that prolonged exposure to a combination of stress and the chemicals PB, DEET, and permethrin can produce significant damage to the cerebral cortex, hippocampus, and cerebellum, even in the absence of apparent BBB damage. As these areas of the brain are respectively important for the maintenance of motor and sensory functions, learning and memory, and gait and coordination of movements, such alterations could lead to many physiological, pharmacological, and behavioral abnormalities, particularly motor deficits and learning and memory dysfunction.

  8. The cerebellum mediates conflict resolution.

    PubMed

    Schweizer, Tom A; Oriet, Chris; Meiran, Nachshon; Alexander, Michael P; Cusimano, Michael; Stuss, Donald T

    2007-12-01

    Regions within the frontal and parietal cortex have been implicated as important neural correlates for cognitive control during conflict resolution. Despite the extensive reciprocal connectivity between the cerebellum and these putatively critical cortical areas, a role for the cerebellum in conflict resolution has never been identified. We used a task-switching paradigm that separates processes related to task-set switching and the management of response conflict independent of motor processing. Eleven patients with chronic, focal lesions to the cerebellum and 11 healthy controls were compared. Patients were slower and less accurate in conditions involving conflict resolution. In the absence of response conflict, however, tasks-witching abilities were not impaired in our patients. The cerebellum may play an important role in coordinating with other areas of cortex to modulate active response states. These results are the first demonstration of impaired conflict resolution following cerebellar lesions in the presence of an intact prefrontal cortex.

  9. Protective effects of omega-3 essential fatty acids against formaldehyde-induced cerebellar damage in rats.

    PubMed

    Zararsiz, Ismail; Meydan, Sedat; Sarsilmaz, Mustafa; Songur, Ahmet; Ozen, Oguz Aslan; Sogut, Sadik

    2011-07-01

    This study aimed to investigate changes in the cerebellum of formaldehyde-exposed rats and the effects of omega-3 fatty acids on these changes. The study involved 21 male Wistar-Albino rats which were divided into three groups. The rats in Group I comprised the control group. The rats in Group II were injected with intraperitoneal 10% formaldehyde every other day. The rats in Group III received omega-3 fatty acids daily while exposed to formaldehyde. At the end of the 14-day experimental period, all rats were killed by decapitation and the cerebellum removed. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), xanthine oxidase (XO), and malondialdehyde (MDA) levels were determined in cerebellum specimens by using spectrophotometric methods. In our study, levels of SOD and CAT were significantly decreased, and GSH-Px, XO, MDA levels were significantly increased in rats treated with formaldehyde compared with those of the controls. Whereas, it was seen that there was an increase in SOD and CAT enzyme activities and decrease in MDA, XO, and GSH-Px levels in rats administered to omega-3 fatty acids with exposure of formaldehyde. It was determined that exposure of formaldehyde increased free radicals in cerebellum of rats and this increase was prevented by administration of omega-3 fatty acids.

  10. Long-term sequelae of perinatal asphyxia in the aging rat.

    PubMed

    Weitzdoerfer, R; Gerstl, N; Hoeger, H; Mosgoeller, W; Dreher, W; Engidawork, E; Overgaard-Larsen, J; Lubec, B

    2002-03-01

    Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA on the central nervous system (CNS) in terms of morphology, immunohistochemistry, neurology and behavior in the aging animal. Hippocampus and cerebellum were evaluated morphologically by histological, immunohistochemical and magnetic resonance imaging and cerebellum also by stereological tests. Neurological function was tested by an observational test battery and rota rod test. Cognitive functions were examined by multiple-T-maze and the Morris water maze (MWM). Increased serotonin transporter (SERT) immunoreactivity in the CA2 region of the hippocampus and a significant difference in the escape latency, when the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis for understanding CNS pathology in the aging subject, animal or human.

  11. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  12. Acute administration of 5-oxoproline induces oxidative damage to lipids and proteins and impairs antioxidant defenses in cerebral cortex and cerebellum of young rats.

    PubMed

    Pederzolli, Carolina Didonet; Mescka, Caroline Paula; Zandoná, Bernardo Remuzzi; de Moura Coelho, Daniella; Sgaravatti, Angela Malysz; Sgarbi, Mirian Bonaldi; de Souza Wyse, Angela Terezinha; Duval Wannmacher, Clóvis Milton; Wajner, Moacir; Vargas, Carmen Regla; Dutra-Filho, Carlos Severo

    2010-06-01

    5-Oxoproline accumulates in glutathione synthetase deficiency, an autossomic recessive inherited disorder clinically characterized by hemolytic anemia, metabolic acidosis, and severe neurological symptoms whose mechanisms are poorly known. In the present study we investigated the effects of acute subcutaneous administration of 5-oxoproline to verify whether oxidative stress is elicited by this metabolite in vivo in cerebral cortex and cerebellum of 14-day-old rats. Our results showed that the acute administration of 5-oxoproline is able to promote both lipid and protein oxidation, to impair brain antioxidant defenses, to alter SH/SS ratio and to enhance hydrogen peroxide content, thus promoting oxidative stress in vivo, a mechanism that may be involved in the neuropathology of gluthatione synthetase deficiency.

  13. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our

  14. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  15. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum.

    PubMed

    Figueiredo, B C; Otten, U; Strauss, S; Volk, B; Maysinger, D

    1993-04-16

    Deficits or excesses of thyroid hormones during critical periods of mammalian cerebellar development can lead to profound biochemical and morphological abnormalities in this system. The goal of this study was to investigate the effects of perinatal hypo- and hyperthyroidism on the ontogeny of nerve growth factor (NGF) and its low-affinity receptor (p75NGFR) in the rat cerebellum. The concentration of NGF and of p75NGFR immunoreactivity (IR) were measured, several days after birth, in cerebella of rats which had received propylthiouracil (PTU) or thyroxine. NGF concentration was markedly enhanced only on postnatal day 2 (P2) in hyperthyroid rats, whereas in hypothyroid (PTU-treated) rats NGF values were similar to age-matched controls. These observations suggest that thyroid hormone affects NGF synthesis during early periods of cerebellar development. In Purkinje cells of control animals, p75NGFR IR peaked at P10. In hypothyroid rats, the expression of p75NGFR was retarded, peaking at P15, whereas in hyperthyroid rats it was advanced, peaking at P8. The increased p75NGFR IR found in Purkinje cell bodies and the delayed disappearance of p75NGFR IR from the external granular layer of hypothyroid rats suggest different roles for thyroid hormone in the developing cerebellum. We conclude that p75NGFR and NGF are independently regulated by thyroid hormone during critical periods of cerebellar development. The effect of thyroid hormone deficiency on p75NGFR content in Purkinje cells may involve complex mechanisms such as impaired efficiency of axonal transport.

  16. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    PubMed

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  17. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  18. Role of cerebellum in learning postural tasks.

    PubMed

    Ioffe, M E; Chernikova, L A; Ustinova, K I

    2007-01-01

    For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

  19. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    PubMed Central

    Kimura-Kuroda, Junko; Nishito, Yasumasa; Yanagisawa, Hiroko; Kuroda, Yoichiro; Komuta, Yukari; Kawano, Hitoshi; Hayashi, Masaharu

    2016-01-01

    Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of long-term (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold) between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain. PMID:27782041

  20. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  1. Consensus Paper: The Cerebellum's Role in Movement and Cognition

    PubMed Central

    Koziol, Leonard F.; Budding, Deborah; Andreasen, Nancy; D'Arrigo, Stefano; Bulgheroni, Sara; Imamizu, Hiroshi; Ito, Masao; Manto, Mario; Marvel, Cherie; Parker, Krystal; Pezzulo, Giovanni; Ramnani, Narender; Riva, Daria; Schmahmann, Jeremy; Vandervert, Larry; Yamazaki, Tadashi

    2014-01-01

    While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum. PMID:23996631

  2. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly

  3. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium.

    PubMed

    Kekovic, Goran; Culic, Milka; Martac, Ljiljana; Stojadinovic, Gordana; Capo, Ivan; Lalosevic, Dusan; Sekulic, Slobodan

    2010-07-01

    Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer's disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl(3), intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi's algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.

  4. Effects of nutritional state, aging and high chronic intake of sucrose on brain protein synthesis in rats: modulation of it by rutin and other micronutrients.

    PubMed

    Gatineau, Eva; Cluzet, Stéphanie; Krisa, Stéphanie; Papet, Isabelle; Migne, Carole; Remond, Didier; Dardevet, Dominique; Polakof, Sergio; Richard, Tristan; Mosoni, Laurent

    2018-05-23

    Little is still known about brain protein synthesis. In order to increase our knowledge of it, we aimed to modulate brain protein synthesis rates through aging, variations in nutritional state (fed state vs. fasted state), high sucrose diet and micronutrient supplementation. Four groups of 16 month-old male rats were fed for five months with a diet containing either 13% or 62% sucrose (wheat starch was replaced with sucrose), supplemented or not with rutin (5 g kg-1 diet), vitamin E (4×), A (2×), D (5×), selenium (10×) and zinc (+44%) and compared with an adult control group. We measured cerebellum protein synthesis and hippocampus gene expression of antioxidant enzymes, inflammatory cytokines and transcription factors. We showed that cerebellum protein synthesis was unchanged by the nutritional state, decreased during aging (-8%), and restored to the adult level by micronutrient supplementation. Sucrose diet did not change protein synthesis but reduced the protein content. Micronutrient supplementation had no effect in sucrose fed rats. Hippocampus gene expressions were affected by age (an increase of TNF-α), sucrose treatment (an increase of IL-1β and IL-6), and micronutrient supplementation (a decrease of heme oxygenase, catalase, glutathione peroxidase, TNF-α, and Nrf2). We noted that cerebellum protein synthesis and hippocampus TNF-α gene expression were modulated by the same factors: they were affected by aging and micronutrient supplementation and unchanged by feeding and by high sucrose diet.

  5. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    EPA Science Inventory

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  6. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    PubMed Central

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  7. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  8. CERES: A new cerebellum lobule segmentation method.

    PubMed

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cerebellum and Ocular Motor Control

    PubMed Central

    Kheradmand, Amir; Zee, David S.

    2011-01-01

    An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural–functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: (1) the flocculus/paraflocculus for high-frequency (brief) vestibular responses, sustained pursuit eye movements, and gaze holding, (2) the nodulus/ventral uvula for low-frequency (sustained) vestibular responses, and (3) the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region) for saccades and pursuit initiation. PMID:21909334

  10. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  11. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  12. Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.

    PubMed

    Lu, Qi; Jiang, Cuiping; Zhang, Jiping

    2016-02-01

    Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of Bacopa monniera extract on methylmercury-induced behavioral and histopathological changes in rats.

    PubMed

    Christinal, Johnson; Sumathi, Thangarajan

    2013-10-01

    Methylmercury (MeHg) is a well-recognized environmental contaminant with established health risk to human beings by fish and marine mammal consumption. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. This study was aimed to evaluate the effect of B. monniera extract (BME) on MeHg-induced toxicity in rat cerebellum. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After treatment period, MeHg exposure significantly decreases the body weight and also caused the following behavioral changes. Decrease tail flick response, longer immobility time, significant decrease in motor activity, and spatial short-term memory. BME pretreatment reverted the behavioral changes to normal. MeHg exposure decreases the DNA and RNA content in cerebellum and also caused some pathological changes in cerebellum. Pretreatment with BME restored all the changes to near normal. These findings suggest that BME has a potent efficacy to alleviate MeHg-induced toxicity in rat cerebellum.

  14. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.

    PubMed

    Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M

    1998-01-01

    The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.

  15. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerge, Daniel R., E-mail: daniel.doerge@fda.hhs.go; Twaddle, Nathan C.; Vanlandingham, Michelle

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, butmore » not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.« less

  16. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence.

    PubMed

    Marin-Lahoz, Juan; Gironell, Alexandre

    2016-06-01

    The pathophysiology and the exact anatomy of essential tremor (ET) is not well known. One of the pillars that support the cerebellum as the main anatomical locus in ET is neurochemistry. This review examines the link between neurochemical abnormalities found in ET and cerebellum. The review is based on published data about neurochemical abnormalities described in ET both in human and in animal studies. We try to link those findings with cerebellum. γ-aminobutyric acid (GABA) is the main neurotransmitter involved in the pathophysiology of ET. There are several studies about GABA that clearly points to a main role of the cerebellum. There are few data about other neurochemical abnormalities in ET. These include studies with noradrenaline, glutamate, adenosine, proteins, and T-type calcium channels. One single study reveals high levels of noradrenaline in the cerebellar cortex. Another study about serotonin neurotransmitter results negative for cerebellum involvement. Finally, studies on T-type calcium channels yield positive results linking the rhythmicity of ET and cerebellum. Neurochemistry supports the cerebellum as the main anatomical locus in ET. The main neurotransmitter involved is GABA, and the GABA hypothesis remains the most robust pathophysiological theory of ET to date. However, this hypothesis does not rule out other mechanisms and may be seen as the main scaffold to support findings in other systems. We clearly need to perform more studies about neurochemistry in ET to better understand the relations among the diverse systems implied in ET. This is mandatory to develop more effective pharmacological therapies.

  17. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance.

    PubMed

    Hoshino, Daisuke; Setogawa, Susumu; Kitaoka, Yu; Masuda, Hiroyuki; Tamura, Yuki; Hatta, Hideo; Yanagihara, Dai

    2016-10-28

    Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Dissecting the links between cerebellum and dystonia.

    PubMed

    Malone, Ailish; Manto, Mario; Hass, Chris

    2014-12-01

    Dystonia is a common movement disorder characterized by sustained muscle contractions. These contractions generate twisting and repetitive movements or typical abnormal postures, often exacerbated by voluntary movement. Dystonia can affect almost all the voluntary muscles. For several decades, the discussion on the pathogenesis has been focused on basal ganglia circuits, especially striatal networks. So far, although dystonia has been observed in some forms of ataxia such as dominant ataxias, the link between the cerebellum and dystonia has remained unclear. Recent human studies and experimental data mainly in rodents show that the cerebellum circuitry could also be a key player in the pathogenesis of some forms of dystonia. In particular, studies based on behavioral adaptation paradigm shed light on the links between dystonia and cerebellum. The spectrum of movement disorders in which the cerebellum is implicated is continuously expanding, and manipulation of cerebellar circuits might even emerge as a candidate therapy in the coming years.

  19. The Cerebellum and Neurodevelopmental Disorders.

    PubMed

    Stoodley, Catherine J

    2016-02-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.

  20. The cerebellum and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.

    2015-01-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473

  1. The missing link: evolution of the primate cerebellum.

    PubMed

    MacLeod, Carol

    2012-01-01

    The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Overlapping neural circuits for visual attention and eye movements in the human cerebellum.

    PubMed

    Striemer, Christopher L; Chouinard, Philippe A; Goodale, Melvyn A; de Ribaupierre, Sandrine

    2015-03-01

    Previous research in patients with cerebellar damage suggests that the cerebellum plays a role in covert visual attention. One limitation of some of these studies is that they examined patients with heterogeneous cerebellar damage. As a result, the patterns of reported deficits have been inconsistent. In the current study, we used functional neuroimaging (fMRI) in healthy adults (N=14) to examine whether or not the cerebellum plays a role in covert visual attention. Participants performed two covert attention tasks in which they were cued exogenously (with peripheral flashes) or endogenously (using directional arrows) to attend to marked locations in the visual periphery without moving their eyes. We compared BOLD activation in these covert attention conditions to a number of control conditions including: the same attention tasks with eye movements, a target detection task with no cueing, and a self-paced button-press task. Subtracting these control conditions from the covert attention conditions allowed us to effectively remove the contribution of the cerebellum to motor output. In addition to the usual fronto-parietal networks commonly engaged by these attention tasks, lobule VI of the vermis in the cerebellum was also activated when participants performed the covert attention tasks with or without eye movements. Interestingly, this effect was larger for exogenous compared to endogenous cueing. These results, in concert with recent patient studies, provide independent yet converging evidence that the same cerebellar structures that are involved in eye movements are also involved in visuospatial attention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Pharmacokinetic Evaluation of the Equivalency of Gavage, Dietary, and Drinking Water Exposure to Manganese in F344 Rats

    PubMed Central

    Foster, Melanie L.; Bartnikas, Thomas B.; Johnson, Laura C.; Herrera, Carolina; Pettiglio, Michael A.; Keene, Athena M.; Taylor, Michael D.; Dorman, David C.

    2015-01-01

    Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl2) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures. PMID:25724921

  4. Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine

    PubMed Central

    Bullock, W. Michael; Bolognani, Federico; Botta, Paolo; Valenzuela, C. Fernando; Perrone-Bizzozero, Nora I.

    2009-01-01

    One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD67 and GAD65 in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by RT-qPCR. Administration of PCP decreased the expression of GAD67, GAD65, and the presynaptic GABA transporter GAT-1, and increased GABAA receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP treated rats. Furthermore, we localized the deficits in GAD67 expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., Am J Psychiatry 165: 1594-1603, 2008), further supporting the validity of this animal model. PMID:19651169

  5. Functional Topography of the Cerebellum in Verbal Working Memory

    PubMed Central

    Desmond, John E.

    2010-01-01

    Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894

  6. Functional topography of the cerebellum in verbal working memory.

    PubMed

    Marvel, Cherie L; Desmond, John E

    2010-09-01

    Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.

  7. A robot conditioned reflex system modeled after the cerebellum.

    NASA Technical Reports Server (NTRS)

    Albus, J. S.

    1972-01-01

    Reduction of a theory of cerebellar function to computer software for the control of a mechanical manipulator. This reduction is achieved by considering the cerebellum, along with the higher-level brain centers which control it, as a type of finite-state machine with input entering the cerebellum via mossy fibers from the periphery and output from the cerebellum occurring via Purkinje cells. It is hypothesized that the cerebellum learns by an error-correction system similar to Perceptron training algorithms. An electromechanical model of the cerebellum is then developed for the control of a mechanical arm. The problem of modeling the granular layer which selects the set of parallel fibers which are active at any instant of time is considered, and a relevance matrix is constructed to model the relative degree of influence which mossy fibers from the various joints have on the sets of granule cells unique to each joint.

  8. How the cerebellum may monitor sensory information for spatial representation

    PubMed Central

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  9. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    PubMed

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Animal Models of Human Disease: Severe and Mild Lead Encephalopathy in the Neonatal Rat*

    PubMed Central

    Michaelson, I. Arthur; Sauerhoff, Mitchell W.

    1974-01-01

    Inorganic lead produces cerebral dysfunction and clinically definable encephalopathies in man. To date there have been few studies on the biochemical changes in brain following exposure to inorganic lead. Studies correlating toxicity with behavioral and brain neurochemical changes following lead exposure have been hindered because adult laboratory animals are resistant to the central nervous system effects of lead poisoning. Such studies have been impeded by lack of suitable experimental models until Pentschew and Garro showed that brain lesions develop in neonatal rats when a pregnant rat newly delivered of her litter is placed on a 4% lead carbonate containing diet. Lead passes into the developing sucklings via maternal milk. Lead-poisoned new-borns have pronounced retardation of growth and during the fourth week of ilfe develop the severe signs of lead encephalopathy, namely, extensive histological lesions of the cerebellum, brain edema, and paraplegia. There is an approximate 85-fold increase in the lead concentration of both the cerebellum and cerebral cortex relative to controls, but edema and gross vascular changes are confined to the cerebellum. Ingested lead had little effect on RNA, DNA, and protein concentrations of developing rat cerebellum and cerebral cortex. However, there was a reduction of between 10 and 20% in the DNA content of the cerebellum around 3 weeks of age in the lead-exposed sucklings. This suggests a failure of cell multiplication in this part of the brain. A critical evaluation of this experimental approach indicated that under similar dietary conditions experimental lactating rats eat 30% less food than controls resulting in: (a) sustained loss in body weight of nursing mothers and that (b) offsprings who develop paraplegia and cerebellar damage do so after gaining access to lead containing diet. We have studied mothers' food consumption and body weight changes and blood, milk, and brain lead content; and newborns' body and brain

  11. Prefrontal control of cerebellum-dependent associative motor learning.

    PubMed

    Chen, Hao; Yang, Li; Xu, Yan; Wu, Guang-yan; Yao, Juan; Zhang, Jun; Zhu, Zhi-ru; Hu, Zhi-an; Sui, Jian-feng; Hu, Bo

    2014-02-01

    Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

  12. Intelligent Network Management and Functional Cerebellum Synthesis

    NASA Technical Reports Server (NTRS)

    Loebner, Egon E.

    1989-01-01

    Transdisciplinary modeling of the cerebellum across histology, physiology, and network engineering provides preliminary results at three organization levels: input/output links to central nervous system networks; links between the six neuron populations in the cerebellum; and computation among the neurons of the populations. Older models probably underestimated the importance and role of climbing fiber input which seems to supply write as well as read signals, not just to Purkinje but also to basket and stellate neurons. The well-known mossy fiber-granule cell-Golgi cell system should also respond to inputs originating from climbing fibers. Corticonuclear microcomplexing might be aided by stellate and basket computation and associate processing. Technological and scientific implications of the proposed cerebellum model are discussed.

  13. Comparative toxicity and tissue distribution of lead acetate in weanling and adult rats.

    PubMed Central

    Rader, J I; Peeler, J T; Mahaffey, K R

    1981-01-01

    The relative toxicity of low doses of lead acetate provided steadily in drinking water or by mouth once per week was studied in weanling and adult rats. Free erythrocyte protoporphyrin and urinary delta-aminolevulinic acid levels were measured, as well as lead levels in blood and kidney. The accumulation of lead in brain tissue and in bone (femur) was measured to determine the effect of age and schedule of administration on tissue distribution and retention of lead. Total intakes of lead during the 60-week experimental period were: weanling and adult rats exposed to drinking water supplemented with 200 microgram of lead acetate/ml: 127 +/- 10 mg and 160 +/- 16 mg, respectively; weanling and adult rats dosed with lead acetate orally once per week: 132 mg and 161 mg, respectively. Increased toxic effects of lead in the weanling animals were apparent in most of the parameters measured (urinary delta-aminolevulinic acid and blood, brain, femur and kidney lead levels). This pattern was observed in weanling rats exposed to lead steadily through drinking water or dosed orally with an equivalent quantity of lead once per week. Lead levels in blood were highly correlated with the accumulation of lead in brain, femur, and kidney tissue in both groups of weanling rats. In adult rats, significant correlations between blood lead and kidney lead and between blood lead and femur lead were found only in the rats receiving lead steadily in drinking water. PMID:7333253

  14. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats.

    PubMed

    Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E

    2013-09-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. Published by Elsevier Inc.

  15. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats

    PubMed Central

    Lindquist, Derick H.; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E.

    2013-01-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4–9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 msec) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 msec) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. PMID:23871534

  16. Consensus paper: Language and the cerebellum: an ongoing enigma.

    PubMed

    Mariën, Peter; Ackermann, Herman; Adamaszek, Michael; Barwood, Caroline H S; Beaton, Alan; Desmond, John; De Witte, Elke; Fawcett, Angela J; Hertrich, Ingo; Küper, Michael; Leggio, Maria; Marvel, Cherie; Molinari, Marco; Murdoch, Bruce E; Nicolson, Roderick I; Schmahmann, Jeremy D; Stoodley, Catherine J; Thürling, Markus; Timmann, Dagmar; Wouters, Ellen; Ziegler, Wolfram

    2014-06-01

    In less than three decades, the concept "cerebellar neurocognition" has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the "linguistic cerebellum" in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.

  17. MR Imaging Features of the Cerebellum in Adult-Onset Neuronal Intranuclear Inclusion Disease: 8 Cases.

    PubMed

    Sugiyama, A; Sato, N; Kimura, Y; Maekawa, T; Enokizono, M; Saito, Y; Takahashi, Y; Matsuda, H; Kuwabara, S

    2017-11-01

    Neuronal intranuclear inclusion disease is a neurodegenerative disorder pathologically characterized by eosinophilic hyaline intranuclear inclusions. A high-intensity signal along the corticomedullary junction on DWI has been described as a specific MR imaging finding of the cerebrum in neuronal intranuclear inclusion disease. However, MR imaging findings of the cerebellum in neuronal intranuclear inclusion disease have not been fully evaluated. Here, we review MR imaging findings of the cerebellum in a series of 8 patients with pathologically confirmed neuronal intranuclear inclusion disease. The MR imaging results showed cerebellar atrophy (8/8 patients) and high-intensity signal on FLAIR images in the medial part of the cerebellar hemisphere right beside the vermis (the "paravermal area") (6/8) and in the middle cerebellar peduncle (4/8). The paravermal abnormal signals had a characteristic distribution, and they could be an indicator of the diagnosis of neuronal intranuclear inclusion disease even when using the results of past MR imaging examinations in which DWI findings were not examined. © 2017 by American Journal of Neuroradiology.

  18. Effects of 4-Vinylcyclohexene Diepoxide on Peripubertal and Adult Sprague–Dawley Rats: Ovarian, Clinical, and Pathologic Outcomes

    PubMed Central

    Muhammad, F Salih; Goode, Amanda K; Kock, Nancy D; Arifin, Esther A; Cline, J Mark; Adams, Michael R; Hoyer, Patricia B; Christian, Patricia J; Isom, Scott; Kaplan, Jay R; Appt, Susan E

    2009-01-01

    Young rats treated daily with intraperitoneal 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial follicles, resulting in gradual ovarian failure resembling the menopausal transition in women. To determine whether VCD has similar effects on ovaries of older rats, adult and peripubertal Sprague–Dawley rats were injected intraperitoneally daily for 30 d with vehicle or VCD at 40 or 80 mg/kg. Body weight, food intake, complete blood counts, and markers of liver injury and renal function were measured during VCD treatment. Complete gross necropsy and microscopic observations were performed on day 31, and ovarian follicles were counted. At 80 mg/kg, VCD destroyed primordial and primary follicles to a similar extent in both adult and peripubertal animals, although adult rats likely started with fewer follicles and therefore approached follicle depletion. Treatment with VCD did not affect body weight, but food intake was reduced in both adult and peripubertal rats treated with 80 mg/kg VCD. Adult rats treated with 80 mg/kg VCD had neutrophilia and increased BUN and creatinine; in addition, 4 of these rats were euthanized on days 25 or 26 due to peritonitis. VCD treatment did not increase alanine aminotransferase levels, a marker of liver injury, although the 80-mg/kg dose increased liver weights. In conclusion, VCD effectively destroys small preantral follicles in adult Sprague–Dawley rats, making them a suitable model of the menopausal transition of women. However, because adult rats were more sensitive to the irritant properties of VCD, the use of a lower dose should be considered. PMID:19295054

  19. Pain Experience is Somatotopically Organized and Overlaps with Pain Anticipation in the Human Cerebellum.

    PubMed

    Michelle Welman, F H S; Smit, Albertine E; Jongen, Joost L M; Tibboel, Dick; van der Geest, Jos N; Holstege, Jan C

    2018-02-26

    Many fMRI studies have shown activity in the cerebellum after peripheral nociceptive stimulation. We investigated whether the areas in the cerebellum that were activated after nociceptive thumb stimulation were separate from those after nociceptive toe stimulation. In an additional experiment, we investigated the same for the anticipation of a nociceptive stimulation on the thumb or toe. For his purpose, we used fMRI after an electrical stimulation of the thumb and toe in 19 adult healthy volunteers. Following nociceptive stimulation, different areas were activated by stimulation on the thumb (lobule VI ipsilaterally and Crus II mainly contralaterally) and toe (lobules VIII-IX and IV-V bilaterally and lobule VI contralaterally), i.e., were somatotopically organized. Cerebellar areas innervated non-somatotopically by both toe and thumb stimulation were the posterior vermis and Crus I, bilaterally. In the anticipation experiment, similar results were found. However, here, the somatotopically activated areas were relatively small for thumb and negligible for toe stimulation, while the largest area was innervated non-somatotopically and consisted mainly of Crus I and lobule VI bilaterally. These findings indicate that nociceptive stimulation and anticipation of nociceptive stimulation are at least partly processed by the same areas in the cerebellum. This was confirmed by an additional conjunction analysis. Based on our findings, we hypothesize that input that is organized in a somatotopical manner reflects direct input from the spinal cord, while non-somatotopically activated parts of the cerebellum receive their information indirectly through cortical and subcortical connections, possibly involved in processing contextual emotional states, like the expectation of pain.

  20. Resveratrol Restores Nrf2 Level and Prevents Ethanol-Induced Toxic Effects in the Cerebellum of a Rodent Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Kumar, Ambrish; Singh, Chandra K.; LaVoie, Holly A.; DiPette, Donald J.

    2011-01-01

    In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD. PMID:21697273

  1. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings.

