Sample records for adult rats adult

  1. Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats.

    PubMed

    de Andrade, Claudia Roberta; de Campos, Glenda Andréa Déstro; Tirapelli, Carlos Renato; Laurindo, Francisco R M; Haddad, Renato; Eberlin, Marcos N; de Oliveira, Ana Maria

    2010-01-01

    We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. Copyright 2010. Published by Elsevier Inc.

  2. Neurocircuitry of fear extinction in adult and juvenile rats.

    PubMed

    Ganella, Despina E; Nguyen, Ly Dao; Lee-Kardashyan, Luba; Kim, Leah E; Paolini, Antonio G; Kim, Jee Hyun

    2018-06-10

    In contrast to adult rodents, juvenile rodents fail to show relapse following extinction of conditioned fear. Using different retrograde tracers injected into the infralimbic cortex (IL) and the ventral hippocampus (vHPC) in conjunction with c-Fos and parvalbumin (PV) immunochemistry, we investigated the neurocircuitry of extinction in juvenile and adult rats. Regardless of fear extinction or retrieval, juvenile rats had more c-Fos+ neurons in the basolateral amygdala (BLA) compared to adults, and showed a higher proportion of c-Fos+ IL-projecting neurons. Adult rats had more activated vHPC-projecting BLA neurons following extinction compared to retrieval, a difference not observed in juvenile rats. The number of activated vHPC- or IL-projecting BLA neurons was significantly correlated with freezing levels in adult, but not juvenile, rats. We also identified neurons in the BLA that simultaneously project to the IL and vHPC activated in the retrieval groups at both ages. This study provides novel insight into the neural process underlying extinction, especially in the juvenile period. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    EPA Science Inventory

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  4. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  5. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  6. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  7. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  8. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerge, Daniel R., E-mail: daniel.doerge@fda.hhs.go; Twaddle, Nathan C.; Vanlandingham, Michelle

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, butmore » not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.« less

  9. Dietary modulation of parathion-induced neurotoxicity in adult and juvenile rats.

    PubMed

    Liu, Jing; Karanth, Subramanya; Pope, Carey

    2005-06-01

    Previous studies indicated that dietary glucose (15% in drinking water) could markedly exacerbate the toxicity of parathion in adult rats. The present study evaluated the effect of consumption of the commonly used sweetener, high fructose corn syrup (HFCS), on parathion toxicity in adult and juvenile rats. Animals were given free access to either water or 15% HFCS in drinking water for a total of 10 days and challenged with parathion (6 or 18 mg/kg, s.c., for juveniles or adults, respectively) on the 4th day. Signs of cholinergic toxicity, body weight and chow/fluid intake were recorded daily. Acetylcholinesterase (AChE) activity and immunoreactivity (AChE-IR) in frontal cortex and diaphragm were measured at 2, 4, and 7 days after parathion. As HFCS was associated with significant reduction in chow intake, adult rats were also pair-fed to evaluate the effect of similar reduced chow intake alone on parathion toxicity. The results indicated that the cholinergic toxicity of parathion was significantly increased by HFCS feeding in both age groups. The excess sugar consumption, however, did not significantly affect parathion-induced AChE inhibition in either tissue or either age group. Enzyme immunoreactivity in frontal cortex was generally not affected in either age group while diaphragm AChE-IR was significantly reduced by parathion and HFCS alone in adult animals at 2 and 4 days timepoints, and more so by the combination of sugar feeding and parathion exposure in both age groups. Food restriction alone did not exacerbate parathion toxicity. While the mechanism(s) remains unclear, we conclude that voluntary consumption of the common sweetener HFCS can markedly amplify parathion acute toxicity in both juvenile and adult rats.

  10. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our

  11. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    PubMed

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  13. Early treatment with metformin induces resistance against tumor growth in adult rats

    PubMed Central

    Trombini, Amanda B; Franco, Claudinéia CS; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane AS; Fabricio, Gabriel S; de Sant’Anna, Juliane R; Castro-Prado, Marialba AA; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo CF

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  14. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  15. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    PubMed Central

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  16. Effects of 4-Vinylcyclohexene Diepoxide on Peripubertal and Adult Sprague–Dawley Rats: Ovarian, Clinical, and Pathologic Outcomes

    PubMed Central

    Muhammad, F Salih; Goode, Amanda K; Kock, Nancy D; Arifin, Esther A; Cline, J Mark; Adams, Michael R; Hoyer, Patricia B; Christian, Patricia J; Isom, Scott; Kaplan, Jay R; Appt, Susan E

    2009-01-01

    Young rats treated daily with intraperitoneal 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial follicles, resulting in gradual ovarian failure resembling the menopausal transition in women. To determine whether VCD has similar effects on ovaries of older rats, adult and peripubertal Sprague–Dawley rats were injected intraperitoneally daily for 30 d with vehicle or VCD at 40 or 80 mg/kg. Body weight, food intake, complete blood counts, and markers of liver injury and renal function were measured during VCD treatment. Complete gross necropsy and microscopic observations were performed on day 31, and ovarian follicles were counted. At 80 mg/kg, VCD destroyed primordial and primary follicles to a similar extent in both adult and peripubertal animals, although adult rats likely started with fewer follicles and therefore approached follicle depletion. Treatment with VCD did not affect body weight, but food intake was reduced in both adult and peripubertal rats treated with 80 mg/kg VCD. Adult rats treated with 80 mg/kg VCD had neutrophilia and increased BUN and creatinine; in addition, 4 of these rats were euthanized on days 25 or 26 due to peritonitis. VCD treatment did not increase alanine aminotransferase levels, a marker of liver injury, although the 80-mg/kg dose increased liver weights. In conclusion, VCD effectively destroys small preantral follicles in adult Sprague–Dawley rats, making them a suitable model of the menopausal transition of women. However, because adult rats were more sensitive to the irritant properties of VCD, the use of a lower dose should be considered. PMID:19295054

  17. Comparative toxicity and tissue distribution of lead acetate in weanling and adult rats.

    PubMed Central

    Rader, J I; Peeler, J T; Mahaffey, K R

    1981-01-01

    The relative toxicity of low doses of lead acetate provided steadily in drinking water or by mouth once per week was studied in weanling and adult rats. Free erythrocyte protoporphyrin and urinary delta-aminolevulinic acid levels were measured, as well as lead levels in blood and kidney. The accumulation of lead in brain tissue and in bone (femur) was measured to determine the effect of age and schedule of administration on tissue distribution and retention of lead. Total intakes of lead during the 60-week experimental period were: weanling and adult rats exposed to drinking water supplemented with 200 microgram of lead acetate/ml: 127 +/- 10 mg and 160 +/- 16 mg, respectively; weanling and adult rats dosed with lead acetate orally once per week: 132 mg and 161 mg, respectively. Increased toxic effects of lead in the weanling animals were apparent in most of the parameters measured (urinary delta-aminolevulinic acid and blood, brain, femur and kidney lead levels). This pattern was observed in weanling rats exposed to lead steadily through drinking water or dosed orally with an equivalent quantity of lead once per week. Lead levels in blood were highly correlated with the accumulation of lead in brain, femur, and kidney tissue in both groups of weanling rats. In adult rats, significant correlations between blood lead and kidney lead and between blood lead and femur lead were found only in the rats receiving lead steadily in drinking water. PMID:7333253

  18. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly

  19. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  20. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    NASA Astrophysics Data System (ADS)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  1. [Effect of tail-suspension on the reproduction of adult male rats].

    PubMed

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P <0.05), while the apoptosis rate of testicular cells and the amount of abnormal sperm markedly increased (P <0.05). The content of testosterone significantly decreased (P <0.05), but the contents of FSH and LH mildly increased (P > 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  2. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats

    PubMed Central

    Carroll, Marilyn E.

    2010-01-01

    Rationale In human and animal studies, adolescence marks a period of increased vulnerability to the initiation and subsequent abuse of drugs. Adolescents may be especially vulnerable to relapse, and a critical aspect of drug abuse is that it is a chronically relapsing disorder. However, little is known of how vulnerability factors such as adolescence are related to conditions that induce relapse, triggered by the drug itself, drug-associated cues, or stress. Objective The purpose of this study was to compare adolescent and adult rats on drug-, cue-, and stress-induced reinstatement of cocaine-seeking behavior. Methods On postnatal days 23 (adolescents) and 90 (adults), rats were implanted with intravenous catheters and trained to lever press for i.v. infusions of cocaine (0.4 mg/kg) during two daily 2-h sessions. The rats then self-administered i.v. cocaine for ten additional sessions. Subsequently, visual and auditory stimuli that signaled drug delivery were unplugged, and rats were allowed to extinguish lever pressing for 20 sessions. Rats were then tested on cocaine-, cue-, and yohimbine (stress)-induced cocaine seeking using a within-subject multicomponent reinstatement procedure. Results Results indicated that adolescents had heightened cocaine seeking during maintenance and extinction compared to adults. During reinstatement, adolescents (vs adults) responded more following cocaine- and yohimbine injections, while adults (vs adolescents) showed greater responding following presentations of drug-associated cues. Conclusion These results demonstrated that adolescents and adults differed across several measures of drug-seeking behavior, and adolescents may be especially vulnerable to relapse precipitated by drugs and stress. PMID:19953228

  3. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  4. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  5. Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.

    PubMed

    Lu, Qi; Jiang, Cuiping; Zhang, Jiping

    2016-02-01

    Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Glucoregulatory responses of adult and aged rats after exposure to chronic stress.

    PubMed

    Odio, M R; Brodish, A

    1990-01-01

    Stress has been implicated as an environmental factor that may accelerate the process of biological aging. However, this proposal has remained largely anecdotal due to relatively few studies that directly tested this hypothesis. In the present experiments groups of 6-month-old and 20-month-old male F-344 rats were chronically stressed for a six-month period. After the last stress session, when the animals were 12 months of age (adult) and 26 months of age (old), control and chronically stressed rats were tested for their ability to: (a) elicit glucose and insulin responses to an acute, novel stressor; (b) remove a circulatory glucose load elicited either by acute stress exposure or by injection of d-glucose; and (c) raise insulin levels after a glucose challenge. In control rats, we observed a deficit in each of these parameters in old compared to adult rats. Exposure to chronic stress did not exacerbate deterioration of these response mechanisms in either adult or old rats. In fact, the data showed a modest improvement in glucose tolerance in chronically stressed compared to age-matched control rats. We conclude that chronic stress did not exacerbate age-dependent decline of glucoregulatory capacity. From these results and from our earlier work, we speculate that the decline during aging of the functional integrity of systems involved in the response to stress may be sustained by periodic challenges from the organism's external environment.

  7. Prenatal Opiate Exposure Attenuates LPS-Induced Fever in Adult Rats: Role of Interleukin-1β

    PubMed Central

    Hamilton, Kathryn L.; Franklin, La’Tonyia M.; Roy, Sabita; Schrott, Lisa M.

    2009-01-01

    Much is known about the immunomodulatory effects of opiate exposure and withdrawal in adult rats. However, little research has delved into understanding the immunological consequences of prenatal opiate exposure and postnatal withdrawal. The purpose of the current study was to measure changes in responding to immune stimulation in adult rats following prenatal opiate exposure. Further, we sought to characterize the role of interleukin (IL)-1β in these changes. Following prenatal exposure to the long-acting opiate l-alpha-acetylmethadol (LAAM), adult male and female rats were assessed for their fever response to lipopolysaccharide (LPS). Blood and tissue samples were collected to measure circulating IL-1β and IL-1β protein in the hypothalamus and spleen. Prenatal LAAM exposure resulted in a blunted fever response to LPS injection without any changes in basal body temperature or in response to saline injection. Circulating IL-1β was not affected by prenatal LAAM exposure, nor was IL-1β protein in the spleen. Interestingly, mature IL-1β protein was elevated in the hypothalamus of prenatally LAAM-treated rats. These results indicate that prenatal opiate exposure blunts the fever response of adult offspring. Direct action of IL-1β is likely not the cause of the dysfunction reported here. However, alterations in signaling mechanisms downstream from IL-1β may play a role in the altered fever response in adult rats treated prenatally with opiates. PMID:17196563

  8. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    PubMed

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  9. Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.

    PubMed

    Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L

    2014-07-01

    Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.

  10. Interactions of Stress and CRF in Ethanol-Withdrawal Induced Anxiety in Adolescent and Adult Rats

    PubMed Central

    Wills, Tiffany A.; Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. Methods Male adult and adolescent Sprague–Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5-days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. Results Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. Conclusions In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased

  11. Age related optic nerve axonal loss in adult Brown Norway rats.

    PubMed

    Cepurna, William O; Kayton, Robert J; Johnson, Elaine C; Morrison, John C

    2005-06-01

    The effect of age on the number and morphology of optic nerve axons in adult Brown Norway rats (5-31 months old) (n=29) was examined using transmission electron microscopy (TEM). By manually counting every axon in areas representing 60% of the optic nerve cross-section, we found a significant negative correlation between age and axon count (R(2)=0.18, P<0.05). However, when the oldest animals were omitted, the relationship was no longer statistically significant. Simultaneously, the proportion of spontaneously degenerating axons increased at an exponential rate (R(2)=0.79, P<0.05), with significantly more degeneration in the 31-month group than in 5-month-old animals (ANOVA, P<0.05). This study demonstrates, using quantitative TEM methods, that optic nerve axonal numbers are relatively constant throughout the majority of the adult life of the Brown Norway rat, an increasingly popular strain for glaucoma research. Total axonal loss with aging is substantially less than that reported for other strains. The reduction in axonal numbers and the rate of axonal degeneration do not appear significantly altered until the last few months of life, failing to support some studies that have concluded that optic nerve axon loss in adult rats is linear. However, they do agree with other studies in the rat, and a similar study performed in non-human primate eyes, that concluded that aging changes in the optic nerve and retina follow a complex pattern. Therefore, the impact of animal age must be considered when modeling the course and pathophysiology of experimental glaucomatous optic nerve damage in rats.

  12. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  13. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    PubMed

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  14. Differential DNA damage in response to the neonatal and adult excitotoxic hippocampal lesion in rats.

    PubMed

    Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K

    2000-12-01

    We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.

  15. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats.

    PubMed

    Gellner, Candice A; Belluzzi, James D; Leslie, Frances M

    2016-10-01

    Although smoking initiation typically occurs during adolescence, most preclinical studies of tobacco use involve adult animals. Furthermore, their focus is largely on nicotine alone, even though cigarette smoke contains thousands of constituents. The present study therefore aimed to determine whether aqueous constituents in cigarette smoke affect acquisition of nicotine self-administration during adolescence in rats. Adolescent and adult male rats, aged postnatal day (P) 25 and 85, respectively, were food trained on a fixed ratio 1 (FR1) schedule, then allowed to self-administer one of 5 doses of nicotine (0, 3.75, 7.5, 15, or 30 μg/kg) or aqueous cigarette smoke extract (CSE) with equivalent nicotine content. Three progressively more difficult schedules of reinforcement, FR1, FR2, and FR5, were used. Both adolescent and adult rats acquired self-administration of nicotine and CSE. Nicotine and CSE similarly increased non-reinforced responding in adolescents, leading to enhanced overall drug intake as compared to adults. When data were corrected for age-dependent alterations in non-reinforced responding, adolescents responded more for low doses of nicotine and CSE than adults at the FR1 reinforcement schedule. No differences in adolescent responding for the two drugs were seen at this schedule, whereas adults had fewer responses for CSE than for nicotine. However, when the reinforcement schedule was increased to FR5, animals dose-dependently self-administered both nicotine and CSE, but no drug or age differences were observed. These data suggest that non-nicotine tobacco smoke constituents do not influence the reinforcing effect of nicotine in adolescents. Published by Elsevier Ltd.

  16. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.

    PubMed

    Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun

    2017-09-01

    Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    PubMed

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  18. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats.

    PubMed

    Mohamed, M; Sulaiman, S A; Jaafar, H; Sirajudeen, K N S

    2012-05-01

    The aim of this study was to evaluate the effect of different doses of Malaysian honey on male reproductive parameters in adult rats. Thirty-two healthy adult male Sprague-Dawley rats were randomly divided into four groups (eight rats per group). Group 1 (control group) was given 0.5 ml of distilled water. Groups 2, 3 and 4 were given 0.2, 1.2 and 2.4 g kg(-1) body weight of honey respectively. The rats were treated orally by gavage once daily for 4 weeks. Honey did not significantly alter body and male reproductive organs weights. The rats in Group 3 which received honey at 1.2 g kg(-1) had significantly higher epididymal sperm count than those in Groups 1, 2 and 4. No significant differences were found for the percentage of abnormal sperm, elongated spermatid count, reproductive hormonal levels as well as the histology of the testis among the groups. In conclusion, Malaysian honey at a dose of 1.2 g kg(-1) daily significantly increased epididymal sperm count without affecting spermatid count and reproductive hormones. These findings might suggest that oral administration of honey at this dose for 4 weeks may enhance spermiogenesis in adult rats. © 2011 Blackwell Verlag GmbH.

  19. Regulation of Peripheral Catecholamine Responses to Acute Stress in Young Adult and Aged F-344 Rats.

    PubMed

    McCarty; Pacak; Goldstein; Eisenhofer

    1997-12-01

    Young adult (3-month-old) and aged (24-month-old) Fischer-344 male rats received i.v. infusions of 3H-labeled norepinephrine (NE) and epinephrine (EPI) to examine the effects of aging on the neuronal uptake of NE and sympathoadrenal release of NE and EPI. Spillovers of NE and EPI into plasma and their clearance from the circulation were estimated from plasma concentrations of endogenous and 3H-labeled NE and EPI. The efficiency of neuronal uptake was assessed from changes in plasma clearance of NE and concentrations of its intraneuronal metabolite, dihydroxyphenylglycol (DHPG), during immobilization stress or neuronal uptake blockade with desipramine. Stress-induced increases in plasma NE and higher plasma NE concentrations in aged compared to young adult rats were due to both decreases in NE clearance and increases in NE spillover. EPI spillover and clearance were reduced in aged compared to young adult rats, so that plasma EPI levels did not differ between groups. Young adult and aged rats had similar desipramine-induced decreases in NE clearance, whereas desipramine-sensitive decreases and stress-induced increases in plasma DHPG were larger in aged rats. This indicates that neuronal uptake is intact and that increased NE spillover at rest and during stress in aged rats reflects increased NE release from sympathetic nerves. The results show that aging is associated with divergent decreases in EPI release from the adrenal medulla and increases in NE release from sympathetic nerves. Increased plasma concentrations of NE in aged compared to young adult rats also result from decreased circulatory clearance of NE, but this does not reflect any age-related impairment of NE reuptake.

  20. Event-Related Potential responses to the acute and chronic effects of alcohol in adolescent and adult Wistar rats

    PubMed Central

    Ehlers, Cindy L.; Desikan, Anita; Wills, Derek N.

    2014-01-01

    Background The present study explored the hypothesis that adolescent ethanol exposure may cause long lasting changes in ethanol sensitivity by exploring the age-related effects of acute alcohol on intoxication and on event-related potential (ERP) responses to acoustic stimuli in ethanol naïve adolescent and adult male Wistar rats and in adult rats that were exposed to chronic ethanol/control conditions during adolescence. Methods Ethanol naïve adolescent (postnatal day 32 (PD32)) and adult male rats (PD99) were included in the first study. In a second study, rats were exposed to 5 weeks of ethanol vapor (Blood ethanol concentrations @ 175 mg%) or air from PD24 to PD59 and allowed to mature until PD90. In both studies rats were implanted with cortical recording electrodes, and the effects of acute ethanol (0.0, 1.5, and 3.0 g/kg) on behavioral and ERP responses were assessed. Results Adolescents were found to have higher amplitude and longer latency P3a and P3b components at baseline as compared to adult rats, and ethanol was found to produce a robust dose-dependent increase in the latency of the P3a and P3b components of the auditory ERP recorded in cortical sites in both adolescents and adults. However, ethanol produced significantly larger delays in P3a and P3b latencies in adults as compared to adolescents. Acute ethanol administration was also found to produce a robust dose dependent increase in the latency of the P3a and P3b components in adult animals exposed to ethanol vapor as adolescents and air exposed controls; however, larger acute ethanol-induced increases in P3a and P3b latencies were seen in controls as compared to adolescent vapor exposed rats. Conclusions Adolescent rats have a less intense P3 latency response to acute ethanol administration when compared to adult rats. Exposure to chronic ethanol during adolescence can cause “retention” of the adolescent phenotype of reduced P3 latency sensitivity to ethanol. PMID:24483322

  1. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats.

    PubMed

    Lukas, Michael; Bredewold, Remco; Landgraf, Rainer; Neumann, Inga D; Veenema, Alexa H

    2011-07-01

    Early life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat. Juvenile control and MS rats demonstrated successful social recognition at inter-exposure intervals of 30 and 60 min. However, unlike adult control rats, adult MS rats failed to discriminate between a previously encountered and a novel rat after 60 min. The social recognition impairment of adult MS rats was accompanied by a lack of a rise in arginine vasopressin (AVP) release within the lateral septum seen during social memory acquisition in adult control rats. This blunted response of septal AVP release was social stimulus-specific because forced swimming induced a rise in septal AVP release in both control and MS rats. Retrodialysis of AVP (1 μg/ml, 3.3 μl/min, 30 min) into the lateral septum during social memory acquisition restored social recognition in adult MS rats at the 60-min interval. These studies demonstrate that MS impairs social recognition performance in adult rats, which is likely caused by blunted septal AVP activation. Impaired social recognition may be linked to MS-induced changes in other social behaviors like aggression as shown previously. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    PubMed

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  3. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength

  4. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  5. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    PubMed Central

    van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.

    2015-01-01

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291

  6. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats.

    PubMed

    Zlebnik, Natalie E; Anker, Justin J; Carroll, Marilyn E

    2012-12-01

    Concurrent access to an exercise wheel decreases cocaine self-administration under short access (5 h/day for 5 days) conditions and suppresses cocaine-primed reinstatement in adult rats. The effect of exercise (wheel running) on the escalation of cocaine intake during long access (LgA, 6 h/day for 26 days) conditions was evaluated. Adolescent and adult female rats acquired wheel running, and behavior was allowed to stabilize for 3 days. They were then implanted with an iv catheter and allowed to self-administer cocaine (0.4 mg/kg, iv) during 6-h daily sessions for 16 days with concurrent access to either an unlocked or a locked running wheel. Subsequently, for ten additional sessions, wheel access conditions during cocaine self-administration sessions were reversed (i.e., locked wheels became unlocked and vice versa). In the adolescents, concurrent access to the unlocked exercise wheel decreased responding for cocaine and attenuated escalation of cocaine intake irrespective of whether the locked or unlocked condition came first. However, cocaine intake increased when the wheel was subsequently locked for the adolescents that had initial access to an unlocked wheel. Concurrent wheel access either before or after the locked wheel access did not reduce cocaine intake in adults. Wheel running reduced cocaine intake during LgA conditions in adolescent but not adult rats, and concurrent access to the running wheel was necessary. These results suggest that exercise prevents cocaine seeking and that this effect is more pronounced in adolescents than adults.

  8. Fertilizability of Superovulated Eggs by Estrous Stage-independent PMSG/hCG Treatment in Adult Wistar-Imamichi Rats

    PubMed Central

    Kon, Hiroe; Hokao, Ryoji; Shinoda, Motoo

    2014-01-01

    We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs. PMID:24770643

  9. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  10. Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats.

    PubMed

    Nelli, Giribabu; Pamanji, Sreenivasula Reddy

    2017-08-01

    Di-n-butyl phthalate (DBP) is extensively used as plasticizer, and it was ubiquitary released into the environment. The present study was aimed to investigate the effect of DBP on reproductive competence in adult male rats. Adult male rats were received corn oil or DBP injection intraperitoneally (ip) at 100 and 500 mg/kg body weight on 90, 97, 104, and 111 days. Following completion of the experimental period, adult male rats were cohabitated with untreated proestrus female rats for determination of fertilization capacity. Then, adult male rats were sacrificed, and other reproductive endpoints were determined by histopathology and biochemical analysis. The results revealed significant reduction of fertilization potential by decrease mating, fertility indices with increase pre-implantation and post-implantation losses, and resorptions in normal female rat cohabitation with DBP-treated adult male rats. The testes, seminal vesicle tissue somatic indices, epididymal sperm count, motility, viability, and hypoosmotic swelling (HOS) sperm were significantly decreased with increased sperm morphological abnormalities in DBP-treated adult male rats. The disorientation of spermatogenic cells decreased the diameter and epithelial thickness of seminiferous tubule in the testicular histopathology of DBP-exposed rats. Significant reduction of testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase enzyme levels and serum testosterone with increased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were observed in DBP-treated groups. Higher testicular oxidative stress marker (lipid peroxidation product) with lower antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase levels in DBP-exposed groups was observed. From these results, it can be concluded that DBP increases oxidative stress; it leads to impairment of spermatogenesis, steroidogenesis, and fertility in adult male rats.

  11. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of acute exposure of permethrin in adult and developing Sprague-Dawley rats on acoustic startle response and brain and plasma concentrations.

    PubMed

    Williams, Michael T; Gutierrez, Arnold; Vorhees, Charles V

    2018-06-08

    Permethrin is a Type I (non-cyano) pyrethroid that induces tremors at high concentrations and increases acoustic startle responses (ASR) in adult rodents, however its effects in young rats have been investigated to a limited extent. ASR and tremor were assessed in adult and postnatal day (P)15 Sprague-Dawley rats at oral doses of 60, 90, or 120 mg/kg over an 8 h period. Permethrin increased ASR in adults, regardless of dose, and 20% of the high-dose rats showed tremor at later time points. For the P15 rats all doses induced tremor at all time points, and ASR was increased at 2 h in the 90 and 120 mg/kg groups with a trend in the 60 mg/kg group compared with controls. The 60 mg/kg group showed increased ASR at 4 and 6 h, whereas the 90 mg/kg group showed no differences from the controls at these times. The 120 mg/kg group showed decreased ASR from 4-8 h post-treatment. P15 and adult rats both showed plasma and brain cis- and trans-permethrin increases after dosing. After the same dose of permethrin, P15 rats had greater cis- and trans-permethrin in brain and plasma compared with adults. P15 rats had an increased tremor response compared with adults even at comparable brain permethrin concentrations. For ASR, P15 rats responded sooner and showed a biphasic pattern ranging from increased to decreased response as a function of dose and time, unlike adults that only showed increases. Overall, young rats showed greater effects from permethrin compared with adults.

  13. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    PubMed Central

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  14. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    PubMed

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats.

    PubMed

    Glenn, Melissa J; Adams, Raven S; McClurg, Lauren

    2012-03-14

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    PubMed

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  17. Environmental Enrichment Promotes Plasticity and Visual Acuity Recovery in Adult Monocular Amblyopic Rats

    PubMed Central

    Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto

    2012-01-01

    Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358

  18. Copolymer-1 enhances cognitive performance in young adult rats

    PubMed Central

    Meneses, Alfredo; Cruz-Martínez, Yolanda; Anaya-Jiménez, Rosa María; Liy-Salmerón, Gustavo; Carvajal, Horacio Guillermo; Ponce-López, Maria Teresa

    2018-01-01

    Cognitive impairment is a dysfunction observed as a sequel of various neurodegenerative diseases, as well as a concomitant element in the elderly stages of life. In clinical settings, this malfunction is identified as mild cognitive impairment. Previous studies have suggested that cognitive impairment could be the result of a reduction in the expression of brain-derived neurotrophic factor (BDNF) and/or immune dysfunction. Copolymer-1 (Cop-1) is an FDA-approved synthetic peptide capable of inducing the activation of Th2/3 cells, which are able to release BDNF, as well as to migrate and accumulate in the brain. In this study, we evaluated the effect of Cop-1 immunization on improvement of cognition in adult rats. For this purpose, we performed four experiments. We evaluated the effect of Cop-1 immunization on learning/memory using the Morris water maze for spatial memory and autoshaping for associative memory in 3- or 6-month-old rats. BDNF concentrations at the hippocampus were determined by ELISA. Cop-1 immunization induced a significant improvement of spatial memory and associative memory in 6-month-old rats. Likewise, Cop-1 improved spatial memory and associative memory when animals were immunized at 3 months and evaluated at 6 months old. Additionally, Cop-1 induced a significant increase in BDNF levels at the hippocampus. To our knowledge, the present investigation reports the first instance of Cop-1 treatment enhancing cognitive function in normal young adult rats, suggesting that Cop-1 may be a practical therapeutic strategy potentially useful for age- or disease-related cognitive impairment. PMID:29494605

  19. Effects of Chronic Fluoxetine Treatment on Neurogenesis and Tryptophan Hydroxylase Expression in Adolescent and Adult Rats

    PubMed Central

    Meerhoff, Gideon F.

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population. PMID:24827731

  20. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    PubMed

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  1. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats.

    PubMed

    Counotte, Danielle S; Schiefer, Christopher; Shaham, Yavin; O'Donnell, Patricio

    2014-04-01

    There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.

  2. Use of the light/dark test for anxiety in adult and adolescent male rats

    PubMed Central

    Arrant, Andrew E.; Schramm-Sapyta, Nicole L.; Kuhn, Cynthia M.

    2014-01-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28–34) and adult (PN67–74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α2 adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. PMID:23721963

  3. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    PubMed

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. [Morphological signs of survival cultured adult rat cardiomyocytes].

    PubMed

    Chang, Hui; Zhang, Lin; Yu, Zhi-Bin

    2011-02-01

    To clarify the key morphological signs for the survival of adult rat cardiomyocytes in primary culture. The adult rat hearts were retrogradely superfused by Langendorff apparatus. Cardiomyocytes were digested by collagenase I and cultured in three groups: (1) Serum free medium + BA (Bongkrekic acid, apoptotic inhibitor), (2) 5% serum medium, and (3) 5% serum medium + BA. The morphological alterations were observed and the percentage of rod-shaped cardiomyocytes, the apoptotic rate of cells, the rate of pseudopodium formation and the nuclear distances of cardiomyocytes were detected during culture. (1) The percentage of rod-shaped cardiomyocytes decreased gradually in the first 3 days of cell culture. The percentage of rod-shaped cardiomyocytes cultured without fetal bovine serum (FBS) decreased more rapidly than those cultured with FBS. No differences were noticed between with and without the addition of apoptotic inhibitor BA. The apoptotic rate of cardiomyocytes increased in the first 3 days of cell culture, and the apoptotic rate of cells cultured without FBS increased more than that cultured with FBS. Also BA had no effect on apoptotic rate. (2) Cardiomyocytes cultured with FBS spread from the intercalated disk and extended pseudopodium on the second or third day of cell culture. Cardiomyocytes with thin membranous pseudopodium developed would survive and spread laterally at the 6th day of culture. Cells with the elongated morphology gradually spread extensively and took on a spheroidal shape. Myofibrils gradually lost their parallel. Cells cultured without FBS had no pseudopodium formation. The intercalated disk of cells gradually changed blunt. There was no effect on the rate of pseudopodium formation when added with apoptotic inhibitor BA. (3) Cytoskeletal remodeling occurred in survived cardiomyocytes. After 6 days of culture, cardiomyocytes exhibited characteristic of redifferentiation. (4) The distance between nuclei decreased in a single cardiomyocyte

  5. Immunotoxicity of clonazepam in adult albino rats.

    PubMed

    Rabei, Hanan Mostafa

    2013-01-01

    Clonazepam as an addictive drug is studied to elucidate its destructive effects on rats' immune system. The aim of the current work was to study the immunologic changes induced by sub-chronic administration of clonazepam for three weeks followed by a withdrawal period in adult male albino rats. Seventy-two Sprague Dawley rats were divided into three equal groups. The first group was used as control; the second and third groups were treated with clonazepam. Six rats from each group were sacrificed weekly. Data showed that clonazepam induced a significant suppression in the level of IFN-gamma cortisol production, total splenocytes count and lymphocytes transformation induced by PHA mitogen along the experimental period especially in the third group. However, subchronic doses of clonazepam increased the production of IL-10 in both treated groups. Moreover, significant DNA damage in the peripheral blood lymphocytes of both treated groups was observed along the duration of the study. In conclusion, the immune system responses can be adversely affected to a greater extent by sub-chronic administration of clonazepam and should be prescribed cautiously as patients may turn addict to it.

  6. Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?

    PubMed

    Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie

    2011-10-10

    Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats

    PubMed Central

    Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren

    2012-01-01

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146

  8. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  9. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  10. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    PubMed Central

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  11. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats.

    PubMed

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  12. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  13. Ontogeny of cocaine-induced behaviors and cocaine pharmacokinetics in male and female neonatal, preweanling, and adult rats.

    PubMed

    McDougall, Sanders A; Apodaca, Matthew G; Mohd-Yusof, Alena; Mendez, Adrian D; Katz, Caitlin G; Teran, Angie; Garcia-Carachure, Israel; Quiroz, Anthony T; Crawford, Cynthia A

    2018-04-18

    Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2 High receptors, receptor coupling, etc.). The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.

  14. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence.

    PubMed

    Miranda, A; Mickle, A; Schmidt, J; Zhang, Z; Shaker, R; Banerjee, B; Sengupta, J N

    2011-07-01

    The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms. Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days [(postnatal (PN) days 14-16)]. The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissues. CRD- or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-d-aspartic acid (NMDA)-NR1 subunit in the lumbo-sacral (L6-S1) spinal cord was examined using Western blot. The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan-treated rats was significantly higher than the saline-treated control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (P>0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared with saline-treated rats (P<0.05). Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does result in overexpression of spinal NR1 subunit in adult rats. © 2011 Blackwell Publishing Ltd.

  16. Hyperforin alleviates mood deficits of adult rats suffered from early separation.

    PubMed

    Zhu, Minghui; Liu, Chunhua; Qin, Xuan; Yang, Zhuo

    2015-11-03

    In this study, we aimed to explore the effect of hyperforin (Hyp) on adult rats suffered from early separation. Wistar infant rats were randomly divided into three groups: control group (CON), early separation from parents group (ESP), and early separation from parents+treatment with 3mg/kg/day Hyp group (ESP+Hyp). Postnatal rats of ESP group and ESP+Hyp group were separated from their mothers for 6h every day on the 14th day after birth, and this separation lasted for 3 weeks, while rats of CON group had no separation. Hyperforin was intragastric administrated on the 21th day after birth, and lasted for 2 weeks in ESP+Hyp group. After separation, adult rats were evaluated by using the open field test (OFT), novelty suppressed feeding test (NSF) and forced swimming test (FST). In OFT, time spent in central grids was much shorter in ESP group compared with that of CON group. After treatment with hyperforin, time spent in central area was much longer compared with that of ESP group. In NSF, the feeding latency of ESP group was much longer than that of CON group. After treatment with hyperforin, the feeding latency was shorter compared with that of ESP group. In FST, score of ESP group was markedly higher than that of CON group. Interestingly, the score was obviously lower in ESP+Hyp group than that of ESP group. In conclusion, these results suggest that hyperforin is able to alleviate anxiety and remit depression in ESP rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  18. Neurogenesis enhancer RO 25-6981 facilitates repeated spatial learning in adult rats.

    PubMed

    Soloviova, O A; Proshin, A T; Storozheva, Z I; Sherstnev, V V

    2012-09-01

    The effects of Ro 25-6981 (selective NMDA receptor blocker) in a dose stimulating neurogenesis on repeated learning, reversal learning, and memory reconsolidation were studied in adult rats in Morris water maze. Ro 25-6981 facilitated repeated learning 13 days after injection, but did not influence reversal learning. The blocker injected directly before reminder did not disturb repeated learning and reversal learning in Morris water maze. These effects of Ro 25-6981 on the dynamics of repeated learning seemed to be due to its effects on neurogenesis processes in adult brain.

  19. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking.

    PubMed

    Schramm-Sapyta, Nicole L; DiFeliceantonio, Alexandra G; Foscue, Ethan; Glowacz, Susan; Haseeb, Naadeyah; Wang, Nancy; Zhou, Cathy; Kuhn, Cynthia M

    2010-12-01

    Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol. Copyright © 2010 by the Research Society on Alcoholism.

  20. Oleamide restores sleep in adult rats that were subjected to maternal separation.

    PubMed

    Reyes Prieto, Nidia M; Romano López, Antonio; Pérez Morales, Marcel; Pech, Olivia; Méndez-Díaz, Mónica; Ruiz Contreras, Alejandra E; Prospéro-García, Oscar

    2012-12-01

    Maternal separation (MS) induces a series of changes in rats' behavior; among them a reduction in spontaneous sleep. One potentially impaired system is the endocannabinoid system (eCBs), since it contributes to generate sleep. To investigate if there are situations early in life that affect the eCBs, which would contribute to make rats vulnerable to suffering insomnia, we studied the rodent model of MS. Rats were separated from their mothers for 3h-periods daily, from postnatal day (PND) 2 to PND 16. Once they gained 250g of body weight (adult rats), they were implanted with electrodes to record the sleep-waking cycle (SWC). MS rats and non-MS (NMS) siblings were assigned to one of the following groups: vehicle, oleamide (OLE, an agonist of the cannabinoid receptor 1, CB1R), OLE+AM251 (an antagonist of the CB1R) and AM251 alone. Expression of the CBR1 receptor was also analyzed in the frontal cortex (FCx) and in the hippocampus (HIP) of both NMS and MS rats. Results indicated that MS induced a reduction in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep with the consequent increase in waking (W) as compared to NMS siblings. OLE normalized the SWC, and AM251 blocked such an effect. CB1R expression was reduced in the FCx and in the HIP of MS rats. Our results indicate that MS reduces sleep and CB1R expression and OLE improves sleep in adult rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  2. Effect of Norbinaltorphimine on Δ9-Tetrahydrocannabinol (THC)-Induced Taste Avoidance in Adolescent and Adult Sprague-Dawley Rats

    PubMed Central

    Flax, Shaun M.; Wakeford, Alison G.P.; Cheng, Kejun; Rice, Kenner C.; Riley, Anthony L.

    2017-01-01

    Rationale The aversive effects of Δ9-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. Objectives The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Methods Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8 and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague Dawley rats. Results The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. Conclusions That norBNI had no significant effect on THC-induced avoidance in adults and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague Dawley rats. PMID:26025420

  3. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    PubMed

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  4. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters

    PubMed Central

    Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G

    2007-01-01

    Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354

  5. Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.

    PubMed

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2006-10-01

    Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.

  6. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    PubMed Central

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  7. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Stoops, Thorne S; D'Souza, Manoranjan S

    2017-01-01

    We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  8. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  9. Analgesia for early-life pain prevents deficits in adult anxiety and stress in rats.

    PubMed

    Victoria, Nicole C; Karom, Mary C; Murphy, Anne Z

    2015-01-01

    Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants. © 2014 S. Karger AG, Basel.

  10. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats.

    PubMed

    Alaa-Eldin, Eman Ahmad; El-Shafei, Dalia Abdallah; Abouhashem, Nehal S

    2017-01-01

    Commercial mixtures of chlorpyrifos and cypermethrin pesticides are widely used to enhance the toxic effects of cypermethrin on target insects. So, the purpose of the current study was to evaluate the individual and combined toxic effects of chlorpyrifos (CPF) and cypermethrin (CYP) on reproductive system of adult male albino rats. Forty adult male albino rats were randomized into main four groups: group I (control group) included 16 rats, subdivided into negative and positive control; group II (eight rats) received chlorpyrifos 6.75 mg/kg b.w./orally∕daily); group III (eight rats) (received cypermethrin 12.5 mg/kg b.w./orally∕daily); and group IV (eight rats) (received chlorpyrifos and cypermethrin at the same previously mentioned doses). All treatments were given by oral gavage for 12 weeks. We found that single CPF and CYP exposures significantly have adverse effects on reproductive function of adult male albino rats manifested by reduced testicular weight, decreased sperm count, motility and viability, significantly increased percent of morphologically abnormal spermatozoa, and significant increments in sperm DNA fragmentation index (DFI) with respect to control group. Furthermore, serum follicle stimulating hormone, luteinizing hormone, and testosterone levels were decreased significantly compared to control group. This was accompanied with histopathological changes in the testis of rats such as necrosis, degeneration, decreasing number of spermatogenic cells in some seminiferous tubules, edema, congested blood vessels, and exudate in interstitial tissue of the testis. Notably, all these changes were exaggerated in rats treated concomitantly with chlorpyrifos and cypermethrin rendering the mixture more toxic than the additive effects of each compound and causing greater damage on the reproductive system of male albino rats than the individual pesticides.

  11. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  12. Effects of infrasound on cell proliferation in the dentate gyrus of adult rats.

    PubMed

    Liu, Juanfang; Lin, Tian; Yan, Xiaodong; Jiang, Wen; Shi, Ming; Ye, Ruidong; Rao, Zhiren; Zhao, Gang

    2010-06-02

    Adult rats were used to identify the effects of infrasound on neurogenesis in the hippocampal dentate gyrus. After 7 consecutive days' exposure to infrasound of 16 Hz at 130 dB, immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) was preformed. Compared with those in normal groups, the numbers of BrdU+ and DCX+/BrdU+ cells in the subgranular zone in infrasound groups were significantly decreased at 3, 6, 10 and 14 days and returned to normal at 18 days. The percentage of BrdU+ cells that were co-labeled with DCX showed no significant differences between the infrasound and normal groups. These data suggest that infrasound inhibits the cell proliferation in adult rat dentate gyrus but has no effects on early migration and differentiation of these newborn cells.

  13. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    PubMed

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Decreased Sensitivity in Adolescent versus Adult Rats to the Locomotor Activating Effects of Toluene

    PubMed Central

    Bowen, Scott E.; Charlesworth, Jonathan D.; Tokarz, Mary E.; Jerry Wright, M.; Wiley, Jenny L.

    2007-01-01

    Volatile organic solvent (inhalant) abuse continues to be a major health concern throughout the world. Of particular concern is the abuse of inhalants by adolescents because of its toxicity and link to illicit drug use. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. While studies have assessed outcomes of exposure to inhalants in adult male animals, there is little research on the neurobehavioral effects of inhalants in female or younger animals. In attempt to address these shortcomings, we exposed male and female Long-Evans rats to 20 min of 0, 2,000, 4,000, or 8,000 parts per million (ppm) inhaled toluene for 10 days in rats aged postnatal (PN) day 28-39 (adolescent), PN44-PN55, or >PN70 (adult). Animals were observed individually in 29-l transparent glass cylindrical jars equipped with standard photocells that were used to measure locomotor activity. Toluene significantly increased activity as compared to air exposure in all groups of male and female rats with the magnitude of locomotor stimulation produced by 4000 ppm toluene being significantly greater for female adults than during any age of adolescence. The results demonstrate that exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous locomotor behavior in rats and that the expression of these effects appears to depend upon the postnatal age of testing and sex of the animal. PMID:17869480

  15. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats.

    PubMed

    Soares, Rita; Ribeiro, Filipa F; Xapelli, Sara; Genebra, Tânia; Ribeiro, Maria F; Sebastião, Ana M; Rodrigues, Cecília M P; Solá, Susana

    2018-05-01

    Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

  16. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake

    PubMed Central

    Perry, Jennifer L.; Anderson, Marissa M.; Nelson, Sarah E.; Carroll, Marilyn E.

    2009-01-01

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given noncontingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin intake was determined by comparing 24-h saccharin and water consumption in two-bottle tests. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin preference scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse compared with adulthood. PMID:17360010

  17. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  18. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    PubMed

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  19. Effect of sex on ethanol consumption and conditioned taste aversion in adolescent and adult rats.

    PubMed

    Schramm-Sapyta, Nicole L; Francis, Reynold; MacDonald, Andrea; Keistler, Colby; O'Neill, Lauren; Kuhn, Cynthia M

    2014-04-01

    Vulnerability to alcoholism is determined by many factors, including the balance of pleasurable vs. aversive alcohol-induced sensations: pleasurable sensations increase intake, while aversive sensations decrease it. Female sex and adolescent age are associated with lower sensitivity to intake-reducing effects and more rapid development of alcohol abuse. This study assessed voluntary drinking and the aversive effects of alcohol to determine whether these measures are inversely related across the sexes and development. Voluntary drinking of 20 % ethanol in an every-other-day (EOD) availability pattern and the dose-response relationship of ethanol conditioned taste aversion (CTA) were assessed in male and female adolescent and adult rats. CTA was sex specific in adult but not adolescent rats, with adult females exhibiting less aversion. Voluntary ethanol consumption varied according to age and individual differences but was not sex specific. Adolescents initially drank more than adults, exhibited greater day-to-day variation in consumption, were more susceptible to the alcohol deprivation effect, and took longer to establish individual differences in consumption patterns. These results show that the emergence of intake patterns differs between adolescents and adults. Adolescents as a group initiate drinking at high levels but decrease intake as they mature. A subset of adolescents maintained high drinking levels into adulthood. In contrast, most adults consumed at steady, low levels, but a small subset quickly established and maintained high-consumption patterns. Adolescents also showed marked deprivation-induced increases. Sex differences were not observed in EOD drinking during either adolescence or adulthood.