    PubMed

    Ernst, T M; Beyer, L; Mueller, O M; Göricke, S; Ladd, M E; Gerwig, M; Timmann, D

    2016-05-01

    Human cerebellar lesion studies provide good evidence that the cerebellum contributes to the acquisition of classically conditioned eyeblink responses (CRs). As yet, only one study used more advanced methods of lesion-symptom (or lesion-behavior) mapping to investigate which cerebellar areas are involved in CR acquisition in humans. Likewise, comparatively few studies investigated the contribution of the human cerebellum to CR extinction and savings. In this present study, young adults with focal cerebellar disease were tested. A subset of participants was expected to acquire enough conditioned responses to allow the investigation of extinction and saving effects. 19 participants with chronic surgical lesions of the cerebellum and 19 matched control subjects were tested. In all cerebellar subjects benign tumors of the cerebellum had been surgically removed. Eyeblink conditioning was performed using a standard short delay protocol. An initial unpaired control phase was followed by an acquisition phase, an extinction phase and a subsequent reacquisition phase. Structural 3T magnetic resonance images of the brain were acquired on the day of testing. Cerebellar lesions were normalized using methods optimized for the cerebellum. Subtraction analysis and Liebermeister tests were used to perform lesion-symptom mapping. As expected, CR acquisition was significantly reduced in cerebellar subjects compared to controls. Reduced CR acquisition was significantly more likely in participants with lesions of lobule VI and Crus I extending into Crus II (p<0.05, Liebermeister test). Cerebellar subjects could be subdivided into two groups: a smaller group (n=5) which showed acquisition, extinction and savings within the normal range; and a larger group (n=14) which did not show acquisition. In the latter, no conclusions on extinction or savings could be drawn. Previous findings were confirmed that circumscribed areas in lobule VI and Crus I are of major importance in CR acquisition

  2. Dietary modulation of parathion-induced neurotoxicity in adult and juvenile rats.

    PubMed

    Liu, Jing; Karanth, Subramanya; Pope, Carey

    2005-06-01

    Previous studies indicated that dietary glucose (15% in drinking water) could markedly exacerbate the toxicity of parathion in adult rats. The present study evaluated the effect of consumption of the commonly used sweetener, high fructose corn syrup (HFCS), on parathion toxicity in adult and juvenile rats. Animals were given free access to either water or 15% HFCS in drinking water for a total of 10 days and challenged with parathion (6 or 18 mg/kg, s.c., for juveniles or adults, respectively) on the 4th day. Signs of cholinergic toxicity, body weight and chow/fluid intake were recorded daily. Acetylcholinesterase (AChE) activity and immunoreactivity (AChE-IR) in frontal cortex and diaphragm were measured at 2, 4, and 7 days after parathion. As HFCS was associated with significant reduction in chow intake, adult rats were also pair-fed to evaluate the effect of similar reduced chow intake alone on parathion toxicity. The results indicated that the cholinergic toxicity of parathion was significantly increased by HFCS feeding in both age groups. The excess sugar consumption, however, did not significantly affect parathion-induced AChE inhibition in either tissue or either age group. Enzyme immunoreactivity in frontal cortex was generally not affected in either age group while diaphragm AChE-IR was significantly reduced by parathion and HFCS alone in adult animals at 2 and 4 days timepoints, and more so by the combination of sugar feeding and parathion exposure in both age groups. Food restriction alone did not exacerbate parathion toxicity. While the mechanism(s) remains unclear, we conclude that voluntary consumption of the common sweetener HFCS can markedly amplify parathion acute toxicity in both juvenile and adult rats.

  3. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats.more » Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.« less

  4. [Effect of tail-suspension on the reproduction of adult male rats].

    PubMed

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P <0.05), while the apoptosis rate of testicular cells and the amount of abnormal sperm markedly increased (P <0.05). The content of testosterone significantly decreased (P <0.05), but the contents of FSH and LH mildly increased (P > 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  5. The organization of the human cerebellum estimated by intrinsic functional connectivity

    PubMed Central

    Krienen, Fenna M.; Castellanos, Angela; Diaz, Julio C.; Yeo, B. T. Thomas

    2011-01-01

    The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. PMID:21795627

  6. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  7. Functional imaging and the cerebellum: recent developments and challenges. Editorial.

    PubMed

    Habas, Christophe

    2012-06-01

    Recent neuroimaging developments allow a better in vivo characterization of the structural and functional connectivity of the human cerebellum. Ultrahigh fields, which considerably increase spatial resolution, enable to visualize deep cerebellar nuclei and cerebello-cortical sublayers. Tractography reconstructs afferent and efferent pathway of the cerebellum. Resting-state functional connectivity individualizes the prewired, parallel close-looped sensorimotor, cognitive, and affective networks passing through the cerebellum. These results are un agreement with activation maps obtained during stimulation functional neuroimaging or inferred from neurological deficits due to cerebellar lesions. Therefore, neuroimaging supports the hypothesis that cerebellum constitutes a general modulator involved in optimizing mental performance and computing internal models. However, the great challenges will remain to unravel: (1) the functional role of red and bulbar olivary nuclei, (2) the information processing in the cerebellar microcircuitry, and (3) the abstract computation performed by the cerebellum and shared by sensorimotor, cognitive, and affective domains.

  8. Linking Essential Tremor to the Cerebellum: Physiological Evidence.

    PubMed

    Filip, Pavel; Lungu, Ovidiu V; Manto, Mario-Ubaldo; Bareš, Martin

    2016-12-01

    Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

  9. Implications of Lateral Cerebellum in Proactive Control of Saccades.

    PubMed

    Kunimatsu, Jun; Suzuki, Tomoki W; Tanaka, Masaki

    2016-06-29

    Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased

  10. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  11. Does the cerebellum initiate movement?

    PubMed

    Thach, W T

    2014-02-01

    Opinion is divided on what the exact function of the cerebellum is. Experiments are summarized that support the following views: (1) the cerebellum is a combiner of multiple movement factors; (2) it contains anatomically fixed permanent focal representation of individual body parts (muscles and segments) and movement modes (e.g., vestibular driven vs. cognitive driven); (3) it contains flexible changing representations/memory of physical properties of the body parts including muscle strength, segment inertia, joint viscosity, and segmental interaction torques (dynamics); (4) it contains mechanisms for learning and storage of the properties in item no. 3 through trial-and-error practice; (5) it provides for linkage of body parts, motor modes, and motordynamics via the parallel fiber system; (6) it combines and integrates the many factors so as to initiate coordinated movements of the many body parts; (7) it is thus enabled to play the unique role of initiating coordinated movements; and (8) this unique causative role is evidenced by the fact that: (a) electrical stimulation of the cerebellum can initiate compound coordinated movements; (b) in naturally initiated compound movements, cerebellar discharge precedes that in downstream target structures such as motor cerebral cortex; and (c) cerebellar ablation abolishes the natural production of compound movements in the awake alert individuals.

  12. Expression of VGF mRNA in the adult rat central nervous system.

    PubMed

    Snyder, S E; Salton, S R

    1998-04-27

    VGF is a secretory peptide precursor that is expressed and processed by neuronal cells in a cell type-specific fashion. In addition, VGF transcription and secretion are rapidly and relatively selectively induced by neurotrophins and depolarization in vitro. To gain insight into the possible function(s) of VGF in the nervous system, we have carried out a detailed examination of the distribution of VGF mRNA in the adult rat central nervous system by using in situ hybridization. Robust expression was detected in many neurons throughout the brain and spinal cord, in several types of neurons in the retina, and in presumptive chromaffin cells of the adrenal medulla. In the brain, prominent expression of VGF mRNA was observed in neurons of the main and accessory olfactory bulbs; in the anterior olfactory nucleus; in the induseum griseum and taenia tecta; in the olfactory tubercle; in CA1-CA3, the hilus of the dentate gyrus, and the subicular complex of the hippocampal formation; in the piriform, periamygdaloid, transitional, and lateral entorhinal cortices; in the endopiriform nucleus; in the hypothalamus, particularly the preoptic, periventricular, supraoptic, suprachiasmatic, and arcuate nuclei; and in a number of septal, thalamic, amygdaloid, and brainstem nuclei. Labeling was also seen in neurons of the neocortex and transitional cortical areas, particularly in layer V, and in basal ganglia and cerebellum. These data demonstrate that VGF mRNA is expressed much more extensively in the brain than has been described in previous RNA or immunohistochemical studies, and, furthermore, that VGF is widely expressed in the spinal cord and retina.

  13. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    PubMed

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-09-28

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  14. Current Perspectives on the Cerebellum and Reading Development.

    PubMed

    Alvarez, Travis A; Fiez, Julie A

    2018-05-03

    The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses. Copyright © 2018. Published by Elsevier Ltd.

  15. Glucoregulatory responses of adult and aged rats after exposure to chronic stress.

    PubMed

    Odio, M R; Brodish, A

    1990-01-01

    Stress has been implicated as an environmental factor that may accelerate the process of biological aging. However, this proposal has remained largely anecdotal due to relatively few studies that directly tested this hypothesis. In the present experiments groups of 6-month-old and 20-month-old male F-344 rats were chronically stressed for a six-month period. After the last stress session, when the animals were 12 months of age (adult) and 26 months of age (old), control and chronically stressed rats were tested for their ability to: (a) elicit glucose and insulin responses to an acute, novel stressor; (b) remove a circulatory glucose load elicited either by acute stress exposure or by injection of d-glucose; and (c) raise insulin levels after a glucose challenge. In control rats, we observed a deficit in each of these parameters in old compared to adult rats. Exposure to chronic stress did not exacerbate deterioration of these response mechanisms in either adult or old rats. In fact, the data showed a modest improvement in glucose tolerance in chronically stressed compared to age-matched control rats. We conclude that chronic stress did not exacerbate age-dependent decline of glucoregulatory capacity. From these results and from our earlier work, we speculate that the decline during aging of the functional integrity of systems involved in the response to stress may be sustained by periodic challenges from the organism's external environment.

  16. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Niladri; Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9; Stamler, Christopher J.

    2005-05-15

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl{sub 2}) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl{sub 2} and MeHg on [{sup 3}H]-quinuclidinyl benzilate ([{sup 3}H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse,more » mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B {sub max}) and ligand affinity (K {sub d}). Subsequently, samples were exposed to HgCl{sub 2} or MeHg to derive IC50 values and inhibition constants (K {sub i}). Results demonstrate that HgCl{sub 2} is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [{sup 3}H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies.« less

  17. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    PubMed

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  18. Interactions of Stress and CRF in Ethanol-Withdrawal Induced Anxiety in Adolescent and Adult Rats

    PubMed Central

    Wills, Tiffany A.; Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. Methods Male adult and adolescent Sprague–Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5-days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. Results Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. Conclusions In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased

  19. Evaluation of the fetal cerebellum by magnetic resonance imaging.

    PubMed

    Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F

    Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Inherited tertiary hypothyroidism in Sprague-Dawley rats.

    PubMed

    Stoica, George; Lungu, Gina; Xie, Xueyi; Abbott, Louise C; Stoica, Heidi M; Jaques, John T

    2007-05-07

    Thyroid hormones (THs) are important in the development and maturation of the central nervous system (CNS). The significant actions of THs during CNS development occur at the time when TH levels are lower than those in the mother and the hypothalamic-thyroid (HPT) axis is not fully functional. In the developing rat nervous system, primarily the cerebellum, the first three postnatal weeks represent a period of significant sensitivity to thyroid hormones. This study presents a spontaneous, inherited recessive hypothyroidism in Sprague-Dawley rats with devastating functional consequences to the development of the CNS. The clinical signs develop around 14 day's postnatal (dpn) and are characterized by ataxia, spasticity, weight loss and hypercholesterolemia. The afflicted rats died at 30 days due to severe neurological deficits. The deterioration affects the entire CNS and is characterized by progressive neuronal morphological and biochemical changes, demyelination and astrogliosis. The cerebellum, brain stem, neocortex, hippocampus and adrenal gland medulla appear to be most affected. Thyroid Stimulating Hormone (TSH), T3 and T4 levels were significantly lower in hypothyroid rats than control. Immunohistochemistry and RT-PCR demonstrated a reduction of Thyrotropin Releasing Hormone (TRH) in the hypothalamus of hypothyroid rats. The weight of both thyroid and pituitary glands were significantly less in hypothyroid rats than the corresponding normal littermate controls. Transmission electron microscopy demonstrates consistent postsynaptic dendritic, synaptic and spine alterative changes in the brain of hypothyroid rats. These data suggest that we discovered a tertiary form of inherited hypothyroidism involving the hypothalamus.

  1. Consensus Paper: Language and the Cerebellum: an Ongoing Enigma

    PubMed Central

    Mariën, Peter; Ackermann, Herman; Adamaszek, Michael; Barwood, Caroline H. S.; Beaton, Alan; Desmond, John; De Witte, Elke; Fawcett, Angela J.; Hertrich, Ingo; Küper, Michael; Leggio, Maria; Marvel, Cherie; Molinari, Marco; Murdoch, Bruce E.; Nicolson, Roderick I.; Schmahmann, Jeremy D.; Stoodley, Catherine J.; Thürling, Markus; Timmann, Dagmar; Wouters, Ellen; Ziegler, Wolfram

    2014-01-01

    In less than three decades, the concept “cerebellar neurocognition” has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the “linguistic cerebellum” in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper. PMID:24318484

  2. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    PubMed

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  3. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  4. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  5. Age related optic nerve axonal loss in adult Brown Norway rats.

    PubMed

    Cepurna, William O; Kayton, Robert J; Johnson, Elaine C; Morrison, John C

    2005-06-01

    The effect of age on the number and morphology of optic nerve axons in adult Brown Norway rats (5-31 months old) (n=29) was examined using transmission electron microscopy (TEM). By manually counting every axon in areas representing 60% of the optic nerve cross-section, we found a significant negative correlation between age and axon count (R(2)=0.18, P<0.05). However, when the oldest animals were omitted, the relationship was no longer statistically significant. Simultaneously, the proportion of spontaneously degenerating axons increased at an exponential rate (R(2)=0.79, P<0.05), with significantly more degeneration in the 31-month group than in 5-month-old animals (ANOVA, P<0.05). This study demonstrates, using quantitative TEM methods, that optic nerve axonal numbers are relatively constant throughout the majority of the adult life of the Brown Norway rat, an increasingly popular strain for glaucoma research. Total axonal loss with aging is substantially less than that reported for other strains. The reduction in axonal numbers and the rate of axonal degeneration do not appear significantly altered until the last few months of life, failing to support some studies that have concluded that optic nerve axon loss in adult rats is linear. However, they do agree with other studies in the rat, and a similar study performed in non-human primate eyes, that concluded that aging changes in the optic nerve and retina follow a complex pattern. Therefore, the impact of animal age must be considered when modeling the course and pathophysiology of experimental glaucomatous optic nerve damage in rats.

  6. The cerebro-cerebellum: Could it be loci of forward models?

    PubMed

    Ishikawa, Takahiro; Tomatsu, Saeka; Izawa, Jun; Kakei, Shinji

    2016-03-01

    It is widely accepted that the cerebellum acquires and maintain internal models for motor control. An internal model simulates mapping between a set of causes and effects. There are two candidates of cerebellar internal models, forward models and inverse models. A forward model transforms a motor command into a prediction of the sensory consequences of a movement. In contrast, an inverse model inverts the information flow of the forward model. Despite the clearly different formulations of the two internal models, it is still controversial whether the cerebro-cerebellum, the phylogenetically newer part of the cerebellum, provides inverse models or forward models for voluntary limb movements or other higher brain functions. In this article, we review physiological and morphological evidence that suggests the existence in the cerebro-cerebellum of a forward model for limb movement. We will also discuss how the characteristic input-output organization of the cerebro-cerebellum may contribute to forward models for non-motor higher brain functions. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain.

    PubMed Central

    Urade, Y; Oberdick, J; Molinar-Rode, R; Morgan, J I

    1991-01-01

    The cerebellum contains a hexadecapeptide, termed cerebellin, that is conserved in sequence from human to chicken. Three independent, overlapping cDNA clones have been isolated from a human cerebellum cDNA library that encode the cerebellin sequence. The longest clone codes for a protein of 193 amino acids that we term precerebellin. This protein has a significant similarity (31.3% identity, 52.2% similarity) to the globular (non-collagen-like) region of the B chain of human complement component C1q. The region of relatedness extends over approximately 145 amino acids located in the carboxyl terminus of both proteins. Unlike C1q B chain, no collagen-like motifs are present in the amino-terminal regions of precerebellin. The amino terminus of precerebellin contains three possible N-linked glycosylation sites. Although hydrophobic amino acids are clustered at the amino terminus, they do not conform to the classical signal-peptide motif, and no other obvious membrane-spanning domains are predicted from the cDNA sequence. The cDNA predicts that the cerebellin peptide is flanked by Val-Arg and Glu-Pro residues. Therefore, cerebellin is not liberated from precerebellin by the classical dibasic amino acid proteolytic-cleavage mechanism seen in many neuropeptide precursors. In Northern (RNA) blots, precerebellin transcripts, with four distinct sizes (1.8, 2.3, 2.7, and 3.0 kilobases), are abundant in cerebellum. These transcripts are present at either very low or undetectable levels in other brain areas and extraneural structures. A similar pattern of cerebellin precursor transcripts are seen in rat, mouse, and human cerebellum. Furthermore, a partial genomic fragment from mouse shows the same bands in Northern blots as the human cDNA clone. During rat development, precerebellin transcripts mirror the level of cerebellin peptide. Low levels of precerebellin mRNA are seen at birth. Levels increase modestly from postpartum day 1 to 8, then increase more dramatically between

  8. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.

    PubMed

    Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun

    2017-09-01

    Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Immunotoxicity of clonazepam in adult albino rats.

    PubMed

    Rabei, Hanan Mostafa

    2013-01-01

    Clonazepam as an addictive drug is studied to elucidate its destructive effects on rats' immune system. The aim of the current work was to study the immunologic changes induced by sub-chronic administration of clonazepam for three weeks followed by a withdrawal period in adult male albino rats. Seventy-two Sprague Dawley rats were divided into three equal groups. The first group was used as control; the second and third groups were treated with clonazepam. Six rats from each group were sacrificed weekly. Data showed that clonazepam induced a significant suppression in the level of IFN-gamma cortisol production, total splenocytes count and lymphocytes transformation induced by PHA mitogen along the experimental period especially in the third group. However, subchronic doses of clonazepam increased the production of IL-10 in both treated groups. Moreover, significant DNA damage in the peripheral blood lymphocytes of both treated groups was observed along the duration of the study. In conclusion, the immune system responses can be adversely affected to a greater extent by sub-chronic administration of clonazepam and should be prescribed cautiously as patients may turn addict to it.

  10. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    PubMed

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  11. Right Lateral Cerebellum Represents Linguistic Predictability.

    PubMed

    Lesage, Elise; Hansen, Peter C; Miall, R Chris

    2017-06-28

    Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and

  12. Computational modeling of diffusion in the cerebellum.

    PubMed

    Marinov, Toma M; Santamaria, Fidel

    2014-01-01

    Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance. © 2014 Elsevier Inc. All rights reserved.

  13. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    PubMed

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  14. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    NASA Astrophysics Data System (ADS)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  15. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training.

    PubMed

    Borges, Mariana Eiras; Ribeiro, Alessandra Mussi; Pauli, José Rodrigo; Arantes, Luciana Mendonça; Luciano, Eliete; de Moura, Leandro Pereira; de Almeida Leme, José Alexandre Curiacos; Medeiros, Alessandra; Bertolini, Natália Oliveira; Sibuya, Clarice Yoshiko; Gomes, Ricardo José

    2017-02-03

    The Diabetes Mellitus (DM) is a chronic disease associated with loss of brain regions such as the cerebellum, increasing the risk of developing neurodegenerative diseases such as Parkinson's disease (PD). In the brain of diabetic and PD organisms the insulin/IGF-1 signaling is altered. Exercise training is an effective intervention for the prevention of neurodegerative diseases since it release neurotrophic factors and regulating insulin/IGF-1 signaling in the brain. This study aimed to evaluate the proteins involved in the insulin/IGF-1 pathway in the cerebellum of diabetic rats subjected to exercise training protocol. Wistar rats were distributed in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32mg/kgb.w.). The training program consisted in swimming 5days/week, 1h/day, during 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. At the end, cerebellum was extracted to determinate the protein expression of GSK-3β, IRβ and IGF-1R and the phosphorylation of β-amyloid, Tau, ERK1+ERK2 by Western Blot analysis. All dependent variables were analyzed by one-way analysis of variance with significance level of 5%. Diabetes causes hyperglycemia in both diabetic groups; however, in TD, there was a reduction in hyperglycemia compared to SD. Diabetes increased Tau and β-amyloid phosphorylation in both SD and TD groups. Furthermore, aerobic exercise increased ERK1+ERK2 expression in TC. The data showed that in cerebellum of diabetic rats induced by alloxan there are some proteins expression like Parkinson cerebellum increased, and the exercise training was not able to modulate the expression of these proteins. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Computational Architecture of the Granular Layer of Cerebellum-Like Structures.

    PubMed

    Bratby, Peter; Sneyd, James; Montgomery, John

    2017-02-01

    In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.

  17. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats.

    PubMed

    Mohamed, M; Sulaiman, S A; Jaafar, H; Sirajudeen, K N S

    2012-05-01

    The aim of this study was to evaluate the effect of different doses of Malaysian honey on male reproductive parameters in adult rats. Thirty-two healthy adult male Sprague-Dawley rats were randomly divided into four groups (eight rats per group). Group 1 (control group) was given 0.5 ml of distilled water. Groups 2, 3 and 4 were given 0.2, 1.2 and 2.4 g kg(-1) body weight of honey respectively. The rats were treated orally by gavage once daily for 4 weeks. Honey did not significantly alter body and male reproductive organs weights. The rats in Group 3 which received honey at 1.2 g kg(-1) had significantly higher epididymal sperm count than those in Groups 1, 2 and 4. No significant differences were found for the percentage of abnormal sperm, elongated spermatid count, reproductive hormonal levels as well as the histology of the testis among the groups. In conclusion, Malaysian honey at a dose of 1.2 g kg(-1) daily significantly increased epididymal sperm count without affecting spermatid count and reproductive hormones. These findings might suggest that oral administration of honey at this dose for 4 weeks may enhance spermiogenesis in adult rats. © 2011 Blackwell Verlag GmbH.

  18. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreasesmore » significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.« less

  19. Early treatment with metformin induces resistance against tumor growth in adult rats

    PubMed Central

    Trombini, Amanda B; Franco, Claudinéia CS; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane AS; Fabricio, Gabriel S; de Sant’Anna, Juliane R; Castro-Prado, Marialba AA; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo CF

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  20. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  1. Fertilizability of Superovulated Eggs by Estrous Stage-independent PMSG/hCG Treatment in Adult Wistar-Imamichi Rats

    PubMed Central

    Kon, Hiroe; Hokao, Ryoji; Shinoda, Motoo

    2014-01-01

    We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs. PMID:24770643

  2. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats

    PubMed Central

    Carroll, Marilyn E.

    2010-01-01

    Rationale In human and animal studies, adolescence marks a period of increased vulnerability to the initiation and subsequent abuse of drugs. Adolescents may be especially vulnerable to relapse, and a critical aspect of drug abuse is that it is a chronically relapsing disorder. However, little is known of how vulnerability factors such as adolescence are related to conditions that induce relapse, triggered by the drug itself, drug-associated cues, or stress. Objective The purpose of this study was to compare adolescent and adult rats on drug-, cue-, and stress-induced reinstatement of cocaine-seeking behavior. Methods On postnatal days 23 (adolescents) and 90 (adults), rats were implanted with intravenous catheters and trained to lever press for i.v. infusions of cocaine (0.4 mg/kg) during two daily 2-h sessions. The rats then self-administered i.v. cocaine for ten additional sessions. Subsequently, visual and auditory stimuli that signaled drug delivery were unplugged, and rats were allowed to extinguish lever pressing for 20 sessions. Rats were then tested on cocaine-, cue-, and yohimbine (stress)-induced cocaine seeking using a within-subject multicomponent reinstatement procedure. Results Results indicated that adolescents had heightened cocaine seeking during maintenance and extinction compared to adults. During reinstatement, adolescents (vs adults) responded more following cocaine- and yohimbine injections, while adults (vs adolescents) showed greater responding following presentations of drug-associated cues. Conclusion These results demonstrated that adolescents and adults differed across several measures of drug-seeking behavior, and adolescents may be especially vulnerable to relapse precipitated by drugs and stress. PMID:19953228

  3. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia

    PubMed Central

    Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S.; Smith, Yoland; Jinnah, H. A.; Hess, Ellen J.; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S.; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C.; Strick, Peter L.

    2016-01-01

    A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia.Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia.Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems.Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin. PMID:27734238

  4. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia.

    PubMed

    Shakkottai, Vikram G; Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S; Smith, Yoland; Jinnah, H A; Hess, Ellen J; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C; Strick, Peter L

    2017-04-01

    A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.

  5. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    PubMed

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  6. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  7. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    PubMed

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  8. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  9. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats.

    PubMed

    Lukas, Michael; Bredewold, Remco; Landgraf, Rainer; Neumann, Inga D; Veenema, Alexa H

    2011-07-01

    Early life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat. Juvenile control and MS rats demonstrated successful social recognition at inter-exposure intervals of 30 and 60 min. However, unlike adult control rats, adult MS rats failed to discriminate between a previously encountered and a novel rat after 60 min. The social recognition impairment of adult MS rats was accompanied by a lack of a rise in arginine vasopressin (AVP) release within the lateral septum seen during social memory acquisition in adult control rats. This blunted response of septal AVP release was social stimulus-specific because forced swimming induced a rise in septal AVP release in both control and MS rats. Retrodialysis of AVP (1 μg/ml, 3.3 μl/min, 30 min) into the lateral septum during social memory acquisition restored social recognition in adult MS rats at the 60-min interval. These studies demonstrate that MS impairs social recognition performance in adult rats, which is likely caused by blunted septal AVP activation. Impaired social recognition may be linked to MS-induced changes in other social behaviors like aggression as shown previously. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats.

    PubMed

    Glenn, Melissa J; Adams, Raven S; McClurg, Lauren

    2012-03-14

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Moving Forward: Age Effects on the Cerebellum Underlie Cognitive and Motor Declines

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.

    2014-01-01

    Though the cortical contributions to age-related declines in motor and cognitive performance are well-known, the potential contributions of the cerebellum are less clear. The diverse functions of the cerebellum make it an important structure to investigate in aging. Here, we review the extant literature on this topic. To date, there is evidence to indicate that there are morphological age differences in the cerebellum that are linked to motor and cognitive behavior. Cerebellar morphology is often as good as -- or even better -- at predicting performance than the prefrontal cortex. We also touch on the few studies using functional neuroimaging and connectivity analyses that further implicate the cerebellum in age-related performance declines. Importantly, we provide a conceptual framework for the cerebellum influencing age differences in performance, centered on the notion of degraded internal models. The evidence indicating that cerebellar age differences associate with performance highlights the need for additional work in this domain to further elucidate the role of the cerebellum in age differences in movement control and cognitive function. PMID:24594194

  12. Prenatal Opiate Exposure Attenuates LPS-Induced Fever in Adult Rats: Role of Interleukin-1β

    PubMed Central

    Hamilton, Kathryn L.; Franklin, La’Tonyia M.; Roy, Sabita; Schrott, Lisa M.

    2009-01-01

    Much is known about the immunomodulatory effects of opiate exposure and withdrawal in adult rats. However, little research has delved into understanding the immunological consequences of prenatal opiate exposure and postnatal withdrawal. The purpose of the current study was to measure changes in responding to immune stimulation in adult rats following prenatal opiate exposure. Further, we sought to characterize the role of interleukin (IL)-1β in these changes. Following prenatal exposure to the long-acting opiate l-alpha-acetylmethadol (LAAM), adult male and female rats were assessed for their fever response to lipopolysaccharide (LPS). Blood and tissue samples were collected to measure circulating IL-1β and IL-1β protein in the hypothalamus and spleen. Prenatal LAAM exposure resulted in a blunted fever response to LPS injection without any changes in basal body temperature or in response to saline injection. Circulating IL-1β was not affected by prenatal LAAM exposure, nor was IL-1β protein in the spleen. Interestingly, mature IL-1β protein was elevated in the hypothalamus of prenatally LAAM-treated rats. These results indicate that prenatal opiate exposure blunts the fever response of adult offspring. Direct action of IL-1β is likely not the cause of the dysfunction reported here. However, alterations in signaling mechanisms downstream from IL-1β may play a role in the altered fever response in adult rats treated prenatally with opiates. PMID:17196563

  13. Effects of Intravenous Administration of Human Umbilical Cord Blood Stem Cells in 3-Acetylpyridine-Lesioned Rats

    PubMed Central

    Calatrava-Ferreras, Lucía; Gonzalo-Gobernado, Rafael; Herranz, Antonio S.; Reimers, Diana; Montero Vega, Teresa; Jiménez-Escrig, Adriano; Richart López, Luis Alberto; Bazán, Eulalia

    2012-01-01

    Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs) have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP) rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders. PMID:23150735

  14. Temporal learning in the cerebellum: The microcircuit model

    NASA Technical Reports Server (NTRS)

    Miles, Coe F.; Rogers, David

    1990-01-01

    The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior.