  20. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  1. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat

    PubMed Central

    Lopez, David Fernandez; Faustino, Joel; Daneman, Richard; Zhou, Lu; Lee, Sarah; Derugin, Nikita; Wendland, Michael F.; Vexler, Zinaida S

    2012-01-01

    The immaturity of the CNS at birth greatly affects injury after stroke but the contribution of the blood-brain barrier (BBB) to the differential response to stroke in adults and neonates is poorly understood. We asked if the structure and function of the BBB is disrupted differently in neonatal and adult rats by transient middle cerebral artery occlusion. In adult rats, albumin leakage into injured regions was markedly increased during 2–24 h reperfusion but leakage remained low in the neonates. Functional assays employing intravascular tracers in the neonates showed that BBB permeability to both large (70-kDa dextran) and small (3-kDa dextran, Gd-DTPA) tracers remained largely undisturbed 24h after reperfusion. The profoundly different functional integrity of the BBB was associated with the largely nonoverlapping patterns of regulated genes in endothelial cells purified from injured and uninjured adult and neonatal brain at 24h (endothelial transcriptome, 31,042 total probe sets). Within significantly regulated 1,266 probe sets in injured adults and 361 probe sets in neonates, changes in the gene expression of the basal lamina components, adhesion molecules, the tight junction protein occludin, and MMP-9 were among the key differences. The protein expression of collagen-IV, laminin, claudin-5, occludin and ZO-1 was also better preserved in neonatal rats. Neutrophil infiltration remained low in acutely injured neonates but neutralization of CINC-1 in the systemic circulation enhanced neutrophil infiltration, BBB permeability and injury. The markedly more integrant BBB in neonatal brain than in adult brain after acute stroke may have major implications for the treatment of neonatal stroke. PMID:22787045

  3. Stress, κ manipulations, and aversive effects of ethanol in adolescent and adult male rats.

    PubMed

    Anderson, R I; Agoglia, A E; Morales, M; Varlinskaya, E I; Spear, L P

    2013-09-26

    Elevated ethanol use during adolescence, a potentially stressful developmental period, is accompanied by insensitivity to many aversive effects of ethanol relative to adults. Given evidence that supports a role for stress and the kappa opioid receptor (KOR) system in mediating aversive properties of ethanol and other drugs, the present study assessed the role of KOR antagonism by nor-binaltorphimine (nor-BNI) on ethanol-induced conditioned taste aversion (CTA) in stressed (exposed to repeated restraint) and non-stressed male rats (Experiment 1), with half of the rats pretreated with nor-BNI before stressor exposure. In Experiment 2, CTA induced by the kappa agonist U62,066 was also compared in stressed and non-stressed adolescents and adults. A highly palatable solution (chocolate Boost) was used as the conditioned stimulus (CS), thereby avoiding the need for water deprivation to motivate consumption of the CS during conditioning. No effects of stress on ethanol-induced CTA were found, with all doses eliciting aversions in adolescents and adults in both stress conditions. However, among stressed subjects, adults given nor-BNI before the repeated stressor displayed blunted ethanol aversion relative to adults given saline at that time. This effect of nor-BNI was not seen in adolescents, findings that support a differential role for the KOR involvement in ethanol CTA in stressed adolescents and adults. Results from Experiment 2 revealed that all doses of U62,066 elicited aversions in non-stressed animals of both ages that were attenuated in stressed animals, findings that support a modulatory role for stress in aversive effects of KOR activation. Collectively, these results suggest that although KOR sensitivity appears to be reduced in stressed subjects, this receptor system does not appear to contribute to age differences in ethanol-induced CTA under the present test circumstances. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test?

    PubMed

    Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R

    2012-01-01

    Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.

  5. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake.

    PubMed

    Perry, Jennifer L; Anderson, Marissa M; Nelson, Sarah E; Carroll, Marilyn E

    2007-05-16

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats selectively bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given non-contingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin phenotype scores were determined by comparing 24-h saccharin and water consumption in two-bottle tests to verify HiS/LoS status. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin phenotype scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, compared with adulthood, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse.

  6. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    PubMed

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  8. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  9. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning

    PubMed Central

    Harvey, Roxann C.; Dembro, Kimberly A.; Rajagopalan, Kiran; Mutebi, Michael M.; Kantak, Kathleen M.

    2010-01-01

    Rationale Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. Objectives To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. Materials and methods A yoked-triad design (n=8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37–P59 or P77–P99, and then underwent 18 drug-free days (P60–P77 vs. P100–P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78–P96 vs. P118–P136). Results Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. Conclusions Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience. PMID:19513699

  10. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats.

    PubMed

    Ruiz-Pino, F; Garcia-Galiano, D; Manfredi-Lozano, M; Leon, S; Sánchez-Garrido, M A; Roa, J; Pinilla, L; Navarro, V M; Tena-Sempere, M

    2015-02-01

    Kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which coexpress kisspeptins (Kps), neurokinin B (NKB), and dynorphin (Dyn), regulate gonadotropin secretion. The KNDy model proposes that NKB (a stimulator, through NK3R) and Dyn (an inhibitor, through κ-opioid receptor) shape Kp secretion onto GnRH neurons. However, some aspects of this paradigm remain ill defined. Here we aimed to characterize the following: 1) the effects of NKB signaling on FSH secretion and 2) the role of Dyn in gonadotropin secretion after NK3R activation; 3) additionally, we explored the roles of other tachykinin receptors, NK1R and NK2R, on gonadotropin release. Thus, the effects of the NK3R agonist, senktide, on FSH release were explored across postnatal development in male and female rats; gonadotropin responses to agonists of NK1R substance P and NK2R [neurokinin A (NKA)] were also monitored. Moreover, the effects of senktide on gonadotropin secretion were assessed after antagonizing Dyn actions by nor-binaltorphimine didydrochloride. Before puberty, rats of both sexes showed increased FSH secretion to senktide (and Kp-10). Conversely, adult female rats were irresponsive to senktide in terms of FSH, despite proven LH responses, whereas the adult males did not display FSH or LH responses to senktide, even at high doses. In turn, substance P and NKA stimulated gonadotropin secretion in prepubertal rats, whereas in adults modest gonadotropin responses to NKA were detected. By pretreatment with a Dyn antagonist, adult males became responsive to senktide in terms of LH secretion and displayed elevated basal LH and FSH levels; nor-binaltorphimine didydrochloride treatment uncovered FSH responses to senktide in adult females. Furthermore, the expression of Pdyn and Opkr1 (encoding Dyn and κ-opioid receptor, respectively) in the mediobasal hypothalamus was greater in males than in females at prepubertal ages. Overall, our data contribute to refining our understanding on how the elements of the

  11. Behavioral Differences Between Late Preweanling and Adult Female Sprague-Dawley Rat Exploration of Animate and Inanimate Stimuli and Food

    PubMed Central

    Smith, Kiersten S.; Morrell, Joan I.

    2010-01-01

    The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli. PMID:21056059

  12. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Neonatal handling reduces renal function in adult rats.

    PubMed

    Donadio, Márcio Vinícius Fagundes; Jacobs, Silvana; Corezola, Kizzy Ludnila; Melo, Denizar Alberto da Silva; Dias, Henrique Bregolin; Reichel, Carlos Luiz; Franci, Celso Rodrigues; Jeckel-Neto, Emilio Antonio; Lulhier, Francisco; Lucion, Aldo Bolten; de Oliveira, Jarbas Rodrigues; Sanvitto, Gilberto Luiz

    2009-01-01

    To evaluate the effects of neonatal handling on hydroelectrolytic balance in adult rats. The litters were divided into two groups: nonhandled and handled. The procedure consisted of handling the pups for 1 min/day in the first 10 days postnatally. When adults, animals had their body weight verified and were housed in individual metabolic cages. After a 24-hour period, urine samples were collected and the urinary and water intake volumes measured. Blood samples to determine osmolality, aldosterone, corticosterone, angiotensin II, creatinine, urea, sodium and potassium levels were collected. The kidneys were removed for histological assessment. Urinary osmolality, sodium, urea and creatinine were also measured and the creatinine clearance (CC) calculated. No difference between groups was found in the body weight. Handled animals showed a reduction in the total kidney wet weight, water intake, urinary volume, CC, plasma angiotensin II, corticosterone and aldosterone when compared to the nonhandled and an increase in the urinary osmolality and sodium excretion fraction. No differences in serum potassium and no evidence of structural changes were demonstrated by histological analysis. Neonatal handling induced long-lasting effects decreasing renal function without evidence of kidney structural changes. (c) 2009 S. Karger AG, Basel.

  14. Voluntary ethanol consumption differs in adolescent and adult male rats using a modified sucrose-fading paradigm.

    PubMed

    Maldonado, Antoniette M; Finkbeiner, Lauren M; Alipour, Kent K; Kirstein, Cheryl L

    2008-09-01

    Initiation of alcohol consumption during adolescence is high, which usually begins with consumption of highly concentrated sweetened alcoholic beverages in adolescent humans. Enhanced voluntary ethanol (EtOH) intake has been observed previously in adolescent relative to adult rats under continuous access conditions using sweetened EtOH solutions. The present set of experiments investigated patterns of voluntary EtOH intake in adolescent and adult rats using sweetened EtOH solutions in a limited access paradigm. Rats were trained with modified sucrose-substitution protocols that ended at either 5% sucrose-20% EtOH (5S/20E) (Exp. 1) or 5% sucrose-10% EtOH (5S/10E) (Exp. 2). Voluntary EtOH consumption differences between the 2 age groups were apparent at higher (i.e., 10 and 20%), but not lower (i.e., 2 and 5%) EtOH concentrations. Adolescent rats consumed more EtOH on a g/kg basis only at 20% EtOH (Exp. 1). Adolescent rats voluntarily consumed more EtOH than adults when maintained at 5S/10E (Exp. 2). To assess whether these age-related differences in voluntary EtOH intake were concentration dependent, rats were trained with 5S/20E and subsequently trained with decreasing EtOH concentrations (i.e., 5S/10E and 5S/5E). Adolescents consumed more EtOH when initially presented with the 5S/10E and 5S/20E EtOH concentrations, and subsequently at the lower 5S/5E EtOH concentration (Exp. 3). There were no differences in preference for the sucrose-only solution, however adolescents tended to consume more sucrose at the 5S sucrose concentration (Exp. 4). Given that adolescents consumed more EtOH at the 5S/10E and 5S/20E, but not at the 5S/5E EtOH concentrations, preference for sucrose does not solely explain the age differences in voluntary EtOH intake observed. Overall, results replicate previous work, demonstrating adolescent rats consume more EtOH relative to adults. However, the present results were observed using sweetened EtOH solutions in a limited access paradigm. The

  15. Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults

    PubMed Central

    Walker, Q. David; Schramm-Sapyta, Nicole L.; Caster, Joseph M.; Waller, Samuel T.; Brooks, Matthew P.; Kuhn, Cynthia M.

    2009-01-01

    The present studies assessed the roles of sex, age, novelty-seeking and plus-maze behavior on cocaine drinking in rats. Cocaine/saccharin solution was available in three daily, 5-hour sessions then a saccharin-only solution was also available in following sessions. In the one-bottle drinking phase, early and late adolescent males, post-natal day 28 (PN28) and PN42, consumed more cocaine/saccharin solution than young adults (PN65), but females did not exhibit significant age differences. Adolescents of both sexes consumed more cocaine/saccharin than adults during choice drinking. Saccharin availability in the two-bottle trials decreased cocaine/saccharin consumption in PN28 and PN65 rats. After a drug-free period, cocaine-stimulated locomotion was lower in cocaine/saccharin drinking than saccharin-only males, indicating tolerance. We tested the hypothesis that individual differences in pre-screened behavioral traits would correlate with cocaine/saccharin consumption in PN28 and PN65 male rats. High locomotor responses to novelty were associated with greater cocaine/saccharin drinking in adults in one-bottle sessions. In the subsequent choice drinking phase, correlations were age-specific. Adolescents with high novelty-induced locomotion and adults that spent less time on open arms of the elevated plus-maze drank more cocaine/saccharin. Thus, behavioral phenotypes correlated with individual differences in cocaine/saccharin consumption in an age-related manner. PMID:18790706

  16. Adolescent, but not adult, rats exhibit ethanol-mediated appetitive second-order conditioning

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2008-01-01

    Background Adolescent rats are less sensitive to the sedative effects of ethanol than older animals. They also seem to perceive the reinforcing properties of ethanol. However, unlike neonates or infants, ethanol-mediated appetitive behavior has yet to be clearly shown in adolescents. Appetitive ethanol reinforcement was assessed in adolescent (postnatal day 33, P33) and adult rats (P71) through second-order conditioning (SOC). Methods On P32 or P70 animals were intragastrically administered ethanol (0.5 or 2.0 g/kg) paired with intraoral pulses of sucrose (CS1, first-order conditioning phase). CS1 delivery took place either 5-20 (Early pairing) or 30-45 (Late pairing) min following ethanol. CS1 exposure and ethanol administration were separated by 240 min in unpaired controls. On P33 or P71, animals were presented the CS1 (second-order conditioning phase) while in a distinctive chamber (CS2). Then, they were tested for CS2 preference. Results Early and late paired adolescents, but not adults, had greater preference for the CS2 than controls, a result indicative of ontogenetic variation in ethanol-mediated reinforcement. During the CS1 - CS2 associative phase, paired adolescents given 2.0 g/kg ethanol wall-climbed more than controls. Blood and brain ethanol levels associated with the 0.5 and 2.0 g/kg doses at the onset of each conditioning phase did not differ substantially across age, with mean BECs of 38 and 112 mg %. Conclusions These data indicate age-related differences between adolescent and adult rats in terms of sensitivity to ethanol’s motivational effects. Adolescents exhibit high sensitivity for ethanol’s appetitive effects. These animals also showed EtOH-mediated behavioral activation during the second-order conditioning phase. The SOC preparation provides a valuable conditioning model for assessing ethanol’s motivational effects across ontogeny. PMID:18782343

  17. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  18. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  19. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  20. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults.

    PubMed

    McCutcheon, James E; Conrad, Kelly L; Carr, Steven B; Ford, Kerstin A; McGehee, Daniel S; Marinelli, Michela

    2012-09-01

    Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.

  1. [Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and energy metabolism in adult rats].

    PubMed

    Dang, Yong-ming; Fang, Ya-dong; Hu, Jiong-yu; Zhang, Jia-ping; Song, Hua-pei; Zhang, Yi-ming; Zhang, Qiong; Huang, Yue-sheng

    2010-02-01

    To investigate the influence of microtubule depolymerization of myocardial cells on distribution and activity of mitochondria, and energy metabolism of cells in adult rats. Myocardial cells of SD adult rats and SD suckling rats were isolated and cultured. They were divided into adult and suckling rats control groups (AC and SC, normally cultured without any stimulating factor), adult and suckling rats microtubule depolymerization agent groups (AMDA and SMDA, cultured with 8 micromol/L colchicine containing nutrient solution for 30 minutes) according to the random number table. (1) The expression of polymerized beta tubulin in myocardial cells of adult and suckling rats was detected with Western blot. (2) Myocardial cells of rats in AC and AMDA groups were collected. The expression of cytochrome c was detected with Western blot. Distribution of voltage-dependent anion channels (VDAC) and polymerized beta tubulin in myocardial cells were observed with immunofluorescent staining. Mitochondrial inner membrane potential was determined with immunocytochemical method. Activity of myocardial cells was detected with MTT method. Contents of ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP) and energy charge of cells were determined with high performance liquid chromatography. (1) The expression of polymerized beta tubulin:in AMDA group it was 0.52 + or - 0.07, which was obviously lower than that (1.25 + or - 0.12) in AC group (F = 31.002, P = 0.000); in SMDA group it was 0.76 + or - 0.12, which was significantly lower than that (1.11 + or - 0.24) in SC group (F = 31.002, P = 0.000), but was obviously higher than that in AMDA group (F = 31.002, P = 0.009). (2) The expression of cytochrome c in AC group was 0.26 + or - 0.03, which was obviously lower than that (1.55 + or - 0.13) in AMDA group (t = -24.056, P = 0.000). (3) Immunofluorescent staining result: in AC group, microtubules of myocardial cells were in linear tubiform, distributed in parallel with

  2. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats.

    PubMed

    Shah, Ami B; Nivar, Isaac; Speelman, Diana L

    2018-01-01

    Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.

  3. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    PubMed

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  4. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  5. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    PubMed

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  6. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  7. Anxiogenic-like effects of fluoxetine render adult male rats vulnerable to the effects of a novel stress.

    PubMed

    Gomez, Francisca; García-García, Luis

    2017-02-01

    Fluoxetine (FLX) has paradoxical anxiogenic-like effects during the acute phase of treatment. In adolescent (35d-old) male rats, the stress-like effects induced by short-term (3d-4d) FLX treatment appear to involve up-regulation of paraventricular nucleus (PVN) arginine vasopressin (AVP) mRNA. However, studies on FLX-induced anxiety-like effects in adult rodents are inconclusive. Herein, we sought to study the response of adult male rats (60-65d-old) to a similar FLX treatment, also investigating how the stressful component, inherent to our experimental conditions, contributed to the responses. We show that FLX acutely increased plasma corticosterone concentrations while it attenuated the stress-induced-hyperthermia (SIH) as well as it reduced (≈40%) basal POMC mRNA expression in the arcuate nucleus (ARC). However, FLX did not alter the basal expression of PVN-corticotrophin-releasing hormone (CRH), anterior pituitary-pro-opiomelanocortin (POMC) and raphe nucleusserotonin transporter (SERT). Nonetheless, some regressions point towards the plausibility that FLX activated the hypothalamic-pituitary-adrenal (HPA). The behavioral study revealed that FLX acutely increased emotional reactivity in the holeboard, effect followed by a body weight loss of ≈2.5% after 24h. Interestingly, i.p. injection with vehicle did not have behavioral effects, furthermore, after experiencing the stressful component of the holeboard, the rats kept eating and gaining weight as normal. By contrast, the stress-naïve rats reduced food intake and gained less weight although maintaining a positive energy state. Therefore, on one hand, repetition of a mild stressor would unchain compensatory mechanisms to restore energy homeostasis after stress increasing the resiliency to novel stressors. On the other hand, FLX might render stressed adult rats vulnerable to novel stressors through the emergence of counter-regulatory changes, involving HPA axis activation and diminished sympathetic output

  8. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  9. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  10. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  11. Flux control exerted by overt carnitine palmitoyltransferase over palmitoyl-CoA oxidation and ketogenesis is lower in suckling than in adult rats.

    PubMed Central

    Krauss, S; Lascelles, C V; Zammit, V A; Quant, P A

    1996-01-01

    We examined the potential of overt carnitine palmitoyltransferase (CPT I) to control the hepatic catabolism of palmitoyl-CoA in suckling and adult rats, using a conceptually simplified model of fatty acid oxidation and ketogenesis. By applying top-down control analysis, we quantified the control exerted by CPT I over total carbon flux from palmitoyl-CoA to ketone bodies and carbon dioxide. Our results show that in both suckling and adult rat, CPT I exerts very significant control over the pathways under investigation. However, under the sets of conditions we studied, less control is exerted by CPT I over total carbon flux in mitochondria isolated from suckling rats than in those isolated from adult rats. Furthermore the flux control coefficient of CPT I changes with malonyl-CoA concentration and ATP turnover rate. PMID:8912677

  12. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  13. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals

  14. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    PubMed

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  16. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  17. Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain.

    PubMed

    Pei, Minjuan; Matsuda, Ken-Ichi; Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2006-03-01

    Previous studies on polytocous rodents have revealed that the fetal intrauterine position influences its later anatomy, physiology, reproductive performance and behavior. To investigate whether the position of a fetus in the uterus modifies the development of the brain, we examined whether the structure of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of rat brains accorded to their intrauterine positions. Brain sections of adult rats gestated between two male fetuses (2M) and between two female fetuses (2F) in the uterus were analysed for their immunoreactivity to calbindin-D28k, which is a marker of the SDN-POA. The SDN-POA volume of the 2M adult males was greater than that of the 2F adult males, whereas the SDN-POA volume of the 2M and 2F adult females showed no significant difference. This result indicated that contiguous male fetuses have a masculinizing effect on the SDN-POA volume of the male. To further examine whether the increment of SDN-POA volume in adulthood was due to exposure to elevated steroid hormones during fetal life, concentrations of testosterone and 17beta-estradiol in the brain were measured with 2M and 2F fetuses during gestation, respectively. On gestation day 21, the concentrations of testosterone and 17beta-estradiol in the brain were significantly higher in the 2M male rats as compared with the 2F male rats. The results suggested that there was a relationship between the fetal intrauterine position, hormone transfer from adjacent fetuses and the SDN-POA volume in adult rat brains.

  18. Attenuated effects of experimenter-administered heroin in adolescent vs. adult male rats: physical withdrawal and locomotor sensitization

    PubMed Central

    Doherty, James M.; Frantz, Kyle J.

    2012-01-01

    Objectives Early onset of heroin use during adolescence might increase chances of later drug addiction. Prior work from our laboratory suggests, however, that adolescent male rats are actually less sensitive than adults to some enduring effects of heroin self-administration. In the present study, we tested two likely correlates of sensitivity to behavioral reinforcement in rats: physical withdrawal and locomotor sensitization. Methods Adolescent (35 days old at start) and adult (79 days old) male Sprague-Dawley rats were administered escalating doses of heroin, increasing from 1.0 to 8.0 mg/kg (i.p.) every 12 hr, across 13 days. Somatic signs of spontaneous withdrawal were scored 12 and 24 hr after the last injection, then every 24 hr for 5 days; locomotion was recorded concurrently. Challenge injections of heroin (1 mg/kg i.p.) were given at 4 points: as the first of the escalating doses (day 1), at days 7 and 13 during the escalating regimen, and after 12 days of forced abstinence. Body mass and food intake were measured throughout experimentation. Results A heroin withdrawal syndrome was not observed among adolescents as it was among adults, including somatic signs as well as reduced locomotion, body mass, and food intake. On the other hand, heroin-induced locomotor sensitization did not differ across ages. Conclusion Reduced withdrawal is consistent with the attenuated reinforcing effects of heroin among adolescent male rats that we reported previously. Thus, it is possible that adolescent rats could reveal important neuroprotective factors for use in treatment of heroin dependence. PMID:22941050

  19. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus

    PubMed Central

    Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663

  20. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats.

    PubMed

    Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li

    2018-03-01

    Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.