  15. Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.

    PubMed

    Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L

    2014-07-01

    Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.

  16. Regulation of Peripheral Catecholamine Responses to Acute Stress in Young Adult and Aged F-344 Rats.

    PubMed

    McCarty; Pacak; Goldstein; Eisenhofer

    1997-12-01

    Young adult (3-month-old) and aged (24-month-old) Fischer-344 male rats received i.v. infusions of 3H-labeled norepinephrine (NE) and epinephrine (EPI) to examine the effects of aging on the neuronal uptake of NE and sympathoadrenal release of NE and EPI. Spillovers of NE and EPI into plasma and their clearance from the circulation were estimated from plasma concentrations of endogenous and 3H-labeled NE and EPI. The efficiency of neuronal uptake was assessed from changes in plasma clearance of NE and concentrations of its intraneuronal metabolite, dihydroxyphenylglycol (DHPG), during immobilization stress or neuronal uptake blockade with desipramine. Stress-induced increases in plasma NE and higher plasma NE concentrations in aged compared to young adult rats were due to both decreases in NE clearance and increases in NE spillover. EPI spillover and clearance were reduced in aged compared to young adult rats, so that plasma EPI levels did not differ between groups. Young adult and aged rats had similar desipramine-induced decreases in NE clearance, whereas desipramine-sensitive decreases and stress-induced increases in plasma DHPG were larger in aged rats. This indicates that neuronal uptake is intact and that increased NE spillover at rest and during stress in aged rats reflects increased NE release from sympathetic nerves. The results show that aging is associated with divergent decreases in EPI release from the adrenal medulla and increases in NE release from sympathetic nerves. Increased plasma concentrations of NE in aged compared to young adult rats also result from decreased circulatory clearance of NE, but this does not reflect any age-related impairment of NE reuptake.

  17. Visuomotor cerebellum in human and nonhuman primates.

    PubMed

    Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I

    2012-06-01

    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.

  18. Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients.

    PubMed

    Bullock, W Michael; Cardon, Karen; Bustillo, Juan; Roberts, Rosalinda C; Perrone-Bizzozero, Nora I

    2008-12-01

    Deficits in gamma-aminobutyric acid (GABA) signaling have been described in the prefrontal cortex, limbic system, and cerebellum in individuals with schizophrenia. The purpose of the present study was to further investigate cerebellar gene expression alterations as they relate to decreases in GABAergic transmission by examining the expression of GABAergic markers, N-methyl-d-aspartic-acid (NMDA) receptor subunits, and cerebellum neuromodulators in individuals with schizophrenia. Subjects were postmortem men with a diagnosis of schizophrenia (N=13) and a postmortem interval-matched non-psychiatric male comparison group (N=13). The authors utilized real-time-quantitative polymerase chain reaction (PCR) to measure mRNA levels of the following GABAergic markers: glutamic acid decarboxylase (GAD) 65 and 67; GABA plasma membrane transporter-1 (GAT-1); GABA type A (GABA(A)) receptor subunits alpha(6), beta(3), and delta; and parvalbumin. In addition, real-time-quantitative PCR was utilized to assess mRNA levels of the NMDA receptor (NR) subunits NR1, NR2-A, NR2-B, NR2-C, and NR2-D as well as the cerebellar neuromodulators glutamate receptor (GluR)-6, kainate-preferring glutamate receptor subunit-2 (KA2), metabotropic glutamate receptor (mGluR)-2 and mGluR3, and neuronal nitric oxide synthase. Measurements for mRNA levels were determined using lateral cerebellar hemisphere tissue from both schizophrenia and comparison subjects. Schizophrenia subjects showed significant decreases in mRNA levels of GAD(67), GAD(65), GAT-1, mGluR2, and neuronal nitric oxide synthase. Increases in GABA(A)-alpha(6 )and GABA(A)-delta as well as GluR6 and KA2 were also observed. Medication effects on the expression of the same genes were examined in rats treated with either haloperidol (Sprague-Dawley rats [N=16]) or clozapine (Long-Evans rats [N=20]). Both haloperidol and clozapine increased the levels of GAD(67) in the cerebellum and altered the expression of other cerebellar mRNAs. These

  19. Where did the motor function of the cerebellum come from?

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo

    2015-01-01

    Until the end of 18th century, the role of the cerebellum remained obscure. The turning point occurred when Luigi Galvani showed that muscle contraction is due to electricity and Alessandro Volta produced the battery, an apparatus based on the pairing of silver and zinc plates separated by brine soaked paper disks, capable to generate electricity. Luigi Rolando, at beginning of 19th century, was impressed by these two observations. He thought that, since the brain generates the movement, it must contain a device generating electricity. As a battery, it should be formed by overlapping disks and the cerebellum for Rolando seemed to be the right structure for such a characteristic laminar organization. He argued that, if the cerebellum is the battery that produces electricity for muscle activity, its removal would produce paralysis. Consequently, Rolando removed the cerebellum in a young goat and observed that the animal, before dying, could no longer stand up. He concluded that the cerebellum is a motor structure as it generates the electricity which produces the movement. The conclusions of Rolando were criticized by Marie-Jean-Pierre Flourens who observed that animals undergoing cerebellectomy were still able to move, even if with problems of balance. Flourens concluded that the role of the cerebellum "is to put in order or to coordinate movements wanted by certain parts of the nervous system, excited by others". It was necessary to wait up to 1891 when Luigi Luciani, observing a dog survived the cerebellectomy, described a triad of symptoms (asthenia, atony and astasis), unquestionably of cerebellar origin.

  20. Oleamide restores sleep in adult rats that were subjected to maternal separation.

    PubMed

    Reyes Prieto, Nidia M; Romano López, Antonio; Pérez Morales, Marcel; Pech, Olivia; Méndez-Díaz, Mónica; Ruiz Contreras, Alejandra E; Prospéro-García, Oscar

    2012-12-01

    Maternal separation (MS) induces a series of changes in rats' behavior; among them a reduction in spontaneous sleep. One potentially impaired system is the endocannabinoid system (eCBs), since it contributes to generate sleep. To investigate if there are situations early in life that affect the eCBs, which would contribute to make rats vulnerable to suffering insomnia, we studied the rodent model of MS. Rats were separated from their mothers for 3h-periods daily, from postnatal day (PND) 2 to PND 16. Once they gained 250g of body weight (adult rats), they were implanted with electrodes to record the sleep-waking cycle (SWC). MS rats and non-MS (NMS) siblings were assigned to one of the following groups: vehicle, oleamide (OLE, an agonist of the cannabinoid receptor 1, CB1R), OLE+AM251 (an antagonist of the CB1R) and AM251 alone. Expression of the CBR1 receptor was also analyzed in the frontal cortex (FCx) and in the hippocampus (HIP) of both NMS and MS rats. Results indicated that MS induced a reduction in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep with the consequent increase in waking (W) as compared to NMS siblings. OLE normalized the SWC, and AM251 blocked such an effect. CB1R expression was reduced in the FCx and in the HIP of MS rats. Our results indicate that MS reduces sleep and CB1R expression and OLE improves sleep in adult rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Event-Related Potential responses to the acute and chronic effects of alcohol in adolescent and adult Wistar rats

    PubMed Central

    Ehlers, Cindy L.; Desikan, Anita; Wills, Derek N.

    2014-01-01

    Background The present study explored the hypothesis that adolescent ethanol exposure may cause long lasting changes in ethanol sensitivity by exploring the age-related effects of acute alcohol on intoxication and on event-related potential (ERP) responses to acoustic stimuli in ethanol naïve adolescent and adult male Wistar rats and in adult rats that were exposed to chronic ethanol/control conditions during adolescence. Methods Ethanol naïve adolescent (postnatal day 32 (PD32)) and adult male rats (PD99) were included in the first study. In a second study, rats were exposed to 5 weeks of ethanol vapor (Blood ethanol concentrations @ 175 mg%) or air from PD24 to PD59 and allowed to mature until PD90. In both studies rats were implanted with cortical recording electrodes, and the effects of acute ethanol (0.0, 1.5, and 3.0 g/kg) on behavioral and ERP responses were assessed. Results Adolescents were found to have higher amplitude and longer latency P3a and P3b components at baseline as compared to adult rats, and ethanol was found to produce a robust dose-dependent increase in the latency of the P3a and P3b components of the auditory ERP recorded in cortical sites in both adolescents and adults. However, ethanol produced significantly larger delays in P3a and P3b latencies in adults as compared to adolescents. Acute ethanol administration was also found to produce a robust dose dependent increase in the latency of the P3a and P3b components in adult animals exposed to ethanol vapor as adolescents and air exposed controls; however, larger acute ethanol-induced increases in P3a and P3b latencies were seen in controls as compared to adolescent vapor exposed rats. Conclusions Adolescent rats have a less intense P3 latency response to acute ethanol administration when compared to adult rats. Exposure to chronic ethanol during adolescence can cause “retention” of the adolescent phenotype of reduced P3 latency sensitivity to ethanol. PMID:24483322

  2. The volume of the cerebellum in the second semester of gestation.

    PubMed

    Vulturar, Damiana; Fărcăşanu, Alexandru; Turcu, Flaviu; Boitor, Dan; Crivii, Carmen

    2018-01-01

    The cerebellum ("little brain"), the largest part of hind brain, lies in the posterior cranial fossa, beneath the occipital lobe and dorsal to the brainstem. It develops over a long period: it is one of the first structures in the brain to begin to differentiate, but one of the last to mature. The use of ultrasonography has significantly improved the evaluation of fetal growth and development and has permitted prenatal diagnosis of a variety of congenital malformations.The aim of our study was to evaluate the cerebellar growth and development using 2 different measuring techniques: microMRI and ultrasound technique. The cerebellum measurements were related to gestational age. We used 14 human fetuses corresponding to 15-28 gestational weeks, immersed in a 9% formalin solution. Magnetic Resonance Imaging (MRI) was performed by employing a Bruker BioSpec 70/16USR scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany), operated at 7.04 Tesla for cerebellar volume measurement. Ultrasonographic measurements of the cerebellum diameter were performed on 14 pregnant women, 15 - 28 gestational weeks. Ultrasound scan used 5-10 MHZ for transvaginal approach. Taking into consideration the values of the cerebellum dimensions and considering the general shape of the cerebellum as a transverse ellipsoid, the volume of the cerebellum was calculated by a mathematical formula for ellipsoid volume. The study correlates the measurements from the microMRI study with the ultrasounds data and the results are superposable. Both established the exponential volume growth after the 22-23 GW. We used the ellipsoid volume formula for the cerebellar volume using the half of the three diameters of the cerebellum determined by ultrasound measurements:Cerebellar Volume = Ellipsoid volume = 3/4 π r1 r2 r3. There is a linear correlation between the microMRI measurements and ultrasound determinations. Based on all collected data we could apply an easy formula to calculate the volume of cerebellum, a

  3. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    PubMed

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  4. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    PubMed

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  5. A case of adult anaplastic cerebellar ganglioglioma.

    PubMed

    Bouali, Sofiene; Maatar, Nidhal; Zehani, Alia; Mahmoud, Maha; Kallel, Jalel; Jemel, Hafedh

    2018-01-01

    Anaplastic posterior fossa ganglioglioma in adults is exceedingly rare. To date, only one case of adult anaplastic posterior fossa ganglioglioma has been reported in the English literature and none has been described at the cerebellum. To our knowledge, this report is the third case of malignant posterior fossa ganglioglioma in adults and the first at the cerebellum. In general, this entity can be misdiagnosed preoperatively as a primary posterior fossa neoplasm, and by reporting our clinical and radiographic observations we want to add to the existing literature on this rare entity. A 40-year-old man presented with a history of headaches and dizziness and progressive gait disturbance and was diagnosed with anaplastic ganglioglioma in the posterior fossa. Although rare, our case demonstrates that anaplastic ganglioglioma should be considered in the differential diagnosis of infratentorial tumors in adult patients.

  6. Copolymer-1 enhances cognitive performance in young adult rats

    PubMed Central

    Meneses, Alfredo; Cruz-Martínez, Yolanda; Anaya-Jiménez, Rosa María; Liy-Salmerón, Gustavo; Carvajal, Horacio Guillermo; Ponce-López, Maria Teresa

    2018-01-01

    Cognitive impairment is a dysfunction observed as a sequel of various neurodegenerative diseases, as well as a concomitant element in the elderly stages of life. In clinical settings, this malfunction is identified as mild cognitive impairment. Previous studies have suggested that cognitive impairment could be the result of a reduction in the expression of brain-derived neurotrophic factor (BDNF) and/or immune dysfunction. Copolymer-1 (Cop-1) is an FDA-approved synthetic peptide capable of inducing the activation of Th2/3 cells, which are able to release BDNF, as well as to migrate and accumulate in the brain. In this study, we evaluated the effect of Cop-1 immunization on improvement of cognition in adult rats. For this purpose, we performed four experiments. We evaluated the effect of Cop-1 immunization on learning/memory using the Morris water maze for spatial memory and autoshaping for associative memory in 3- or 6-month-old rats. BDNF concentrations at the hippocampus were determined by ELISA. Cop-1 immunization induced a significant improvement of spatial memory and associative memory in 6-month-old rats. Likewise, Cop-1 improved spatial memory and associative memory when animals were immunized at 3 months and evaluated at 6 months old. Additionally, Cop-1 induced a significant increase in BDNF levels at the hippocampus. To our knowledge, the present investigation reports the first instance of Cop-1 treatment enhancing cognitive function in normal young adult rats, suggesting that Cop-1 may be a practical therapeutic strategy potentially useful for age- or disease-related cognitive impairment. PMID:29494605

  7. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength

  8. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats

    PubMed Central

    Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren

    2012-01-01

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146

  9. A sex difference in oxidative stress and behavioral suppression induced by ethanol withdrawal in rats

    PubMed Central

    Jung, Marianna E.; Metzger, Daniel B.

    2016-01-01

    Ethanol withdrawal (EW) is referred to the abrupt termination of long-term heavy drinking, and provokes oxidative brain damage. Here, we investigated whether the cerebellum and hippocampus of female rats are less affected by prooxidant EW than male rats due to the antioxidant effect of 17β-estradiol (E2). Female and male rats received a four-week ethanol diet and three-week withdrawal per cycle for two cycles. Some female rats were ovariectomized with E2 or antioxidant (Vitamin E+Co-Q10) treatment. Measurements were cerebellum (Rotarod) and hippocampus (water-maze)-related behaviors, oxidative markers (O2•−, malondialdehyde, protein carbonyls), mitochondrial membrane swelling, and a key mitochondrial enzyme, cytochrome c oxidase (CcO). Separately, HT22 (hippocampal) cells were subjected to ethanol-exposure and withdrawal for two cycles to assess the effect of a CcO inhibitor on E2’s protection for mitochondrial respiration and cell viability. Ethanol-withdrawn female rats showed a smaller increase in oxidative markers in cerebellum and hippocampus than male rats, and E2 treatment decreased the oxidative markers. Compared to male counterparts, ethanol-withdrawn female rats showed better Rotarod but poorer water-maze performance, accompanied by more severe mitochondrial membrane swelling and CcO suppression in hippocampus. E2 or antioxidant treatment improved Rotarod but not water-maze performance. In the presence of a CcO inhibitor, E2 treatment failed to protect mitochondrial respiration and cell viability from EW. These data suggest that antioxidant E2 contributes to smaller oxidative stress in ethanol-withdrawn female than male rats. They also suggest that EW-induced severe mitochondrial damage in hippocampus may blunt E2’s antioxidant protection for hippocampus-related behavior. PMID:27503149

  10. Hyperforin alleviates mood deficits of adult rats suffered from early separation.

    PubMed

    Zhu, Minghui; Liu, Chunhua; Qin, Xuan; Yang, Zhuo

    2015-11-03

    In this study, we aimed to explore the effect of hyperforin (Hyp) on adult rats suffered from early separation. Wistar infant rats were randomly divided into three groups: control group (CON), early separation from parents group (ESP), and early separation from parents+treatment with 3mg/kg/day Hyp group (ESP+Hyp). Postnatal rats of ESP group and ESP+Hyp group were separated from their mothers for 6h every day on the 14th day after birth, and this separation lasted for 3 weeks, while rats of CON group had no separation. Hyperforin was intragastric administrated on the 21th day after birth, and lasted for 2 weeks in ESP+Hyp group. After separation, adult rats were evaluated by using the open field test (OFT), novelty suppressed feeding test (NSF) and forced swimming test (FST). In OFT, time spent in central grids was much shorter in ESP group compared with that of CON group. After treatment with hyperforin, time spent in central area was much longer compared with that of ESP group. In NSF, the feeding latency of ESP group was much longer than that of CON group. After treatment with hyperforin, the feeding latency was shorter compared with that of ESP group. In FST, score of ESP group was markedly higher than that of CON group. Interestingly, the score was obviously lower in ESP+Hyp group than that of ESP group. In conclusion, these results suggest that hyperforin is able to alleviate anxiety and remit depression in ESP rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Differential DNA damage in response to the neonatal and adult excitotoxic hippocampal lesion in rats.

    PubMed

    Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K

    2000-12-01

    We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.

  12. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  13. Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats.

    PubMed

    Nelli, Giribabu; Pamanji, Sreenivasula Reddy

    2017-08-01

    Di-n-butyl phthalate (DBP) is extensively used as plasticizer, and it was ubiquitary released into the environment. The present study was aimed to investigate the effect of DBP on reproductive competence in adult male rats. Adult male rats were received corn oil or DBP injection intraperitoneally (ip) at 100 and 500 mg/kg body weight on 90, 97, 104, and 111 days. Following completion of the experimental period, adult male rats were cohabitated with untreated proestrus female rats for determination of fertilization capacity. Then, adult male rats were sacrificed, and other reproductive endpoints were determined by histopathology and biochemical analysis. The results revealed significant reduction of fertilization potential by decrease mating, fertility indices with increase pre-implantation and post-implantation losses, and resorptions in normal female rat cohabitation with DBP-treated adult male rats. The testes, seminal vesicle tissue somatic indices, epididymal sperm count, motility, viability, and hypoosmotic swelling (HOS) sperm were significantly decreased with increased sperm morphological abnormalities in DBP-treated adult male rats. The disorientation of spermatogenic cells decreased the diameter and epithelial thickness of seminiferous tubule in the testicular histopathology of DBP-exposed rats. Significant reduction of testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase enzyme levels and serum testosterone with increased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were observed in DBP-treated groups. Higher testicular oxidative stress marker (lipid peroxidation product) with lower antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase levels in DBP-exposed groups was observed. From these results, it can be concluded that DBP increases oxidative stress; it leads to impairment of spermatogenesis, steroidogenesis, and fertility in adult male rats.

  14. Consensus paper: the role of the cerebellum in perceptual processes.

    PubMed

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  15. Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?

    PubMed

    Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie

    2011-10-10

    Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    PubMed Central

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  17. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    PubMed

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    PubMed Central

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  19. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    PubMed

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  20. Effects of analogues of substance P fragments on the MAO activity in rat brain.

    PubMed

    Turska, E; Lachowicz, L; Koziołkiewicz, W; Wasiak, T

    1985-01-01

    The influence in vitro of analogues of Sp5-11 and SP6-11 substance P fragments on the activity of monoamine oxidase (MAO) in homogenates and crude mitochondrial fractions of rat brain was examined. The rat brain was divided into: I--cerebral cortex, II--hippocampus, III--midbrain, IV--thalamus with hypothalamus, V--cerebellum and VI--medulla oblongata. The obtained results proved that the analogues of SP fragments inhibit selectively the activity of the enzyme in the homogenates of cerebral cortex, hippocampus, midbrain and cerebellum. In the crude mitochondrial fractions the applied analogues of SP fragments caused a slight increase of the enzyme activity. The most significant changes in the activity of MAO were observed in hippocampus homogenate fraction.

  1. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence.

    PubMed

    Miranda, A; Mickle, A; Schmidt, J; Zhang, Z; Shaker, R; Banerjee, B; Sengupta, J N

    2011-07-01

    The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms. Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days [(postnatal (PN) days 14-16)]. The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissues. CRD- or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-d-aspartic acid (NMDA)-NR1 subunit in the lumbo-sacral (L6-S1) spinal cord was examined using Western blot. The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan-treated rats was significantly higher than the saline-treated control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (P>0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared with saline-treated rats (P<0.05). Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does result in overexpression of spinal NR1 subunit in adult rats. © 2011 Blackwell Publishing Ltd.

  2. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Linking Essential Tremor to the Cerebellum: Clinical Evidence.

    PubMed

    Benito-León, Julián; Labiano-Fontcuberta, Andrés

    2016-06-01

    Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.

  4. In vivo three-photon imaging of deep cerebellum

    NASA Astrophysics Data System (ADS)

    Wang, Mengran; Wang, Tianyu; Wu, Chunyan; Li, Bo; Ouzounov, Dimitre G.; Sinefeld, David; Guru, Akash; Nam, Hyung-Song; Capecchi, Mario R.; Warden, Melissa R.; Xu, Chris

    2018-02-01

    We demonstrate three-photon microscopy (3PM) of mouse cerebellum at 1 mm depth by imaging both blood vessels and neurons. We compared 3PM and 2PM in the mouse cerebellum for imaging green (using excitation sources at 1300 nm and 920 nm, respectively) and red fluorescence (using excitation sources at 1680 nm and 1064 nm, respectively). 3PM enabled deeper imaging than 2PM because the use of longer excitation wavelength reduces the scattering in biological tissue and the higher order nonlinear excitation provides better 3D localization. To illustrate these two advantages quantitatively, we measured the signal decay as well as the signal-to-background ratio (SBR) as a function of depth. We performed 2-photon imaging from the brain surface all the way down to the area where the SBR reaches 1, while at the same depth, 3PM still has SBR above 30. The segmented decay curve shows that the mouse cerebellum has different effective attenuation lengths at different depths, indicating heterogeneous tissue property for this brain region. We compared the third harmonic generation (THG) signal, which is used to visualize myelinated fibers, with the decay curve. We found that the regions with shorter effective attenuation lengths correspond to the regions with more fibers. Our results indicate that the widespread, non-uniformly distributed myelinated fibers adds heterogeneity to mouse cerebellum, which poses additional challenges in deep imaging of this brain region.

  5. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    PubMed Central

    van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.

    2015-01-01

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291

  6. The cerebellum ages slowly according to the epigenetic clock.

    PubMed

    Horvath, Steve; Mah, Vei; Lu, Ake T; Woo, Jennifer S; Choi, Oi-Wa; Jasinska, Anna J; Riancho, José A; Tung, Spencer; Coles, Natalie S; Braun, Jonathan; Vinters, Harry V; Coles, L Stephen

    2015-05-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2x10-9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8x10-3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases.

  7. The cerebellum ages slowly according to the epigenetic clock

    PubMed Central

    Horvath, Steve; Mah, Vei; Lu, Ake T.; Woo, Jennifer S.; Choi, Oi-Wa; Jasinska, Anna J.; Riancho, José A.; Tung, Spencer; Coles, Natalie S.; Braun, Jonathan; Vinters, Harry V.; Coles, L. Stephen

    2015-01-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2×10−9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8×10−3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases. PMID:26000617

  8. A case of adult anaplastic cerebellar ganglioglioma

    PubMed Central

    Bouali, Sofiene; Maatar, Nidhal; Zehani, Alia; Mahmoud, Maha; Kallel, Jalel; Jemel, Hafedh

    2018-01-01

    Background: Anaplastic posterior fossa ganglioglioma in adults is exceedingly rare. To date, only one case of adult anaplastic posterior fossa ganglioglioma has been reported in the English literature and none has been described at the cerebellum. To our knowledge, this report is the third case of malignant posterior fossa ganglioglioma in adults and the first at the cerebellum. In general, this entity can be misdiagnosed preoperatively as a primary posterior fossa neoplasm, and by reporting our clinical and radiographic observations we want to add to the existing literature on this rare entity. Case Description: A 40-year-old man presented with a history of headaches and dizziness and progressive gait disturbance and was diagnosed with anaplastic ganglioglioma in the posterior fossa. Conclusions: Although rare, our case demonstrates that anaplastic ganglioglioma should be considered in the differential diagnosis of infratentorial tumors in adult patients. PMID:29527389

  9. Emotion and Theory of Mind in Schizophrenia-Investigating the Role of the Cerebellum.

    PubMed

    Mothersill, Omar; Knee-Zaska, Charlotte; Donohoe, Gary

    2016-06-01

    Social cognitive dysfunction, including deficits in facial emotion recognition and theory of mind, is a core feature of schizophrenia and more strongly predicts functional outcome than neurocognition alone. Although traditionally considered to play an important role in motor coordination, the cerebellum has been suggested to play a role in emotion processing and theory of mind, and also shows structural and functional abnormalities in schizophrenia. The aim of this systematic review was to investigate the specific role of the cerebellum in emotion and theory of mind deficits in schizophrenia using previously published functional neuroimaging studies. PubMed and PsycINFO were used to search for all functional neuroimaging studies reporting altered cerebellum activity in schizophrenia patients during emotion processing or theory of mind tasks, published until December 2014. Overall, 14 functional neuroimaging studies were retrieved. Most emotion studies reported lower cerebellum activity in schizophrenia patients relative to healthy controls. In contrast, the theory of mind studies reported mixed findings. Altered activity was observed across several posterior cerebellar regions involved in emotion and cognition. Weaker cerebellum activity in schizophrenia patients relative to healthy controls during emotion processing may contribute to blunted affect and reduced ability to recognise emotion in others. This research could be expanded by examining the relationship between cerebellum function, symptomatology and behaviour, and examining cerebellum functional connectivity in patients during emotion and theory of mind tasks.

  10. Gene expression profile analysis of rat cerebellum under acute alcohol intoxication.

    PubMed

    Zhang, Yu; Wei, Guangkuan; Wang, Yuehong; Jing, Ling; Zhao, Qingjie

    2015-02-25

    Acute alcohol intoxication, a common disease causing damage to the central nervous system (CNS) has been primarily studied on the aspects of alcohol addiction and chronic alcohol exposure. The understanding of gene expression change in the CNS during acute alcohol intoxication is still lacking. We established a model for acute alcohol intoxication in SD rats by oral gavage. A rat cDNA microarray was used to profile mRNA expression in the cerebella of alcohol-intoxicated rats (experimental group) and saline-treated rats (control group). A total of 251 differentially expressed genes were identified in response to acute alcohol intoxication, in which 208 of them were up-regulated and 43 were down-regulated. Gene ontology (GO) term enrichment analysis and pathway analysis revealed that the genes involved in the biological processes of immune response and endothelial integrity are among the most severely affected in response to acute alcohol intoxication. We discovered five transcription factors whose consensus binding motifs are overrepresented in the promoter region of differentially expressed genes. Additionally, we identified 20 highly connected hub genes by co-expression analysis, and validated the differential expression of these genes by real-time quantitative PCR. By determining novel biological pathways and transcription factors that have functional implication to acute alcohol intoxication, our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of acute alcoholism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A biochemical method for assessing the neurotoxic effects of misonidazole in the rat.

    PubMed Central

    Rose, G. P.; Dewar, A. J.; Stratford, I. J.

    1980-01-01

    A proven biochemical method for assessing chemically induced neurotoxicity has been applied to the study of the toxic effects of misonidazole (MISO) in the rat. This involves the fluorimetric measurement of beta-glucuronidase and beta-galactosidase activities in homogenates of rat nervous tissue. The tissues analysed were sciatic/posterior tibial nerve (SPTN) cut into 4 sections, trigeminal ganglia and cerebellum. MISO administered i.p. to Wistar rats in doses greater than 300 mg/kg/day for 7 consecutive days produced maximal increases in both beta-glucuronidase and beta-galactosidase activities in th SPTN at 4 weeks (140-180% of control values). The highest increases were associated with the most distal secretion of the nerve. Significant enzyme-activity changes were also found in the trigeminal ganglia and cerebellum of MISO-dosed rats. The greatest activity occurred 4-5 weeks after dosing, and was dose-related. It is concluded that, in the rat, MISO can produce biochemical changes consistent with a dying-back peripheral neuropathy, and biochemical changes suggestive of cerebellar damage. This biochemical approach would appear to offer a convenient quantitative method for the detection of neurotoxic effects of other potential radio-sensitizing drugs. PMID:7459223

  12. Pathology Associated with AAV Mediated Expression of Beta Amyloid or C100 in Adult Mouse Hippocampus and Cerebellum

    PubMed Central

    Drummond, Eleanor S.; Muhling, Jill; Martins, Ralph N.; Wijaya, Linda K.; Ehlert, Erich M.; Harvey, Alan R.