  1. SENSITIZATION TO SOCIAL ANXIOLYTIC EFFECTS OF ETHANOL IN ADOLESCENT AND ADULT SPRAGUE-DAWLEY RATS FOLLOWING REPEATED ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena; Spear, Linda Patia

    2009-01-01

    Ontogenetic studies using a social interaction paradigm have shown that adolescent rats are less sensitive to anxiolytic properties of acute ethanol than their adult counterparts. It is not known, however, whether adaptations to these anxiolytic effects upon repeated experiences with ethanol would be similar in adolescents and adults. The present study investigated sensitivity to the anxiolytic effects of ethanol in adolescent and adult male and female Sprague-Dawley rats following 7 days of exposure [postnatal day (P) 27–33 for adolescents and P62–68 for adults] to 1 g/kg ethanol or saline (i.p.), as well as in animals left non-manipulated during this time. Anxiolytic effects of ethanol (0, 0.75, 1.0, 1.25, and 1.5 g/kg for adolescents and 0, 0.25, 0.5, 0.75, 1.0, and 1.25 g/kg for adults in Experiments 1 and 2, respectively) were examined 48 hours after the last exposure using a modified social interaction test under unfamiliar test circumstances. At both ages, repeated ethanol exposure resulted in the development of apparent sensitization to anxiolytic effects of ethanol indexed via enhancement of social investigation and transformation of social avoidance into social indifference or preference, as well as expression of tolerance to the socially inhibiting effects induced by higher ethanol doses. Evidence for the emergence of sensitization in adults and tolerance at both ages was seen not only following chronic ethanol, but also after chronic saline exposure, suggesting that chronic manipulation per se may be sufficient to alter the sensitivity of both adolescents and adults to socially-relevant effects of ethanol. PMID:20113878

  2. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    PubMed

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  3. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  4. "Despair" induced by extinction trials in the water maze: relationship with measures of anxiety in aged and adult rats.

    PubMed

    Schulz, Daniela; Huston, Joseph P; Buddenberg, Tim; Topic, Bianca

    2007-03-01

    We have previously reported that extinction of escape behavior in the water maze due to the removal of the platform coincided with the development of behavioral "despair" in aged and adult rats, as assessed by immobility. The present study examines further predictions derived from the hypothesis that the withholding of reinforcement induces behaviors akin to depression. We tested for correlations between extinction performance and immobility, as well as between immobility and measures of anxiety in aged and adult rats. Age comparisons were also performed on these variables. Forty aged and 29 adult male Wistar rats (24 and 3 months old, respectively) were examined in the open field, black/white box and elevated-plus maze followed by 6 days of training in the water maze hidden platform task and 8 days of extinction without the platform. Indices of immobility increased over trials of extinction, with the aged showing higher levels, earlier onsets and larger slope increases of immobility than the adults. A lower resistance-to-extinction was predictive of more "despair" in both age groups. Between-group differences in the open field, black/white box and elevated-plus maze indicated that the aged showed more anxiety-like behavior than the adults and/or explored these environments less. Within the aged group, indicators of fearfulness in the three tests were predictive of higher levels of "despair". The extinction-despair model is held to provide the promise of a conceptual and empirical model of human depression that is the consequence of withdrawal of reinforcement.

  5. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    PubMed

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups.

  6. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.

    PubMed

    Audi, Said H; Bongard, Robert D; Krenz, Gary S; Rickaby, David A; Haworth, Steven T; Eisenhauer, Jessica; Roerig, David L; Merker, Marilyn P

    2005-11-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.

  7. Glutamate and CO2 production from glutamine in incubated enterocytes of adult and very old rats.

    PubMed

    Meynial-Denis, Dominique; Bielicki, Guy; Beaufrère, Anne-Marie; Mignon, Michelle; Mirand, Philippe Patureau; Renou, Jean-Pierre

    2013-04-01

    Glutamine is the major fuel for enterocytes and promotes the growth of intestinal mucosa. Although oral glutamine exerts a positive effect on intestinal villus height in very old rats, how glutamine is used by enterocytes is unclear. Adult (8 months) and very old (27 months) female rats were exposed to intermittent glutamine supplementation for 50% of their age lifetime. Treated rats received glutamine added to their drinking water, and control rats received water alone. Jejunal epithelial cells (~300×10(6) cells) were incubated in oxygenated Krebs-Henseleit buffer for 30 min containing [1-(13)C] glutamine (~17 M) for analysis of glutamine metabolites by (13)C nuclear magnetic resonance ((13)C NMR). An aliquot fraction was incubated in the presence of [U-(14)C] glutamine to measure produced CO2. Glutamine pretreatment increased glutamate production and decreased CO2 production in very old rats. The ratio CO2/glutamate, which was very high in control very old rats, was similar at both ages after glutamine pretreatment, as if enterocytes from very old rats recovered the metabolic abilities of enterocytes from adult rats. Our results suggest that long-term treatment with glutamine started before advanced age (a) prevented the loss of rat body weight without limiting sarcopenia and (b) had a beneficial effect on enterocytes from very old rats probably by favoring the role of glutamate as a precursor for glutathione, arginine and proline biosynthesis, which was not detected in (13)C NMR spectra in our experimental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Subsecond fear discrimination in rats: adult impairment in adolescent heavy alcohol drinkers.

    PubMed

    DiLeo, Alyssa; Wright, Kristina M; McDannald, Michael A

    2016-11-01

    Discriminating safety from danger must be accurate and rapid. Yet, the rapidity with which fear discrimination emerges remains unknown. Rapid fear discrimination in adulthood may be susceptible to impairment by adolescent heavy alcohol drinking, which increases incidence of anxiety disorders. Rats were given voluntary, adolescent alcohol access, and heavy drinkers were identified. In adulthood, rapid fear discrimination of safety, uncertainty, and danger cues was assessed. Normal rats, but not heavy drinkers, showed discriminative fear <1 sec following cue onset. This provides the first demonstration of subsecond fear discrimination and its adult impairment in adolescent heavy alcohol drinkers. © 2016 DiLeo et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure

    PubMed Central

    Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.

    2014-01-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150

  10. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  11. Oral methylphenidate alleviates the fine motor dysfunction caused by chronic postnatal manganese exposure in adult rats.

    PubMed

    Beaudin, Stéphane A; Strupp, Barbara J; Lasley, Stephen M; Fornal, Casimir A; Mandal, Shyamali; Smith, Donald R

    2015-04-01

    Developmental manganese (Mn) exposure is associated with motor dysfunction in children and animal models, but little is known about the underlying neurochemical mechanisms or the potential for amelioration by pharmacotherapy. We investigated whether methylphenidate (MPH) alleviates fine motor dysfunction due to chronic postnatal Mn exposure, and whether Mn exposure impairs brain extracellular dopamine (DA) and norepinephrine (NE) in the prefrontal cortex (PFC) and striatum in adult animals. Rats were orally exposed to 0 or 50 mg Mn/kg/day from postnatal day 1 until the end of the study (PND 145). The staircase test was used to assess skilled forelimb function. Oral MPH (2.5 mg/kg/day) was administered daily 1 h before staircase testing for 16 days. DA and NE levels were measured by dual probe microdialysis. Results show that Mn exposure impaired reaching and grasping skills and the evoked release of DA and NE in the PFC and striatum of adult rats. Importantly, oral MPH treatment fully alleviated the fine motor deficits in the Mn-exposed animals, but did not affect forelimb skills of control rats not exposed to Mn. These results suggest that catecholaminergic hypofunctioning in the PFC and striatum may underlie the Mn-induced fine motor dysfunction, and that oral MPH pharmacotherapy is an effective treatment approach for alleviating this dysfunction in adult animals. The therapeutic potential of MPH for the treatment of motor dysfunction in Mn-exposed children and adults appears promising pending further characterization of MPH efficacy in other functional areas (eg, attention) believed to be affected by developmental Mn exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    PubMed

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups.

  13. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  14. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  15. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.

  16. Effect of "enriched environment" during development on adult rat behavior and response to the dopamine receptor agonist apomorphine.

    PubMed

    Hoffmann, L C; Schütte, S R M; Koch, M; Schwabe, K

    2009-02-18

    Enriched housing conditions (enriched environment, EE) during development has been shown to influence adult rat behavior and transmitter systems, especially dopamine function. We were interested in how different degrees of enrichment during development would affect adult rats' behavior and response to dopamine receptor challenge. Two groups of male Wistar rats (n=11-12) were raised under two different degrees of EE, i.e. "high enriched" and "low enriched" groups. A third group was kept under standard conditions and served as "non-enriched" control. As adults, rats were tested for anxiety (elevated plus-maze), for spatial learning (four-arm-baited eight-arm radial maze), and for motivation (breakpoint of the progressive ratio test). Finally, locomotor activity (activity box) and sensorimotor gating (prepulse inhibition (PPI) of the acoustic startle response (ASR)) were tested with and without challenge with the dopamine receptor agonist apomorphine. The time spent on the open or enclosed arms of the elevated plus-maze did not differ between groups, but the high enriched group showed higher rearing activity on the open arms. The breakpoint did not differ between groups. Learning and memory in the radial maze task only differed on the first few trials, but high enriched rats run faster compared with the other groups. In contrast, in the activity box enriched groups were less active, but apomorphine had the highest effect. Between groups, no difference in PPI and startle amplitude was found, but in the high and low EE group startle amplitude was enhanced after administration of apomorphine, while the PPI deficit induced by this drug was not different between groups. Altogether, we found no evidence that different amounts of environmental enrichment without differences in social EE affect rats' cognitive, emotional or motivational behavior. However, motor activity seems to be enhanced when rats are behaviorally or pharmacologically challenged by dopamine receptor

  17. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats

    PubMed Central

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158

  18. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca

    2017-03-01

    The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta 9 -tetrahydrocannabinol (Δ 9 -THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ 9 -THC induced a significant reduction (p<0.05) in basal and K + -evoked [ 3 H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [ 3 H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ 9 -THC induced a significant reduction of CB1 receptor binding (B max ) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ 9 -THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K + -evoked [ 3 H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring

  19. Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS.

    PubMed

    García-Arenas, Guadalupe; Ramírez-Amaya, Victor; Balderas, Israela; Sandoval, Jimena; Escobar, Martha L; Ríos, Camilo; Bermúdez-Rattoni, Federico

    2004-02-04

    It is well known that lead can affect several cognitive abilities in developing animals. In this work, we investigate the effects of different sub-chronic lead doses (0, 65, 125, 250 and 500 ppm of lead acetate in their drinking water for 14 days) in the performance of male adult rats in a water maze, cue maze and inhibitory avoidance tasks. We found that the acquisition of these tasks was not affected by lead, however, the highest dosage of lead (500 ppm) impaired memory consolidation in spatial and inhibitory avoidance tasks, but not in cue maze task while the 250 ppm dose only affected retrieval of spatial memory. Additionally, hippocampal long-term potentiation (LTP) induction in the perforant path after exposing adult rats to different doses of lead was studied. LTP induction was affected in a dose-dependent manner, and treatments of 250 and 500 ppm completely blocked LTP. We investigated the effects of lead intoxication on the activity of constitutive nitric oxide synthase (cNOS) in different brain regions of adult animals. The activity of cNOS was significantly inhibited in the hippocampus and cerebellum but not in the frontal cortex and brain stem, although lead had accumulated in all brain regions. These results suggest that lead intoxication can impair memory in adult animals and this impairment might be related with region-specific effects on cNOS activity.

  20. The fine structure of intracranial neoplasms induced by the inoculation of avian sarcoma virus in neonatal and adult rats.

    PubMed Central

    Copeland, D. D.; Talley, F. A.; Bigner, D. D.

    1976-01-01

    Groups of F-344 rats were inoculated with the Bratislava-77 strain of avian sarcoma virus (B-77 ASV) within 24 hours of birth, at 9 days of age, or between 97 and 119 days of age. Intracranial tumors developed in each age group. Multiple tumors with mixed histologic patterns developed in rats inoculated at 1 or 9 days of age. Solitary tumors with a uniform histologic pattern developed in rats inoculated as adults. On the basis of light and electron microscopic study, the majority of tumors in each age group were classified as astrocytomas and divided into either poorly differentiated, gemistocytic, pilocytic, or polymorphic varieties. The polymorphic astrocytomas were most common among neonatally inoculated rats, while the pilocytic astrocytomas were most common among rats inoculated as adults. Ultrastructural characteristics of astrocytes, including gap junctions and 7- to 9-nm filaments, were present in the majority of tumors in each age groups. Astrocytomas induced in adult rats were remarkable for the presence of extensive basement membrane alone the astrocytic cell surfaces. Intracytoplasmic virus-like particles (R particles) were common in the tumor cells. These virus-like particles are morphologically distinct from C-type B-77 ASV, and no morphologic evidence of C-type virus replication was observed in any of the tumors. Images Figure 16 Figure 17 Figure 1 Figure 2 Figure 18 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:179328

  1. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Toxicity assessment of molindone hydrochloride, a dopamine D2/D5 receptor antagonist in juvenile and adult rats.

    PubMed

    Krishna, Gopala; Gopalakrishnan, Gopa; Goel, Saryu

    2017-06-01

    Neuroleptic drug molindone hydrochloride is a dopamine D2/D5 receptor antagonist and it is in late stage development for the treatment of impulsive aggression in children and adolescents who have attention deficient/hyperactivity disorder (ADHD). This new indication for this drug would expand the target population to include younger patients, and therefore, toxicity assessments in juvenile animals were undertaken in order to determine susceptibility differences, if any, between this age group and the adult rats. Adult rats were administered molindone by oral gavage for 13 weeks at dose levels of 0, 5, 20, or 60 mg/kg-bw/day. Juvenile rats were dosed for 8 weeks by oral gavage at dose levels of 0, 5, 25, 50, or 75 mg/kg-bw/day. Standard toxicological assessments were made using relevant study designs in consultation with FDA. Treatment-related elevation in serum cholesterol and triglycerides and decreases in glucose levels were observed in both the age groups. Organ weight changes included increases in liver, adrenal gland and seminal vesicles/prostate weights. Decreases in uterine weights were also observed in adult females exposed to the top two doses with sufficient exposure. In juveniles, sexual maturity parameters secondary to decreased body weights were observed, but, were reversed. In conclusion, the adverse effects noted in reproductive tissues of adults were attributed to hyperprolactinemia and these changes were not considered to be relevant to humans due to species differences in hormonal regulation of reproduction. On the whole, there were no remarkable differences in the toxicity profile of the drug between the two age groups.

  3. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    PubMed Central

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  4. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    PubMed

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  5. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  6. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    PubMed

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  7. Amphetamine-induced incentive sensitization of sign-tracking behavior in adolescent and adult female rats

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Spear, Linda P.

    2010-01-01

    Age-specific behavioral and neural characteristics may predispose adolescents to initiate and escalate use of alcohol and drugs. Adolescents may avidly seek novel experiences, including drugs of abuse, because of enhanced incentive motivation for drugs and natural rewards, perhaps especially when that incentive motivation is sensitized by prior drug exposure. Using a Pavlovian conditioned approach (PCA) procedure, sign-tracking (ST) and goal-tracking (GT) behavior was examined in amphetamine-sensitized and control adolescent and adult female Sprague-Dawley rats, with expression of elevated ST behavior used to index enhanced incentive motivation for reward-associated cues. Rats were first exposed to a sensitizing regimen of amphetamine injections (3.0 mg/kg/ml d-amphetamine per day) or given saline (0.9% w/v) once daily for 4 days. Expression of ST and GT was then examined over 8 days of PCA training consisting of 25 pairings of an 8-sec presentation of an illuminated lever immediately followed by response-independent delivery of a banana-flavored food pellet. Results showed that adults clearly displayed more ST behavior than adolescents, reflected via both more contacts with, and shorter latencies to approach, the lever. Prior amphetamine sensitization increased ST (but not GT) behaviors regardless of age. Thus, when indexed via ST, incentive motivation was found to be greater in adults than adolescents, with a prior history of amphetamine exposure generally sensitizing incentive motivation for cues predicting a food reward regardless of age. PMID:21534648

  8. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  9. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain

    PubMed Central

    Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.

    2011-01-01

    Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111

  10. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Profiling of the fetal and adult rat liver transcriptome and translatome reveals discordant regulation by the mechanistic target of rapamycin (mTOR).

    PubMed

    Boylan, Joan M; Sanders, Jennifer A; Neretti, Nicola; Gruppuso, Philip A

    2015-07-01

    The mechanistic target of rapamycin (mTOR) integrates growth factor signaling, nutrient abundance, cell growth, and proliferation. On the basis of our interest in somatic growth in the late gestation fetus, we characterized the role of mTOR in the regulation of hepatic gene expression and translation initiation in fetal and adult rats. Our strategy was to manipulate mTOR signaling in vivo and then characterize the transcriptome and translating mRNA in liver tissue. In adult rats, we used the nonproliferative growth model of refeeding after a period of fasting and the proliferative model of liver regeneration following partial hepatectomy. We also studied livers from preterm fetal rats (embryonic day 19) in which fetal hepatocytes are asynchronously proliferating. All three models employed rapamycin to inhibit mTOR signaling. Analysis of the transcriptome in fasted-refed animals showed rapamycin-mediated induction of genes associated with oxidative phosphorylation. Genes associated with RNA processing were downregulated. In liver regeneration, rapamycin induced genes associated with lysosomal metabolism, steroid metabolism, and the acute phase response. In fetal animals, rapamycin inhibited expression of genes in several functional categories that were unrelated to effects in the adult animals. Translation control showed marked fetal-adult differences. In both adult models, rapamycin inhibited the translation of genes with complex 5' untranslated regions, including those encoding ribosomal proteins. Fetal translation was resistant to the effects of rapamycin. We conclude that the mTOR pathway in liver serves distinct physiological roles in the adult and fetus, with the latter representing a condition of rapamycin resistance. Copyright © 2015 the American Physiological Society.

  12. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    PubMed

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Prenatal ethanol exposure impairs temporal ordering behaviours in young adult rats.

    PubMed

    Patten, Anna R; Sawchuk, Scott; Wortman, Ryan C; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2016-02-15

    Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats. Previous research has shown that in the DG, these deficits are not apparent in age-matched PNEE females. This study aimed to expand these findings and determine if PNEE induces deficits in hippocampal-dependent behaviours in both male and female young adult rats (PND 60). The metric change behavioural test examines DG-dependent deficits by determining whether an animal can detect a metric change between two identical objects. The temporal order behavioural test is thought to rely in part on the CA sub-region of the hippocampus and determines whether an animal will spend more time exploring an object that it has not seen for a larger temporal window as compared to an object that it has seen more recently. Using the liquid diet model of FASD (where 6.6% (v/v) ethanol is provided through a liquid diet consumed ad libitum throughout the entire gestation), we found that PNEE causes a significant impairment in the temporal order task, while no deficits in the DG-dependent metric change task were observed. There were no significant differences between males and females for either task. These results indicate that behaviours relying partially on the CA-region may be more affected by PNEE than those that rely on the DG. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  15. Handling alters cocaine-induced activity in adolescent but not adult male rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    The developmental period of adolescence is one that is characterized by increased levels of stress and vulnerability to drugs. Pre-test handling is an experimental manipulation that is used to acclimate animals prior to behavioral testing and exposure to a novel environment. Therefore, the present study was conducted in order to address the issue of pre-test handling of adolescent and adult male rats on subsequent cocaine-induced locomotor activity upon presentation to a novel environment. On days one through four, postnatal day (PND) 41–44 or PND 56–59, respectively, animals were handled b.i.d. for three minutes. On the fifth day, PND 45 or PND 60, animals were administered 30 mg/kg/ip cocaine or saline and immediately placed in a novel environment where locomotor activity was measured for 30 minutes. Cocaine increased locomotor activity similarly in all non-handled animals, regardless of age. Interestingly, adolescent animals expressed a differential effect when handled prior to an acute cocaine administration. Specifically, handling increased cocaine-induced locomotor activity in adolescent but not adult animals. These findings indicate that adolescent males that have been acclimated to the handling procedure experience significantly more behavioral reactivity than do adults to a high dose of cocaine upon exposure to a novel environment. PMID:15708784

  16. Intravenous gestational nicotine exposure results in increased motivation for sucrose reward in adult rat offspring.

    PubMed

    Lacy, Ryan T; Hord, Lauren L; Morgan, Amanda J; Harrod, Steven B

    2012-08-01

    Prenatal tobacco smoke exposure is associated with alterations in motivated behavior in offspring, such as increased consumption of highly palatable foods and abused drugs. Animal models show that gestational nicotine (GN) exposure mediates changes in responding for sucrose and drug reward. A novel, intermittent low-dose intravenous (IV) exposure model was used to administer nicotine (0.05 mg/kg/injection) or saline 3×/day to rats on gestational days 8-21. Two experiments investigated the effect of IV GN on (1) the habituation of spontaneous locomotor activity and on (2) sucrose reinforced responding in offspring. For the operant experiments, animals acquired fixed-ratio (FR-3) responding for sucrose, 26% (w/v), and were tested on varying concentrations (0, 3, 10, 30, and 56%; Latin-square) according to a FR-3, and then a progressive-ratio (PR) schedule. Male and female adult offspring were used. IV GN did not alter birth or growth weight, or the number of pups born. No between-group differences in habituation to spontaneous locomotor activity were observed. FR testing produced an inverted U-shaped response curve, and rats showed peak responding for 10% sucrose reinforcement. Neither gestation nor sex affected responding, suggesting equivalent sensitivity to varying sucrose concentrations. PR testing revealed that GN rats showed greater motivation for sucrose reinforcement relative to controls. A low-dose, IV GN exposure model resulted in increased motivation to respond for sucrose reinforcement in adult offspring. This suggests that using a low number of cigarettes throughout pregnancy will result in increased motivation for highly palatable foods in adult, and perhaps, adolescent offspring. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats.

    PubMed

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A; Glenn, Melissa J

    2015-03-14

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4weeks on their respective diets, a subset of rats began 3weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogen supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega-3 fatty acids have similar biological functions-affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies. Copyright

  18. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats.

    PubMed

    Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-02-01

    Ethanol (EtOH) dependence and tolerance in the adult are marked by increased function of NMDA receptors and decreased function of GABAA receptors, which coincide with altered receptor subunit expression in specific brain regions. Adolescents often use EtOH at levels greater than adults, yet the receptor subunit expression profiles following chronic intermittent EtOH (CIE) exposure in adolescents are not known. Persistent age-dependent changes in receptor subunit alterations coupled with withdrawal-related anxiety may help explain the increase in alcohol abuse following adolescent experimentation with the drug. Adolescent and adult rats received 10 intraperitoneal administrations of 4.0 g/kg EtOH or saline every 48 hours. At either 24 hours or 12 days after the final exposure, anxiety-like behavior was assessed on the elevated plus maze and tissue was collected. Western blotting was used to assess changes in selected NMDA and GABAA receptor subunits in whole cortex and bilateral hippocampus. CIE exposure yields a persistent increase in anxiety-like behavior in both age groups. However, selected NMDA and GABAA receptor subunits were not differentially altered by this CIE exposure paradigm in adolescents or adults. CIE exposure produced persistent anxiety-like behavior, which has important implications for alcohol cessation. Given the reported behavioral and neuropeptide expression changes in response to this dose of EtOH, it is important for future work to consider the circumstances under which these measures are altered by EtOH exposure. Copyright © 2015 by the Research Society on Alcoholism.

  19. Sex differences in neonatal and young adult rat lower urinary tract function caused by bladder reduction.

    PubMed

    Chien, China; Chang, Huiyi Harriet; Wu, Hsi-Yang

    2015-08-01

    Pediatric urinary incontinence has been proposed as a cause for adult urinary incontinence, yet animal models mimic the findings of overactive bladder more closely than dysfunctional voiding. We used the bladder reduction (BR) model to study the effects of early external urethral sphincter (EUS) dysfunction on the maturation of lower urinary tract function in neonatal and young adult rats of both sexes. To determine long-term alterations in bladder and EUS function in young adult rats caused by neonatal BR. 46 Sprague-Dawley rats underwent BR and 52 underwent sham surgery at 1 week of age. At 3, 6, and 9 weeks of life, cystometry was carried out, 8-OH-DPAT (serotonergic receptor agonist) and WAY 100,635 (serotonergic receptor antagonist) were administered intravenously. Pressure threshold (PT), volume threshold (VT), storage tonic AUC, contraction area under the curve (AUC), EUS burst amplitude and burst duration were measured at baseline and after administration of serotonergic agents. PT increased in 3-week BR females compared with shams (31.1 vs. 22.7 cm H2O, p < 0.01), in conjunction with less efficient EUS emptying, as burst amplitude was suppressed (BR 0.04 vs. sham 0.07 mV, p < 0.05). VT subsequently increased in 9-week BR females compared with shams (0.81 vs. 0.36 mL, p < 0.05). Although 3-week BR males also experienced suppressed burst amplitude (BR 0.17 vs. sham 0.28 mV, p < 0.05), they showed no difference in PT at 3 weeks or VT at 9 weeks compared with sham males. The burst amplitude returned to normal in 6- and 9-week BR animals of both sexes, confirming a spontaneous recovery of EUS function over time. The thresholds for voiding in male rats are not as sensitive to early changes in EUS function compared with female rats. The response to serotonergic agents was identical between BR and sham animals. In the female animals, 8-OH-DPAT increased storage tonic AUC and burst duration, whereas in male animals, 8-OH-DPAT increased contraction AUC, burst

  20. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats.

    PubMed

    Patrone, Luis G A; Bícego, Kênia Cardoso; Hartzler, Lynn K; Putnam, Robert W; Gargaglioni, Luciane H

    2014-01-01

    The locus coeruleus (LC) plays an important role in central chemoreception. In young rats (P9 or younger), 85% of LC neurons increase firing rate in response to hypercapnia vs. only about 45% of neurons from rats P10 or older. Carbenoxolone (CARB - gap junction blocker) does not affect the % of LC neurons responding in young rats but it decreases the % responding by half in older animals. We evaluated the participation of gap junctions in the CO2 ventilatory response in unanesthetized adult rats by bilaterally microinjecting CARB (300μM, 1mM or 3mM/100nL), glycyrrhizic acid (GZA, CARB analog, 3mM) or vehicle (aCSF - artificial cerebrospinal fluid) into the LC of Wistar rats. Bilateral gap junction blockade in LC neurons did not affect resting ventilation; however, the increase in ventilation produced by hypercapnia (7% CO2) was reduced by ∼25% after CARB 1mM or 3mM injection (1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1468.3±122.2mLkg(-1)min(-1) for 1mM CARB, P<0.05; 1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1540.9±68.4mLkg(-1)min(-1) for the 3mM CARB group, P<0.05) due largely to a decrease in respiratory frequency. GZA injection or CARB injection outside the LC (peri-LC) had no effect on ventilation under any conditions. The results suggest that gap junctions in the LC modulate the hypercapnic ventilatory response of adult rats. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Neonatal alcohol exposure disrupts hippocampal neurogenesis and contextual fear conditioning in adult rats

    PubMed Central

    Hamilton, G.F.; Murawski, N.J.; St. Cyr, S.A.; Jablonski, S.A.; Schiffino, F.L.; Stanton, M.E.; Klintsova, A.Y.

    2011-01-01

    Developmental alcohol exposure can permanently alter brain structures and produce functional impairments in many aspects of behavior, including learning and memory. This study evaluates the effect of neonatal alcohol exposure on adult neurogenesis in the dentate gyrus of the hippocampus and the implications of such exposure for hippocampus-dependent contextual fear conditioning. Alcohol-exposed rats (AE) received 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 (third trimester in humans), in a binge-like manner. Two control groups were included: sham-intubated (SI) and suckle-control (SC). Animals were housed in social cages (3/cage) after weaning. On PD80, animals were injected with 200 mg/kg BrdU. Half of the animals were sacrificed two hours later. The remainder were sacrificed on PD114 to evaluate cell survival; separate AE, SI, and SC rats not injected with BrdU were tested for the context preexposure facilitation effect (CPFE; ∼PD117). There was no difference in the number of BrdU+ cells in AE, SI and SC groups on PD80. On PD114, cell survival was significantly decreased in AE rats, demonstrating that developmental alcohol exposure damages new cells' ability to incorporate into the network and survive. Behaviorally tested SC and SI groups preexposed to the training context 24h prior to receiving a 1.5mA 2s footshock froze significantly more during the context test than their counterparts preexposed to an alternate context. AE rats failed to show the CPFE. The current study shows the detrimental, long-lasting effects of developmental alcohol exposure on hippocampal adult neurogenesis and contextual fear conditioning. PMID:21816390

  2. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise

    PubMed Central

    Merkley, Christina M.; Jian, Charles; Mosa, Adam; Tan, Yao-Fang; Wojtowicz, J. Martin

    2014-01-01

    Adult neurogenesis is highly responsive to environmental and physiological factors. The majority of studies to date have examined short-term consequences of enhancing or blocking neurogenesis but long-term changes remain less well understood. Current evidence for age-related declines in neurogenesis warrant further investigation into these long-term changes. In this report we address the hypothesis that early life experience, such as a period of voluntary running in juvenile rats, can alter properties of adult neurogenesis for the remainder of the animal's life. The results indicate that the number of proliferating and differentiating neuronal precursors is not altered in runners beyond the initial weeks post-running, suggesting homeostatic regulation of these processes. However, the rate of neuronal maturation and survival during a 4 week period after cell division was enhanced up to 11 months of age (the end of the study period). This study is the first to show that a transient period of physical activity at a young age promotes changes in neurogenesis that persist over the long-term, which is important for our understanding of the modulation of neurogenesis by exercise with age. Functional integration of adult-born neurons within the hippocampus that resist homeostatic regulation with aging, rather than the absolute number of adult-born neurons, may be an essential feature of adult neurogenesis that promotes the maintenance of neural plasticity in old age. PMID:25071426

  3. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats.

    PubMed

    Morel, Fanny B; Oozeer, Raish; Piloquet, Hugues; Moyon, Thomas; Pagniez, Anthony; Knol, Jan; Darmaun, Dominique; Michel, Catherine

    2015-03-01

    Increasing evidence suggests that early nutrition has programming effects on adult health. Identifying mechanisms underlying nutritional programming would aid in the design of new disease prevention strategies. The intestinal microbiota could be a key player in this programming because it affects host metabolic homeostasis, postnatal gut colonization is sensitive to early nutrition, and initial microbial set-up is thought to shape microbiota composition for life. The aim of this study was to determine whether early manipulation of intestinal microbiota actually programs adult microbiota in rats. Suckling rats pups were supplemented with fructo-oligosaccharides, galacto-oligosaccharides/long-chain fructan mix (GOS/lcF, 9/1), acidic oligosaccharides, amoxicillin, or vehicle from the fifth to the fourteenth day of life, and weaned to standard chow at day 21. Ceco-colonic microbiota was characterized at 14 and 131 d by real-time polymerase chain reaction analysis. At day 14, all treatments affected microbiota. Amoxicillin had the most significant effect. All oligosaccharides decreased Firmicutes levels, whereas only fructo-oligosaccharides and GOS/lcF increased bifidobacteria. At day 131, most of these effects had faded away but a significant, albeit minor, adult microbiota programming was observed for rats that received GOS/lcF mix before weaning, regarding Roseburia intestinalis cluster, one subdivision of the Erysipelotrichaceae family as well as butyrate kinase gene. As revealed by a targeted quantitative polymerase chain reaction approach, programming of adult intestinal microbiota seems to vary according to the nature of the preweaning microbiotal modulator. This suggests that intestinal microbiota may, only under specific circumstances, serve as a relay of neonatal nutrition and thus potentially contribute to nutritional programming of host physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats

    PubMed Central

    Robertson, Donald; Rodger, Jennifer; Martin-Iverson, Mathew T.

    2016-01-01

    The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease. PMID:27936175

  5. Hippocampal Adult Neurogenesis is Enhanced by Chronic Eszopiclone Treatment in Rats

    PubMed Central

    Methippara, Melvi; Bashir, Tariq; Suntsova, Natalia; Szymusiak, Ron; McGinty, Dennis

    2010-01-01

    Summary The adult hippocampal dentate gyrus (DG) exhibits cell proliferation and neurogenesis throughout life. We examined the effects of daily administration of eszopiclone (Esz), a commonly used hypnotic drug and GABA agonist, compared to vehicle, on DG cell proliferation and neurogenesis, and on sleep-wake patterns. Esz was administered during the usual sleep period of rats, to mimic typical use in humans. Esz treatment for 7 days did not affect the rate of cell proliferation, as measured by 5-bromo-2’-deoxyuridine (BrdU) immunostaining. However, twice daily Esz administration for two weeks increased survival of newborn cells, by 46%. Most surviving cells exhibited a neuronal phenotype, identified BrdU-NeuN double-labeling. NeuN (Neuronal nuclei) is a marker of neurons. NREM sleep was increased on day one, but not on days 7 or 14 of Esz administration. Delta EEG activity was increased on days 1 and 7 of treatment, but not on day 14. There is evidence that enhancement of DG neurogenesis is a critical component of the effects of antidepressant treatments of major depressive disorder (MDD). Adult born DG cells are responsive to GABAergic stimulation which promotes cell maturation. The present study suggests that Esz, presumably acting as a GABA agonist, has pro-neurogenic effects in the adult DG. This result is consistent with evidence that Esz enhances antidepressant treatment response of MDD patients with insomnia. PMID:20408925

  6. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal

  7. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    PubMed

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  8. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    PubMed

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  9. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats.

    PubMed

    Nojima, Kazuo; Takata, Tomoyo; Masuno, Hiroshi

    2013-07-01

    We investigated the effects of bisphenol A (BPA), an environmental endocrine-disrupting chemical, on spontaneous motor activity in adult male rats. The rats were implanted intraperitoneally with mini-osmotic pumps containing either BPA (50 μg/kg body weight per day) in sesame oil (BPA-treated group) or sesame oil only (vehicle-treated group). Spontaneous motor activity during a 24-h period was measured over 5 days from day 9 to day 13 after implantation using an animal movement analysis system. Spontaneous motor activity during the last 2 h of the dark phase and during the first 1-h of the light phase was increased in the BPA-treated group. Total spontaneous motor activity during the 12-h light phase, but not the 12-h dark phase, was higher in the BPA-treated group than in the vehicle-treated group. These findings suggest that BPA may induce hyperactivity in adult male rats during the 12-h light phase, especially during the 2 h immediately preceding sleep-onset and 1 h immediately following sleep-onset.

  10. Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats.

    PubMed

    Hulshof, Henriëtte J; Novati, Arianna; Sgoifo, Andrea; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2011-01-20

    Stressful events during childhood are thought to increase the risk for the development of adult psychopathology. A widely used animal model for early life stress is maternal separation (MS), which is thought to affect development and cause alterations in neuroendocrine stress reactivity and emotionality lasting into adulthood. However, results obtained with this paradigm are inconsistent. Here we investigated whether this variation may be related to the type of stressor or the tests used to assess adult stress sensitivity and behavioral performance. Rat pups were exposed to a 3h daily MS protocol during postnatal weeks 1-2. In adulthood, animals were subjected to a wide variety of stressors and tests to obtain a better view on the effects of MS on adult hypothalamic-pituitary-adrenal (HPA) axis regulation, anxiety-like behavior, social interaction and cognition. Also, the influence of MS on adult hippocampal neurogenesis was studied because it might underlie changes in neuroendocrine regulation and behavioral performance. The results show that, independent of the nature of the stressor, MS did not affect the neuroendocrine response. MS did not influence anxiety-like behavior, explorative behavior and social interaction, but did affect cognitive function in an object recognition task. The amount of new born cells in the hippocampal dentate gyrus was significantly decreased in MS animals; yet, cell differentiation and survival were not altered. In conclusion, while interfering with the mother-infant relationship early in life did affect some aspects of adult neuroplasticity and cognitive function, it did not lead to permanent changes in stress sensitivity and emotionality. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Ascorbic acid and sodium benzoate synergistically aggravates testicular dysfunction in adult Wistar rats.

    PubMed

    Kehinde, Olaniyi S; Christianah, Oyewopo I; Oyetunji, Oyewopo A

    2018-01-01

    The effect of the concomitant use of sodium benzoate (NaB) and ascorbic acid on human health remains controversial. Therefore, the current study is designed to investigate the effect of NaB and ascorbic acid on the testicular function of adult Wistar rats. Adult Wistar rats were randomly allotted into Control (vehicle; received 1 ml of distilled water), NaB-treated (SB-treated; received 100 mg/kg body weight; b.w ), ascorbic acid-treated (AA-treated; received 150 mg/kg b.w ) and NaB+ ascorbic acid-treated (SB+AA-treated) groups. The treatment lasted for 28 days and the administration was given orally. The body weight change was monitored. Semen analysis, biochemical assay and histological examination were performed. Treatment with NaB significantly altered the cytoarchitecture of testicular tissue, sperm quality, testicular endocrine function and oxidative stress status without any alteration in body weight gain compared to control. In addition, treatment with NaB+ ascorbic acid exacerbated testicular tissue disruption, impaired sperm quality and testicular endocrine impairment with significant reduction in oxidative stress and unaltered body weight gain when compared with NaB-treated group. This study suggests that ascorbic acid and NaB synergistically aggravates testicular dysfunction. This is independent of oxidative stress status.

  12. Neonatal Alcohol Exposure Permanently Disrupts the Circadian Properties and Photic Entrainment of the Activity Rhythm in Adult Rats

    PubMed Central

    Allen, Gregg C.; West, James R.; Chen, Wei-Jung A.; Earnest, David J.

    2009-01-01

    Background Alcohol exposure during the period of rapid brain development produces structural damage in different brain regions, including the suprachiasmatic nucleus (SCN), that may have permanent neurobehavioral consequences. Thus, this study examined the long-term effects of neonatal alcohol exposure on circadian behavioral activity in adult rats. Methods Artificially reared Sprague-Dawley rat pups were exposed to alcohol (EtOH; 4.5 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9. At 2 months of age, rats from the EtOH, GC, and suckle control (SC) groups were housed individually, and properties of the circadian rhythm in wheel-running behavior were continuously analyzed during exposure to a 12-hr light:12-hr dark photoperiod (LD 12:12) or constant darkness (DD). Results Neonatal alcohol exposure had distinctive effects on the rhythmic properties and quantitative parameters of adult wheel-running behavior. EtOH-treated animals were distinguished by unstable and altered entrainment to LD 12:12 such that their daily onsets of activity were highly variable and occurred at earlier times relative to control animals. In DD, circadian regulation of wheel-running behavior was altered by neonatal alcohol exposure such that the free-running period of the activity rhythm was shorter in EtOH-exposed rats than in control animals. Total amount of daily wheel-running activity in EtOH-treated rats was greater than that observed in the SC group. In addition, the circadian activity patterns of EtOH-exposed rats were fragmented such that the duration of the active phase and the number of activity bouts per day were increased. Conclusions These data indicate that neonatal alcohol exposure produces permanent changes in the circadian regulation of the rat activity rhythm and its entrainment to LD cycles. These long-term alterations in circadian behavior, along with the developmental alcohol-induced changes in SCN endogenous rhythmicity, may have

  13. Effects of long-term construction noise on health of adult female Wistar rats.

    PubMed

    Zymantiene, J; Zelvyte, R; Pampariene, I; Aniuliene, A; Juodziukyniene, N; Kantautaite, J; Oberauskas, V

    2017-03-28

    The aim of this study was to investigate the influence of long-term building construction noise from refurbishment, which including vibration, on some physiological parameters and histopathological changes of organs of Wistar rats. Twenty 12 month old female rats were divided into two groups: rats group I (n = 10) were exposed to long-term construction noise and rats group II (n = 10) were kept under normal noise level. Study results revealed that long-term construction noise from building refurbishment has an influence on body weight, haematological and some serum biochemical parameters affects caecal microbiota, and causes histopathological changes in the organs of adult female Wistar rats. It was noticed that rats in group I exihibited significantly higher mean values for total protein, albumin and lower values for glucose, AST, ALT, blood urea nitrogen, haematological and caecal microbiota parameters than rats in group II. The most common pathologies were determined in the kidney, liver and lungs. Other observed pathologies were lymphadenopathy, catarrhal inflammation of the intestines, spleen hyperplasia and mammary gland adenofibroma. Single cases were subcutaneous fibroma in the thoracic region, abortus with uterine inflammation and thymus hyperplasia with formation of cysts were found.

  14. 6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats.

    PubMed

    Hegazy, Ahmed M S; Mosaed, Mohammed M; Elshafey, Saad H; Bayomy, Naglaa A

    2016-06-01

    Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Extinction-induced "despair" in aged and adult rats: links to neurotrophins in frontal cortex and hippocampus.

    PubMed

    Topic, Bianca; Huston, Joseph P; Namestkova, Katerina; Zhu, Shun-Wei; Mohammed, Abdul H; Schulz, Daniela

    2008-10-01

    In the search for animal models of human geriatric depression, we found that operant extinction of escape from water results in the expression of immobility in different age groups, indicative of behavioral "despair", which was also associated with the resistance-to-extinction (RTE) expressed by these animals. With respect to the neurotrophin hypothesis of depression, nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) protein levels in frontal cortex (FC) and hippocampus (HP) were examined and related to behavioral immobility and RTE in the water maze in aged and adult Wistar rats. Age-related increases in levels of NGF were found in HP and of NT-3 in FC. Indices of immobility showed relationships in the aged with NGF and, in adults, with BDNF, pointing to a dissociation of neurotrophic involvement in extinction trial-induced "despair" in aged and adult rats. The present results support the hypothesis, that extinction-induced immobility in the water maze reflects a state akin to behavioral despair and point to age-related differences of neurotrophic involvement in depressive-like symptoms. The concept of extinction-induced behavioral "despair" in the aged subsumes several aspects of human geriatric depression, such as co-morbidity of learning impairment and anxiety, and, thus could represent a useful paradigm to examine the neuronal mechanisms underlying depression, especially in aged rodents.

  16. The effects of gonadectomy and binge-like ethanol exposure during adolescence on open field behaviour in adult male rats.

    PubMed

    Yan, Wensheng; Kang, Jie; Zhang, Guoliang; Li, Shuangcheng; Kang, Yunxiao; Wang, Lei; Shi, Geming

    2015-09-14

    Binge drinking ethanol exposure during adolescence can lead to long-term neurobehavioural damage. It is not known whether the pubertal surge in testosterone that occurs during adolescence might impact the neurobehavioural effects of early ethanol exposure in adult animals. We examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats around postnatal day (P) 23. From P28-65,the rats were administered 3.0g/kg ethanol using a binge-like model of exposure. Dependent measurements included tests of open field behaviour, blood ethanol concentrations, and testosterone levels. As adults, significant decreases in open field activity were observed in the GX rats. The open field behaviour of the GX rats was restored after testosterone administration. Binge-like ethanol exposure altered most of the parameters of the open field behaviour, suggestive of alcohol-induced anxiety, but rats treated with alcohol in combination with gonadectomy showed less motor behaviour and grooming behaviour and an increase in immobility, suggesting ethanol-induced depression. These results indicated that testosterone is required for ethanol-induced behavioural changes and that testicular hormones are potent stimulators of ethanol-induced behaviours. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats.

    PubMed

    Meng, Li; Rijntjes, Eddy; Swarts, Hans J M; Keijer, Jaap; Teerds, Katja J

    2017-03-16

    There is substantial evidence both in humans and in animals that a prolonged reduction in plasma thyroid hormone concentration leads to reproductive problems, including disturbed folliculogenesis, impaired ovulation and fertilization rates, miscarriage and pregnancy complications. The objective of the present study is to examine the consequences of chronic hypothyroidism, induced in adulthood, for the size of the ovarian follicle pool. In order to investigate this, adult female rats were provided either a control or an iodide deficient diet in combination with perchlorate supplementation to inhibit iodide uptake by the thyroid. Sixteen weeks later animals were sacrificed. Blood was collected for hormone analyses and ovaries were evaluated histologically. At the time of sacrifice, plasma thyroid-stimulating hormone concentrations were 20- to 40-fold increased, thyroxine concentrations were negligible while tri-iothyronin concentrations were decreased by 40% in the hypothyroid group, confirming that the animals were hypothyroid. Primordial, primary and preantral follicle numbers were significantly lower in the hypothyroid ovaries compared to the euthyroid controls, while a downward trend in antral follicle and corpora lutea numbers was observed. Surprisingly the percentage of atretic follicles was not significantly different between the two groups, suggesting that the reduced preantral and antral follicle numbers were presumably not the consequence of increased degeneration of these follicle types in the hypothyroid group. Plasma anti-Müllerian hormone (AMH) levels showed a significant correlation with the growing follicle population represented by the total ovarian number of primary, preantral and antral follicles, suggesting that also under hypothyroid conditions AMH can serve as a surrogate marker to assess the growing ovarian follicle population. The induction of a chronic hypothyroid condition in adult female rats negatively affects the ovarian follicular

  18. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less

  19. Hippocampal volume is decreased in adults with hypothyroidism.

    PubMed

    Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James

    2014-03-01

    Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.

  20. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  1. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    PubMed

    Byrne, Jacqueline H; Voogt, Meggie; Turner, Karly M; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2013-01-01

    Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  2. Spermatogenetic disorders in adult rats exposed to tributyltin chloride during puberty.