    2013-01-01

    Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse. PMID:23516609

  13. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats.

    PubMed

    Alaa-Eldin, Eman Ahmad; El-Shafei, Dalia Abdallah; Abouhashem, Nehal S

    2017-01-01

    Commercial mixtures of chlorpyrifos and cypermethrin pesticides are widely used to enhance the toxic effects of cypermethrin on target insects. So, the purpose of the current study was to evaluate the individual and combined toxic effects of chlorpyrifos (CPF) and cypermethrin (CYP) on reproductive system of adult male albino rats. Forty adult male albino rats were randomized into main four groups: group I (control group) included 16 rats, subdivided into negative and positive control; group II (eight rats) received chlorpyrifos 6.75 mg/kg b.w./orally∕daily); group III (eight rats) (received cypermethrin 12.5 mg/kg b.w./orally∕daily); and group IV (eight rats) (received chlorpyrifos and cypermethrin at the same previously mentioned doses). All treatments were given by oral gavage for 12 weeks. We found that single CPF and CYP exposures significantly have adverse effects on reproductive function of adult male albino rats manifested by reduced testicular weight, decreased sperm count, motility and viability, significantly increased percent of morphologically abnormal spermatozoa, and significant increments in sperm DNA fragmentation index (DFI) with respect to control group. Furthermore, serum follicle stimulating hormone, luteinizing hormone, and testosterone levels were decreased significantly compared to control group. This was accompanied with histopathological changes in the testis of rats such as necrosis, degeneration, decreasing number of spermatogenic cells in some seminiferous tubules, edema, congested blood vessels, and exudate in interstitial tissue of the testis. Notably, all these changes were exaggerated in rats treated concomitantly with chlorpyrifos and cypermethrin rendering the mixture more toxic than the additive effects of each compound and causing greater damage on the reproductive system of male albino rats than the individual pesticides.

  14. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  15. The emotional cerebellum.

    PubMed

    Strata, Piergiorgio

    2015-10-01

    Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.

  16. Effects of acute exposure of permethrin in adult and developing Sprague-Dawley rats on acoustic startle response and brain and plasma concentrations.

    PubMed

    Williams, Michael T; Gutierrez, Arnold; Vorhees, Charles V

    2018-06-08

    Permethrin is a Type I (non-cyano) pyrethroid that induces tremors at high concentrations and increases acoustic startle responses (ASR) in adult rodents, however its effects in young rats have been investigated to a limited extent. ASR and tremor were assessed in adult and postnatal day (P)15 Sprague-Dawley rats at oral doses of 60, 90, or 120 mg/kg over an 8 h period. Permethrin increased ASR in adults, regardless of dose, and 20% of the high-dose rats showed tremor at later time points. For the P15 rats all doses induced tremor at all time points, and ASR was increased at 2 h in the 90 and 120 mg/kg groups with a trend in the 60 mg/kg group compared with controls. The 60 mg/kg group showed increased ASR at 4 and 6 h, whereas the 90 mg/kg group showed no differences from the controls at these times. The 120 mg/kg group showed decreased ASR from 4-8 h post-treatment. P15 and adult rats both showed plasma and brain cis- and trans-permethrin increases after dosing. After the same dose of permethrin, P15 rats had greater cis- and trans-permethrin in brain and plasma compared with adults. P15 rats had an increased tremor response compared with adults even at comparable brain permethrin concentrations. For ASR, P15 rats responded sooner and showed a biphasic pattern ranging from increased to decreased response as a function of dose and time, unlike adults that only showed increases. Overall, young rats showed greater effects from permethrin compared with adults.

  17. Gray Matter Atrophy in the Cerebellum-Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age.

    PubMed

    Yu, Teresa; Korgaonkar, Mayuresh S; Grieve, Stuart M

    2017-04-01

    This study examined patterns of cerebellar volumetric gray matter (GM) loss across the adult lifespan in a large cross-sectional sample. Four hundred and seventy-nine healthy participants (age range: 7-86 years) were drawn from the Brain Resource International Database who provided T1-weighted MRI scans. The spatially unbiased infratentorial template (SUIT) toolbox in SPM8 was used for normalisation of the cerebellum structures. Global volumetric and voxel-based morphometry analyses were performed to evaluate age-associated trends and gender-specific age-patterns. Global cerebellar GM shows a cross-sectional reduction with advancing age of 2.5 % per decade-approximately half the rate seen in the whole brain. The male cerebellum is larger with a lower percentage of GM, however, after controlling for total brain volume, no gender difference was detected. Analysis of age-related changes in GM volume revealed large bilateral clusters involving the vermis and cerebellar crus where regional loss occurred at nearly twice the average cerebellar rate. No gender-specific patterns were detected. These data confirm that regionally specific GM loss occurs in the cerebellum with age, and form a solid base for further investigation to find functional correlates for this global and focal loss.

  18. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    PubMed

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Ontogeny of cocaine-induced behaviors and cocaine pharmacokinetics in male and female neonatal, preweanling, and adult rats.

    PubMed

    McDougall, Sanders A; Apodaca, Matthew G; Mohd-Yusof, Alena; Mendez, Adrian D; Katz, Caitlin G; Teran, Angie; Garcia-Carachure, Israel; Quiroz, Anthony T; Crawford, Cynthia A

    2018-04-18

    Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2 High receptors, receptor coupling, etc.). The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.

  20. Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain.

    PubMed

    Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K

    2007-08-24

    In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.

  1. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats.

    PubMed

    Counotte, Danielle S; Schiefer, Christopher; Shaham, Yavin; O'Donnell, Patricio

    2014-04-01

    There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.

  2. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    PubMed

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  3. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis.

    PubMed

    Sîrbulescu, Ruxandra F; Ilieş, Iulian; Zupanc, Günther K H

    2015-09-01

    Matrix metalloproteinases (MMPs) are a family of highly conserved zinc-dependent proteases involved in both development and pathogenesis. The present study examines the role of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in adult neurogenesis, using the corpus cerebelli, a subdivision of the cerebellum, of knifefish (Apteronotus leptorhynchus) as a model system. Transcripts of five isoforms of these gelatinases were identified in the central nervous system of this species. Sequence similarity analysis and homology modeling indicated that functionally and structurally critical elements were highly conserved in knifefish gelatinases. Immunohistochemical staining revealed a differential distribution of MMP-2 and MMP-9 at both the cellular and subcellular level. MMP-2 expression was found mainly in Sox2-immunopositive stem/progenitor cells, both quiescent and mitotically active; and was localized in both the cytoplasmic compartment and the nucleus. By contrast, MMP-9 immunoreactivity was absent in neurogenic niches and displayed a more homogenous distribution, with low to moderate intensity levels, in the molecular and granular layers. MMP-9 expression appeared to be restricted to the extracellular space. In situ zymography indicated that gelatinase activity matched the cellular and subcellular distributions of the two MMPs. The observed patterns of gelatinase activity and expression support the hypothesis that MMP-2 is primarily involved in regulation of the activity of stem/progenitor cells that give rise to new granule neurons, whereas MMP-9 facilitates migration of the progeny of these cells by proteolysis of extracellular matrix proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    PubMed

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups.

    PubMed

    Bazrgar, Maryam; Goudarzi, Iran; Lashkarbolouki, Taghi; Elahdadi Salmani, Mahmoud

    2015-11-01

    During the particular period of cerebellum development, exposure to lead (Pb) decreases cerebellum growth and can result in selective loss of neurons. The detection and prevention of Pb toxicity is a major international public health priorities. This research study was conducted to evaluate the effects of melatonin, an effective antioxidant and free radical scavenger, on Pb induced neurotoxicity and oxidative stress in the cerebellum. Pb exposure was initiated on gestation day 5 with the addition of daily doses of 0.2% lead acetate to distilled drinking water and continues until weaning. Melatonin (10mg/kg) was given once daily at the same time. 21 days after birth, several antioxidant enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GPx) were assayed. Thiobarbituric acid reactive substance (TBARS) levels were measured as a marker of lipid peroxidation. Rotarod and locomotor activity tests were performed on postnatal days (PDs) 31-33 and a histological study was performed after completion of behavioral measurements on PD 33. The results of the present work demonstrated that Pb could induce lipid peroxidation, increase TBARS levels and decrease GPx and SOD activities in the rat cerebellum. We also observed that Pb impaired performance on the rotarod and locomotor activities of rats. However, treatment with melatonin significantly attenuated the motoric impairment and lipid peroxidation process and restored the levels of antioxidants. Histological analysis indicated that Pb could decrease Purkinje cell count and melatonin prevented this toxic effect. These results suggest that treatment with melatonin can improve motor deficits and oxidative stress by protecting the cerebellum against Pb toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  7. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats.

    PubMed

    Gellner, Candice A; Belluzzi, James D; Leslie, Frances M

    2016-10-01

    Although smoking initiation typically occurs during adolescence, most preclinical studies of tobacco use involve adult animals. Furthermore, their focus is largely on nicotine alone, even though cigarette smoke contains thousands of constituents. The present study therefore aimed to determine whether aqueous constituents in cigarette smoke affect acquisition of nicotine self-administration during adolescence in rats. Adolescent and adult male rats, aged postnatal day (P) 25 and 85, respectively, were food trained on a fixed ratio 1 (FR1) schedule, then allowed to self-administer one of 5 doses of nicotine (0, 3.75, 7.5, 15, or 30 μg/kg) or aqueous cigarette smoke extract (CSE) with equivalent nicotine content. Three progressively more difficult schedules of reinforcement, FR1, FR2, and FR5, were used. Both adolescent and adult rats acquired self-administration of nicotine and CSE. Nicotine and CSE similarly increased non-reinforced responding in adolescents, leading to enhanced overall drug intake as compared to adults. When data were corrected for age-dependent alterations in non-reinforced responding, adolescents responded more for low doses of nicotine and CSE than adults at the FR1 reinforcement schedule. No differences in adolescent responding for the two drugs were seen at this schedule, whereas adults had fewer responses for CSE than for nicotine. However, when the reinforcement schedule was increased to FR5, animals dose-dependently self-administered both nicotine and CSE, but no drug or age differences were observed. These data suggest that non-nicotine tobacco smoke constituents do not influence the reinforcing effect of nicotine in adolescents. Published by Elsevier Ltd.

  8. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences

    PubMed Central

    Basson, M. Albert; Wingate, Richard J.

    2013-01-01

    Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500

  9. The Cerebellum and Emotional Experience

    PubMed Central

    Turner, Beth M.; Paradiso, Sergio; Marvel, Cherie L.; Pierson, Ronald; Boles Ponto, Laura L.; Hichwa, Richard D.; Robinson, Robert G.

    2007-01-01

    Summary While the role of the cerebellum in motor coordination is widely accepted, the notion that it is involved in emotion has only recently gained popularity. To date, functional neuroimaging has not been used in combination with lesion studies to elucidate the role of the cerebellum in the processing of emotional material. We examined six participants with cerebellar stroke and nine age and education matched healthy volunteers. In addition to a complete neuropsychological, neurologic, and psychiatric examination, participants underwent [15O]water positron emission tomography (PET) while responding to emotion-evoking visual stimuli. Cerebellar lesions were associated with reduced pleasant experience in response to happiness-evoking stimuli. Stroke patients reported an unpleasant experience to frightening stimuli similar to healthy controls, yet showed significantly lower activity in the right ventral lateral and left dorsolateral prefrontal cortex, amygdala, thalamus, and retrosplenial cingulate gyrus. Frightening stimuli led to increased activity in the ventral medial prefrontal, anterior cingulate, pulvinar, and insular cortex. This suggests that alternate neural circuitry became responsible for maintaining the evolutionarily critical fear response after cerebellar damage. PMID:17123557

  10. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  11. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  12. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  13. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression

    PubMed Central

    Takahashi, Tetsuya; Fujimura, Masatake; Koyama, Misaki; Kanazawa, Masato; Usuki, Fusako; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Clinical manifestations of methylmercury (MeHg) intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB) damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG) and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity. PMID:28118383

  14. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum.

    PubMed

    Liu, P; Gupta, N; Jing, Y; Collie, N D; Zhang, H; Smith, P F

    2017-04-21

    Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Interactions between Prefrontal Cortex and Cerebellum Revealed by Trace Eyelid Conditioning

    ERIC Educational Resources Information Center

    Kalmbach, Brian E.; Ohyama, Tatsuya; Kreider, Joy C.; Riusech, Frank; Mauk, Michael D.

    2009-01-01

    Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal…

  16. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royland, Joyce E.; Wu, Jinfang; Zawia, Nasser H.

    2008-09-01

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive development, causes psychomotor difficulties, and contributes to attention deficits in children, all of which seem to be associated with altered patterns of neuronal connectivity. In the present study, we examined gene expression profiles in the rat nervous system following PCB developmental exposure. Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND)more » 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression ({>=} 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Such changes may underlie learning and memory deficits observed in PCB exposed animals and humans.« less

  17. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  18. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning

    PubMed Central

    Harvey, Roxann C.; Dembro, Kimberly A.; Rajagopalan, Kiran; Mutebi, Michael M.; Kantak, Kathleen M.

    2010-01-01

    Rationale Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. Objectives To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. Materials and methods A yoked-triad design (n=8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37–P59 or P77–P99, and then underwent 18 drug-free days (P60–P77 vs. P100–P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78–P96 vs. P118–P136). Results Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. Conclusions Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience. PMID:19513699

  19. Effects of Chronic Fluoxetine Treatment on Neurogenesis and Tryptophan Hydroxylase Expression in Adolescent and Adult Rats

    PubMed Central

    Meerhoff, Gideon F.

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population. PMID:24827731

  20. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    PubMed

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  1. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    PubMed Central

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  2. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats.

    PubMed

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  3. Use of the light/dark test for anxiety in adult and adolescent male rats

    PubMed Central

    Arrant, Andrew E.; Schramm-Sapyta, Nicole L.; Kuhn, Cynthia M.

    2014-01-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28–34) and adult (PN67–74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α2 adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. PMID:23721963

  4. Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere.

    PubMed

    Steele, Christopher J; Chakravarty, M Mallar

    2018-04-15

    Though commonly thought of as a "motor structure", we now know that the cerebellum's reciprocal connections to the cerebral cortex underlie contributions to both motor and non-motor behavior. Further, recent research has shown that cerebellar dysfunction may contribute to a wide range of neuropsychiatric disorders. However, there has been little characterization of normative variability at the level of cerebellar structure that can facilitate and further our understanding of disease biomarkers. In this manuscript we examine normative variation of the cerebellum using data from the Human Connectome Project (HCP). The Multiple Automatically Generated Templates (MAGeT) segmentation tool was used to identify the cerebella and 33 anatomically-defined lobules from 327 individuals from the HCP. To characterize normative variation, we estimated population mean volume and variability, assessed differences in hemisphere and sex, and related lobular volume to motor and non-motor behavior. We found that the effects of hemisphere and sex were not homogeneous across all lobules of the cerebellum. Greater volume in the right hemisphere was primarily driven by lobules Crus I, II, and H VIIB, with H VIIIA exhibiting the greatest left>right asymmetry. Relative to total cerebellar gray-matter volume, females had larger Crus II (known to be connected with non-motor regions of the cerebral cortex) while males had larger motor-connected lobules including H V, and VIIIA/B. When relating lobular volume to memory, motor performance, and emotional behavior, we found some evidence for relationships that have previously been identified in the literature. Our observations of normative cerebellar structure and variability in young adults provide evidence for lobule-specific differences in volume and the relationship with sex and behavior - indicating that the cerebellum cannot be considered a single structure with uniform function, but as a set of regions with functions that are likely as

  5. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  6. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    PubMed

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  7. Amelioration of cerebellar dysfunction in rats following postnatal ethanol exposure using low-intensity pulsed ultrasound.

    PubMed

    Bolbanabad, Hiva Mohammadi; Anvari, Enayat; Rezai, Mohammad Jafar; Moayeri, Ardashir; Kaffashian, Mohammad Reza

    2017-04-01

    The neonatal development stage of the cerebellum in rats is equivalent to a human foetus in the third trimester of pregnancy. In this stage, cell proliferation, migration, differentiation, and synaptogenesis occur. Clinical and experimental findings have shown that ethanol exposure during brain development causes a variety of disruptions to the brain, including neurogenesis depression, delayed neuronal migration, changes in neurotransmitter synthesis, and neuronal depletion.During postnatal cerebellar development, neurons are more vulnerable to the destructive effects of ethanol. The effects of low-intensity pulsed ultrasound (LIPUS) on the number of cells and thickness of the cell layers within the cerebellar cortex were examined during the first two postnatal weeks in rats following postnatal ethanol exposure. Postpartum rats were distributed randomly into six groups. Normal saline was injected intraperitoneally into control animals and ethanol (20%) was injected into the intervention groups for three consecutive days. Intervention groups received LIPUS at different frequencies (3 or 5MHz), after administration of ethanol. After transcardial perfusion, the rat's brain was removed, and a complete series of sagittal cerebellum sections were obtained by systematic random manner. Photomicrographs were made with Motic digital cameras and analysed using Nikon digital software. The numbers of granular cells decreased in ethanol-treated rats compared to the control group. LIPUS, administered at (3 or 5MHz), combined with ethanol administration resulted in a reduction of ethanol's effects. Using 5MHz LIPUS resulted in significantly higher numbers of granular cells in the internal layer compared to the control rats. Using 3 or 5MHz LIPUS alone resulted in a significant enhancement in the granular cells of the molecular layer. A significant reduction was seen in the thickness of the external granular layer in ethanol-treated rats. This study showed that exposure to LIPUS

  8. Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection.

    PubMed

    Minami, Takeshi; Miyata, Eriko; Sakamoto, Yamato; Yamazaki, Hideo; Ichida, Seiji

    2010-04-01

    Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 microg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 microg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.

  9. The role of the cerebellum in the regulation of language functions.

    PubMed

    Starowicz-Filip, Anna; Chrobak, Adrian Andrzej; Moskała, Marek; Krzyżewski, Roger M; Kwinta, Borys; Kwiatkowski, Stanisław; Milczarek, Olga; Rajtar-Zembaty, Anna; Przewoźnik, Dorota

    2017-08-29

    The present paper is a review of studies on the role of the cerebellum in the regulation of language functions. This brain structure until recently associated chiefly with motor skills, visual-motor coordination and balance, proves to be significant also for cognitive functioning. With regard to language functions, studies show that the cerebellum determines verbal fluency (both semantic and formal) expressive and receptive grammar processing, the ability to identify and correct language mistakes, and writing skills. Cerebellar damage is a possible cause of aphasia or the cerebellar mutism syndrome (CMS). Decreased cerebellocortical connectivity as well as anomalies in the structure of the cerebellum are emphasized in numerous developmental dyslexia theories. The cerebellum is characterized by linguistic lateralization. From the neuroanatomical perspective, its right hemisphere and dentate nucleus, having multiple cerebellocortical connections with the cerebral cortical language areas, are particularly important for language functions. Usually, language deficits developed as a result of a cerebellar damage have subclinical intensity and require applying sensitive neuropsychological diagnostic tools designed to assess higher verbal functions.

  10. The Cerebellum and Its Wrapping Meninge: Developmental Interplay between Two Major Structures.

    PubMed

    Catala, Martin

    2017-10-01

    Meninges have long been considered as a protective and supportive tissue for the central nervous system. Nevertheless, new developmental roles are now attributed to them. The meninges that surround the cerebellum come from the cephalic mesoderm. They are essential for the cerebellum to develop normally. They induce and maintain the basal lamina and glia limitans. In the absence of these structures, the external granular cells of the cerebellum migrate aberrantly and penetrate the subarachnoid space. The molecules involved in the recognition between the cerebellar primordium and the basal lamina belong to two groups in humans: dystroglycan and laminin on the one hand, and GPR56 and collagen III on the other. Finally, molecules secreted by the meninges and acting on the cerebellum begin to be demonstrated; such is the case of SDF1 secreted under the action of FOXC1. Georg Thieme Verlag KG Stuttgart · New York.

  11. Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats.

    PubMed

    Zlebnik, Natalie E; Anker, Justin J; Carroll, Marilyn E

    2012-12-01

    Concurrent access to an exercise wheel decreases cocaine self-administration under short access (5 h/day for 5 days) conditions and suppresses cocaine-primed reinstatement in adult rats. The effect of exercise (wheel running) on the escalation of cocaine intake during long access (LgA, 6 h/day for 26 days) conditions was evaluated. Adolescent and adult female rats acquired wheel running, and behavior was allowed to stabilize for 3 days. They were then implanted with an iv catheter and allowed to self-administer cocaine (0.4 mg/kg, iv) during 6-h daily sessions for 16 days with concurrent access to either an unlocked or a locked running wheel. Subsequently, for ten additional sessions, wheel access conditions during cocaine self-administration sessions were reversed (i.e., locked wheels became unlocked and vice versa). In the adolescents, concurrent access to the unlocked exercise wheel decreased responding for cocaine and attenuated escalation of cocaine intake irrespective of whether the locked or unlocked condition came first. However, cocaine intake increased when the wheel was subsequently locked for the adolescents that had initial access to an unlocked wheel. Concurrent wheel access either before or after the locked wheel access did not reduce cocaine intake in adults. Wheel running reduced cocaine intake during LgA conditions in adolescent but not adult rats, and concurrent access to the running wheel was necessary. These results suggest that exercise prevents cocaine seeking and that this effect is more pronounced in adolescents than adults.

  12. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  13. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  14. An intact action-perception coupling depends on the integrity of the cerebellum.

    PubMed

    Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar

    2014-05-07

    It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.

  15. [Morphological signs of survival cultured adult rat cardiomyocytes].

    PubMed

    Chang, Hui; Zhang, Lin; Yu, Zhi-Bin

    2011-02-01

    To clarify the key morphological signs for the survival of adult rat cardiomyocytes in primary culture. The adult rat hearts were retrogradely superfused by Langendorff apparatus. Cardiomyocytes were digested by collagenase I and cultured in three groups: (1) Serum free medium + BA (Bongkrekic acid, apoptotic inhibitor), (2) 5% serum medium, and (3) 5% serum medium + BA. The morphological alterations were observed and the percentage of rod-shaped cardiomyocytes, the apoptotic rate of cells, the rate of pseudopodium formation and the nuclear distances of cardiomyocytes were detected during culture. (1) The percentage of rod-shaped cardiomyocytes decreased gradually in the first 3 days of cell culture. The percentage of rod-shaped cardiomyocytes cultured without fetal bovine serum (FBS) decreased more rapidly than those cultured with FBS. No differences were noticed between with and without the addition of apoptotic inhibitor BA. The apoptotic rate of cardiomyocytes increased in the first 3 days of cell culture, and the apoptotic rate of cells cultured without FBS increased more than that cultured with FBS. Also BA had no effect on apoptotic rate. (2) Cardiomyocytes cultured with FBS spread from the intercalated disk and extended pseudopodium on the second or third day of cell culture. Cardiomyocytes with thin membranous pseudopodium developed would survive and spread laterally at the 6th day of culture. Cells with the elongated morphology gradually spread extensively and took on a spheroidal shape. Myofibrils gradually lost their parallel. Cells cultured without FBS had no pseudopodium formation. The intercalated disk of cells gradually changed blunt. There was no effect on the rate of pseudopodium formation when added with apoptotic inhibitor BA. (3) Cytoskeletal remodeling occurred in survived cardiomyocytes. After 6 days of culture, cardiomyocytes exhibited characteristic of redifferentiation. (4) The distance between nuclei decreased in a single cardiomyocyte

  16. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  17. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    PubMed

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  19. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Rat leucine-rich protein binds and activates the promoter of the beta isoform of Ca2+/calmodulin-dependent protein kinase II gene.

    PubMed

    Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi

    2007-05-01

    We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.

  2. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Dvorácskó, Szabolcs; Tömböly, Csaba; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-10-28

    Schizophrenia is a serious mental health disorder characterized by several behavioral and biochemicel abnormalities. In a previous study we have shown that mu-opioid (MOP) receptor signaling is impaired in specific brain regions of our three-hit animal model of schizophrenia. Since the cannabinoid system is significantly influenced in schizophrenic patients, in the present work we investigated cannabinoid (CB) receptor binding and G-protein activation in cortical, subcortical and cerebellar regions of control and 'schizophrenic' rats. Cannabinoid agonist (WIN-55,212-2 mesylate) mediated G-protein activation was consistently decreased in all areas tested, and the difference was extremely significant in membranes prepared from the cerebellum. Interestingly, the cerebellar activity of WIN-55,212-2 stimulated G-proteins was substantially higher than those of cerebral cortex and subcortical region in control animals, indicating a primordial role of the cannabinoid system in the cerebellum. At the level of radioligand binding, the affinities of the CB receptors were also markedly decreased in the model animals. Capacity of the [ 3 H]WIN-55,212-2 binding was only higher in the cerebellum of 'schizophrenic' model rats. Taken together, in all three brain areas of model rats both cannabinoid receptor binding and cannabinoid agonist-mediated G-protein activation were regularly decreased. Our results revealed that besides the opioids, the endocannabinoid - cannabis receptor system also shows impairment in our rat model, increasing its face validity and translational utility. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters

    PubMed Central

    Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G

    2007-01-01

    Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354

  5. Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.

    PubMed

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2006-10-01

    Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.

  6. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake

    PubMed Central

    Perry, Jennifer L.; Anderson, Marissa M.; Nelson, Sarah E.; Carroll, Marilyn E.

    2009-01-01

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given noncontingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin intake was determined by comparing 24-h saccharin and water consumption in two-bottle tests. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin preference scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse compared with adulthood. PMID:17360010

  7. Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: Association with allelic variation in GABRA2 and BDNF

    PubMed Central

    Hill, Shirley Y.; Wang, Shuhui; Carter, Howard; Tessner, Kevin; Holmes, Brian; McDermott, Michael; Zezza, Nicholas; Stiffler, Scott

    2012-01-01

    Offspring from families with multiple cases of alcohol dependence have a greater likelihood of developing alcohol dependence (AD) and related substance use disorders. Greater susceptibility for developing these disorders may be related to structural differences in brain circuits that influence the salience of rewards or modify the efficiency of information processing and AD susceptibility. We examined the cerebellum of 71 adolescent/young adult high-risk (HR) offspring from families with multiple cases of alcohol dependence (multiplex families), and 60 low-risk (LR) controls with no family history of alcohol or drug dependence who were matched for age, gender, socioeconomic status and IQ, with attention given to possible effects of personal use of substances and maternal use during pregnancy. Magnetic resonance images were acquired on a General Electric 1.5-Tesla scanner and manually traced (BRAINS2) blind to clinical information. GABRA2 and BDNF variation were tested for their association with cerebellar volumes. High-risk offspring from multiplex AD families showed greater total volume of the cerebellum and total gray matter (GM), in comparison with LR controls. An interaction between allelic variation in GABRA2 and BDNF genes was associated with GM volumes, suggesting that inherited variation in these genes may promote early developmental differences in neuronal proliferation of the cerebellum. PMID:22047728

  8. Ginsenoside Rg1 prevents cerebral and cerebellar injury induced by obstructive jaundice in rats via inducing expression of TIPE-2.

    PubMed

    Zhou, Tingting; Zu, Guo; Zhou, Lu; Che, Ningwei; Guo, Jing; Liang, Zhanhua

    2016-01-01

    The aim of the study was to analyze the effect of Ginsenoside Rg1 (Rg1) on cerebral and cerebellar injury in experimental obstructive jaundice (OJ). OJ was done by ligature and section of extrahepatic biliary duct. Rg1 was injected intraperitoneally (10 mg kg(-1)d(-1) or 20 mg kg(-1) d(-1)). Comparison of serum total bile salts (TBA), total bilirubin (TBil), direct bilirubin (DBil), TNF-α, IL-6 and IL-1β among groups. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined, also apoptosis and mRNA and protein levels of TIPE2 (TNF-α-inducible protein 8-like 2) were tested in cerebrum and cerebellum. Our results showed that Rg1 reduced MDA and apoptosis in cerebrum and cerebellum induced by OJ, also GSH and antioxidant enzyme activity were raised obviously in rats treated with Rg1. Moreover, decreased mRNA and protein levels of TIPE2 in OJ rats and Rg1 could improve the decreased mRNA and protein levels of TIPE2 in OJ rats. In conclusion, Rg1 decreased oxidative stress and apoptosis, also recovered the antioxidant status and mRNA and protein levels of TIPE2 in the cerebrum and cerebellum of OJ rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats.

    PubMed

    Shah, Ami B; Nivar, Isaac; Speelman, Diana L

    2018-01-01

    Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.

  10. Right anterior cerebellum BOLD responses reflect age related changes in Simon task sequential effects.

    PubMed

    Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G

    2018-01-31

    Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum.

    PubMed

    Singh, R; Upadhyay, G; Kumar, S; Kapoor, A; Kumar, A; Tiwari, M; Godbole, M M

    2003-01-01

    Thyroid hormone (TH) deficiency results in delayed proliferation and migration of cerebellar granule cells. Although extensive cell loss during the development of the cerebellum under hypothyroid conditions is known, its nature and its mechanism are poorly understood. Bcl-2 family gene expression is known to determine the fate of cells to undergo apoptosis. We evaluated the effect of hypothyroidism on Bcl-2 family gene expression in the developing rat cerebellum. Electrophoresis and Western blotting were used to analyze DNA fragmentation and expression of DNA fragmentation factor (DFF-45), Bcl-2, Bcl-xL and Bax genes respectively. In the hypothyroid condition, extensive DNA fragmentation and enhanced cleavage of DFF-45 were seen throughout development (postnatal day 0 to day 24) and adulthood whereas they were absent in the euthyroid state. The anti-apoptotic genes Bcl-2 and Bcl-xL were down-regulated and the pro-apoptotic gene Bax was expressed at higher levels compared with the euthyroid state. These results suggest that normal levels of TH prevent cerebellar apoptosis to a large extent, whereas hypothyroidism not only increases the extent but also the duration of apoptosis by down-regulating the anti-apoptotic genes and maintaining a high level of the pro-apoptotic gene Bax.

  12. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    PubMed

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  13. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    PubMed Central

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  14. Environmental Enrichment Promotes Plasticity and Visual Acuity Recovery in Adult Monocular Amblyopic Rats

    PubMed Central

    Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto

    2012-01-01

    Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358

  15. The control of a manipulator by a computer model of the cerebellum.

    NASA Technical Reports Server (NTRS)

    Albus, J. S.

    1973-01-01

    Extension of previous work by Albus (1971, 1972) on the theory of cerebellar function to an application of a computer model of the cerebellum to manipulator control. Following a discussion of the cerebellar function and of a perceptron analogy of the cerebellum, particularly in regard to learning, an electromechanical model of the cerebellum is considered in the form of an IBM 1800 computer connected to a Rancho Los Amigos arm with seven degrees of freedom. It is shown that the computer memory makes it possible to train the arm on some representative sample of the universe of possible states and to achieve satisfactory performance.

  16. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  17. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  18. Playing Super Mario 64 increases hippocampal grey matter in older adults.

    PubMed

    West, Greg L; Zendel, Benjamin Rich; Konishi, Kyoko; Benady-Chorney, Jessica; Bohbot, Veronique D; Peretz, Isabelle; Belleville, Sylvie

    2017-01-01

    Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8) engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano) lessons (MUS; n = 12), while a no-contact control group did not engage in any intervention (CON; n = 13). After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC.

  19. Playing Super Mario 64 increases hippocampal grey matter in older adults

    PubMed Central

    Konishi, Kyoko; Benady-Chorney, Jessica; Bohbot, Veronique D.; Peretz, Isabelle; Belleville, Sylvie

    2017-01-01

    Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8) engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano) lessons (MUS; n = 12), while a no-contact control group did not engage in any intervention (CON; n = 13). After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC. PMID:29211727

  20. Effect of Norbinaltorphimine on Δ9-Tetrahydrocannabinol (THC)-Induced Taste Avoidance in Adolescent and Adult Sprague-Dawley Rats

    PubMed Central

    Flax, Shaun M.; Wakeford, Alison G.P.; Cheng, Kejun; Rice, Kenner C.; Riley, Anthony L.

    2017-01-01

    Rationale The aversive effects of Δ9-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. Objectives The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Methods Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8 and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague Dawley rats. Results The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. Conclusions That norBNI had no significant effect on THC-induced avoidance in adults and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague Dawley rats. PMID:26025420

  1. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    PubMed

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  2. Decreased Sensitivity in Adolescent versus Adult Rats to the Locomotor Activating Effects of Toluene

    PubMed Central

    Bowen, Scott E.; Charlesworth, Jonathan D.; Tokarz, Mary E.; Jerry Wright, M.; Wiley, Jenny L.

    2007-01-01

    Volatile organic solvent (inhalant) abuse continues to be a major health concern throughout the world. Of particular concern is the abuse of inhalants by adolescents because of its toxicity and link to illicit drug use. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. While studies have assessed outcomes of exposure to inhalants in adult male animals, there is little research on the neurobehavioral effects of inhalants in female or younger animals. In attempt to address these shortcomings, we exposed male and female Long-Evans rats to 20 min of 0, 2,000, 4,000, or 8,000 parts per million (ppm) inhaled toluene for 10 days in rats aged postnatal (PN) day 28-39 (adolescent), PN44-PN55, or >PN70 (adult). Animals were observed individually in 29-l transparent glass cylindrical jars equipped with standard photocells that were used to measure locomotor activity. Toluene significantly increased activity as compared to air exposure in all groups of male and female rats with the magnitude of locomotor stimulation produced by 4000 ppm toluene being significantly greater for female adults than during any age of adolescence. The results demonstrate that exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous locomotor behavior in rats and that the expression of these effects appears to depend upon the postnatal age of testing and sex of the animal. PMID:17869480

  3. Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder

    PubMed Central

    Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.

    2015-01-01

    Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567

  4. Vygotsky Meets Neuroscience: The Cerebellum and the Rise of Culture through Play

    ERIC Educational Resources Information Center

    Vandervert, Larry

    2017-01-01

    The author suggests the brain's cerebellum and cerebral cortex are the origin of culture and considers the cerebellar models that came to constitute culture to be derived specifically from play. He summarizes recent research on the behavioral, cognitive, and affective evolution of the cerebellum and the cerebral cortex that shows the development…

  5. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  6. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake.

    PubMed

    Perry, Jennifer L; Anderson, Marissa M; Nelson, Sarah E; Carroll, Marilyn E

    2007-05-16

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats selectively bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given non-contingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin phenotype scores were determined by comparing 24-h saccharin and water consumption in two-bottle tests to verify HiS/LoS status. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin phenotype scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, compared with adulthood, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse.

  7. Cerebellum and personality traits.

    PubMed

    Petrosini, Laura; Cutuli, Debora; Picerni, Eleonora; Laricchiuta, Daniela

    2015-02-01

    Personality traits are multidimensional traits comprising cognitive, emotional, and behavioral characteristics, and a wide array of cerebral structures mediate individual variability. Differences in personality traits covary with brain morphometry in specific brain regions. A cerebellar role in emotional and affective processing and on personality characteristics has been suggested. In a large sample of healthy subjects of both sexes and differently aged, the macro- and micro-structural variations of the cerebellum were correlated with the scores obtained in the Temperament and Character Inventory (TCI) by Cloninger. Cerebellar volumes were associated positively with Novelty Seeking scores and negatively with Harm Avoidance scores. Given the cerebellar contribution in personality traits and emotional processing, we investigated the cerebellar involvement even in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. Interestingly, the subjects with high alexithymic traits had larger volumes in the bilateral Crus 1. The cerebellar substrate for some personality dimensions extends the relationship between personality and brain areas to a structure up to now thought to be involved mainly in motor and cognitive functions, much less in emotional processes and even less in personality individual differences. The enlarged volumes of Crus 1 in novelty seekers and alexithymics support the tendency to action featuring both personality constructs. In fact, Novelty Seeking and alexithymia are rooted in behavior and inescapably have a strong action component, resulting in stronger responses in the structures more focused on action and embodiment, as the cerebellum is.

  8. What does low-intensity rTMS do to the cerebellum?

    PubMed

    Morellini, N; Grehl, S; Tang, A; Rodger, J; Mariani, J; Lohof, A M; Sherrard, R M

    2015-02-01

    Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation.

  9. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    PubMed

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  10. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  11. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    PubMed Central

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  12. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Stoops, Thorne S; D'Souza, Manoranjan S

    2017-01-01

    We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  13. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    PubMed Central

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  14. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  15. Glutamate and CO2 production from glutamine in incubated enterocytes of adult and very old rats.

    PubMed

    Meynial-Denis, Dominique; Bielicki, Guy; Beaufrère, Anne-Marie; Mignon, Michelle; Mirand, Philippe Patureau; Renou, Jean-Pierre

    2013-04-01

    Glutamine is the major fuel for enterocytes and promotes the growth of intestinal mucosa. Although oral glutamine exerts a positive effect on intestinal villus height in very old rats, how glutamine is used by enterocytes is unclear. Adult (8 months) and very old (27 months) female rats were exposed to intermittent glutamine supplementation for 50% of their age lifetime. Treated rats received glutamine added to their drinking water, and control rats received water alone. Jejunal epithelial cells (~300×10(6) cells) were incubated in oxygenated Krebs-Henseleit buffer for 30 min containing [1-(13)C] glutamine (~17 M) for analysis of glutamine metabolites by (13)C nuclear magnetic resonance ((13)C NMR). An aliquot fraction was incubated in the presence of [U-(14)C] glutamine to measure produced CO2. Glutamine pretreatment increased glutamate production and decreased CO2 production in very old rats. The ratio CO2/glutamate, which was very high in control very old rats, was similar at both ages after glutamine pretreatment, as if enterocytes from very old rats recovered the metabolic abilities of enterocytes from adult rats. Our results suggest that long-term treatment with glutamine started before advanced age (a) prevented the loss of rat body weight without limiting sarcopenia and (b) had a beneficial effect on enterocytes from very old rats probably by favoring the role of glutamate as a precursor for glutathione, arginine and proline biosynthesis, which was not detected in (13)C NMR spectra in our experimental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Targeting the Cerebellum by Noninvasive Neurostimulation: a Review.

    PubMed

    van Dun, Kim; Bodranghien, Florian; Manto, Mario; Mariën, Peter

    2017-06-01

    Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.

  17. The Cerebellum: Adaptive Prediction for Movement and Cognition

    PubMed Central

    Sokolov, Arseny A.; Miall, R. Chris; Ivry, Richard B.

    2017-01-01

    Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we consider two key concepts that have been suggested as general computational principles of cerebellar function, prediction and error-based learning, examining how these might be relevant in the operation of cognitive cerebro-cerebellar loops. PMID:28385461

  18. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking.

    PubMed

    Schramm-Sapyta, Nicole L; DiFeliceantonio, Alexandra G; Foscue, Ethan; Glowacz, Susan; Haseeb, Naadeyah; Wang, Nancy; Zhou, Cathy; Kuhn, Cynthia M

    2010-12-01

    Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol. Copyright © 2010 by the Research Society on Alcoholism.

  19. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task

    PubMed Central

    Abdul Manan, Hanani; Yusoff, Ahmad Nazlim; Franz, Elizabeth A.; Sarah Mukari, Siti Zamratol-Mai

    2013-01-01

    Evidence suggests that cognitive performance deteriorates in noisy backgrounds and the problems are more pronounced in older people due to brain deficits and changes. The present study used functional MRI (fMRI) to investigate the neural correlates of this phenomenon during short-term memory using a forward repeat task performed in quiet (STMQ) and in noise: 5-dB SNR (STMN) on four groups of participants of different ages. The performance of short-term memory tasks was measured behaviourally. No significant difference was found across age groups in STMQ. However, older adults (50–65 year olds) performed relatively poorly on the STMN. fMRI results on the laterality index indicate changes in hemispheric laterality in the superior temporal gyrus (STG), Heschl's gyrus (HG), and cerebellum, and a leftward asymmetry in younger participants which changes to a more rightward asymmetry in older participants. The results also indicate that the onset of the laterality shift varies from one brain region to another. STG and HG show a late shift while the cerebellum shows an earlier shift. The results also reveal that noise influences this shifting. Finally, the results support the hypothesis that functional networks that underlie STG, HG, and cerebellum undergo reorganization to compensate for the neural deficit/cognitive decline. PMID:23533806

  20. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats

    PubMed Central

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158

  1. Disruption of State Estimation in the Human Lateral Cerebellum

    PubMed Central

    Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James

    2007-01-01

    The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990

  2. Effects of infrasound on cell proliferation in the dentate gyrus of adult rats.

    PubMed

    Liu, Juanfang; Lin, Tian; Yan, Xiaodong; Jiang, Wen; Shi, Ming; Ye, Ruidong; Rao, Zhiren; Zhao, Gang

    2010-06-02

    Adult rats were used to identify the effects of infrasound on neurogenesis in the hippocampal dentate gyrus. After 7 consecutive days' exposure to infrasound of 16 Hz at 130 dB, immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) was preformed. Compared with those in normal groups, the numbers of BrdU+ and DCX+/BrdU+ cells in the subgranular zone in infrasound groups were significantly decreased at 3, 6, 10 and 14 days and returned to normal at 18 days. The percentage of BrdU+ cells that were co-labeled with DCX showed no significant differences between the infrasound and normal groups. These data suggest that infrasound inhibits the cell proliferation in adult rat dentate gyrus but has no effects on early migration and differentiation of these newborn cells.

  3. The evolution of cerebellum structure correlates with nest complexity.

    PubMed

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  4. An fMRI study comparing rhythmic finger tapping in children and adults

    PubMed Central

    De Guio, François; Jacobson, Sandra W.; Molteno, Christopher D.; Jacobson, Joseph L.; Meintjes, Ernesta M.

    2011-01-01

    This study compared brain activations during unpaced rhythmic finger tapping in 12-year old children with those of adults. The subject pressed a button at a pace initially indicated by a metronome (12 consecutive tones) and then continued for 16 seconds of unpaced tapping to provide an assessment of his/her ability to maintain a steady rhythm. In particular, the analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. 12 adults and 12 children performed this rhythmic finger tapping task in a 3T scanner. Whole-brain analyses were performed in Brain Voyager with a random effects analysis of variance using the general linear model. A dedicated cerebellar atlas was used to localise cerebellar activations. As in adults, unpaced rhythmic finger tapping in children showed activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different in that adults showed much more deactivation in response to the task, particularly in the occipital and frontal cortex. The other main differences were additional recruitment of motor and premotor areas in children compared to adults along with increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who needed to recruit the superior vermis more intensively to maintain the rhythm, even though they performed somewhat more poorly than the adults. PMID:22264703

  5. A Novel Marker for Purkinje Cells, Ribosomal Protein MPS1/S27: Expression of MPS1 in Human Cerebellum.

    PubMed

    Fernandez-Pol, J Alberto

    2016-01-01

    The ribosomal protein metallopanstimulin-1 (MPS1/S27) serves critical survival purposes in cell division, in normal and cancerous cells; for this reason, selective pressures of evolution have conserved the DNA sequences encoding MPS1/S27 in Archaea and Eukariotic cells. The expression of MPS1/S27 protein in human adult cerebellum has not been established. The presence of MPS1/S27, was screened in paraffin-embedded human adult brain specimens processed for tissue inmunohistochemistry. Affinity-purified specific antibodies were directed against the N-terminus of MPS1. The antibodies to MPS1 detected Purkinje cells (PC) and their dendrites. In PC, MPS1 antigen-positive staining was found in: the nucleolus, which was strongly stained; ribosomes attached to the external nuclear membrane; cytoplasm of PC, with strong staining in a punctuate fashion; the soma-attached large dendrite trunks of PC, which were MPS1 antigen-positive; and the granular cell layer, where cellular staining in a few cells that appeared to resemble smaller PC was observed. Since MPS1 is involved in cell division, DNA repair, and ribosomal biogenesis, it may be a useful antigen for studying processes such as protein synthesis, oncogenesis, regeneration, aging, and perhaps diseases of the human cerebellum. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  6. Voluntary ethanol consumption differs in adolescent and adult male rats using a modified sucrose-fading paradigm.

    PubMed

    Maldonado, Antoniette M; Finkbeiner, Lauren M; Alipour, Kent K; Kirstein, Cheryl L

    2008-09-01

    Initiation of alcohol consumption during adolescence is high, which usually begins with consumption of highly concentrated sweetened alcoholic beverages in adolescent humans. Enhanced voluntary ethanol (EtOH) intake has been observed previously in adolescent relative to adult rats under continuous access conditions using sweetened EtOH solutions. The present set of experiments investigated patterns of voluntary EtOH intake in adolescent and adult rats using sweetened EtOH solutions in a limited access paradigm. Rats were trained with modified sucrose-substitution protocols that ended at either 5% sucrose-20% EtOH (5S/20E) (Exp. 1) or 5% sucrose-10% EtOH (5S/10E) (Exp. 2). Voluntary EtOH consumption differences between the 2 age groups were apparent at higher (i.e., 10 and 20%), but not lower (i.e., 2 and 5%) EtOH concentrations. Adolescent rats consumed more EtOH on a g/kg basis only at 20% EtOH (Exp. 1). Adolescent rats voluntarily consumed more EtOH than adults when maintained at 5S/10E (Exp. 2). To assess whether these age-related differences in voluntary EtOH intake were concentration dependent, rats were trained with 5S/20E and subsequently trained with decreasing EtOH concentrations (i.e., 5S/10E and 5S/5E). Adolescents consumed more EtOH when initially presented with the 5S/10E and 5S/20E EtOH concentrations, and subsequently at the lower 5S/5E EtOH concentration (Exp. 3). There were no differences in preference for the sucrose-only solution, however adolescents tended to consume more sucrose at the 5S sucrose concentration (Exp. 4). Given that adolescents consumed more EtOH at the 5S/10E and 5S/20E, but not at the 5S/5E EtOH concentrations, preference for sucrose does not solely explain the age differences in voluntary EtOH intake observed. Overall, results replicate previous work, demonstrating adolescent rats consume more EtOH relative to adults. However, the present results were observed using sweetened EtOH solutions in a limited access paradigm. The

  7. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats.

    PubMed

    Soares, Rita; Ribeiro, Filipa F; Xapelli, Sara; Genebra, Tânia; Ribeiro, Maria F; Sebastião, Ana M; Rodrigues, Cecília M P; Solá, Susana

    2018-05-01

    Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

  8. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    PubMed

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  10. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies.

    PubMed

    Van Overwalle, Frank; Baetens, Kris; Mariën, Peter; Vandekerckhove, Marie

    2014-02-01

    This meta-analysis explores the role of the cerebellum in social cognition. Recent meta-analyses of neuroimaging studies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotionality, with a few meta-analyses pointing to an involvement of at most 54% of the individual studies. In this study, novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneous subdomains, confirmed this low involvement of the cerebellum in conditions that trigger the mirror network (e.g., when familiar movements of body parts are observed) and the mentalizing network (when no moving body parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions that strongly involve the cerebellum in 50-100% of the individual studies. In particular, when the level of abstraction is high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groups rather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than the present, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta-analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and that the areas of the cerebellum which are consistently involved in social cognitive processes show extensive overlap with the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive functioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher abstraction mentalizing in particular. We also point out a number of methodological limitations of some available studies on the social brain that hamper the detection of cerebellar activity. © 2013 Elsevier Inc. All rights reserved.

  11. Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test?

    PubMed

    Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R

    2012-01-01

    Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.

  12. Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats.

    PubMed

    Bueno-Nava, Antonio; Montes, Sergio; DelaGarza-Montano, Paloma; Alfaro-Rodriguez, Alfonso; Ortiz, Ascencion; Gonzalez-Pina, Rigoberto

    2008-09-26

    Functional impairment after brain injury (BI) has been attributed to the inhibition of regions that are related to the injured site. Therefore, noradrenaline (NA) is thought to play a critical role in recovery from motor injury. However, the mechanism of this recovery process has not been completely elucidated. Moreover, the locus coeruleus (LC) projects from the pons through the rat sensorimotor cortex, and injury axotomizes LC fibers, depressing NA function. This was tested by measuring lipid peroxidation (LP) in the pons after sensorimotor cortex injury. Depression of function in the pons would be expected to alter areas receiving pontine efferents. Male Wistar rats were divided into three groups: control (n=16), injured (n=10) and recovering (n=16), and they were evaluated using a beam-walking assay between 2 and 20 days after cortical injury. We performed measures of NA and LP in both sides of the pons and cerebellum. We found a decrease of NA in the pons and the cerebellum, and a concomitant increase in the motor deficit and LP in the pons of injured animals. Recovering rats had NA and LP levels that were very similar to those observed in control rats. These observations suggest that the mechanism of remote inhibition after BI involves lipid peroxidation, and that the NA decrease found in the cerebellum of injured animals is mediated by a noradrenergic depression in the pons, or in areas receiving NA projections from the pons.

  13. The Cerebellum: Adaptive Prediction for Movement and Cognition.

    PubMed

    Sokolov, Arseny A; Miall, R Chris; Ivry, Richard B

    2017-05-01

    Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology, and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function, and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we examine how two key concepts that have been suggested as general computational principles of cerebellar function- prediction and error-based learning- might be relevant in the operation of cognitive cerebro-cerebellar loops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  15. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  16. Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome

    PubMed Central

    2011-01-01

    Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, and is the most common single-gene disorder known to be associated with autism. Despite recent advances in functional neuroimaging and our understanding of the molecular pathogenesis, only limited neuropathologic information on FXS is available. Methods Neuropathologic examinations were performed on post-mortem brain tissue from three older men (aged 57, 64 and 78 years) who had received a clinical or genetic diagnosis of FXS. In each case, physical and cognitive features were typical of FXS, and one man was also diagnosed with autism. Guided by reports of clinical and neuroimaging abnormalities of the limbic system and cerebellum of individuals with FXS, the current analysis focused on neuropathologic features present in the hippocampus and the cerebellar vermis. Results Histologic and immunologic staining revealed abnormalities in both the hippocampus and cerebellar vermis. Focal thickening of hippocampal CA1 and irregularities in the appearance of the dentate gyrus were identified. All lobules of the cerebellar vermis and the lateral cortex of the posterior lobe of the cerebellum had decreased numbers of Purkinje cells, which were occasionally misplaced, and often lacked proper orientation. There were mild, albeit excessive, undulations of the internal granular cell layer, with patchy foliar white matter axonal and astrocytic abnormalities. Quantitative analysis documented panfoliar atrophy of both the anterior and posterior lobes of the vermis, with preferential atrophy of the posterior lobule (VI to VII) compared with age-matched normal controls. Conclusions Significant morphologic changes in the hippocampus and cerebellum in three adult men with FXS were identified. This pattern of pathologic features supports the idea that primary defects in neuronal migration, neurogenesis and aging may underlie the neuropathology reported in FXS. PMID:21303513

  17. The cerebellum and decision making under uncertainty.

    PubMed

    Blackwood, Nigel; Ffytche, Dominic; Simmons, Andrew; Bentall, Richard; Murray, Robin; Howard, Robert

    2004-06-01

    This study aimed to identify the neural basis of probabilistic reasoning, a type of inductive inference that aids decision making under conditions of uncertainty. Eight normal subjects performed two separate two-alternative-choice tasks (the balls in a bottle and personality survey tasks) while undergoing functional magnetic resonance imaging (fMRI). The experimental conditions within each task were chosen so that they differed only in their requirement to make a decision under conditions of uncertainty (probabilistic reasoning and frequency determination required) or under conditions of certainty (frequency determination required). The same visual stimuli and motor responses were used in the experimental conditions. We provide evidence that the neo-cerebellum, in conjunction with the premotor cortex, inferior parietal lobule and medial occipital cortex, mediates the probabilistic inferences that guide decision making under uncertainty. We hypothesise that the neo-cerebellum constructs internal working models of uncertain events in the external world, and that such probabilistic models subserve the predictive capacity central to induction. Copyright 2004 Elsevier B.V.

  18. The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation.

    PubMed

    Balietti, Marta; Giannubilo, Stefano R; Giorgetti, Belinda; Solazzi, Moreno; Turi, Angelo; Casoli, Tiziana; Ciavattini, Andrea; Fattorettia, Patrizia

    2016-01-30

    Astaxanthin (Ax) is a ketocarotenoid of the xanthophyll family with activities such as antioxidation, preservation of the integrity of cell membranes and protection of the redox state and functional integrity of mitochondria. The aim of this study was to investigate potential gender-related differences in the effect of Ax on the aging rat brain. In females, interleukin 1 beta (IL1β) was significantly lower in treated rats in both cerebral areas, and in the cerebellum, treated animals also had significantly higher IL10. In males, no differences were found in the cerebellum, but in the hippocampus, IL1β and IL10 were significantly higher in treated rats. These are the first results to show gender-related differences in the effect of Ax on the aging brain, emphasizing the necessity to carefully analyze female and male peculiarities when the anti-aging potentialities of this ketocarotenoid are evaluated. The observations lead to the hypothesis that Ax exerts different anti-inflammatory effects in female and male brains. © 2015 Society of Chemical Industry.

  19. Cerebellum-from J. E. Purkyně up to Contemporary Research.

    PubMed

    Vožeh, František

    2017-06-01

    Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.

  20. Effects of long-term construction noise on health of adult female Wistar rats.

    PubMed

    Zymantiene, J; Zelvyte, R; Pampariene, I; Aniuliene, A; Juodziukyniene, N; Kantautaite, J; Oberauskas, V

    2017-03-28

    The aim of this study was to investigate the influence of long-term building construction noise from refurbishment, which including vibration, on some physiological parameters and histopathological changes of organs of Wistar rats. Twenty 12 month old female rats were divided into two groups: rats group I (n = 10) were exposed to long-term construction noise and rats group II (n = 10) were kept under normal noise level. Study results revealed that long-term construction noise from building refurbishment has an influence on body weight, haematological and some serum biochemical parameters affects caecal microbiota, and causes histopathological changes in the organs of adult female Wistar rats. It was noticed that rats in group I exihibited significantly higher mean values for total protein, albumin and lower values for glucose, AST, ALT, blood urea nitrogen, haematological and caecal microbiota parameters than rats in group II. The most common pathologies were determined in the kidney, liver and lungs. Other observed pathologies were lymphadenopathy, catarrhal inflammation of the intestines, spleen hyperplasia and mammary gland adenofibroma. Single cases were subcutaneous fibroma in the thoracic region, abortus with uterine inflammation and thymus hyperplasia with formation of cysts were found.

  1. The Sleeping Cerebellum.

    PubMed

    Canto, Cathrin B; Onuki, Yoshiyuki; Bruinsma, Bastiaan; van der Werf, Ysbrand D; De Zeeuw, Chris I

    2017-05-01

    We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Analgesia for early-life pain prevents deficits in adult anxiety and stress in rats.

    PubMed

    Victoria, Nicole C; Karom, Mary C; Murphy, Anne Z

    2015-01-01

    Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants. © 2014 S. Karger AG, Basel.

  3. Rapid evolution of the cerebellum in humans and other great apes.

    PubMed

    Barton, Robert A; Venditti, Chris

    2014-10-20

    Humans' unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as "the crowning achievement of evolution and the biological substrate of human mental prowess". The human cerebellum, however, contains four times more neurons than the neocortex and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans' advanced technological capacities, which in turn may have been a preadaptation for language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The cerebellum predicts the temporal consequences of observed motor acts.

    PubMed

    Avanzino, Laura; Bove, Marco; Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Martino, Davide

    2015-01-01

    It is increasingly clear that we extract patterns of temporal regularity between events to optimize information processing. The ability to extract temporal patterns and regularity of events is referred as temporal expectation. Temporal expectation activates the same cerebral network usually engaged in action selection, comprising cerebellum. However, it is unclear whether the cerebellum is directly involved in temporal expectation, when timing information is processed to make predictions on the outcome of a motor act. Healthy volunteers received one session of either active (inhibitory, 1 Hz) or sham repetitive transcranial magnetic stimulation covering the right lateral cerebellum prior the execution of a temporal expectation task. Subjects were asked to predict the end of a visually perceived human body motion (right hand handwriting) and of an inanimate object motion (a moving circle reaching a target). Videos representing movements were shown in full; the actual tasks consisted of watching the same videos, but interrupted after a variable interval from its onset by a dark interval of variable duration. During the 'dark' interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the spacebar of the keyboard. Performance on the timing task was analyzed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. The active group exhibited greater absolute timing error compared with the sham group only in the human body motion task. Our findings suggest that the cerebellum is engaged in cognitive and perceptual domains that are strictly connected to motor control.

  5. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.

    PubMed

    De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M

    2012-02-01

    This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  7. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. Visual cortex and cerebellum hyperactivation during negative emotion picture stimuli in migraine patients.