    PubMed

    Yu, Wook Joon; Lee, Beom Jun; Nam, Sang Yoon; Kim, Young Chul; Lee, Yong Soon; Yun, Young Won

    2003-12-01

    Adverse effects of tributyltin (TBT) chloride were investigated on the reproductive system in male adult rats as exposed during puberty. Fifty Sprague-Dawley rats at the age of 35 days were assigned to five different groups: negative control receiving vehicle, methyltestosterone (10 mg/kg B.W.), and TBT chloride treatments (5, 10, and 20 mg/kg B.W.). Animals were treated by oral gavage for ten consecutive days and sacrificed at 5 weeks after final treatment. The treatment of TBT chloride at the high dose of 20 mg/kg B.W. significantly decreased homogenization-resistant testicular sperm counts (p<0.05). The TBT chloride treatment at the doses of 10 and 20 mg/kg B.W. also significantly decreased caudal epididymal sperm counts (p<0.01). Some of motion kinematic parameters (motility, mean angular displacement, lateral head displacement, and dance) of sperms retrieved from vasa deference were significantly decreased in rats treated with the TBT chloride at the dose of 20 mg/kg B.W. (p<0.05). These results provide a further evidence that an exposure to TBT chloride during pubertal period in male rats produces spermatogenic disorders characterized by decreasing testicular and epididymal sperm counts and some motion parameters of sperms in the vasa deference.

  3. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    PubMed

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  4. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro.

    PubMed

    Doan, Lisa V; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas J J; Xu, Fang

    2014-01-01

    Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. The mean KCl-induced calcium transient was greater in P7 neurons (P < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (P < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly, cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses.

  5. Despite Differences in Cytosolic Calcium Regulation, Lidocaine Toxicity Is Similar in Adult and Neonatal Rat Dorsal Root Ganglia in Vitro

    PubMed Central

    Doan, Lisa V.; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas JJ; Xu, Fang

    2013-01-01

    Background Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action for local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, we examined whether there were differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. Methods DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. Results The mean KCl-induced calcium transient was greater in P7 neurons (p < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (p < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Conclusions Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses. PMID:23851347

  6. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    PubMed Central

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  7. An augmented CO2 chemoreflex and overactive orexin system are linked with hypertension in young and adult spontaneously hypertensive rats.

    PubMed

    Li, Aihua; Roy, Sarah H; Nattie, Eugene E

    2016-09-01

    Activation of central chemoreceptors by CO2 increases sympathetic nerve activity (SNA), arterial blood pressure (ABP) and breathing. These effects are exaggerated in spontaneously hypertensive rats (SHRs), resulting in an augmented CO2 chemoreflex that affects both breathing and ABP. The augmented CO2 chemoreflex and the high ABP are measureable in young SHRs (postnatal day 30-58) and become greater in adult SHRs. Blockade of orexin receptors can normalize the augmented CO2 chemoreflex and the high ABP in young SHRs and normalize the augmented CO2 chemoreflex and significantly lower the high ABP in adult SHRs. In the hypothalamus, SHRs have more orexin neurons, and a greater proportion of them increase their activity with CO2 . The orexin system is overactive in SHRs and contributes to the augmented CO2 chemoreflex and hypertension. Modulation of the orexin system may be beneficial in the treatment of neurogenic hypertension. Activation of central chemoreceptors by CO2 increases arterial blood pressure (ABP), sympathetic nerve activity and breathing. In spontaneously hypertensive rats (SHRs), high ABP is associated with enhanced sympathetic nerve activity and peripheral chemoreflexes. We hypothesized that an augmented CO2 chemoreflex and overactive orexin system are linked with high ABP in both young (postnatal day 30-58) and adult SHRs (4-6 months). Our main findings are as follows. (i) An augmented CO2 chemoreflex and higher ABP in SHRs are measureable at a young age and increase in adulthood. In wakefulness, the ventilatory response to normoxic hypercapnia is higher in young SHRs (mean ± SEM: 179 ± 11% increase) than in age-matched normotensive Wistar-Kyoto rats (114 ± 9% increase), but lower than in adult SHRs (226 ± 10% increase; P < 0.05). The resting ABP is higher in young SHRs (122 ± 5 mmHg) than in age-matched Wistar-Kyoto rats (99 ± 5 mmHg), but lower than in adult SHRs (152 ± 4 mmHg; P < 0.05). (ii

  8. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats.

    PubMed

    Cabaj, Anna M; Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F; Stecina, Katinka; Sławińska, Urszula; Jordan, Larry M

    2017-01-01

    Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT 7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT 7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT 7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT 7 ) receptor agonists and antagonists and 5-HT 7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT 7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT 7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT 7 antagonist SB269970 in adult intact rats suppressed locomotion by

  9. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    PubMed Central

    Pawluski, Jodi L.; van Donkelaar, Eva; Abrams, Zipporah; Steinbusch, Harry W. M.; Charlier, Thierry D.

    2014-01-01

    Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1) cookie and (2) osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL) at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat. PMID:24757568

  10. Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism.

    PubMed

    Hassan, Wafaa A; Rahman, Taghride Abdel; Aly, Mona S; Shahat, Asmaa S

    2013-08-01

    The present study was conducted to investigate the effect of experimentally-induced hyperthyroidism on dopamine (DA), norepinephrine (NE) and serotonin (5-HT) levels in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats (60 rats of each age). Hyperthyroidism was induced by daily s.c. injection of L-thyroxine (L-T4, 500 μg/kg body wt.) for 21 consecutive days. Induction of hyperthyroidism caused a significant elevation in DA and 5-HT levels in most of the tissues studied of both young and adult animals after 7, 14, and 21 days. NE content significantly decreased after 21 days in most of the brain regions examined and after 14 and 21 days in blood plasma of young rats following hyperthyroidism. In adult rats, NE content decreased after 14 and 21 days in cardiac muscle and after 21 days only in adrenal gland. It may be suggested that the changes in monoamines level induced by hyperthyroidism may be due to disturbance in the synthesis, turnover and release of these amines through the neurons impairment or may attributed to an alteration pattern of their synthesis and/or degradative enzymes or changes in the sensitivity of their receptors. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Effect of Ruta graveolens and Cannabis sativa alcoholic extract on spermatogenesis in the adult wistar male rats.

    PubMed

    Sailani, M R; Moeini, H

    2007-07-01

    The present study was undertaken to evaluate the effects of alcohol extracts of Ruta graveolens and Cannabis sativa that were used traditionally in medieval Persian medicine as male contraceptive drugs, on spermatogenesis in the adult male rats. Ethanol extracts of these plants were obtained by the maceration method. The male rats were injected intraperitionaly with C. sativa and R. graveolens 5% ethanol extracts at dose of 20 mg/day for 20 consecutive days, respectively. Twenty-four hours after the last treatment, testicular function was assessed by epididymal sperm count. The statistical results showed that the ethanol extracts of these plants reduced the number of sperms significantly (P=0.00) in the treatment groups in comparison to the control group. The results also showed that the group, treated by extract of R. graveolens reduced spermatogenesis more than the group treated by extracts of C. sativa. The present study demonstrated the spermatogenesis reducing properties of the ethanol extracts of R. graveolens and C. sativa in the adult male wistar rats but more studies are necessary to reveal the mechanism of action that is involved in spermatogenesis.

  12. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    PubMed Central

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  13. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes.

    PubMed

    Omelian, Jacquelyn M; Samson, Kaeli K; Sollars, Suzanne I

    2016-09-01

    Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased.

  14. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  15. Differential Expression of Ethanol-Induced Hypothermia in Adolescent and Adult Rats Induced by Pretest Familiarization to the Handling/Injection Procedure

    PubMed Central

    Ristuccia, Robert C.; Hernandez, Michael; Wilmouth, Carrie E.; Spear, Linda P.

    2007-01-01

    Background Previous work examining ethanol’s autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. Methods The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. Results The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Conclusions Observed differences between adolescents and

  16. Differential expression of ethanol-induced hypothermia in adolescent and adult rats induced by pretest familiarization to the handling/injection procedure.

    PubMed

    Ristuccia, Robert C; Hernandez, Michael; Wilmouth, Carrie E; Spear, Linda P

    2007-04-01

    Previous work examining ethanol's autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Observed differences between adolescents and adults in the autonomic consequences of

  17. Effects of Adult Female Rat Androgenization on Brain Morphology and Metabolomic Profile.

    PubMed

    Perez-Laso, Carmen; Cerdan, Sebastián; Junque, Carme; Gómez, Ángel; Ortega, Esperanza; Mora, Mireia; Avendaño, Carlos; Gómez-Gil, Esther; Del Cerro, María Cruz Rodríguez; Guillamon, Antonio

    2017-07-06

    Androgenization in adult natal women, as in transsexual men (TM), affects brain cortical thickness and the volume of subcortical structures. In order to understand the mechanism underlying these changes we have developed an adult female rat model of androgenization. Magnetic resonance imaging and spectroscopy were used to monitor brain volume changes, white matter microstructure and ex vivo metabolic profiles over 32 days in androgenized and control subjects. Supraphysiological doses of testosterone prevents aging decrease of fractional anisotropy values, decreased general cortical volume and the relative concentrations of glutamine (Gln) and myo-Inositol (mI). An increase in the N-acetylaspartate (NAA)/mI ratio was detected d. Since mI and Gln are astrocyte markers and osmolytes, we suspect that the anabolic effects of testosterone change astrocyte osmolarity so as to extrude Mi and Gln from these cells in order to maintain osmotic homeostasis. This mechanism could explain the brain changes observed in TM and other individuals receiving androgenic anabolic steroids. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  19. The behavioral effects of chronic sugar and/or caffeine consumption in adult and adolescent rats.

    PubMed

    Franklin, Jane L; Wearne, Travis A; Homewood, Judi; Cornish, Jennifer L

    2017-08-01

    Caffeine is a psychostimulant frequently consumed by adults and children, often in combination with high levels of sugar. Chronic pretreatment with either substance can amplify both amphetamine and cocaine-induced hyperactivity in rodents. The present study sought to elucidate whether age at the time of exposure to sugar and/or caffeine alters sensitivity to an acute illicit psychostimulant (methamphetamine, [METH]) challenge in adulthood. Adult and adolescent (Postnatal Day 35 on first day of treatment) male Sprague-Dawley rats were treated for 26 days with water, caffeine (0.6 g/L), 10% sucrose or their combination. Locomotor behavior was measured on the first and last day of treatment. Following 9-days treatment free, animals were challenged with saline (1 ml/kg, i.p.) or METH (1 mg/kg, i.p.) and locomotor activity was measured. During the treatment period, adolescent rats maintained a higher caffeine (mg/kg) dose than their adult counterparts. Adding sugar to caffeine increased adolescent consumption and the highest caffeine dose consumed was measured in these animals. Drinking sugar-sweetened caffeinated water or combination did not produce cross-sensitization to METH administration in either age group. Nevertheless, the finding that regular exposure through adolescence to caffeinated sugar-sweetened beverages could increase consumption of caffeine and sugar later in life is important, as there is a large body of evidence that has linked excess consumption of sugar-sweetened beverages to a broad range of other negative physical and mental health outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Effects of chronic overload on muscle hypertrophy and mTOR signaling in adult and aged rats

    USDA-ARS?s Scientific Manuscript database

    We examined the effect of 28 days of overload on mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling in young adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats subjected to bilateral synergist ablation (SA) of two-thirds of the gas...

  1. Salicylate-induced changes in auditory thresholds of adolescent and adult rats.

    PubMed

    Brennan, J F; Brown, C A; Jastreboff, P J

    1996-01-01

    Shifts in auditory intensity thresholds after salicylate administration were examined in postweanling and adult pigmented rats at frequencies ranging from 1 to 35 kHz. A total of 132 subjects from both age levels were tested under two-way active avoidance or one-way active avoidance paradigms. Estimated thresholds were inferred from behavioral responses to presentations of descending and ascending series of intensities for each test frequency value. Reliable threshold estimates were found under both avoidance conditioning methods, and compared to controls, subjects at both age levels showed threshold shifts at selective higher frequency values after salicylate injection, and the extent of shifts was related to salicylate dose level.

  2. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  3. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    PubMed

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats.

    PubMed

    Morrissey, Mark D; Mathews, Iva Z; McCormick, Cheryl M

    2011-01-01

    Adolescence is a time of developmental changes and reorganization in the brain and stress systems, thus, adolescents may be more vulnerable than adults to the effects of chronic mild stressors. Most studies, however, have not directly compared stress experienced in adolescence to the same stress experience in adulthood. In the present study, adolescent (n=46) and adult (n=48) male rats underwent 16 days of social instability stress (daily 1h isolation and change of cage partners) or were non-stress controls. Rats were then tested on the strength of acquired contextual and cued fear conditioning, as well as extinction learning, beginning either the day after the stress procedure or 3 weeks later. No difference was found among the groups during the Training Phase of conditioning. Irrespective of the time between the social stress experience and fear conditioning, rats stressed in adolescence had decreased context and cue memory, and cue generalization compared to control rats, as measured by the percentage of time spent freezing in tests. Social instability stress in adulthood had no effect on any measure of fear conditioning. The results support the hypothesis that adolescence is a time of heightened vulnerability to stressors. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring

    PubMed Central

    Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar

    2016-01-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071

  7. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  8. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  9. Pre-weaning Mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats

    PubMed Central

    Kern, Cynthia; Smith, Donald R.

    2010-01-01

    Little is known about the effects of manganese (Mn) exposure over neurodevelopment and whether these early insults result in effects lasting into adulthood. To determine if early Mn exposure produces lasting neurobehavioral and neurochemical effects, we treated neonate rats with oral Mn (0, 25, or 50 mg Mn/kg/d over PND 1–21) and evaluated 1) behavioral performance in the open arena in the absence (PND 97) and presence (PND 98) of a d-amphetamine challenge, 2) brain dopamine D1 and D2-like receptors and dopamine transporter densities in the prefrontal cortex, striatum, and nucleus accumbens (PND 107), and 3) astrocyte marker glial fibrillary acidic protein (GFAP) levels in these same brain regions (PND 24 and 107). We found that pre-weaning Mn exposure did not alter locomotor activity or behavior disinhibition in adult rats, though Mn-exposed animals did exhibit an enhanced locomotor response to d-amphetamine challenge. Pre-weaning Mn exposure led to increased D1 and D2 receptor levels in the nucleus accumbens and prefrontal cortex, respectively, compared to controls. We also found increased GFAP expression in the prefrontal cortex in Mn-exposed PND 24 weanlings, and increased GFAP levels in prefrontal cortex, medial striatum and nucleus accumbens of adult (PND 107) rats exposed to pre-weaning Mn, indicating an effect of Mn exposure on astrogliosis that persisted and/or progressed to other brain regions in adult animals. These data show that pre-weaning Mn exposure leads to lasting molecular and functional impacts in multiple brain regions of adult animals, long after brain Mn levels returned to normal. PMID:20963817

  10. Prenatal Ethanol Exposure Causes Glucose Intolerance with Increased Hepatic Gluconeogenesis and Histone Deacetylases in Adult Rat Offspring: Reversal by Tauroursodeoxycholic Acid

    PubMed Central

    Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire

    2013-01-01

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086

  11. Whole body gamma radiation and marrow sensitivity: A comparative study between adult rats of eight different strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.S.; Elshafie, M.S.; Abdelrahman, H.G.

    1996-10-01

    Rats of Fischer-344 strain is quite resistant to whole-body gamma radiation. There is a genetic difference in rat hemoglobin (Hb) {beta}-chain structure, with alternate alleles, A and B, at a single locus. This study was designed to find out whether marrow sensitivity due to sublethal gamma exposure in age matched adult rats is entirely strain specific or a combination of both strain and Hb genotype specific. Eight strains of rats comprising of Hb genotypes AA and BB were studied. Several hematological parameters reflecting marrow evaluation were analyzed and compared. The data to be presented indicate that there is a partialmore » but distinct relationship between radiosensitivity and Hb genotypes.« less

  12. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    PubMed

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. © The Author(s) 2014.

  13. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  14. Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats.

    PubMed

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Harte, Michael K; Barnes, Samuel A; Marshall, Kay M; Neill, Joanna C

    2014-08-01

    Varying levels of attention and impulsivity deficits are core features of the three subtypes of adult attention deficit-hyperactivity disorder (ADHD). To date, little is known about the neurobiological correlates of these subtypes. Development of a translational animal model is essential to improve our understanding and improve therapeutic strategies. The 5-choice continuous performance task (5C-CPT) in rats can be used to examine different forms of attention and impulsivity. Adult rats were trained to pre-set 5C-CPT criterion and subsequently separated into subgroups according to baseline levels of sustained attention, vigilance, premature responding and response disinhibition in the 5C-CPT. The behavioural subgroups were selected to represent the different subtypes of adult ADHD. Consequently, effects of the clinically used pharmacotherapies (methylphenidate and atomoxetine) were assessed in the different subgroups. Four subgroups were identified: low-attentive (LA), high-attentive (HA), high-impulsive (HI) and low-impulsive (LI). Methylphenidate and atomoxetine produced differential effects in the subgroups. Methylphenidate increased sustained attention and vigilance in LA animals, and reduced premature responding in HI animals. Atomoxetine also improved sustained attention and vigilance in LA animals, and reduced response disinhibition and premature responding in HI animals. This is the first study using adult rats to demonstrate the translational value of the 5C-CPT to select subgroups of rats, which may be used to model the subtypes observed in adult ADHD. Our findings suggest that this as an important paradigm to increase our understanding of the neurobiological underpinnings of adult ADHD-subtypes and their response to pharmacotherapy. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  15. A comparison of the ability of a 4:1 ketogenic diet and a 6.3:1 ketogenic diet to elevate seizure thresholds in adult and young rats.

    PubMed

    Nylen, Kirk; Likhodii, Sergei; Abdelmalik, Peter A; Clarke, Jasper; Burnham, W McIntyre

    2005-08-01

    The pentylenetetrazol (PTZ) infusion test was used to compare seizure thresholds in adult and young rats fed either a 4:1 ketogenic diet (KD) or a 6.3:1 KD. We hypothesized that both KDs would significantly elevate seizure thresholds and that the 4:1 KD would serve as a better model of the KD used clinically. Ninety adult rats and 75 young rats were placed on one of five experimental diets: (a) a 4:1 KD, (b) a control diet balanced to the 4:1 KD, (c) a 6.3:1 KD, (d) a standard control diet, or (e) an ad libitum standard control diet. All subjects were seizure tested by using the PTZ infusion test. Blood glucose and beta-hydroxybutyrate (beta-OHB) levels were measured. Neither KD elevated absolute "latencies to seizure" in young or adult rats. Similarly, neither KD elevated "threshold doses" in adult rats. In young rats, the 6.3:1 KD, but not the 4:1 KD, significantly elevated threshold doses. The 6.3:1 KD group showed poorer weight gain than the 4:1 KD group when compared with respective controls. The most dramatic discrepancies were seen in young rats. "Threshold doses" and "latency to seizure" data provided conflicting measures of seizure threshold. This was likely due to the inflation of threshold doses calculated by using the much smaller body weights found in the 6.3:1 KD group. Ultimately, the PTZ infusion test in rats may not be a good preparation to model the anticonvulsant effects of the KD seen clinically, especially when dietary treatments lead to significantly mismatched body weights between the groups.

  16. Avoiding escalation from play to aggression in adult male rats: The role of ultrasonic calls.

    PubMed

    Burke, Candace J; Kisko, Theresa M; Pellis, Sergio M; Euston, David R

    2017-11-01

    Play fighting is most commonly associated with juvenile animals, but in some species, including rats, it can continue into adulthood. Post-pubertal engagement in play fighting is often rougher and has an increased chance of escalation to aggression, making the use of play signals to regulate the encounter more critical. During play, both juvenile and adult rats emit many 50-kHz calls and some of these may function as play facilitating signals. In the present study, unfamiliar adult male rats were introduced in a neutral enclosure and their social interactions were recorded. While all pairs escalated their playful encounters to become rougher, only the pairs in which one member was devocalized escalated to serious biting. A Monte Carlo shuffling technique was used for the analysis of the correlations between the overt playful and aggressive actions performed and the types and frequencies of various 50-kHz calls that were emitted. The analysis revealed that lower frequency (20-30kHz) calls with a flat component maybe particularly critical for de-escalating encounters and so allowing play to continue. Moreover, coordinating calls reciprocally, with either the same call mimicked in close, temporal association or with complementary calls emitted by participants as they engage in complementary actions (e.g., attacking the nape, being attacked on the nape), appeared to be ways with which calls could be potentially used to avoid escalation to aggression and so sustain playful interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats

    PubMed Central

    2011-01-01

    Background Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood. PMID:21702915

  18. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats.

    PubMed

    Toledo, Fabíola C; Perobelli, Juliana E; Pedrosa, Flávia P C; Anselmo-Franci, Janete A; Kempinas, Wilma D G

    2011-06-24

    Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.

  19. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5‐HT7 receptors in adult rats

    PubMed Central

    Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F.; Stecina, Katinka; Sławińska, Urszula

    2016-01-01

    Key points Experiments on neonatal rodent spinal cord showed that serotonin (5‐HT), acting via 5‐HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter‐ and intralimb coordination, but the importance of the 5‐HT system in adult locomotion is not clear.Blockade of spinal 5‐HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5‐HT neurons for production of locomotion.The direct control of coordinating interneurons by 5‐HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults.An understanding of the afferents controlled by 5‐HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Abstract Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5‐HT7) receptor agonists and antagonists and 5‐HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5‐HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5‐HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5‐HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5‐HT7 antagonist SB269970 in adult

  20. Effects of AMPA receptor antagonist, NBQX, and extrasynaptic GABAA agonist, THIP, on social behavior of adolescent and adult rats.

    PubMed

    Dannenhoffer, Carol A; Varlinskaya, Elena I; Spear, Linda Patia

    2018-05-22

    Adolescence is characterized by high significance of social interactions, along with a propensity to exhibit social facilitating effects of ethanol while being less sensitive than adults to the inhibition of social behavior that emerges at higher doses of ethanol. Among the neural characteristics of adolescence are generally enhanced levels of glutamatergic (especially NMDA receptor) activity relative to adults, whereas the GABA system is still developmentally immature. Activation of NMDA receptors likely plays a role in modulation of social behavior in adolescent animals as well as in socially facilitating and suppressing effects of ethanol. For instance, adolescent and adult rats differ in their sensitivities to the effects of NMDA antagonists and ethanol on social behavior, with adolescents but not adults demonstrating social facilitation at lower doses of both drugs and adults being more sensitive to the socially suppressing effects evident at higher doses of each. The roles of AMPA and extrasynaptic GABA A receptors in modulation of social behavior during adolescence and in adulthood are still unknown. The present study was designed to assess whether pharmacological blockade of AMPA receptors and/or activation of extrasynaptic GABA A receptors results in age-dependent alterations of social behavior. Adolescent and adult male and female Sprague-Dawley rats were injected with an assigned dose of either a selective AMPA antagonist, NBQX (Experiment 1) or extrasynaptic GABA A agonist, THIP (Experiment 2) and placed into a modified social interaction chamber for a 30-min habituation period prior to a 10-min social interaction test with a novel age- and sex-matched partner. Behaviors such as social investigation, contact behavior and play behavior were scored from video recordings of the interaction tests. In Experiment 1, NBQX produced similar social inhibition at higher doses in both age groups. In Experiment 2, THIP induced inhibition in adolescents, but not

  1. Intrauterine Growth Restriction Programs the Hypothalamus of Adult Male Rats: Integrated Analysis of Proteomic and Metabolomic Data.