    PubMed

    Wang, Mengxing; Su, Jingjing; Zhang, Jilei; Zhao, Ying; Yao, Qian; Zhang, Qiting; Zhang, Hui; Wang, Shuo; Li, Ge-Fei; Liu, Jian-Ren; Du, Xiaoxia

    2017-02-09

    Migraines are a common and undertreated disease and often have psychiatric comorbidities; however, the abnormal mechanism of emotional processing in migraine patients has not been well clarified. This study sought to investigate the different brain functional activation to neutral, positive and negative emotional stimuli between migraine and healthy subjects. Twenty-six adults with migraines and 26 healthy adults, group-matched for sex and age, participated in this experiment. Although there were no significant differences between two groups during the viewing of positive affective pictures vs. neutral affective pictures, there were different activation patterns during the viewing of negative to neutral affective pictures in the two groups; the control group showed both increased and decreased activation patterns, while the migraine subjects showed only increased activation. Negative affective pictures elicited stronger activation than neutral affective pictures in migraineurs, which included the bilateral cerebellum anterior lobe/culmen, the bilateral lingual gyri, the bilateral precuneus and the left cuneus. Our data indicated that migraine patients were hypersensitive to negative stimuli, which might provide clues to aid in the understanding of the pathophysiology and psychiatric comorbidities of migraines.

  9. Quercetin Improves Neurobehavioral Performance Through Restoration of Brain Antioxidant Status and Acetylcholinesterase Activity in Manganese-Treated Rats.

    PubMed

    Adedara, Isaac A; Ego, Valerie C; Subair, Temitayo I; Oyediran, Oluwasetemi; Farombi, Ebenezer O

    2017-04-01

    The present study investigated the neuroprotective mechanism of quercetin by assessing the biochemical and behavioral characteristics in rats sub-chronically treated with manganese alone at 15 mg/kg body weight or orally co-treated with quercetin at 10 and 20 mg/kg body weight for 45 consecutive days. Locomotor behavior was monitored using video-tracking software during a 10-min trial in a novel environment whereas the brain regions namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical analyses. Results indicated that co-treatment with quercetin significantly (p < 0.05) prevented manganese-induced locomotor and motor deficits specifically the decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle as well as the increase in time of immobility and grooming. The improvement in the neurobehavioral performance of manganese-treated rats following quercetin co-treatment was confirmed by track and occupancy plot analyses. Moreover, quercetin assuaged manganese-induced decrease in antioxidant enzymes activities and the increase in acetylcholinesterase activity, hydrogen peroxide generation and lipid peroxidation levels in the hypothalamus, cerebrum and cerebellum of the rats. Taken together, quercetin mechanisms of ameliorating manganese-induced neurotoxicity is associated with restoration of acetylcholinesterase activity, augmentation of redox status and inhibition of lipid peroxidation in brain of rats.

  10. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  11. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  12. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  13. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  14. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals

  15. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats.

    PubMed

    Ruiz-Pino, F; Garcia-Galiano, D; Manfredi-Lozano, M; Leon, S; Sánchez-Garrido, M A; Roa, J; Pinilla, L; Navarro, V M; Tena-Sempere, M

    2015-02-01

    Kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which coexpress kisspeptins (Kps), neurokinin B (NKB), and dynorphin (Dyn), regulate gonadotropin secretion. The KNDy model proposes that NKB (a stimulator, through NK3R) and Dyn (an inhibitor, through κ-opioid receptor) shape Kp secretion onto GnRH neurons. However, some aspects of this paradigm remain ill defined. Here we aimed to characterize the following: 1) the effects of NKB signaling on FSH secretion and 2) the role of Dyn in gonadotropin secretion after NK3R activation; 3) additionally, we explored the roles of other tachykinin receptors, NK1R and NK2R, on gonadotropin release. Thus, the effects of the NK3R agonist, senktide, on FSH release were explored across postnatal development in male and female rats; gonadotropin responses to agonists of NK1R substance P and NK2R [neurokinin A (NKA)] were also monitored. Moreover, the effects of senktide on gonadotropin secretion were assessed after antagonizing Dyn actions by nor-binaltorphimine didydrochloride. Before puberty, rats of both sexes showed increased FSH secretion to senktide (and Kp-10). Conversely, adult female rats were irresponsive to senktide in terms of FSH, despite proven LH responses, whereas the adult males did not display FSH or LH responses to senktide, even at high doses. In turn, substance P and NKA stimulated gonadotropin secretion in prepubertal rats, whereas in adults modest gonadotropin responses to NKA were detected. By pretreatment with a Dyn antagonist, adult males became responsive to senktide in terms of LH secretion and displayed elevated basal LH and FSH levels; nor-binaltorphimine didydrochloride treatment uncovered FSH responses to senktide in adult females. Furthermore, the expression of Pdyn and Opkr1 (encoding Dyn and κ-opioid receptor, respectively) in the mediobasal hypothalamus was greater in males than in females at prepubertal ages. Overall, our data contribute to refining our understanding on how the elements of the

  16. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.

    PubMed

    Cremer, J E; Cunningham, V J; Seville, M P

    1983-09-01

    Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was

  17. Anxiogenic-like effects of fluoxetine render adult male rats vulnerable to the effects of a novel stress.

    PubMed

    Gomez, Francisca; García-García, Luis

    2017-02-01

    Fluoxetine (FLX) has paradoxical anxiogenic-like effects during the acute phase of treatment. In adolescent (35d-old) male rats, the stress-like effects induced by short-term (3d-4d) FLX treatment appear to involve up-regulation of paraventricular nucleus (PVN) arginine vasopressin (AVP) mRNA. However, studies on FLX-induced anxiety-like effects in adult rodents are inconclusive. Herein, we sought to study the response of adult male rats (60-65d-old) to a similar FLX treatment, also investigating how the stressful component, inherent to our experimental conditions, contributed to the responses. We show that FLX acutely increased plasma corticosterone concentrations while it attenuated the stress-induced-hyperthermia (SIH) as well as it reduced (≈40%) basal POMC mRNA expression in the arcuate nucleus (ARC). However, FLX did not alter the basal expression of PVN-corticotrophin-releasing hormone (CRH), anterior pituitary-pro-opiomelanocortin (POMC) and raphe nucleusserotonin transporter (SERT). Nonetheless, some regressions point towards the plausibility that FLX activated the hypothalamic-pituitary-adrenal (HPA). The behavioral study revealed that FLX acutely increased emotional reactivity in the holeboard, effect followed by a body weight loss of ≈2.5% after 24h. Interestingly, i.p. injection with vehicle did not have behavioral effects, furthermore, after experiencing the stressful component of the holeboard, the rats kept eating and gaining weight as normal. By contrast, the stress-naïve rats reduced food intake and gained less weight although maintaining a positive energy state. Therefore, on one hand, repetition of a mild stressor would unchain compensatory mechanisms to restore energy homeostasis after stress increasing the resiliency to novel stressors. On the other hand, FLX might render stressed adult rats vulnerable to novel stressors through the emergence of counter-regulatory changes, involving HPA axis activation and diminished sympathetic output

  18. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats.

    PubMed

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A; Glenn, Melissa J

    2015-03-14

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4weeks on their respective diets, a subset of rats began 3weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogen supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega-3 fatty acids have similar biological functions-affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies. Copyright

  19. [Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and energy metabolism in adult rats].

    PubMed

    Dang, Yong-ming; Fang, Ya-dong; Hu, Jiong-yu; Zhang, Jia-ping; Song, Hua-pei; Zhang, Yi-ming; Zhang, Qiong; Huang, Yue-sheng

    2010-02-01

    To investigate the influence of microtubule depolymerization of myocardial cells on distribution and activity of mitochondria, and energy metabolism of cells in adult rats. Myocardial cells of SD adult rats and SD suckling rats were isolated and cultured. They were divided into adult and suckling rats control groups (AC and SC, normally cultured without any stimulating factor), adult and suckling rats microtubule depolymerization agent groups (AMDA and SMDA, cultured with 8 micromol/L colchicine containing nutrient solution for 30 minutes) according to the random number table. (1) The expression of polymerized beta tubulin in myocardial cells of adult and suckling rats was detected with Western blot. (2) Myocardial cells of rats in AC and AMDA groups were collected. The expression of cytochrome c was detected with Western blot. Distribution of voltage-dependent anion channels (VDAC) and polymerized beta tubulin in myocardial cells were observed with immunofluorescent staining. Mitochondrial inner membrane potential was determined with immunocytochemical method. Activity of myocardial cells was detected with MTT method. Contents of ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP) and energy charge of cells were determined with high performance liquid chromatography. (1) The expression of polymerized beta tubulin:in AMDA group it was 0.52 + or - 0.07, which was obviously lower than that (1.25 + or - 0.12) in AC group (F = 31.002, P = 0.000); in SMDA group it was 0.76 + or - 0.12, which was significantly lower than that (1.11 + or - 0.24) in SC group (F = 31.002, P = 0.000), but was obviously higher than that in AMDA group (F = 31.002, P = 0.009). (2) The expression of cytochrome c in AC group was 0.26 + or - 0.03, which was obviously lower than that (1.55 + or - 0.13) in AMDA group (t = -24.056, P = 0.000). (3) Immunofluorescent staining result: in AC group, microtubules of myocardial cells were in linear tubiform, distributed in parallel with

  20. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    PubMed

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups.

  1. Generalized role for the cerebellum in encoding internal models: evidence from semantic processing.

    PubMed

    Moberget, Torgeir; Gullesen, Eva Hilland; Andersson, Stein; Ivry, Richard B; Endestad, Tor

    2014-02-19

    The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellum's role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation-reflecting the operation of acquired internal models-should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.

  2. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    PubMed

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  4. Neurogenesis enhancer RO 25-6981 facilitates repeated spatial learning in adult rats.

    PubMed

    Soloviova, O A; Proshin, A T; Storozheva, Z I; Sherstnev, V V

    2012-09-01

    The effects of Ro 25-6981 (selective NMDA receptor blocker) in a dose stimulating neurogenesis on repeated learning, reversal learning, and memory reconsolidation were studied in adult rats in Morris water maze. Ro 25-6981 facilitated repeated learning 13 days after injection, but did not influence reversal learning. The blocker injected directly before reminder did not disturb repeated learning and reversal learning in Morris water maze. These effects of Ro 25-6981 on the dynamics of repeated learning seemed to be due to its effects on neurogenesis processes in adult brain.

  5. Proton Magnetic Resonance Spectroscopy Study on the Metabolism Changes of Cerebellum in Patients with Post-Stroke Depression.

    PubMed

    Zhang, Lei; Sui, Ru-Bo

    2017-01-01

    To study the metabolic changes of cerebellum by proton magnetic resonance Spectroscopy (1H-MRS) and discuss the relationships between the cerebellar changes and depression severity in patients with post-stroke depression. Data of demographic characteristics, individual history and life style of all subjects were collected. 40 patients with stroke and 20 controls were enrolled. All groups received T1WI, T2WI, DWI and 1H-MRS examination. The cerebral infarction volume and the distribution and severity of leukoaraiosis were evaluated. The ratios of NAA/Cr, Cho/Cr and Cho/NAA in the cerebellum were calculated. There were no statistical significant difference in the NAA/Cr, Cho/Cr and Cho/NAA ratios in bilateral cerebellum between CONT group and NORM group. The Cho/Cr and Cho/NAA ratios in the cerebellum contralateral to the stroke region were higher in PSD group than those in NORM and CONT groups, and the Cho/Cr and Cho/NAA ratios in the cerebellum ipsilateral to the stroke region were similar with those in NORM and CONT groups. However, there were no statistical significant difference in the NAA/Cr ratios in bilateral cerebellum among three groups. The result shows preliminarily that the cerebellum involves in the development of post-stroke depression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. "Ecstasy" toxicity to adolescent rats following an acute low binge dose.

    PubMed

    Teixeira-Gomes, Armanda; Costa, Vera Marisa; Feio-Azevedo, Rita; Duarte, José Alberto; Duarte-Araújo, Margarida; Fernandes, Eduarda; Bastos, Maria de Lourdes; Carvalho, Félix; Capela, João Paulo

    2016-06-28

    3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.

  7. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning.

    PubMed

    Kalmbach, Brian E; Ohyama, Tatsuya; Kreider, Joy C; Riusech, Frank; Mauk, Michael D

    2009-01-01

    Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.

  8. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome.

    PubMed

    Rosenberger, Christina; Thürling, Markus; Forsting, Michael; Elsenbruch, Sigrid; Timmann, Dagmar; Gizewski, Elke R

    2013-04-01

    There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N = 15 female IBS patients and N = 12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.

  9. Native presynaptic metabotropic glutamate receptor 4 (mGluR4) interacts with exocytosis proteins in rat cerebellum.

    PubMed

    Ramos, Cathy; Chardonnet, Solenne; Marchand, Christophe H; Decottignies, Paulette; Ango, Fabrice; Daniel, Hervé; Le Maréchal, Pierre

    2012-06-08

    The eight pre- or/and post-synaptic metabotropic glutamatergic receptors (mGluRs) modulate rapid excitatory transmission sustained by ionotropic receptors. They are classified in three families according to their percentage of sequence identity and their pharmacological properties. mGluR4 belongs to group III and is mainly localized presynaptically. Activation of group III mGluRs leads to depression of excitatory transmission, a process that is exclusively provided by mGluR4 at parallel fiber-Purkinje cell synapse in rodent cerebellum. This function relies at least partly on an inhibition of presynaptic calcium influx, which controls glutamate release. To improve the understanding of molecular mechanisms of the mGluR4 depressant effect, we decided to identify the proteins interacting with this receptor. Immunoprecipitations using anti-mGluR4 antibodies were performed with cerebellar extracts. 183 putative partners that co-immunoprecipitated with anti-mGluR4 antibodies were identified and classified according to their cellular functions. It appears that native mGluR4 interacts with several exocytosis proteins such as Munc18-1, synapsins, and syntaxin. In addition, native mGluR4 was retained on a Sepharose column covalently grafted with recombinant Munc18-1, and immunohistochemistry experiments showed that Munc18-1 and mGluR4 colocalized at plasma membrane in HEK293 cells, observations in favor of an interaction between the two proteins. Finally, affinity chromatography experiments using peptides corresponding to the cytoplasmic domains of mGluR4 confirmed the interaction observed between mGluR4 and a selection of exocytosis proteins, including Munc18-1. These results could give indications to explain how mGluR4 can modulate glutamate release at parallel fiber-Purkinje cell synapses in the cerebellum in addition to the inhibition of presynaptic calcium influx.

  10. The cerebellum for jocks and nerds alike.

    PubMed

    Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  11. The cerebellum for jocks and nerds alike

    PubMed Central

    Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  12. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    PubMed

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  13. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.

    PubMed

    Audi, Said H; Bongard, Robert D; Krenz, Gary S; Rickaby, David A; Haworth, Steven T; Eisenhauer, Jessica; Roerig, David L; Merker, Marilyn P

    2005-11-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.

  14. Flux control exerted by overt carnitine palmitoyltransferase over palmitoyl-CoA oxidation and ketogenesis is lower in suckling than in adult rats.

    PubMed Central

    Krauss, S; Lascelles, C V; Zammit, V A; Quant, P A

    1996-01-01

    We examined the potential of overt carnitine palmitoyltransferase (CPT I) to control the hepatic catabolism of palmitoyl-CoA in suckling and adult rats, using a conceptually simplified model of fatty acid oxidation and ketogenesis. By applying top-down control analysis, we quantified the control exerted by CPT I over total carbon flux from palmitoyl-CoA to ketone bodies and carbon dioxide. Our results show that in both suckling and adult rat, CPT I exerts very significant control over the pathways under investigation. However, under the sets of conditions we studied, less control is exerted by CPT I over total carbon flux in mitochondria isolated from suckling rats than in those isolated from adult rats. Furthermore the flux control coefficient of CPT I changes with malonyl-CoA concentration and ATP turnover rate. PMID:8912677

  15. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  16. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal

  17. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    PubMed

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  18. Subsecond fear discrimination in rats: adult impairment in adolescent heavy alcohol drinkers.

    PubMed

    DiLeo, Alyssa; Wright, Kristina M; McDannald, Michael A

    2016-11-01

    Discriminating safety from danger must be accurate and rapid. Yet, the rapidity with which fear discrimination emerges remains unknown. Rapid fear discrimination in adulthood may be susceptible to impairment by adolescent heavy alcohol drinking, which increases incidence of anxiety disorders. Rats were given voluntary, adolescent alcohol access, and heavy drinkers were identified. In adulthood, rapid fear discrimination of safety, uncertainty, and danger cues was assessed. Normal rats, but not heavy drinkers, showed discriminative fear <1 sec following cue onset. This provides the first demonstration of subsecond fear discrimination and its adult impairment in adolescent heavy alcohol drinkers. © 2016 DiLeo et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Adolescent, but not adult, rats exhibit ethanol-mediated appetitive second-order conditioning

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2008-01-01

    Background Adolescent rats are less sensitive to the sedative effects of ethanol than older animals. They also seem to perceive the reinforcing properties of ethanol. However, unlike neonates or infants, ethanol-mediated appetitive behavior has yet to be clearly shown in adolescents. Appetitive ethanol reinforcement was assessed in adolescent (postnatal day 33, P33) and adult rats (P71) through second-order conditioning (SOC). Methods On P32 or P70 animals were intragastrically administered ethanol (0.5 or 2.0 g/kg) paired with intraoral pulses of sucrose (CS1, first-order conditioning phase). CS1 delivery took place either 5-20 (Early pairing) or 30-45 (Late pairing) min following ethanol. CS1 exposure and ethanol administration were separated by 240 min in unpaired controls. On P33 or P71, animals were presented the CS1 (second-order conditioning phase) while in a distinctive chamber (CS2). Then, they were tested for CS2 preference. Results Early and late paired adolescents, but not adults, had greater preference for the CS2 than controls, a result indicative of ontogenetic variation in ethanol-mediated reinforcement. During the CS1 - CS2 associative phase, paired adolescents given 2.0 g/kg ethanol wall-climbed more than controls. Blood and brain ethanol levels associated with the 0.5 and 2.0 g/kg doses at the onset of each conditioning phase did not differ substantially across age, with mean BECs of 38 and 112 mg %. Conclusions These data indicate age-related differences between adolescent and adult rats in terms of sensitivity to ethanol’s motivational effects. Adolescents exhibit high sensitivity for ethanol’s appetitive effects. These animals also showed EtOH-mediated behavioral activation during the second-order conditioning phase. The SOC preparation provides a valuable conditioning model for assessing ethanol’s motivational effects across ontogeny. PMID:18782343

  20. Attenuated effects of experimenter-administered heroin in adolescent vs. adult male rats: physical withdrawal and locomotor sensitization

    PubMed Central

    Doherty, James M.; Frantz, Kyle J.

    2012-01-01

    Objectives Early onset of heroin use during adolescence might increase chances of later drug addiction. Prior work from our laboratory suggests, however, that adolescent male rats are actually less sensitive than adults to some enduring effects of heroin self-administration. In the present study, we tested two likely correlates of sensitivity to behavioral reinforcement in rats: physical withdrawal and locomotor sensitization. Methods Adolescent (35 days old at start) and adult (79 days old) male Sprague-Dawley rats were administered escalating doses of heroin, increasing from 1.0 to 8.0 mg/kg (i.p.) every 12 hr, across 13 days. Somatic signs of spontaneous withdrawal were scored 12 and 24 hr after the last injection, then every 24 hr for 5 days; locomotion was recorded concurrently. Challenge injections of heroin (1 mg/kg i.p.) were given at 4 points: as the first of the escalating doses (day 1), at days 7 and 13 during the escalating regimen, and after 12 days of forced abstinence. Body mass and food intake were measured throughout experimentation. Results A heroin withdrawal syndrome was not observed among adolescents as it was among adults, including somatic signs as well as reduced locomotion, body mass, and food intake. On the other hand, heroin-induced locomotor sensitization did not differ across ages. Conclusion Reduced withdrawal is consistent with the attenuated reinforcing effects of heroin among adolescent male rats that we reported previously. Thus, it is possible that adolescent rats could reveal important neuroprotective factors for use in treatment of heroin dependence. PMID:22941050

  1. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats.

    PubMed

    Patrone, Luis G A; Bícego, Kênia Cardoso; Hartzler, Lynn K; Putnam, Robert W; Gargaglioni, Luciane H

    2014-01-01

    The locus coeruleus (LC) plays an important role in central chemoreception. In young rats (P9 or younger), 85% of LC neurons increase firing rate in response to hypercapnia vs. only about 45% of neurons from rats P10 or older. Carbenoxolone (CARB - gap junction blocker) does not affect the % of LC neurons responding in young rats but it decreases the % responding by half in older animals. We evaluated the participation of gap junctions in the CO2 ventilatory response in unanesthetized adult rats by bilaterally microinjecting CARB (300μM, 1mM or 3mM/100nL), glycyrrhizic acid (GZA, CARB analog, 3mM) or vehicle (aCSF - artificial cerebrospinal fluid) into the LC of Wistar rats. Bilateral gap junction blockade in LC neurons did not affect resting ventilation; however, the increase in ventilation produced by hypercapnia (7% CO2) was reduced by ∼25% after CARB 1mM or 3mM injection (1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1468.3±122.2mLkg(-1)min(-1) for 1mM CARB, P<0.05; 1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1540.9±68.4mLkg(-1)min(-1) for the 3mM CARB group, P<0.05) due largely to a decrease in respiratory frequency. GZA injection or CARB injection outside the LC (peri-LC) had no effect on ventilation under any conditions. The results suggest that gap junctions in the LC modulate the hypercapnic ventilatory response of adult rats. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.

    PubMed

    Kalmbach, Brian E; Ohyama, Tatsuya; Mauk, Michael D

    2010-08-01

    Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.

  3. Oseltamivir and indomethacin reduce the oxidative stress in brain and stomach of infected rats.

    PubMed

    Guzmán, David Calderón; Herrera, Maribel Ortiz; Brizuela, Norma Osnaya; Mejía, Gerardo Barragán; García, Ernestina Hernández; Olguín, Hugo Juárez; Ruíz, Norma Labra; Peraza, Armando Valenzuela

    2018-02-01

    The aim of this study was to determine the effect of oseltamivir and indomethacin on lipid peroxidation (LP), GABA levels, and ATPase activity in brain and stomach of normal and infected rats (IR), as novel inflammation model. Female Sprague Dawley rats grouped five each, either in the absence or presence of a live culture of Salmonella typhimurium (S. typh), were treated as follows: group 1 (control), PBS buffer; group 2, oseltamivir (100 mg/kg); group 3, indomethacin (67 μg/rat); group 4, oseltamivir (100 mg/kg) + indomethacin (67 μg/rat). All drugs were given intraperitoneally for 5 days. IR received the same treatments and the brain and stomach of the rats were removed in order to measure levels of GABA, LP, and total ATPase, using validated methods. Levels of GABA increased in stomach and cortex of IR with oseltamivir, but decreased in striatum and cerebellum/medulla oblongata of IR with indomethacin. LP decreased in the three brain regions of IR with oseltamivir. ATPase increased in stomach of IR and non-IR with oseltamivir and in striatum and cerebellum/medulla oblongata of IR with indomethacin. Results suggest that the effect of free radicals produced in an infection and inflammatory condition caused by S. typh could be less toxic by a combination of oseltamivir and indomethacin. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  4. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  5. Effect of "enriched environment" during development on adult rat behavior and response to the dopamine receptor agonist apomorphine.

    PubMed

    Hoffmann, L C; Schütte, S R M; Koch, M; Schwabe, K

    2009-02-18

    Enriched housing conditions (enriched environment, EE) during development has been shown to influence adult rat behavior and transmitter systems, especially dopamine function. We were interested in how different degrees of enrichment during development would affect adult rats' behavior and response to dopamine receptor challenge. Two groups of male Wistar rats (n=11-12) were raised under two different degrees of EE, i.e. "high enriched" and "low enriched" groups. A third group was kept under standard conditions and served as "non-enriched" control. As adults, rats were tested for anxiety (elevated plus-maze), for spatial learning (four-arm-baited eight-arm radial maze), and for motivation (breakpoint of the progressive ratio test). Finally, locomotor activity (activity box) and sensorimotor gating (prepulse inhibition (PPI) of the acoustic startle response (ASR)) were tested with and without challenge with the dopamine receptor agonist apomorphine. The time spent on the open or enclosed arms of the elevated plus-maze did not differ between groups, but the high enriched group showed higher rearing activity on the open arms. The breakpoint did not differ between groups. Learning and memory in the radial maze task only differed on the first few trials, but high enriched rats run faster compared with the other groups. In contrast, in the activity box enriched groups were less active, but apomorphine had the highest effect. Between groups, no difference in PPI and startle amplitude was found, but in the high and low EE group startle amplitude was enhanced after administration of apomorphine, while the PPI deficit induced by this drug was not different between groups. Altogether, we found no evidence that different amounts of environmental enrichment without differences in social EE affect rats' cognitive, emotional or motivational behavior. However, motor activity seems to be enhanced when rats are behaviorally or pharmacologically challenged by dopamine receptor

  6. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    PubMed

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  7. Imaging gene and environmental effects on cerebellum in Attention-Deficit/Hyperactivity Disorder and typical development☆

    PubMed Central

    de Zeeuw, Patrick; van Belle, Janna; van Dijk, Sarai; Weusten, Juliette; Koeleman, Bobby; Janson, Esther; van Engeland, Herman; Durston, Sarah

    2012-01-01

    This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies. PMID:24179763

  8. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  9. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study

    PubMed Central

    Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.

    2011-01-01

    Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to

  10. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    PubMed

    Byrne, Jacqueline H; Voogt, Meggie; Turner, Karly M; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2013-01-01

    Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  12. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    PubMed Central

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  13. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  14. Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.

    PubMed

    Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi

    2016-05-01

    Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.

  15. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    PubMed

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  16. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca

    2017-03-01

    The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta 9 -tetrahydrocannabinol (Δ 9 -THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ 9 -THC induced a significant reduction (p<0.05) in basal and K + -evoked [ 3 H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [ 3 H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ 9 -THC induced a significant reduction of CB1 receptor binding (B max ) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ 9 -THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K + -evoked [ 3 H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring

  17. Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults

    PubMed Central

    Walker, Q. David; Schramm-Sapyta, Nicole L.; Caster, Joseph M.; Waller, Samuel T.; Brooks, Matthew P.; Kuhn, Cynthia M.

    2009-01-01

    The present studies assessed the roles of sex, age, novelty-seeking and plus-maze behavior on cocaine drinking in rats. Cocaine/saccharin solution was available in three daily, 5-hour sessions then a saccharin-only solution was also available in following sessions. In the one-bottle drinking phase, early and late adolescent males, post-natal day 28 (PN28) and PN42, consumed more cocaine/saccharin solution than young adults (PN65), but females did not exhibit significant age differences. Adolescents of both sexes consumed more cocaine/saccharin than adults during choice drinking. Saccharin availability in the two-bottle trials decreased cocaine/saccharin consumption in PN28 and PN65 rats. After a drug-free period, cocaine-stimulated locomotion was lower in cocaine/saccharin drinking than saccharin-only males, indicating tolerance. We tested the hypothesis that individual differences in pre-screened behavioral traits would correlate with cocaine/saccharin consumption in PN28 and PN65 male rats. High locomotor responses to novelty were associated with greater cocaine/saccharin drinking in adults in one-bottle sessions. In the subsequent choice drinking phase, correlations were age-specific. Adolescents with high novelty-induced locomotion and adults that spent less time on open arms of the elevated plus-maze drank more cocaine/saccharin. Thus, behavioral phenotypes correlated with individual differences in cocaine/saccharin consumption in an age-related manner. PMID:18790706

  18. Spermatogenetic disorders in adult rats exposed to tributyltin chloride during puberty.

    PubMed

    Yu, Wook Joon; Lee, Beom Jun; Nam, Sang Yoon; Kim, Young Chul; Lee, Yong Soon; Yun, Young Won

    2003-12-01

    Adverse effects of tributyltin (TBT) chloride were investigated on the reproductive system in male adult rats as exposed during puberty. Fifty Sprague-Dawley rats at the age of 35 days were assigned to five different groups: negative control receiving vehicle, methyltestosterone (10 mg/kg B.W.), and TBT chloride treatments (5, 10, and 20 mg/kg B.W.). Animals were treated by oral gavage for ten consecutive days and sacrificed at 5 weeks after final treatment. The treatment of TBT chloride at the high dose of 20 mg/kg B.W. significantly decreased homogenization-resistant testicular sperm counts (p<0.05). The TBT chloride treatment at the doses of 10 and 20 mg/kg B.W. also significantly decreased caudal epididymal sperm counts (p<0.01). Some of motion kinematic parameters (motility, mean angular displacement, lateral head displacement, and dance) of sperms retrieved from vasa deference were significantly decreased in rats treated with the TBT chloride at the dose of 20 mg/kg B.W. (p<0.05). These results provide a further evidence that an exposure to TBT chloride during pubertal period in male rats produces spermatogenic disorders characterized by decreasing testicular and epididymal sperm counts and some motion parameters of sperms in the vasa deference.