    PubMed

    Pedroso, Amanda P; Souza, Adriana P; Dornellas, Ana P S; Oyama, Lila M; Nascimento, Cláudia M O; Santos, Gianni M S; Rosa, José C; Bertolla, Ricardo P; Klawitter, Jelena; Christians, Uwe; Tashima, Alexandre K; Ribeiro, Eliane B

    2017-04-07

    Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.

  2. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  3. Neurological assessments after treatment with the antimalarial β-arteether in neonatal and adult rats.

    PubMed

    Erickson, R I; Defensor, E B; Fairchild, D G; Mirsalis, J C; Steinmetz, K L

    2011-08-01

    The World Health Organization currently recommends combinatorial treatment including artemisinins as first-line therapy against drug-resistant Plasmodium falciparum malaria. Although highly efficacious, artemisinin and its derivatives, including β-arteether (βAE), are associated with ototoxicity, tremors, and other autonomic and motor impairments in the clinic. Similar neurological symptoms, as well as brainstem lesions, have been observed in adult laboratory species (mice, rats, dogs, and non human primates) following acute treatment with βAE; however, few long-term, nonclinical studies have been conducted. Furthermore, the majority of deaths attributed to malarial infection occur in children under age five, yet no laboratory studies have been initiated in neonatal or juvenile animals. In the current study, neonatal 7-day-old rats were administered intramuscular doses of 1-90 mg/kg βAE in sesame oil for up to eight treatment cycles (one cycle=7 days treatment+7 days without treatment). Neonates were tested for changes in sensorimotor function, and the same animals were tested as adults in the Functional Observational Battery, for motor activity, and in the 8-arm radial maze. Pups receiving a single cycle of 60 or 90 mg/kg died within a week of treatment but had few behavioral changes and no brainstem pathology. In the long-term study, behavioral and motor changes and brainstem lesions were observed in a dose- and time-related manner. Rats given repeated cycles of 1 or 5mg/kg βAE showed subtle motor abnormalities (e.g., slight loss of righting reflex) while repeated cycles of 10mg/kg βAE treatment resulted in obvious motor and behavioral changes. Rats receiving 1mg/kg βAE had no brainstem lesions whereas some rats treated with 5mg/kg βAE and all rats treated with 10 mg/kg βAE had brainstem lesions. Brainstem lesions were observed after as few as five cycles and were characterized by gliosis, satellitosis and progressive necrosis in motor neurons of the

  4. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.

    PubMed

    Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima

    2011-10-01

    Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla.

    PubMed

    Walker, Suellen M; Fitzgerald, Maria; Hathway, Gareth J

    2015-06-01

    Neonatal pain and injury can alter long-term sensory thresholds. Descending rostroventral medulla (RVM) pathways can inhibit or facilitate spinal nociceptive processing in adulthood. As these pathways undergo significant postnatal maturation, the authors evaluated long-term effects of neonatal surgical injury on RVM descending modulation. Plantar hind paw or forepaw incisions were performed in anesthetized postnatal day (P)3 Sprague-Dawley rats. Controls received anesthesia only. Hind limb mechanical and thermal withdrawal thresholds were measured to 6 weeks of age (adult). Additional groups received pre- and post-incision sciatic nerve levobupivacaine or saline. Hind paw nociceptive reflex sensitivity was quantified in anesthetized adult rats using biceps femoris electromyography, and the effect of RVM electrical stimulation (5-200 μA) measured as percentage change from baseline. In adult rats with previous neonatal incision (n = 9), all intensities of RVM stimulation decreased hind limb reflex sensitivity, in contrast to the typical bimodal pattern of facilitation and inhibition with increasing RVM stimulus intensity in controls (n = 5) (uninjured vs. neonatally incised, P < 0.001). Neonatal incision of the contralateral hind paw or forepaw also resulted in RVM inhibition of hind paw nociceptive reflexes at all stimulation intensities. Behavioral mechanical threshold (mean ± SEM, 28.1 ± 8 vs. 21.3 ± 1.2 g, P < 0.001) and thermal latency (7.1 ± 0.4 vs. 5.3 ± 0.3 s, P < 0.05) were increased in both hind paws after unilateral neonatal incision. Neonatal perioperative sciatic nerve blockade prevented injury-induced alterations in RVM descending control. Neonatal surgical injury alters the postnatal development of RVM descending control, resulting in a predominance of descending inhibition and generalized reduction in baseline reflex sensitivity. Prevention by local anesthetic blockade highlights the importance of neonatal perioperative analgesia.

  6. Effects of restricted maternal contact in neonatal rats on sexual behaviour in the adult.

    PubMed

    Forsberg, G; Abrahamsson, K; Södersten, P; Eneroth, P

    1985-03-01

    Rats, deprived of maternal contact and nutrition every alternate day starting on day 5 of life, attained a body weight at 45 days of age which was 50% of that of rats which had free access to maternal contact and nutrition. After 55 days of unrestricted food availability the body weight of the neonatally deprived rats was approximately 15% lower than that of the controls. Malnourished female rats showed normal behavioural oestrous cycles and became pregnant and lactated normally as young adults. After ovariectomy they showed higher lordosis quotients in response to treatment with oestradiol benzoate and progesterone than controls but lost less body weight in response to treatment with oestradiol-filled constant-release implants. Malnourished male rats ejaculated less frequently than controls in tests with sexually receptive female rats but this difference disappeared with repeated testing. The malnourished males showed longer ejaculation latencies and had somewhat higher serum concentrations of LH than controls after castration and treatment with testosterone-filled constant-release implants which reduced serum androgen concentrations to about 30% of the intact level. The results show that rats are capable of sustaining a rather severe neonatal nutritional deprivation without losing the capacity for essentially normal mating behaviour in adulthood.

  7. Differences in Methylphenidate Dose Response between Periadolescent and Adult Rats in the Familiar Arena-Novel Alcove TaskS⃞

    PubMed Central

    Zarcone, Troy J.; Davis, Paul F.; Ozias, Marlies K.; Fowler, Stephen C.

    2011-01-01

    Methylphenidate is a psychostimulant widely used in the treatment of attention deficit hyperactivity disorder. In this study, the effects of two nonstereotypy-inducing doses of methylphenidate (2.5 and 5.0 mg/kg s.c.) were examined in periadolescent [postnatal days (P) 35 and 42] and young adult (P70), male Long-Evans rats using a three-period locomotor activity paradigm that affords inferences about exploration, habituation, and attention to a novel stimulus (an “alcove”) in a familiar environment in a single test session. In the first test period, P35 and P42 rats were more active than P70 rats, and methylphenidate increased locomotion in a dose-related manner. The introduction of a novel spatial stimulus in the third test period revealed a significant interaction of dose and age such that P70 rats exhibited dose-related increases in distance traveled, but P35 rats did not. Furthermore, methylphenidate dose-relatedly disrupted the rats' tendency to spend increasing amounts of time in the alcove across the test period at P70 but not at P35. Brain and serum methylphenidate concentrations were significantly lower at P35 than at P70, with intermediate levels at P42. Developmental differences in dopaminergic neurochemistry were also observed, including increased dopamine content in the caudate-putamen, nucleus accumbens, and frontal cortex and decreased densities of D1-like receptors in the frontal cortex in P70 than in P42 rats. These results raise the possibility that children and adults may respond differently when treated with this drug, particularly in situations involving response to novelty and that these effects involve developmental differences in pharmacokinetics and dopaminergic neurochemistry. PMID:21205916

  8. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats.

    PubMed

    Wang, K-C; Fan, L-W; Kaizaki, A; Pang, Y; Cai, Z; Tien, L-T

    2013-03-27

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LPS (1mg/kg) intracerebral (i.c.) injection in postnatal day 5 (P5) Sprague-Dawley female rat pups, neurobehavioral tests were carried out on P21 and P22, P49 and P50 or P70 and P71 and brain injury was examined at 66days after LPS injection (P71). Our data indicate that neonatal LPS exposure resulted in learning deficits in the passive avoidance task, less anxiety-like (anxiolytic-like) responses in the elevated plus-maze task, reductions in the hippocampal volume and the number of neuron-specific nuclear protein (NeuN)+ cells, as well as axonal injury in the CA1 region of the middle dorsal hippocampus in P71 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P71 rat hippocampus, as indicated by an increased number of activated microglia and elevation of interleukin-1β content in the rat hippocampus. This study reveals that neonatal LPS exposure causes persistent injuries to the hippocampus and results in long-lasting learning disabilities, and these effects are related to the chronic inflammation in the rat hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    PubMed

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. ADULT AND JUVENILE RAT SODIUM CHANNEL (NAV1.2 AND NAV1.3) SENSITIVITY TO THE PYRETHROID INSECTICIDE DELTAMETHRIN.

    EPA Science Inventory

    Adult rats are less sensitive than juveniles to the acute neurotoxicity of the Type II pyrethroid insecticide deltamethrin (DLT). Voltage-sensitive sodium channels (VSSCs) are the primary target of DLT and are differentially expressed during development, with expression of Nav1.2...

  11. Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats.

    PubMed

    Hrubá, Lenka; Schutová, Barbora; Pometlová, Marie; Rokyta, Richard; Slamberová, Romana

    2010-03-17

    The aim of our study was to examine the effect of prenatal methamphetamine (MA) exposure and cross-fostering on cognitive functions of adult male rats tested in Morris water maze (MWM). Rat mothers were exposed daily to injection of MA (5mg/kg) or saline for 9 weeks: prior to impregnation, throughout gestation and lactation periods. Females without any injections were used as an absolute control. On postnatal day 1, pups were cross-fostered so that each mother raised 4 pups of her own and 8 pups from the mothers with the other two treatments. Four types of tests were used: (1) Place navigation test (Learning), (2) Probe test (Probe), (3) Retention memory test (Memory) and (4) Visible platform task. Our results demonstrate that the prenatal exposure to MA does not impact learning and memory, while postnatal exposure to MA shows impairments in cognition. In the test of learning, all animals fostered to MA-treated dams had longer latencies, bigger search error and used lower spatial strategies than the animals fostered to control or saline-treated mother, regardless of prenatal exposure. Regardless of postnatal exposure, the animals prenatally exposed to saline swam faster in all the tests than the animals prenatally exposed to MA and controls, respectively. This study indicates that postnatal but not prenatal exposure to MA affects learning in adult male rats. However, it is still not clear whether these impairments are due to a direct effect of MA on neuronal structure or due to an indirect effect of MA mediated by impaired maternal care. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Role of Oxytocin in deceleration of early atherosclerotic inflammatory processes in adult male rats

    PubMed Central

    Ahmed, Marwa A; ELosaily, Gehan M

    2011-01-01

    Objective: The study aimed to examine the effect of exogenous OT administration on the inflammation and atherosclerosis in adult male rats and its possible mechanisms. Thirty adult male rats equally divided into three groups. Control group fed regular diet; group II fed control diet supplemented with L-methionine for 10 weeks. Group III received L-methionine and oxytocin treatment for 10 weeks. RT-PCR analysis showed that OT administration increased oxytocin receptor mRNA (2 fold, P, 0.05). Blood samples were evaluated for total homocysteine, interlukin-6 (IL-6), monocyte chemoatrratant protein-1 (MCP-1) and C-reactive protein (CRP) by ELIZA, lipid profile, nitric oxide (NO), malondialdehyde (MDA) and reduced glutathione (GSH) were determined. Specimens from aorta were processed for immunohistochemical staining for Aorta nuclear factor _B (NF-κB) p65 protein. Result showed that OT administration to group III decreased the plasma levels IL-6, MCP-1 and CRP levels which were elevated in group II. Moreover, there was decrease of the oxidative stress of group III in terms of increased plasma levels of NO and GSH and decreased plasma levels of MDA in blood. In addition, rats of group II showed histological abnormalities manifested by thickening and ulceration of the aortic wall. Marked increased expression of NF-κB in aorta of in group II was detected. However, OT administration restores the histological structure of the aorta and decreased the expression of NF-κB in aorta of group III similar to the control group. Conclusion: OT has anti inflammatory pathway in atherosclerosis as it decelerates atherosclerosis by decreasing the proinflammatory responses through many mechanisms, mainly the up regulation of its receptors. PMID:21977229

  13. Microanatomical effects of ethanolic extract of Cola nitida on the stomach mucosa of adult Wistar rats.

    PubMed

    Ojo, Gideon B; Nwoha, Polycarp U; Ofusori, David A; Ajayi, Sunday A; Odukoya, Samson A; Ukwenya, Victor O; Bamidele, Olubayode; Ojo, Olumide A; Oluwayinka, Oladele P

    2009-10-15

    The study investigated the microanatomical effects of the extracts of Cola nitida on the stomach mucosa of adult male Wistar rats. Twenty adult male wistar rats were randomly divided into four equal groups of A, B, C and D (n = 5). Animals in experimental groups B, C and D were given 600 mg/kg body weight of crude extract of Cola nitida each by oral intubation for five, seven and nine consecutive days respectively, while group A (control) received equivalent volume of distilled water. Twenty four hrs after the last administration, the animals were sacrificed; tissues were harvested and fixed in 10% formol saline for histological analysis. The study revealed necrotized surface epithelium, degenerated gastric mucosa, and loss of glandular elements in the stomachs of experimental groups' vis-à-vis the control group. These observations were days-dependent; as those groups which received the extract for higher number of days were seen to be adversely affected. In conclusion, Cola nitida at 600 mg/kg body weight can cause gastric lesion in animals. This lesion may be pronounced if the administration continued for days. Cola nitida should, therefore, be taken with caution to avoid gastric complications.

  14. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    PubMed

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  15. Effects of pretest manipulation on elevated plus-maze behavior in adolescent and adult male and female Sprague-Dawley rats

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Varlinskaya, Elena I.; Spear, Linda Patia

    2011-01-01

    The elevated plus-maze (EPM) is vulnerable to variations in pretest circumstances when testing adult rodents. Because of an increasing interest in adolescence, the present experiments examined the impact of pretest manipulations on anxiety levels in the EPM among adolescent and adult Sprague Dawley rats of both sexes. In Exp. 1, animals removed from their home cage and immediately placed on the EPM were compared to rats tested following 30 min of social isolation, or following 30-min exposure to a novel context. These pretest manipulations only modestly decreased anxiety levels at both ages. In Exp. 2, more varied pretest conditions were examined: testing directly from the home cage; testing following 30 min of social isolation in a novel environment; or a large saline injection and rehousing 18 h prior to a 30-min period of social isolation in a novelty situation before testing. In adults, anxiety levels decreased linearly as pretest perturbation increased, whereas adolescents showed comparable levels of anxiety with both the moderate and large perturbations. As a result, observed age differences in anxiety differed as a function of pretest circumstances. Therefore, caution is urged when using the EPM for across-age comparisons of anxiolytic and anxiogenic effects of pharmacological or other manipulations. PMID:19344672

  16. Effects of pretest manipulation on elevated plus-maze behavior in adolescent and adult male and female Sprague-Dawley rats.

    PubMed

    Doremus-Fitzwater, Tamara L; Varlinskaya, Elena I; Spear, Linda Patia

    2009-05-01

    The elevated plus-maze (EPM) is vulnerable to variations in pretest circumstances when testing adult rodents. Because of an increasing interest in adolescence, the present experiments examined the impact of pretest manipulations on anxiety levels in the EPM among adolescent and adult Sprague-Dawley rats of both sexes. In Exp. 1, animals removed from their home cage and immediately placed on the EPM were compared to rats tested following 30 min of social isolation, or following 30-min exposure to a novel context. These pretest manipulations only modestly decreased anxiety levels at both ages. In Exp. 2, more varied pretest conditions were examined: testing directly from the home cage; testing following 30 min of social isolation in a novel environment; or a large saline injection and rehousing 18 h prior to a 30-min period of social isolation in a novelty situation before testing. In adults, anxiety levels decreased linearly as pretest perturbation increased, whereas adolescents showed comparable levels of anxiety with both the moderate and large perturbations. As a result, observed age differences in anxiety differed as a function of pretest circumstances. Therefore, caution is urged when using the EPM for across-age comparisons of anxiolytic and anxiogenic effects of pharmacological or other manipulations.

  17. Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways.

    PubMed

    Veenema, A H; Bredewold, R; De Vries, G J

    2012-01-01

    In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways

    PubMed Central

    Veenema, AH; Bredewold, R; De Vries, GJ

    2011-01-01

    In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist (CH2)5Tyr(Me)AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males at both ages. These findings demonstrate that activation of V1a receptors in the septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development. PMID:22033278

  19. Effects of in utero exposure to Tityus bahiensis scorpion venom in adult rats.

    PubMed

    Dorce, Ana Leticia Coronado; Dorce, Valquiria Abrão Coronado; Nencioni, Ana Leonor Abrahão

    2010-01-01

    The toxicity of Tityus bahiensis scorpion venom is well known, but there are little data about the damage in offspring of dams that were exposed to the venom during pregnancy. The objective of this work was to determine the toxic effects of venom in adult offspring of Wistar rats exposed to venom in utero. Dams were divided into a control group, subcutaneously injected with saline solution on the 10th (GD10) and 16th (GD16) days, and two experimental groups, subcutaneously injected with venom (2.5mg/kg) on GD10 or GD16, respectively. Adult offspring were evaluated according to behavioral development and neuronal integrity in the hippocampus. Tests performed in the activity box and in the enriched environment demonstrated that males from GD10 had motor decrease. Females from GD10 showed a depressive-like state and were more anxious, as demonstrated by the forced swimming test and social interaction. The plus-maze discriminative avoidance task demonstrated that GD16 males had lower levels of anxiety. The number of neuronal cells was decreased in CA1, CA3 and CA4 hippocampal areas of males and females from GD10 group and in CA1 of females and CA4 of males from GD16 group. Thus, we conclude that venom exposure in pregnant dams causes subtle alteration in the behavioral and neuronal development of offspring in adult life in a gender-dependent manner. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Active versus sedentary lifestyle from childhood to adult and ...

    EPA Pesticide Factsheets

    A pattern of sedentary lifestyle beginning in childhood is associated with obesity and related disorders such as type 2 diabetes. Obesity is associated with increased susceptibility to air pollutants and initiating regular exercise early in life should impact positively on respiratory symptoms of air pollutant exposure.An animal model of childhood-to-adult sedentary {SEO) vs. active {ACT) lifestyle was achieved by providing female Long-Evans rats with running wheels beginning at22d of age and then exposing to ozone {03) as adults. ACT rats ran 7.2 km/d over 74 days, had lower body fat, and improved glucose tolerance (GT) compared to SEO rats. Adult rats were exposed to 0, 0.25, 0.5, or 1.0 ppm 03 for 5 hr/d for 2 d. 03-induced impairment in GT was significantly improved in ACT animals.Bronchoalveolar lavage {BALF) protein markers of lung damage and neutrophilic inflammation were similarly affected in SEO and ACT animals. BALF eosinophils of SEO rats were markedly higher after exposure to 0.5 and 1.0 ppm 03 compared to ACT rats. Overall,this animal model suggests that regular exercise initiated early in life may afford protection in adulthood to the metabolic and pulmonary effects of 03. The attenuated 03-induced elevation in BALF eosinophils of ACT rats may suggest a protective mechanism of childhood exercise on asthma-related symptoms of air pollution. This is an abstract of a proposed presentation and does not reflect US EPA policy This abstract will be presen

  2. Moderate prenatal alcohol exposure and quantification of social behavior in adult rats.

    PubMed

    Hamilton, Derek A; Magcalas, Christy M; Barto, Daniel; Bird, Clark W; Rodriguez, Carlos I; Fink, Brandi C; Pellis, Sergio M; Davies, Suzy; Savage, Daniel D

    2014-12-14

    Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE(1), and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.

  3. Does cross-fostering modify the prenatal effect of methamphetamine on learning of adult male rats?

    PubMed

    Hrubá, L; Schutová, B; Pometlová, M; Slamberová, R

    2009-01-01

    Our previous studies demonstrated that methamphetamine administered during gestation and lactation periods impairs maternal behavior, alters the functional development of rat pups and affects behavior in adulthood. The aim of our study was to investigate the effect of prenatal methamphetamine exposure and cross-fostering on learning tested in Morris water maze (MWM) in adult male rats. Mothers were daily exposed to injection of methamphetamine (MA) (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother received some of her own and some of the pups of mother with the opposite treatment. Based on the prenatal and postnatal treatments 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in MWM. Two types of tests were used: (1) "Place navigation test" (Learning) and (2) "Probe test" (Probe). In the test of learning, all animals fostered by methamphetamine-treated dams had longer latencies and trajectories, and bigger search error than the animals fostered by saline-treated control mother, regardless of prenatal exposure. Further, the animals prenatally exposed to methamphetamine swam slower than the animals prenatally exposed to saline, regardless of postnatal exposure in the test of learning and in the Probe test. Our results showed that neither prenatal nor postnatal methamphetamine exposure affected the Probe test. Our results showed that prenatal exposure to methamphetamine at dose of 5 mg/kg does not impair learning in the MWM, while postnatal exposure to methamphetamine from mothers' breastmilk and maternal care of mother exposed to methamphetamine impairs learning of adult male rats. On the other hand, the maternal care of control mothers does not impair learning of rat pups prenatally exposed to methamphetamine. The present study demonstrates that cross-fostering may affect learning in adulthood.

  4. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    NASA Technical Reports Server (NTRS)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  5. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. © 2014 Wiley Periodicals, Inc.

  6. Spontaneous individual differences in cognitive performances of young adult rats predict locomotor response to amphetamine.

    PubMed

    Dellu-Hagedorn, F

    2005-01-01

    Inter-individual differences in cognitive capacities of young adult rats have largely been ignored. To explore this variability and its neurobiological bases, the relationships between individual differences in working memory and locomotor responses to novelty and to amphetamine were investigated in SD rats. Groups of good and poor learners were isolated, the latter demonstrating a markedly slower learning of the task compared to performant rats, with more perseverations independently to motivational state. They also presented a much higher increase in amphetamine-induced locomotion that remained significant for more than 1h after the injection. These results provide evidence that variability in cognitive capacities can be used to reveal their neurobiological substrates. They open new perspectives to study a possible cognitive origin of addictive behaviors and to investigate the involvement of these inter-individual differences on those observed later in life.