  19. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat

    PubMed Central

    Lopez, David Fernandez; Faustino, Joel; Daneman, Richard; Zhou, Lu; Lee, Sarah; Derugin, Nikita; Wendland, Michael F.; Vexler, Zinaida S

    2012-01-01

    The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked if the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2–24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70-kDa dextran) and small (3-kDa dextran, Gd-DTPA) tracers remained largely undisturbed 24h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1,266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and MMP-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin and ZO-1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of CINC-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke. PMID:22787045

  20. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  1. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  2. The fine structure of intracranial neoplasms induced by the inoculation of avian sarcoma virus in neonatal and adult rats.

    PubMed Central

    Copeland, D. D.; Talley, F. A.; Bigner, D. D.

    1976-01-01

    Groups of F-344 rats were inoculated with the Bratislava-77 strain of avian sarcoma virus (B-77 ASV) within 24 hours of birth, at 9 days of age, or between 97 and 119 days of age. Intracranial tumors developed in each age group. Multiple tumors with mixed histologic patterns developed in rats inoculated at 1 or 9 days of age. Solitary tumors with a uniform histologic pattern developed in rats inoculated as adults. On the basis of light and electron microscopic study, the majority of tumors in each age group were classified as astrocytomas and divided into either poorly differentiated, gemistocytic, pilocytic, or polymorphic varieties. The polymorphic astrocytomas were most common among neonatally inoculated rats, while the pilocytic astrocytomas were most common among rats inoculated as adults. Ultrastructural characteristics of astrocytes, including gap junctions and 7- to 9-nm filaments, were present in the majority of tumors in each age groups. Astrocytomas induced in adult rats were remarkable for the presence of extensive basement membrane alone the astrocytic cell surfaces. Intracytoplasmic virus-like particles (R particles) were common in the tumor cells. These virus-like particles are morphologically distinct from C-type B-77 ASV, and no morphologic evidence of C-type virus replication was observed in any of the tumors. Images Figure 16 Figure 17 Figure 1 Figure 2 Figure 18 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:179328

  3. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    PubMed

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  4. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior.

    PubMed

    Schraa-Tam, Caroline K L; Rietdijk, Willem J R; Verbeke, Willem J M I; Dietvorst, Roeland C; van den Berg, Wouter E; Bagozzi, Richard P; De Zeeuw, Chris I

    2012-03-01

    Several studies indicate that the cerebellum might play a role in experiencing and/or controlling emphatic emotions, but it remains to be determined whether there is a distinction between positive and negative emotions, and, if so, which specific parts of the cerebellum are involved in these types of emotions. Here, we visualized activations of the cerebellum and extracerebellar regions using high-field fMRI, while we asked participants to observe and imitate images with pictures of human faces expressing different emotional states or with moving geometric shapes as control. The state of the emotions could be positive (happiness and surprise), negative (anger and disgust), or neutral. The positive emotional faces only evoked mild activations of crus 2 in the cerebellum, whereas the negative emotional faces evoked prominent activations in lobules VI and VIIa in its hemispheres and lobules VIII and IX in the vermis. The cerebellar activations associated with negative emotions occurred concomitantly with activations of mirror neuron domains such as the insula and amygdala. These data suggest that the potential role of the cerebellum in control of emotions may be particularly relevant for goal-directed behavior that is required for observing and reacting to another person's (negative) expressions.

  5. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  6. 6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats.

    PubMed

    Hegazy, Ahmed M S; Mosaed, Mohammed M; Elshafey, Saad H; Bayomy, Naglaa A

    2016-06-01

    Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of quercetin on plasma extravasation in rat CNS and dura mater by ACE and NEP inhibition.

    PubMed

    Cyrino, Luiz A R; Cardoso, Ronie C F; Hackl, Luciane P N; Nicolau, Mauro

    2002-09-01

    The effects of quercetin on substance P-induced plasma protein extravasation (PE) in the rat dura mater, cerebellum, olfactory bulb and cortex and also its modulation by endopeptidases, angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) were studied. PE was assessed by photometric measurement of extravasated Evans blue. Substance P (SP) and NEP or ACE inhibitors increased the PE in dura mater. Pretreatment with captopril or phosphoramidon potentiated PE induced by SP in the dura mater and cerebellum, respectively. Quercetin increased the PE in the dura mater, cerebellum and cortex. Further results suggested that the PE induced by SP in the dura mater was enhanced by pretreatment with quercetin, similar to that observed with selective peptidase inhibitors. Quercetin-stimulated extravasation in all tissues was abolished by NK-1 receptor blockade. These results suggest that quercetin increases PE in the dura mater and CNS tissues by inhibiting NEP and/or ACE, showing that the effect induced in the dura mater, cerebellum and cortex occurs through endogenous SP accumulation. Copyright 2002 John Wiley & Sons, Ltd.

  8. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults.

    PubMed

    McCutcheon, James E; Conrad, Kelly L; Carr, Steven B; Ford, Kerstin A; McGehee, Daniel S; Marinelli, Michela

    2012-09-01

    Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.

  9. Effects of restricted maternal contact in neonatal rats on sexual behaviour in the adult.

    PubMed

    Forsberg, G; Abrahamsson, K; Södersten, P; Eneroth, P

    1985-03-01

    Rats, deprived of maternal contact and nutrition every alternate day starting on day 5 of life, attained a body weight at 45 days of age which was 50% of that of rats which had free access to maternal contact and nutrition. After 55 days of unrestricted food availability the body weight of the neonatally deprived rats was approximately 15% lower than that of the controls. Malnourished female rats showed normal behavioural oestrous cycles and became pregnant and lactated normally as young adults. After ovariectomy they showed higher lordosis quotients in response to treatment with oestradiol benzoate and progesterone than controls but lost less body weight in response to treatment with oestradiol-filled constant-release implants. Malnourished male rats ejaculated less frequently than controls in tests with sexually receptive female rats but this difference disappeared with repeated testing. The malnourished males showed longer ejaculation latencies and had somewhat higher serum concentrations of LH than controls after castration and treatment with testosterone-filled constant-release implants which reduced serum androgen concentrations to about 30% of the intact level. The results show that rats are capable of sustaining a rather severe neonatal nutritional deprivation without losing the capacity for essentially normal mating behaviour in adulthood.

  10. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    PubMed

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Cerebellum and Premenstrual Dysphoric Disorder

    PubMed Central

    Rapkin, Andrea J.; Berman, Steven M.; London, Edythe D.

    2017-01-01

    The cerebellum constitutes ten percent of brain volume and contains the majority of brain neurons. Although it was historically viewed primarily as processing motoric computations, current evidence supports a more comprehensive role, where cerebro-cerebellar feedback loops also modulate various forms of cognitive and affective processing. Here we present evidence for a role of the cerebellum in premenstrual dysphoric disorder (PMDD), which is characterized by severe negative mood symptoms during the luteal phase of the menstrual cycle. Although a link between menstruation and cyclical dysphoria has long been recognized, neuroscientific investigations of this common disorder have only recently been explored. This article reviews functional and structural brain imaging studies of PMDD and the similar but less well defined condition of premenstrual syndrome (PMS). The most consistent findings are that women with premenstrual dysphoria exhibit greater relative activity than other women in the dorsolateral prefrontal cortex and posterior lobules VI and VII of the neocerebellum. Since both brain areas have been implicated in emotional processing and mood disorders, working memory and executive functions, this greater activity probably represents coactivation within a cerebro-cerebellar feedback loop regulating emotional and cognitive processing. Some of the evidence suggests that increased activity within this circuit may preserve cerebellar structure during aging, and possible mechanisms and implications of this finding are discussed. PMID:28275721

  12. The Cerebellum and Premenstrual Dysphoric Disorder.

    PubMed

    Rapkin, Andrea J; Berman, Steven M; London, Edythe D

    2014-01-01

    The cerebellum constitutes ten percent of brain volume and contains the majority of brain neurons. Although it was historically viewed primarily as processing motoric computations, current evidence supports a more comprehensive role, where cerebro-cerebellar feedback loops also modulate various forms of cognitive and affective processing. Here we present evidence for a role of the cerebellum in premenstrual dysphoric disorder (PMDD), which is characterized by severe negative mood symptoms during the luteal phase of the menstrual cycle. Although a link between menstruation and cyclical dysphoria has long been recognized, neuroscientific investigations of this common disorder have only recently been explored. This article reviews functional and structural brain imaging studies of PMDD and the similar but less well defined condition of premenstrual syndrome (PMS). The most consistent findings are that women with premenstrual dysphoria exhibit greater relative activity than other women in the dorsolateral prefrontal cortex and posterior lobules VI and VII of the neocerebellum. Since both brain areas have been implicated in emotional processing and mood disorders, working memory and executive functions, this greater activity probably represents coactivation within a cerebro-cerebellar feedback loop regulating emotional and cognitive processing. Some of the evidence suggests that increased activity within this circuit may preserve cerebellar structure during aging, and possible mechanisms and implications of this finding are discussed.

  13. Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments.

    PubMed

    Hellweg, R; Fischer, W; Hock, C; Gage, F H; Björklund, A; Thoenen, H

    1990-12-24

    Nerve growth factor (NGF) and choline acetyltransferase (ChAT) activity levels were measured in 7 different brain regions in young (3-month-old) and aged (2-years-old) female Sprague-Dawley rats. Prior to analysis the spatial learning ability of the aged rats was assessed in the Morris' water maze test. In the aged rats a significant, 15-30%, increase in NGF levels was observed in 4 regions (septum, cortex, olfactory bulb and cerebellum), whereas the levels in hippocampus, striatum and the brainstem were similar to those of the young rats. The NGF changes did not correlate with the behavioral performance within the aged group. Minor 15-30%, changes in ChAT activity were observed in striatum, brainstem and cerebellum, but these changes did not correlate with the changes in NGF levels in any region. The results indicate that brain NGF levels are maintained at normal or supranormal levels in rats with severe learning and memory impairments. The results, therefore, do not support the view that the marked atrophy and cell loss in the forebrain cholinergic system that is known to occur in the behaviorally impaired aged rats is caused by a reduced availability of NGF in the cholinergic target areas. The results also indicate that the slightly increased levels of NGF are not sufficient to prevent the age-dependent atrophy of cholinergic neurons, although they might be important for the stimulation of compensatory functional changes in a situation where the system is undergoing progressive degeneration.

  14. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    PubMed

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  15. Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain.

    PubMed

    Pei, Minjuan; Matsuda, Ken-Ichi; Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2006-03-01

    Previous studies on polytocous rodents have revealed that the fetal intrauterine position influences its later anatomy, physiology, reproductive performance and behavior. To investigate whether the position of a fetus in the uterus modifies the development of the brain, we examined whether the structure of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of rat brains accorded to their intrauterine positions. Brain sections of adult rats gestated between two male fetuses (2M) and between two female fetuses (2F) in the uterus were analysed for their immunoreactivity to calbindin-D28k, which is a marker of the SDN-POA. The SDN-POA volume of the 2M adult males was greater than that of the 2F adult males, whereas the SDN-POA volume of the 2M and 2F adult females showed no significant difference. This result indicated that contiguous male fetuses have a masculinizing effect on the SDN-POA volume of the male. To further examine whether the increment of SDN-POA volume in adulthood was due to exposure to elevated steroid hormones during fetal life, concentrations of testosterone and 17beta-estradiol in the brain were measured with 2M and 2F fetuses during gestation, respectively. On gestation day 21, the concentrations of testosterone and 17beta-estradiol in the brain were significantly higher in the 2M male rats as compared with the 2F male rats. The results suggested that there was a relationship between the fetal intrauterine position, hormone transfer from adjacent fetuses and the SDN-POA volume in adult rat brains.

  16. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org; Sharma, Shelly; Xiong, Xiaoping

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior tomore » the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P

  17. Neonatal alcohol exposure disrupts hippocampal neurogenesis and contextual fear conditioning in adult rats

    PubMed Central

    Hamilton, G.F.; Murawski, N.J.; St. Cyr, S.A.; Jablonski, S.A.; Schiffino, F.L.; Stanton, M.E.; Klintsova, A.Y.

    2011-01-01

    Developmental alcohol exposure can permanently alter brain structures and produce functional impairments in many aspects of behavior, including learning and memory. This study evaluates the effect of neonatal alcohol exposure on adult neurogenesis in the dentate gyrus of the hippocampus and the implications of such exposure for hippocampus-dependent contextual fear conditioning. Alcohol-exposed rats (AE) received 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 (third trimester in humans), in a binge-like manner. Two control groups were included: sham-intubated (SI) and suckle-control (SC). Animals were housed in social cages (3/cage) after weaning. On PD80, animals were injected with 200 mg/kg BrdU. Half of the animals were sacrificed two hours later. The remainder were sacrificed on PD114 to evaluate cell survival; separate AE, SI, and SC rats not injected with BrdU were tested for the context preexposure facilitation effect (CPFE; ∼PD117). There was no difference in the number of BrdU+ cells in AE, SI and SC groups on PD80. On PD114, cell survival was significantly decreased in AE rats, demonstrating that developmental alcohol exposure damages new cells' ability to incorporate into the network and survive. Behaviorally tested SC and SI groups preexposed to the training context 24h prior to receiving a 1.5mA 2s footshock froze significantly more during the context test than their counterparts preexposed to an alternate context. AE rats failed to show the CPFE. The current study shows the detrimental, long-lasting effects of developmental alcohol exposure on hippocampal adult neurogenesis and contextual fear conditioning. PMID:21816390

  18. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats.

    PubMed

    Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li

    2018-03-01

    Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.

  19. De Sedibus et Causis Morborum: is Essential Tremor a Primary Disease of the Cerebellum?

    PubMed

    Louis, Elan D

    2016-06-01

    Morgagni's 1761 publication of De sedibus et causis morborum (i.e., of the Seats and Causes of Diseases) represented a paradigmatic moment in the history of medicine. The book ushered in a new way of conceptualizing human disease, shattering old dogma, and linking constellations of symptoms and signs (i.e., clinical disease) with anatomic pathology in specific organs (i.e., organ disease). This was the anatomical-clinical method, and it attempted to unveil "the seat" of each disease in a specific organ. Essential tremor (ET) is among the most common neurological diseases. There is little debate that the origin of ET lies in the brain, but if one tries to delve more deeply than this, things become murky. The dogma for the past 40 years has been that the seat of ET is the inferior olivary nucleus. Closer scrutiny of this model, however, has revealed its many flaws, and the model, based on little if any empiric evidence, has increasingly lost favor. Arising from a wealth of research in recent years is a growing body of knowledge that links ET to a disarrangement of the cerebellum. Data from a variety of sources reviewed in this issue (clinical, neuroimaging, neurochemical, animal model, physiological, and pathological) link ET to the cerebellum. That the cerebellum is involved in an abnormal brain loop that is responsible for ET is not debated. The tantalizing question is whether an abnormality in the cerebellum is the prime mover, and whether the cerebellum is the seat of this particular disease.

  20. Effects of severe caloric restriction from birth on the hearts of adult rats.

    PubMed

    Melo, Dirceu Sousa; Riul, Tania Regina; Esteves, Elizabeth Adriana; Moraes, Patrícia Lanza; Ferreira, Fernanda Oliveira; Gavioli, Mariana; Alves, Márcia Netto Magalhães; Almeida, Pedro William Machado; Guatimosim, Silvia; Ferreira, Anderson José; Dias Peixoto, Marco Fabricio

    2013-08-01

    There has been increasing evidence suggesting that a severe caloric restriction (SCR) (above 40%) has beneficial effects on the hearts of rats. However, most of the reports have focused on the effects of SCR that started in adulthood. We investigated the consequences of SCR on the hearts of rats subjected to SCR since birth (CR50). From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Thereafter, a maximal aerobic test was performed to indirectly evaluate global cardiovascular function. Indices of contractility (+dT/dt) and relaxation (-dT/dt) were analyzed in isolated heart preparation, and cardiomyocyte diameter, number, density, and myocardium collagen content were obtained through histologic analysis. Ventricular myocytes were isolated, using standard methods to evaluate phosphorylated AKT levels, and Ca(2+) handling was evaluated with a combination of Western blot analysis, intracellular Ca(2+) imaging, and confocal microscopy. CR50 rats exhibited increased aerobic performance and cardiac function, as shown by the increase in ±dT/dt. Despite the smaller cardiomyocyte diameter, CR50 rats had an increased heart-body weight ratio, increased cardiomyocyte density and number, and similar levels of myocardium collagen content, compared with AL rats. AKT was hyperphosphorylated in cardiomyocytes from CR50 rats, and there were no significant differences in Ca(2+) transient and SERCA2 levels in cardiomyocytes between CR50 and AL rats. Collectively, these observations reveal the beneficial effects of a 50% caloric restriction on the hearts of adult rats restricted since birth, which might involve cardiomyocyte AKT signaling.

  1. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats

    PubMed Central

    Boonnate, Piyanard; Waraasawapati, Sakda; Hipkaeo, Wiphawi; Pethlert, Supattra; Sharma, Amod; Selmi, Carlo; Prasongwattana, Vitoon; Cha’on, Ubon

    2015-01-01

    Background The amount of dietary monosodium glutamate (MSG) is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology. Methods Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group). All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT) were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets. Results MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated. Conclusion Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account. PMID:26121281

  2. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats.

    PubMed

    Boonnate, Piyanard; Waraasawapati, Sakda; Hipkaeo, Wiphawi; Pethlert, Supattra; Sharma, Amod; Selmi, Carlo; Prasongwattana, Vitoon; Cha'on, Ubon

    2015-01-01

    The amount of dietary monosodium glutamate (MSG) is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology. Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group). All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT) were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets. MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated. Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account.

  3. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    PubMed

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  4. Oleic Acid Protects Against Oxidative Stress Exacerbated by Cytarabine and Doxorubicin in Rat Brain.

    PubMed

    Guzmán, David Calderón; Brizuela, Norma Osnaya; Herrera, Maribel Ortíz; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; Mejía, Gerardo Barragán

    2016-01-01

    The objective of this study was to analyze the effect of doxorubicin and cytarabine on biogenic amines and oxidative biomarkers in the brain of rats treated with oleic acid. Thirty-six Wistar rats distributed in 6 groups, were treated as follows: group 1 (control), NaCl 0.9%; group 2 doxorubicin (1mg/kg); group 3 cytarabine (70mg /kg); group 4 oleic acid (1500μl/kg); group 5 doxorubicin + oleic acid; group 6 cytarabine + oleic acid. All compounds were administered intraperitoneally for 5 days. The Rats were sacrificed after receiving the last administration and their brains were dissected in cortex, hemispheres, and cerebellum/medulla oblongata. Blood samples were obtained on sacrifice to assess the levels of glucose and triglycerides. In each brain region, lipoperoxidation (TBARS), H2O2, Na+, K+ ATPase, glutathione (GSH), serotonin metabolites (5-HIAA) and dopamine were measured using validated methods. Cytarabine decreased the levels of dopamine, TBARS, GSH, H2O2 and ATPase in all regions. Doxorubicin combined with oleic acid increased the levels of GSH in cortex, and decreased ATPase in cerebellum/medulla oblongata. These results suggest that the reduction of dopamine and oxidant effect during cytarabine treatment could result in brain injury but could be prevented by oleic acid supplementation.

  5. Neonatal Alcohol Exposure Permanently Disrupts the Circadian Properties and Photic Entrainment of the Activity Rhythm in Adult Rats

    PubMed Central

    Allen, Gregg C.; West, James R.; Chen, Wei-Jung A.; Earnest, David J.

    2009-01-01

    Background Alcohol exposure during the period of rapid brain development produces structural damage in different brain regions, including the suprachiasmatic nucleus (SCN), that may have permanent neurobehavioral consequences. Thus, this study examined the long-term effects of neonatal alcohol exposure on circadian behavioral activity in adult rats. Methods Artificially reared Sprague-Dawley rat pups were exposed to alcohol (EtOH; 4.5 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9. At 2 months of age, rats from the EtOH, GC, and suckle control (SC) groups were housed individually, and properties of the circadian rhythm in wheel-running behavior were continuously analyzed during exposure to a 12-hr light:12-hr dark photoperiod (LD 12:12) or constant darkness (DD). Results Neonatal alcohol exposure had distinctive effects on the rhythmic properties and quantitative parameters of adult wheel-running behavior. EtOH-treated animals were distinguished by unstable and altered entrainment to LD 12:12 such that their daily onsets of activity were highly variable and occurred at earlier times relative to control animals. In DD, circadian regulation of wheel-running behavior was altered by neonatal alcohol exposure such that the free-running period of the activity rhythm was shorter in EtOH-exposed rats than in control animals. Total amount of daily wheel-running activity in EtOH-treated rats was greater than that observed in the SC group. In addition, the circadian activity patterns of EtOH-exposed rats were fragmented such that the duration of the active phase and the number of activity bouts per day were increased. Conclusions These data indicate that neonatal alcohol exposure produces permanent changes in the circadian regulation of the rat activity rhythm and its entrainment to LD cycles. These long-term alterations in circadian behavior, along with the developmental alcohol-induced changes in SCN endogenous rhythmicity, may have

  6. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus

    PubMed Central

    Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663

  7. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  8. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.

    PubMed

    Louis, Elan D

    2016-06-01

    A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.

  9. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    PubMed

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. © The Author(s) 2014.

  10. Cerebellar pathology in childhood-onset vs. adult-onset essential tremor.

    PubMed

    Louis, Elan D; Kuo, Sheng-Han; Tate, William J; Kelly, Geoffrey C; Faust, Phyllis L

    2017-10-17

    Although the incidence of ET increases with advancing age, the disease may begin at any age, including childhood. The question arises as to whether childhood-onset ET cases manifest the same sets of pathological changes in the cerebellum as those whose onset is during adult life. We quantified a broad range of postmortem features (Purkinje cell [PC] counts, PC axonal torpedoes, a host of associated axonal changes [PC axonal recurrent collateral count, PC thickened axonal profile count, PC axonal branching count], heterotopic PCs, and basket cell rating) in 60 ET cases (11 childhood-onset and 49 adult-onset) and 30 controls. Compared to controls, childhood-onset ET cases had lower PC counts, higher torpedo counts, higher heterotopic PC counts, higher basket cell plexus rating, and marginally higher PC axonal recurrent collateral counts. The median PC thickened axonal profile count and median PC axonal branching count were two to five times higher in childhood-onset ET than controls, but the differences did not reach statistical significance. Childhood-onset and adult-onset ET had similar PC counts, torpedo counts, heterotopic PC counts, basket cell plexus rating, PC axonal recurrent collateral counts, PC thickened axonal profile count and PC axonal branching count. In conclusion, we found that childhood-onset and adult-onset ET shared similar pathological changes in the cerebellum. The data suggest that pathological changes we have observed in the cerebellum in ET are a part of the pathophysiological cascade of events in both forms of the disease and that both groups seem to reach the same pathological endpoints at a similar age of death. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of sex on ethanol consumption and conditioned taste aversion in adolescent and adult rats.

    PubMed

    Schramm-Sapyta, Nicole L; Francis, Reynold; MacDonald, Andrea; Keistler, Colby; O'Neill, Lauren; Kuhn, Cynthia M

    2014-04-01

    Vulnerability to alcoholism is determined by many factors, including the balance of pleasurable vs. aversive alcohol-induced sensations: pleasurable sensations increase intake, while aversive sensations decrease it. Female sex and adolescent age are associated with lower sensitivity to intake-reducing effects and more rapid development of alcohol abuse. This study assessed voluntary drinking and the aversive effects of alcohol to determine whether these measures are inversely related across the sexes and development. Voluntary drinking of 20 % ethanol in an every-other-day (EOD) availability pattern and the dose-response relationship of ethanol conditioned taste aversion (CTA) were assessed in male and female adolescent and adult rats. CTA was sex specific in adult but not adolescent rats, with adult females exhibiting less aversion. Voluntary ethanol consumption varied according to age and individual differences but was not sex specific. Adolescents initially drank more than adults, exhibited greater day-to-day variation in consumption, were more susceptible to the alcohol deprivation effect, and took longer to establish individual differences in consumption patterns. These results show that the emergence of intake patterns differs between adolescents and adults. Adolescents as a group initiate drinking at high levels but decrease intake as they mature. A subset of adolescents maintained high drinking levels into adulthood. In contrast, most adults consumed at steady, low levels, but a small subset quickly established and maintained high-consumption patterns. Adolescents also showed marked deprivation-induced increases. Sex differences were not observed in EOD drinking during either adolescence or adulthood.

  12. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  13. Subchronic Exposure to Arsenic Represses the TH/TRβ1-CaMK IV Signaling Pathway in Mouse Cerebellum.

    PubMed

    Guan, Huai; Li, Shuangyue; Guo, Yanjie; Liu, Xiaofeng; Yang, Yi; Guo, Jinqiu; Li, Sheng; Zhang, Cong; Shang, Lixin; Piao, Fengyuan

    2016-01-26

    We previously reported that arsenic (As) impaired learning and memory by down-regulating calmodulin-dependent protein kinase IV (CaMK IV) in mouse cerebellum. It has been documented that the thyroid hormone receptor (TR)/retinoid X receptor (RXR) heterodimer and thyroid hormone (TH) may be involved in the regulation of CaMK IV. To investigate whether As affects the TR/RXR heterodimer and TH, we determined As concentration in serum and cerebellum, 3,5,3'-triiodothyronine (T3) and thyroxin (T4) levels in serum, and expression of CaMK IV, TR and RXR in cerebellum of mice exposed to As. Cognition function was examined by the step-down passive avoidance task and Morris water maze (MWM) tests. Morphology of the cerebellum was observed by Hematoxylin-Eosin staining under light microscope. Our results showed that the concentrations of As in the serum and cerebellum of mice both increased with increasing As-exposure level. A significant positive correlation was found between the two processes. Adeficit in learning and memory was found in the exposed mice. Abnormal morphologic changes of Purkinje cells were observed in cerebellum of the exposed mice. Moreover, the cerebellar expressions of CaMK IV protein and the TRβ gene, and TRβ1 protein were significantly lower in As-exposed mice than those in controls. Subchronic exposure to As appears to increase its level in serum and cerebella of mice, impairing learning and memory and down-regulating expression of TRβ1 as well as down-stream CaMK IV. It is also suggested that the increased As may be responsible for down-regulation of TRβ1 and CaMK IV in cerebellum and that the down-regulated TRβ1 may be involved in As-induced impairment of learning and memory via inhibiting CaMK IV and its down-stream pathway.

  14. Whole body gamma radiation and marrow sensitivity: A comparative study between adult rats of eight different strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.S.; Elshafie, M.S.; Abdelrahman, H.G.

    1996-10-01

    Rats of Fischer-344 strain is quite resistant to whole-body gamma radiation. There is a genetic difference in rat hemoglobin (Hb) {beta}-chain structure, with alternate alleles, A and B, at a single locus. This study was designed to find out whether marrow sensitivity due to sublethal gamma exposure in age matched adult rats is entirely strain specific or a combination of both strain and Hb genotype specific. Eight strains of rats comprising of Hb genotypes AA and BB were studied. Several hematological parameters reflecting marrow evaluation were analyzed and compared. The data to be presented indicate that there is a partialmore » but distinct relationship between radiosensitivity and Hb genotypes.« less

  15. The effects of gonadectomy and binge-like ethanol exposure during adolescence on open field behaviour in adult male rats.

    PubMed

    Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming

    2015-09-14

    Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Migraineurs without aura show microstructural abnormalities in the cerebellum and frontal lobe.

    PubMed

    Granziera, C; Romascano, D; Daducci, A; Roche, A; Vincent, M; Krueger, G; Hadjikhani, N

    2013-12-01

    The involvement of the cerebellum in migraine pathophysiology is not well understood. We used a biparametric approach at high-field MRI (3 T) to assess the structural integrity of the cerebellum in 15 migraineurs with aura (MWA), 23 migraineurs without aura (MWoA), and 20 healthy controls (HC). High-resolution T1 relaxation maps were acquired together with magnetization transfer images in order to probe microstructural and myelin integrity. Clusterwise analysis was performed on T1 and magnetization transfer ratio (MTR) maps of the cerebellum of MWA, MWoA, and HC using an ANOVA and a non-parametric clusterwise permutation F test, with age and gender as covariates and correction for familywise error rate. In addition, mean MTR and T1 in frontal regions known to be highly connected to the cerebellum were computed. Clusterwise comparison among groups showed a cluster of lower MTR in the right Crus I of MWoA patients vs. HC and MWA subjects (p = 0.04). Univariate and bivariate analysis on T1 and MTR contrasts showed that MWoA patients had longer T1 and lower MTR in the right and left pars orbitalis compared to MWA (p < 0.01 and 0.05, respectively), but no differences were found with HC. Lower MTR and longer T1 point at a loss of macromolecules and/or micro-edema in Crus I and pars orbitalis in MWoA patients vs. HC and vs. MWA. The pathophysiological implications of these findings are discussed in light of recent literature.

  17. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  18. Behavioral Differences Between Late Preweanling and Adult Female Sprague-Dawley Rat Exploration of Animate and Inanimate Stimuli and Food

    PubMed Central

    Smith, Kiersten S.; Morrell, Joan I.

    2010-01-01

    The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli. PMID:21056059

  19. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca(2+), Cl(-), DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  20. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    PubMed

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  1. Sex differences in neonatal and young adult rat lower urinary tract function caused by bladder reduction.

    PubMed

    Chien, China; Chang, Huiyi Harriet; Wu, Hsi-Yang

    2015-08-01

    Pediatric urinary incontinence has been proposed as a cause for adult urinary incontinence, yet animal models mimic the findings of overactive bladder more closely than dysfunctional voiding. We used the bladder reduction (BR) model to study the effects of early external urethral sphincter (EUS) dysfunction on the maturation of lower urinary tract function in neonatal and young adult rats of both sexes. To determine long-term alterations in bladder and EUS function in young adult rats caused by neonatal BR. 46 Sprague-Dawley rats underwent BR and 52 underwent sham surgery at 1 week of age. At 3, 6, and 9 weeks of life, cystometry was carried out, 8-OH-DPAT (serotonergic receptor agonist) and WAY 100,635 (serotonergic receptor antagonist) were administered intravenously. Pressure threshold (PT), volume threshold (VT), storage tonic AUC, contraction area under the curve (AUC), EUS burst amplitude and burst duration were measured at baseline and after administration of serotonergic agents. PT increased in 3-week BR females compared with shams (31.1 vs. 22.7 cm H2O, p < 0.01), in conjunction with less efficient EUS emptying, as burst amplitude was suppressed (BR 0.04 vs. sham 0.07 mV, p < 0.05). VT subsequently increased in 9-week BR females compared with shams (0.81 vs. 0.36 mL, p < 0.05). Although 3-week BR males also experienced suppressed burst amplitude (BR 0.17 vs. sham 0.28 mV, p < 0.05), they showed no difference in PT at 3 weeks or VT at 9 weeks compared with sham males. The burst amplitude returned to normal in 6- and 9-week BR animals of both sexes, confirming a spontaneous recovery of EUS function over time. The thresholds for voiding in male rats are not as sensitive to early changes in EUS function compared with female rats. The response to serotonergic agents was identical between BR and sham animals. In the female animals, 8-OH-DPAT increased storage tonic AUC and burst duration, whereas in male animals, 8-OH-DPAT increased contraction AUC, burst

  2. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    PubMed

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl 4 ). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl 4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl 4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl 4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  3. Functionally heterogenous ryanodine receptors in avian cerebellum.

    PubMed

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  4. Alterations in the endocannabinoid system in the rat valproic acid model of autism.

    PubMed

    Kerr, D M; Downey, L; Conboy, M; Finn, D P; Roche, M

    2013-07-15

    The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Stress, κ manipulations, and aversive effects of ethanol in adolescent and adult male rats.

    PubMed

    Anderson, R I; Agoglia, A E; Morales, M; Varlinskaya, E I; Spear, L P

    2013-09-26

    Elevated ethanol use during adolescence, a potentially stressful developmental period, is accompanied by insensitivity to many aversive effects of ethanol relative to adults. Given evidence that supports a role for stress and the kappa opioid receptor (KOR) system in mediating aversive properties of ethanol and other drugs, the present study assessed the role of KOR antagonism by nor-binaltorphimine (nor-BNI) on ethanol-induced conditioned taste aversion (CTA) in stressed (exposed to repeated restraint) and non-stressed male rats (Experiment 1), with half of the rats pretreated with nor-BNI before stressor exposure. In Experiment 2, CTA induced by the kappa agonist U62,066 was also compared in stressed and non-stressed adolescents and adults. A highly palatable solution (chocolate Boost) was used as the conditioned stimulus (CS), thereby avoiding the need for water deprivation to motivate consumption of the CS during conditioning. No effects of stress on ethanol-induced CTA were found, with all doses eliciting aversions in adolescents and adults in both stress conditions. However, among stressed subjects, adults given nor-BNI before the repeated stressor displayed blunted ethanol aversion relative to adults given saline at that time. This effect of nor-BNI was not seen in adolescents, findings that support a differential role for the KOR involvement in ethanol CTA in stressed adolescents and adults. Results from Experiment 2 revealed that all doses of U62,066 elicited aversions in non-stressed animals of both ages that were attenuated in stressed animals, findings that support a modulatory role for stress in aversive effects of KOR activation. Collectively, these results suggest that although KOR sensitivity appears to be reduced in stressed subjects, this receptor system does not appear to contribute to age differences in ethanol-induced CTA under the present test circumstances. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    PubMed

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  8. Neonatal handling reduces renal function in adult rats.

    PubMed

    Donadio, Márcio Vinícius Fagundes; Jacobs, Silvana; Corezola, Kizzy Ludnila; Melo, Denizar Alberto da Silva; Dias, Henrique Bregolin; Reichel, Carlos Luiz; Franci, Celso Rodrigues; Jeckel-Neto, Emilio Antonio; Lulhier, Francisco; Lucion, Aldo Bolten; de Oliveira, Jarbas Rodrigues; Sanvitto, Gilberto Luiz

    2009-01-01

    To evaluate the effects of neonatal handling on hydroelectrolytic balance in adult rats. The litters were divided into two groups: nonhandled and handled. The procedure consisted of handling the pups for 1 min/day in the first 10 days postnatally. When adults, animals had their body weight verified and were housed in individual metabolic cages. After a 24-hour period, urine samples were collected and the urinary and water intake volumes measured. Blood samples to determine osmolality, aldosterone, corticosterone, angiotensin II, creatinine, urea, sodium and potassium levels were collected. The kidneys were removed for histological assessment. Urinary osmolality, sodium, urea and creatinine were also measured and the creatinine clearance (CC) calculated. No difference between groups was found in the body weight. Handled animals showed a reduction in the total kidney wet weight, water intake, urinary volume, CC, plasma angiotensin II, corticosterone and aldosterone when compared to the nonhandled and an increase in the urinary osmolality and sodium excretion fraction. No differences in serum potassium and no evidence of structural changes were demonstrated by histological analysis. Neonatal handling induced long-lasting effects decreasing renal function without evidence of kidney structural changes. (c) 2009 S. Karger AG, Basel.

  9. Neuronal Correlates of Cross-Modal Transfer in the Cerebellum and Pontine Nuclei

    PubMed Central

    Campolattaro, Matthew M.; Kashef, Alireza; Lee, Inah; Freeman, John H.

    2011-01-01

    Cross-modal transfer occurs when learning established with a stimulus from one sensory modality facilitates subsequent learning with a new stimulus from a different sensory modality. The current study examined neuronal correlates of cross-modal transfer of Pavlovian eyeblink conditioning in rats. Neuronal activity was recorded from tetrodes within the anterior interpositus nucleus (IPN) of the cerebellum and basilar pontine nucleus (PN) during different phases of training. After stimulus pre-exposure and unpaired training sessions with a tone conditioned stimulus (CS), light CS, and periorbital stimulation unconditioned stimulus (US), rats received associative training with one of the CSs and the US (CS1-US). Training then continued on the same day with the other CS to assess cross-modal transfer (CS2-US). The final training session included associative training with both CSs on separate trials to establish stronger cross-modal transfer (CS1/CS2). Neurons in the IPN and PN showed primarily unimodal responses during pre-training sessions. Learning-related facilitation of activity correlated with the conditioned response (CR) developed in the IPN and PN during CS1-US training. Subsequent CS2-US training resulted in acquisition of CRs and learning-related neuronal activity in the IPN but substantially less little learning-related activity in the PN. Additional CS1/CS2 training increased CRs and learning-related activity in the IPN and PN during CS2-US trials. The findings suggest that cross-modal neuronal plasticity in the PN is driven by excitatory feedback from the IPN to the PN. Interacting plasticity mechanisms in the IPN and PN may underlie behavioral cross-modal transfer in eyeblink conditioning. PMID:21411647

  10. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    PubMed

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  11. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  12. Effect of morphine and lacosamide on levels of dopamine and 5-HIAA in brain regions of rats with induced hypoglycemia.

    PubMed

    Guzman, D Calderon; Garcia, E Hernandez; Mejia, G Barragan; Olguin, H Juarez; Gonzalez, J A Saldivar; Labra Ruiz, N A

    2014-01-15

    The study aimed to determine the effect of morphine and lacosamide on levels of dopamine and 5-HIAA in a hypoglycemic model. Female Wistar rats (n = 30), mean weight of 180 g were treated as follow: Group 1 (control) received 0.9% NaCl, Group II; morphine (10 mg kg(-1)), Group III; lacosamide (10 mg kg(-1)), Group IV; insulin (10 U.I. per rat), Group V; morphine (10 mg kg(-1))+insulin, Group VI; lacosamide (10 mg kg(-1))+ insulin. All administrations were made intraperitoneally every 24 h, for 5 days. Animals were sacrificed after the last dose to measure the levels of glucose in blood; dopamine and 5-HIAA in cortex, hemispheres and cerebellum/medulla oblongata regions. Levels of glucose decreased significantly in animals treated with morphine, lacosamide and all groups that received insulin alone or combined with respect to control group. Levels of Dopamine diminished significantly in cortex and increased significantly in hemispheres of animals that received morphine. In cortex, 5-HIAA increase significantly in the groups treated with morphine, morphine+insulin and lacosamide+insulin, however a significant decrease of the same substance was witnessed in cerebellum and medulla oblongata of animals that received morphine or lacosamide plus insulin. GSH increased significantly in cortex and cerebellum/medulla oblongata of animals treated with morphine and lacosamide alone or combined with insulin. Lipid peroxidation decreased significantly in cortex and cerebellum/medulla oblongata of groups that received lacosamide alone or combined with insulin. These results indicate that hypoglycemia induced changes in cellular regulation while morphine and lacosamide are accompanied by biochemical responses.

  13. Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain.

    PubMed

    Okui, M; Ito, F; Ogita, K; Kuramoto, N; Kudoh, J; Shimizu, N; Ide, T

    2000-01-01

    APG-2 protein is a member of the heat shock protein 110 family, and it is thought to play an important role in the maintenance of neuronal functions under physiological and stress conditions. However, neither the tissue-distribution of APG-2 protein nor developmental change of its expression has been studied at the protein level. Therefore, we generated an antiserum against APG-2 protein and studied expression of this protein in rat brain and other tissues by use of the Western blot method. The results showed a high expression of APG-2 protein in various regions of the central nervous system (cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla pons, and spinal cord) throughout the entire postnatal stage. Similarly, a high level of APG-2 protein was detected in the whole brain of rat embryos and in adult rat tissues such as liver, lung, spleen, and kidney. In contrast, its expression in heart was high at postnatal days 1 and 3, but thereafter drastically decreased to a low level. Furthermore, APG-2 protein was detected in neuronal primary cultures prepared from rat cerebral cortex, and its level did not change notably during neuronal differentiation. These results show that APG-2 protein is constitutively expressed in various tissues and also in neuronal cells throughout the entire embryonic and postnatal period. suggesting that it might play an important role in these tissues under non-stress conditions.

  14. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    PubMed

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells. © The Author(s) 2015.

  15. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability.

    PubMed

    Ates, Mehlika Panpalli; Alaydin, Halil Can; Cengiz, Bulent

    2018-04-25

    This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Cerebellum: from Fundamentals to Translational Approaches. The Seventh International Symposium of the Society for Research on the Cerebellum.

    PubMed

    Manto, Mario; Mariën, Peter

    2016-02-01

    In terms of cerebellar research and ataxiology, a most fascinating period is currently going on. Numerous academic groups are now focusing their innovative research on the so-called little brain, hidden at the bottom of our brain. Indeed, its unique anatomical features make the cerebellum a wonderful window to address major questions about the central nervous system. The seventh international symposium of the SRC was held in Brussels at the Palace of Academies from May 8 to 10, 2015. The main goal of this dense symposium was to gather in a 2-day meeting senior researchers of exceptional scientific quality and talented junior scientists from all over the world working in the multidisciplinary field of cerebellar research. Fundamental and clinical researchers shared the latest knowledge and developments in this rapidly growing field. New ideas, addressed in a variety of inspiring talks, provoked a vivid debate. Advances in genetics, development, electrophysiology, neuroimaging, neurocognition and affect, as well as in the cerebellar ataxias and the controversies on the roles and functions of the cerebellum were presented. The Ferdinando Rossi lecture and the key-note lecture were delivered by Jan Voogd and Chris De Zeeuw, respectively. Contacts between researchers of different neuroscientific disciplines established a robust basis for novel trends and promising new cooperations between researchers and their centers spread all over the world.

  17. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    PubMed Central

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  18. Effects of Ethanol on the Cerebellum: Advances and Prospects.

    PubMed

    Luo, Jia

    2015-08-01

    Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.

  19. Trial-to-trial Adaptation: Parsing out the Roles of Cerebellum and BG in Predictive Motor Timing.

    PubMed

    Lungu, Ovidiu V; Bares, Martin; Liu, Tao; Gomez, Christopher M; Cechova, Ivica; Ashe, James

    2016-07-01

    We previously demonstrated that predictive motor timing (i.e., timing requiring visuomotor coordination in anticipation of a future event, such as catching or batting a ball) is impaired in patients with spinocerebellar ataxia (SCA) types 6 and 8 relative to healthy controls. Specifically, SCA patients had difficulties postponing their motor response while estimating the target kinematics. This behavioral difference relied on the activation of both cerebellum and striatum in healthy controls, but not in cerebellar patients, despite both groups activating certain parts of cerebellum during the task. However, the role of these two key structures in the dynamic adaptation of the motor timing to target kinematic properties remained unexplored. In the current paper, we analyzed these data with the aim of characterizing the trial-by-trial changes in brain activation. We found that in healthy controls alone, and in comparison with SCA patients, the activation in bilateral striatum was exclusively associated with past successes and that in the left putamen, with maintaining a successful performance across successive trials. In healthy controls, relative to SCA patients, a larger network was involved in maintaining a successful trial-by-trial strategy; this included cerebellum and fronto-parieto-temporo-occipital regions that are typically part of attentional network and action monitoring. Cerebellum was also part of a network of regions activated when healthy participants postponed their motor response from one trial to the next; SCA patients showed reduced activation relative to healthy controls in both cerebellum and striatum in the same contrast. These findings support the idea that cerebellum and striatum play complementary roles in the trial-by-trial adaptation in predictive motor timing. In addition to expanding our knowledge of brain structures involved in time processing, our results have implications for the understanding of BG disorders, such as Parkinson disease

  20. Structural Changes in the Cerebrum, Cerebellum and Corpus Callosum in Migraine Patients.

    PubMed

    Demir, Berin T; Bayram, Nezihe A; Ayturk, Zübeyde; Erdamar, Hüsamettin; Seven, Pelin; Calp, Ayşegül; Sazak, Merve; Ceylan, Hatice G

    2016-12-01

    The purpose of this study was to demonstrate the relationship among the cerebrum, cerebellum and corpus callosum in migraine patients. This work was conducted with cooperation of the Turgut Özal Medical Faculty, Department of Anatomy and Neurology. Migraine patients were divided into four groups: new patients; 1-5 years; 5-10 years; and, more than 10 years. All patients (n=75) and control subjects (n=20) underwent Magnetic Resonance Imaging (MRI) and brain images were processed by ONIS and Image J. Data were analyzed using the planimetric method. Cerebrum, cerebellum and corpus callosum volume were calculated for all subjects. The footprints of the callosum were as follows: healthy control subjects, new patients and 1-year patients: 12.8%, 5 years: 11.7% and more than 10 years: 10.7%. The cerebrum volume was as follows: healthy control subjects: 1152 cm3, 5-10 years: 1102 cm3 and more than 10 years: 1002 cm3. The results of our study showed atrophy in the cerebrum, cerebellum and corpus callosum of chronic migraine patients. This atrophy was greater in the patients with aura migraines. Our study confirmed that a migraine is an episodic disease that seriously affects the CNS.

  1. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats.

    PubMed

    Nojima, Kazuo; Takata, Tomoyo; Masuno, Hiroshi

    2013-07-01

    We investigated the effects of bisphenol A (BPA), an environmental endocrine-disrupting chemical, on spontaneous motor activity in adult male rats. The rats were implanted intraperitoneally with mini-osmotic pumps containing either BPA (50 μg/kg body weight per day) in sesame oil (BPA-treated group) or sesame oil only (vehicle-treated group). Spontaneous motor activity during a 24-h period was measured over 5 days from day 9 to day 13 after implantation using an animal movement analysis system. Spontaneous motor activity during the last 2 h of the dark phase and during the first 1-h of the light phase was increased in the BPA-treated group. Total spontaneous motor activity during the 12-h light phase, but not the 12-h dark phase, was higher in the BPA-treated group than in the vehicle-treated group. These findings suggest that BPA may induce hyperactivity in adult male rats during the 12-h light phase, especially during the 2 h immediately preceding sleep-onset and 1 h immediately following sleep-onset.

  2. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images.

    PubMed

    Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu

    2008-02-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.

  3. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  4. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    PubMed Central

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  5. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    PubMed

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging

  6. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem

    PubMed Central

    Wang, Jun Yi; Ngo, Michael M.; Hessl, David; Hagerman, Randi J.; Rivera, Susan M.

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer’s segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging

  7. Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.

    PubMed

    Sellien, Heike; Eshenroder, Donna S; Ebner, Ford F

    2005-09-01

    Rats move their whiskers actively during tactile exploration of their environment. The whiskers emanate from densely innervated whisker follicles that are moved individually by intrinsic facial muscles and as a group by extrinsic muscles. Several descriptions of whisker movements in normal adult rats during unrestrained exploration indicate that rats move their whiskers in the 6-9 Hz range when exploring a new environment. The rate can be elevated to nearly 20 Hz for brief episodes just prior to making a behavioural decision. The present studies were undertaken to compare whisker dynamics in head-restrained and freely moving rats with symmetrical or asymmetrical numbers of whiskers on the two sides of their face and to provide a description of differences in whisker use in exploring rats after trimming all but two whiskers on one side of the face, a condition that has been shown to induce robust cortical plasticity. Head-fixed rats were trained to protract their whiskers against a contact detector with sufficient force to trigger a chocolate milk reward. Whisker movements were analyzed, and the results from head-fixed animals were compared with free-running animals using trials taken during their initial exploration of novel objects that blocked the rat's progress down an elevated runway. The results show that symmetrical whisker movements are modulated both by the nature of the task and the number of whiskers available for exploration. Rats can change their whisker movements when the sensitivity (threshold) of a contact detector is raised or lowered, or when the nature of the task requires bilateral input from the whiskers. We show that trimming some, but not all whiskers on one side of the face modifies the synchrony of whisker movement compared to untrimmed or symmetrically trimmed whiskers.

  8. Successful Working Memory Processes and Cerebellum in an Elderly Sample: A Neuropsychological and fMRI Study

    PubMed Central

    Luis, Elkin O.; Arrondo, Gonzalo; Vidorreta, Marta; Martínez, Martin; Loayza, Francis; Fernández-Seara, María A.; Pastor, María A.

    2015-01-01

    Background Imaging studies help to understand the evolution of key cognitive processes related to aging, such as working memory (WM). This study aimed to test three hypotheses in older adults. First, that the brain activation pattern associated to WM processes in elderly during successful low load tasks is located in posterior sensory and associative areas; second, that the prefrontal and parietal cortex and basal ganglia should be more active during high-demand tasks; third, that cerebellar activations are related to high-demand cognitive tasks and have a specific lateralization depending on the condition. Methods We used a neuropsychological assessment with functional magnetic resonance imaging and a core N-back paradigm design that was maintained across the combination of four conditions of stimuli and two memory loads in a sample of twenty elderly subjects. Results During low-loads, activations were located in the visual ventral network. In high loads, there was an involvement of the basal ganglia and cerebellum in addition to the frontal and parietal cortices. Moreover, we detected an executive control role of the cerebellum in a relatively symmetric fronto-parietal network. Nevertheless, this network showed a predominantly left lateralization in parietal regions associated presumably with an overuse of verbal storage strategies. The differential activations between conditions were stimuli-dependent and were located in sensory areas. Conclusion Successful WM processes in the elderly population are accompanied by an activation pattern that involves cerebellar regions working together with a fronto-parietal network. PMID:26132286

  9. Spontaneous anaplasia in pilocytic astrocytoma of cerebellum.

    PubMed

    Lach, B; Al Shail, E; Patay, Z

    2003-06-01

    We report a cystic cerebellar astrocytoma with a mural nodule that contained an additional focus of astrocytoma with the histological features of anaplasia, and showed up to 48% of aneuploid and 3% S-phase cells on flow cytometry. This focus was detectable on the enhanced, as well as non-enhanced T1 and T2 images. This appears to be the first case of pilocytic astrocytoma of cerebellum with focal anaplasia detected on histological and radiological studies.

  10. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults.

    PubMed

    Turkeltaub, Peter E; Swears, Mary K; D'Mello, Anila M; Stoodley, Catherine J

    2016-05-24

    Aphasia is an acquired deficit in the ability to communicate through language. Noninvasive neuromodulation offers the potential to boost neural function and recovery, yet the optimal site of neuromodulation for aphasia has yet to be established. The right posterolateral cerebellum is involved in multiple language functions, interconnects with left-hemisphere language cortices, and is crucial for optimization of function and skill acquisition, suggesting that cerebellar neuromodulation could enhance aphasia rehabilitation. To provide preliminary behavioral and functional connectivity evidence from healthy participants that cerebellar neuromodulation may be useful for rehabilitation of aphasia. In Experiment 1, 76 healthy adults performed articulation and verbal fluency tasks before and after anodal, cathodal or sham transcranial direct current stimulation (tDCS) was applied over two cerebellar locations (anterior, right posterolateral). In Experiment 2, we examined whether anodal tDCS over the right posterolateral cerebellum modulated resting-state functional connectivity in language networks in 27 healthy adults. TDCS over the right posterolateral cerebellum significantly improved phonemic fluency. Cerebellar neuromodulation increased functional connectivity between the cerebellum and areas involved in the motor control of speech, and enhanced the correlations between left-hemisphere language and speech-motor regions. We provide proof-of-principle evidence that cerebellar neuromodulation improves verbal fluency and impacts resting-state connectivity in language circuits. These findings suggest that the cerebellum is a viable candidate for neuromodulation in people with aphasia.

  12. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    PubMed Central

    Pezoulas, Vasileios C.; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A.

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  13. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender.

    PubMed

    Pezoulas, Vasileios C; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  14. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Differential effects of ibogaine on local cerebral glucose utilization in drug-naive and morphine-dependent rats.

    PubMed

    Levant, Beth; Pazdernik, Thomas L

    2004-04-02

    Ibogaine, a hallucinogenic indole alkaloid, has been proposed as a treatment for addiction to opioids and other drugs of abuse. The mechanism for its putative anti-addictive effects is unknown. In this study, the effects of ibogaine on local cerebral glucose utilization (LCGU) were determined in freely moving, drug-naive, or morphine-dependent adult, male, Sprague-Dawley rats using the [(14)C]2-deoxyglucose (2-DG) method. Morphine-dependent rats were treated with increasing doses of morphine (5-25 mg/kg, s.c., b.i.d.) and then maintained at 25 mg/kg (b.i.d.) for 4-7 days. For the 2-DG procedure, rats were injected with saline or ibogaine (40 mg/kg, i.p.). 2-DG was administered 1 h after administration of ibogaine. The rate of LCGU was determined by quantitative autoradiography in 46 brain regions. In drug-naive animals, ibogaine produced significant increases in LCGU in the parietal, cingulate, and occipital cortices and cerebellum compared to controls consistent with its activity as a hallucinogen and a tremorogen. Morphine-dependent rats had only minor alterations in LCGU at the time assessed in this experiment. However, in morphine-dependent animals, ibogaine produced a global decrease in LCGU that was greatest in brain regions such as the lateral and medial preoptic areas, nucleus of the diagonal band, nucleus accumbens shell, inferior colliculus, locus coeruleus, and flocculus compared to morphine-dependent animals treated with saline. These findings indicate that ibogaine produces distinctly different effects on LCGU in drug-naive and morphine-dependent rats. This suggests that different mechanisms may underlie ibogaine's hallucinogenic and anti-addictive effects.

  16. Differences in Methylphenidate Dose Response between Periadolescent and Adult Rats in the Familiar Arena-Novel Alcove TaskS⃞

    PubMed Central

    Zarcone, Troy J.; Davis, Paul F.; Ozias, Marlies K.; Fowler, Stephen C.

    2011-01-01

    Methylphenidate is a psychostimulant widely used in the treatment of attention deficit hyperactivity disorder. In this study, the effects of two nonstereotypy-inducing doses of methylphenidate (2.5 and 5.0 mg/kg s.c.) were examined in periadolescent [postnatal days (P) 35 and 42] and young adult (P70), male Long-Evans rats using a three-period locomotor activity paradigm that affords inferences about exploration, habituation, and attention to a novel stimulus (an “alcove”) in a familiar environment in a single test session. In the first test period, P35 and P42 rats were more active than P70 rats, and methylphenidate increased locomotion in a dose-related manner. The introduction of a novel spatial stimulus in the third test period revealed a significant interaction of dose and age such that P70 rats exhibited dose-related increases in distance traveled, but P35 rats did not. Furthermore, methylphenidate dose-relatedly disrupted the rats' tendency to spend increasing amounts of time in the alcove across the test period at P70 but not at P35. Brain and serum methylphenidate concentrations were significantly lower at P35 than at P70, with intermediate levels at P42. Developmental differences in dopaminergic neurochemistry were also observed, including increased dopamine content in the caudate-putamen, nucleus accumbens, and frontal cortex and decreased densities of D1-like receptors in the frontal cortex in P70 than in P42 rats. These results raise the possibility that children and adults may respond differently when treated with this drug, particularly in situations involving response to novelty and that these effects involve developmental differences in pharmacokinetics and dopaminergic neurochemistry. PMID:21205916

  17. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats.

    PubMed

    Wang, K-C; Fan, L-W; Kaizaki, A; Pang, Y; Cai, Z; Tien, L-T

    2013-03-27

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LPS (1mg/kg) intracerebral (i.c.) injection in postnatal day 5 (P5) Sprague-Dawley female rat pups, neurobehavioral tests were carried out on P21 and P22, P49 and P50 or P70 and P71 and brain injury was examined at 66days after LPS injection (P71). Our data indicate that neonatal LPS exposure resulted in learning deficits in the passive avoidance task, less anxiety-like (anxiolytic-like) responses in the elevated plus-maze task, reductions in the hippocampal volume and the number of neuron-specific nuclear protein (NeuN)+ cells, as well as axonal injury in the CA1 region of the middle dorsal hippocampus in P71 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P71 rat hippocampus, as indicated by an increased number of activated microglia and elevation of interleukin-1β content in the rat hippocampus. This study reveals that neonatal LPS exposure causes persistent injuries to the hippocampus and results in long-lasting learning disabilities, and these effects are related to the chronic inflammation in the rat hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats.

    PubMed

    Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-01-01

    Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ m

  19. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  20. The effect of trichlorfon and methylazoxymethanol on the development of guinea pig cerebellum.

    PubMed

    Mehl, Anna; Schanke, Tore M; Torvik, Ansgar; Fonnum, Frode

    2007-03-01

    The pesticide trichlorfon (125 mg/kg on days 42-44 in gestation) gives hypoplasia of the brain of the offspring without any significant reduction in their body weights. The hypoplasia may be caused by trichlorfon itself or by its metabolite dichlorvos. This period of development coincides with the growth spurt period of guinea pig brain. The largest changes occurred in the cerebellum. Electron microscopic examination of the cerebellar cortex showed increased apoptotic death of cells in the granule cell layer after trichlorfon treatment. A reduction in thickness of the external germinal layer of the cerebellar cortex and an elevated amount of pyknotic and karyorrhexic cells in the granule cell layer was found. There was a significant reduction in choline esterase, choline acetyltransferase and glutamate decarboxylase activities in the cerebellum. Methylazoxymethanol (15 mg/kg body weight, day 43) was examined for comparison and caused similar hypoplasia of the guinea pig cerebellum, but did also induce a reduction in body weight. Trichloroethanol, the main metabolite of trichlorfon, did not give brain hypoplasia.