  7. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats.

    PubMed

    Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-01-01

    Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ m

  8. Comparison of erythropoietin and sildenafil protective role against ischemia/reperfusion injury of the testis in adult rats.

    PubMed

    Zavras, Nick; Kostakis, Ioannis D; Sakellariou, Stratigoula; Damaskos, Christos; Roupakas, Evangelos; Tsagkari, Eleni; Spartalis, Eleftherios; Velaoras, Konstantinos; Dontas, Ismene A; Karatzas, Theodore

    2014-04-01

    Tissue damage in testicular torsion/detorsion is caused not only by the ischemia, but also by the ischemia/reperfusion injury after detorsion. Erythropoietin and sildenafil are considered to protect against ischemia/reperfusion injury. Here, we studied and compared their actions in testicular torsion/detorsion in adult rats. Twenty-two adult male Wistar Albino rats were divided into four groups. Rats in group A (n = 5) were sham operated. Rats in group B (n = 5), group C (n = 6) and group D (n = 6) underwent torsion of the right testis and detorsion after 90 min. No pharmaceutical intervention was performed in group B. Erythropoietin (1,000 IU/kg) and sildenafil (0.7 mg/kg) were injected intraperitoneally in groups C and D, respectively, after 60 min of torsion. All animals were killed 24 h after detorsion, and their right testis was extracted, placed into 10 % formalin solution and sent for histopathological examination. The histological changes in the testes were scored according to the four-point grading system proposed by Cosentino et al. All rats in group A had normal testicular architecture (grade 1). The untreated group B had a mean grade of 3.81 (range 3.65-4). The treated groups C (mean grade 3.24; range 3.05-3.45) and D (2.69, range 2.4-2.9) presented statistically significant better results (lower grades) compared with the untreated group B. Group D had significantly better results (lower grades) than group C. The intraperitoneal injection of erythropoietin and sildenafil protects against ischemia/reperfusion injury after testicular torsion and detorsion. Sildenafil may have a stronger action than erythropoietin at the doses used in this study.

  9. Evidence That the Periaqueductal Gray Matter Mediates the Facilitation of Panic-Like Reactions in Neonatally-Isolated Adult Rats

    PubMed Central

    Quintino-dos-Santos, Jeyce Willig; Müller, Cláudia Janaína Torres; Bernabé, Cristie Setúbal; Rosa, Caroline Azevedo; Tufik, Sérgio; Schenberg, Luiz Carlos

    2014-01-01

    Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate

  10. The effects of high doses of nandrolone decanoate and exercise on prostate microvasculature of adult and older rats.

    PubMed

    de Melo Neto, João Simão; de Campos Gomes, Fabiana; Pinheiro, Patrícia Fernanda Felipe; Pereira, Sérgio; Scarano, Wellerson Rodrigo; Fávaro, Wagner José; Domeniconi, Raquel Fantin

    2015-01-15

    The present study aimed to investigate the effects of the interaction between the abusive use of nandrolone decanoate (ND) and physical activity on the prostate structure of adult and older rats. We evaluated whether the use of ND, associated or not with physical exercise during the post-pubertal stage, interferes with the morphophysiology of the prostate. Fifty-six male Sprague-Dawley rats were divided into eight groups. The animals were treated for eight weeks and divided into sedentary and trained groups, with or without ND use. Four groups were sacrificed 48 h after the end of the eight week experiment (adult groups), and four other groups were sacrificed at 300 days of age (older groups). The prostate was collected and processed for stereological and histopathological analysis and for the expression of AQP1 and VEGF by the Western blotting technique. Both ND and physical activity altered the ventral prostate structure of the rats; the AQP1 and VEGF expression increased in young animals subjected to physical exercise. Thus, it was concluded that the use of ND, associated or not with exercise during the post-pubertal stage, interferes with the morphophysiology of the prostate. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction

    PubMed Central

    Rumi, M. A. Karim; Kubota, Kaiyu; Chakraborty, Damayanti; Chien, Jeremy; Roby, Katherine F.

    2015-01-01

    In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone. PMID:26204463

  12. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior.

  13. Anti-NGF monoclonal antibody muMab 911 does not deplete neurons in the superior cervical ganglia of young or old adult rats.

    PubMed

    Marcek, John; Okerberg, Carlin; Liu, Chang-Ning; Potter, David; Butler, Paul; Boucher, Magalie; Zorbas, Mark; Mouton, Peter; Nyengaard, Jens R; Somps, Chris

    2016-10-01

    Nerve growth factor (NGF) blocking therapies are an emerging and effective approach to pain management. However, concerns about the potential for adverse effects on the structure and function of the peripheral nervous system have slowed their development. Early studies using NGF antisera in adult rats reported effects on the size and number of neurons in the sympathetic chain ganglia. In the work described here, both young adult (6-8 week) and fully mature (7-8 month) rats were treated with muMab 911, a selective, murine, anti-NGF monoclonal antibody, to determine if systemic exposures to pharmacologically active levels of antibody for 1 month cause loss of neurons in the sympathetic superior cervical ganglia (SCG). State-of-the-art, unbiased stereology performed by two independent laboratories was used to determine the effects of muMab 911 on SCG neuronal number and size, as well as ganglion size. Following muMab 911 treatment, non-statistically significant trends toward smaller ganglia, and smaller and fewer neurons, were seen when routine, nonspecific stains were used in stereologic assessments. However, when noradrenergic neurons were identified using tyrosine hydroxylase (TH) immunoreactivity, trends toward fewer neurons observed with routine stains were not apparent. The only statistically significant effects detected were lower SCG weights in muMab 911-treated rats, and a smaller volume of TH immunoreactivity in neurons from younger rats treated with muMab 911. These results indicate that therapeutically relevant exposures to the anti-NGF monoclonal antibody muMab 911 for 1 month have no effect on neuron numbers within the SCG from young or old adult rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  15. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  16. Can Anxiety Tested in the Elevated Plus-maze Be Related to Nociception Sensitivity in Adult Male Rats?

    PubMed

    Pometlová, Marie; Yamamotová, Anna; Nohejlová, Kateryna; Šlamberová, Romana

    Methamphetamine (MA) is one of the most addictive psychostimulant drugs with a high potential for abuse. Our previous studies demonstrated that MA administered to pregnant rats increases pain sensitivity and anxiety in their adult offspring and makes them more sensitive to acute administration of the same drug in adulthood. Because individuals can differ considerably in terms of behaviour and physiology, such as rats that do not belong in some characteristics (e.g. anxiety) to average, can be described as low-responders or high-responders, are then more or less sensitive to pain. Therefore, prenatally MA-exposed adult male rats treated in adulthood with a single dose of MA (1 mg/ml/kg) or saline (1 ml/kg) were tested in the present study. We examined the effect of acute MA treatment on: (1) the anxiety in the Elevated plus-maze (EPM) test and memory in EPM re-test; (2) nociception sensitivity in the Plantar test; (3) the correlation between the anxiety, memory and the nociception. Our results demonstrate that: (1) MA has an anxiogenic effect on animals prenatally exposed to the same drug in the EPM; (2) all the differences induced by acute MA treatment disappeared within the time of 48 hours; (3) there was no effect of MA on nociception per se, but MA induced higher anxiety in individuals less sensitive to pain than in animals more sensitive to pain. In conclusion, the present study demonstrates unique data showing association between anxiety and nociceptive sensitivity of prenatally MA-exposed rats that is induced by acute drug administration.

  17. Iron-induced oxidative injury differentially regulates PI3K/Akt/GSK3beta pathway in synaptic endings from adult and aged rats.

    PubMed

    Uranga, Romina María; Giusto, Norma María; Salvador, Gabriela Alejandra

    2009-10-01

    In this work we study the state of phosphoinositide-3-kinase/Akt/glycogen synthase kinase 3 beta (PI3K/Akt/GSK3beta) signaling during oxidative injury triggered by free iron using cerebral cortex synaptic endings isolated from adult (4-month-old) and aged (28-month-old) rats. Synaptosomes were exposed to FeSO4 (50 microM) for different periods of time and synaptosomal viability and the state of the PI3K/Akt/GSK3beta pathway were evaluated in adult and aged animals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction and lactate dehydrogenase leakage were significantly affected in both age groups. However, aged animals showed a greater susceptibility to oxidative stress. In adults, Akt was activated after a brief exposure time (5 min), whereas in aged animals activation occurred after 5 and 30 min of incubation with the metal ion. GSK3beta phosphorylation showed the same activation pattern as that observed for Akt. Both Akt and GSK3beta phosphorylation were dependent on PI3K activation. Extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation was temporally coincident with Akt activation and was PI3K dependent in adults, whereas ERK1/2 activation in aged rats was higher than that observed in adults and showed no dependence on PI3K activity. We demonstrate here that synaptic endings from adult and aged animals subjected to iron-induced neurotoxicity show a differential profile in the activation of PI3K/Akt/GSK3beta. Our results strongly suggest that the increased susceptibility of aged animals to oxidative injury provokes a differential modulation of key signaling pathways involved in synaptic plasticity and neuronal survival.

  18. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  19. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats.

    PubMed

    Colman, Juliana Barcellos; Laureano, Daniela Pereira; Reis, Tatiane Madeira; Krolow, Rachel; Dalmaz, Carla; Benetti, Carla da Silva; Silveira, Patrícia Pelufo

    2015-02-01

    Early handling alters adult behavioral responses to palatable food and to its withdrawal following a period of chronic exposure. However, the central mechanisms involved in this phenomenon are not known. Since neonatal handling has persistent effects on stress and anxiety responses, we hypothesized that its involvement in the aforementioned association may be associated with differential neuroadaptations in the amygdala during withdrawal periods. Litters were randomized into two groups: handled (H, removed from their dam for 10min per day from the first to the tenth postnatal day and placed in an incubator at 32°C) and non-handled (NH). Experiment 1: on PNDs 80-100, females were assigned to receive palatable food+rat chow for 15 or 30 days, and these two groups were compared in terms of palatable food preference, body weight and abdominal fat deposition. In Experiment 2, H and NH rats were exposed to a chronic diet of palatable food+rat chow for 15 days, followed by (a) no withdrawal, (b) 24h withdrawal from palatable food (receiving only rat chow) or (c) 7-day withdrawal from palatable food (receiving only rat chow). Body weight, 10-min rebound palatable food intake, abdominal fat deposition, serum corticosterone as well as TH and pCREB levels in the amygdala were then compared between groups. Experiment 1-chronic exposure to palatable food induces comparable metabolic effects after 15 and 30 days. Experiment 2-neonatal handling is associated with a peculiar response to palatable food withdrawal following chronic exposure for 15 days. Rats exposed to early handling ingested less of this food after a 24h withdrawal period, and displayed increased amygdala TH and pCREB levels. Variations in the neonatal environment affect both behavioral responses and amygdala neuroadaptation to acute withdrawal from a palatable diet. These findings contribute to the comprehension of the mechanisms that link early life events and altered feeding behavior and related morbidities

  20. Erythropoietin and sildenafil protect against ischemia/reperfusion injury following testicular torsion in adult rats.

    PubMed

    Kostakis, Ioannis D; Zavras, Nick; Damaskos, Christos; Sakellariou, Stratigoula; Korkolopoulou, Penelope; Misiakos, Evangelos P; Tsaparas, Petros; Vaos, George; Karatzas, Theodoros

    2017-06-01

    Testicular torsion/detorsion causes severe tissue damage due to ischemia/reperfusion injury. The present study investigated the protective effect of erythropoietin and sildenafil against ischemia/reperfusion injury following unilateral testicular torsion/detorsion in adult rats. A total of 28 adult male rats were included, and were divided into the following groups: Group A (n=5), sham operated; groups B (n=5), C (n=5), D (n=5) and E (n=8), undergoing right testis torsion and detorsion after 90 min. Group B received no drug treatment. Rats in the groups C and D received low-dose (1,000 IU/kg) or high-dose (3,000 IU/kg) erythropoietin, while those in group E received sildenafil (0.7 mg/kg), through intraperitoneal injection after 60 min of torsion. The right testis was extracted 24 h after detorsion, and the tissue was subjected to histopathological examination and immunohistochemical assessment of cleaved caspase-3 expression. Histological alterations and the quality of spermatogenesis were scored according to the Cosentino and the Johnsen scoring systems, respectively. The results demonstrated normal testicular architecture in group A, while the other groups showed ischemic cellular damages, with the worst scores observed in group B. Groups D and E presented better scores compared with group C. Regarding the quality of spermatogenesis, the best scores were observed in group A, and the worst in group B. Groups C, D and E presented similar results, which were improved in comparison to group B, however, not compared to group A. Furthermore, cleaved caspase-3 levels were lower in groups A, D and E, with equal results observed. Group C had higher levels of cleaved caspase-3 compared with these groups, but lower than group B, which presented the highest cleaved caspase-3 levels. In conclusion, erythropoietin and sildenafil protect testis from ischemia/reperfusion injury by decreasing cellular damage and attenuating apoptosis.

  1. Erythropoietin and sildenafil protect against ischemia/reperfusion injury following testicular torsion in adult rats

    PubMed Central

    Kostakis, Ioannis D.; Zavras, Nick; Damaskos, Christos; Sakellariou, Stratigoula; Korkolopoulou, Penelope; Misiakos, Evangelos P.; Tsaparas, Petros; Vaos, George; Karatzas, Theodoros

    2017-01-01

    Testicular torsion/detorsion causes severe tissue damage due to ischemia/reperfusion injury. The present study investigated the protective effect of erythropoietin and sildenafil against ischemia/reperfusion injury following unilateral testicular torsion/detorsion in adult rats. A total of 28 adult male rats were included, and were divided into the following groups: Group A (n=5), sham operated; groups B (n=5), C (n=5), D (n=5) and E (n=8), undergoing right testis torsion and detorsion after 90 min. Group B received no drug treatment. Rats in the groups C and D received low-dose (1,000 IU/kg) or high-dose (3,000 IU/kg) erythropoietin, while those in group E received sildenafil (0.7 mg/kg), through intraperitoneal injection after 60 min of torsion. The right testis was extracted 24 h after detorsion, and the tissue was subjected to histopathological examination and immunohistochemical assessment of cleaved caspase-3 expression. Histological alterations and the quality of spermatogenesis were scored according to the Cosentino and the Johnsen scoring systems, respectively. The results demonstrated normal testicular architecture in group A, while the other groups showed ischemic cellular damages, with the worst scores observed in group B. Groups D and E presented better scores compared with group C. Regarding the quality of spermatogenesis, the best scores were observed in group A, and the worst in group B. Groups C, D and E presented similar results, which were improved in comparison to group B, however, not compared to group A. Furthermore, cleaved caspase-3 levels were lower in groups A, D and E, with equal results observed. Group C had higher levels of cleaved caspase-3 compared with these groups, but lower than group B, which presented the highest cleaved caspase-3 levels. In conclusion, erythropoietin and sildenafil protect testis from ischemia/reperfusion injury by decreasing cellular damage and attenuating apoptosis. PMID:28587411

  2. Effects of severe caloric restriction from birth on the hearts of adult rats.

    PubMed

    Melo, Dirceu Sousa; Riul, Tania Regina; Esteves, Elizabeth Adriana; Moraes, Patrícia Lanza; Ferreira, Fernanda Oliveira; Gavioli, Mariana; Alves, Márcia Netto Magalhães; Almeida, Pedro William Machado; Guatimosim, Silvia; Ferreira, Anderson José; Dias Peixoto, Marco Fabricio

    2013-08-01

    There has been increasing evidence suggesting that a severe caloric restriction (SCR) (above 40%) has beneficial effects on the hearts of rats. However, most of the reports have focused on the effects of SCR that started in adulthood. We investigated the consequences of SCR on the hearts of rats subjected to SCR since birth (CR50). From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Thereafter, a maximal aerobic test was performed to indirectly evaluate global cardiovascular function. Indices of contractility (+dT/dt) and relaxation (-dT/dt) were analyzed in isolated heart preparation, and cardiomyocyte diameter, number, density, and myocardium collagen content were obtained through histologic analysis. Ventricular myocytes were isolated, using standard methods to evaluate phosphorylated AKT levels, and Ca(2+) handling was evaluated with a combination of Western blot analysis, intracellular Ca(2+) imaging, and confocal microscopy. CR50 rats exhibited increased aerobic performance and cardiac function, as shown by the increase in ±dT/dt. Despite the smaller cardiomyocyte diameter, CR50 rats had an increased heart-body weight ratio, increased cardiomyocyte density and number, and similar levels of myocardium collagen content, compared with AL rats. AKT was hyperphosphorylated in cardiomyocytes from CR50 rats, and there were no significant differences in Ca(2+) transient and SERCA2 levels in cardiomyocytes between CR50 and AL rats. Collectively, these observations reveal the beneficial effects of a 50% caloric restriction on the hearts of adult rats restricted since birth, which might involve cardiomyocyte AKT signaling.

  3. Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment.

    PubMed

    Baskin, Britahny M; Nic Dhonnchadha, Bríd Á; Dwoskin, Linda P; Kantak, Kathleen M

    2017-10-01

    Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.

  4. Behavioral effects of subchronic inhalation of toluene in adult rats.

    PubMed

    Beasley, Tracey E; Evansky, Paul A; Gilbert, Mary E; Bushnell, Philip J

    2010-01-01

    Whereas the acute neurobehavioral effects of toluene are robust and well characterized, evidence for persistent effects of repeated exposure to this industrial solvent is less compelling. The present experiment sought to determine whether subchronic inhalation of toluene caused persistent behavioral changes in rats. Adult male Long-Evans rats inhaled toluene vapor (0, 10, 100, or 1000 ppm) for 6h/day, 5 days/week for 13 weeks and were evaluated on a series of behavioral tests beginning 3 days after the end of exposure. Toluene delayed appetitively-motivated acquisition of a lever-press response, but did not affect motor activity, anxiety-related behavior in the elevated plus maze, trace fear conditioning, acquisition of an appetitively-motivated visual discrimination, or performance of a visual signal detection task. Challenges with acute inhalation of toluene vapor (1200-2400 ppm for 1 h) and injections of quinpirole (0.01-0.03 mg/kg) and raclopride (0.03-0.10 mg/kg) revealed no toluene-induced latent impairments in visual signal detection. These results are consistent with a pattern of subtle and inconsistent long-term effects of daily exposure to toluene vapor, in contrast to robust and reliable effects of acute inhalation of the solvent. Published by Elsevier Inc.

  5. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  6. Susceptibility to inhaled flame-generated ultrafine soot in neonatal and adult rat lungs.

    PubMed

    Chan, Jackie K W; Fanucchi, Michelle V; Anderson, Donald S; Abid, Aamir D; Wallis, Christopher D; Dickinson, Dale A; Kumfer, Benjamin M; Kennedy, Ian M; Wexler, Anthony S; Van Winkle, Laura S

    2011-12-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.

  7. The effect of phloretin on synaptic proteins and adult hippocampal neurogenesis in Aβ (1-42)-injected male Wistar rats.

    PubMed

    Ghumatkar, Priya; Peshattiwar, Vaibhavi; Patil, Sachin; Muke, Suraj; Whitfield, David; Howlett, David; Francis, Paul; Sathaye, Sadhana

    2018-04-23

    Considering the deleterious effect of Aβ1-42, a study was designed to evaluate the effect of phloretin on altered synaptic proteins and adult hippocampal neurogenesis in Aβ1-42-injected Wistar rats. The rats were pretreated with 5 mg/kg p.o dose of phloretin and donepezil (positive control) for 28 days, followed by intrahippocampal injections of aggregated Aβ1-42. After termination, perfused brains were isolated and subjected to Western blot and immunohistochemistry (IHC) analysis. The Western blot revealed that Aβ1-42-injected rats had significantly low levels of synaptophysin as compared to sham control. Phloretin pretreatment significantly protected the presynaptic protein synaptophysin against the effects of Aβ1-42. There were no significant changes in the levels of PSD95 between different groups. The IHC findings showed that Aβ1-42 significantly reduced the Ki67 and DCX in the dentate gyrus as compared to sham control. However, phloretin significantly improved the number of Ki67- and DCX-positive neurons in the dentate gyrus region as compared to Aβ1-42 group. This study demonstrated the protective effect of phloretin on synaptophysin and adult neuronal proliferating cells in Aβ1-42-injected rats. The encouraging findings highlight the potential of phloretin as a dietary supplement targeting key therapeutic mechanisms in neurodegenerative disorders such as AD. © 2018 Royal Pharmaceutical Society.

  8. Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats

    PubMed Central

    García-Fuster, M. Julia; Parsegian, Aram; Watson, Stanley J.; Akil, Huda; Flagel, Shelly B.

    2018-01-01

    Rationale Environmental challenges during adolescence, such as drug exposure, can cause enduring behavioral and molecular changes that contribute to life-long maladaptive behaviors, including addiction. Selectively bred high-responder (bHR) and low-responder (bLR) rats represent a unique model for assessing the long-term impact of adolescent environmental manipulations, as they inherently differ on a number of addiction-related traits. bHR rats are considered “addiction-prone”, whereas bLR rats are “addiction-resilient”, at least under baseline conditions. Moreover, relative to bLRs, bHR rats are more likely to attribute incentive motivational value to reward cues, or to “sign-track”. Objectives We utilized bHR and bLR rats to determine whether adolescent cocaine exposure can alter their inborn behavioral and neurobiological profiles, with a specific focus on Pavlovian conditioned approach behavior (i.e. sign- vs. goal-tracking) and hippocampal neurogenesis. Methods bHR and bLR rats were administered cocaine (15 mg/kg) or saline for 7 days during adolescence (postnatal day, PND 33–39) and subsequently tested for Pavlovian conditioned approach behavior in adulthood (PND 62–75), wherein an illuminated lever (conditioned stimulus) was followed by the response-independent delivery of a food pellet (unconditioned stimulus). Behaviors directed towards the lever and the food cup were recorded as sign- and goal-tracking, respectively. Hippocampal cell genesis was evaluated on PND 77 by immunohistochemistry. Results Adolescent cocaine exposure impaired hippocampal cell genesis (proliferation and survival) and enhanced the inherent propensity to goal-track in adult bLR, but not bHR, rats. Conclusions Adolescent cocaine exposure elicits long-lasting changes in stimulus-reward learning and enduring deficits in hippocampal neurogenesis selectively in adult bLR rats. PMID:28210781

  9. Antenatal/early postnatal hypothyroidism increases the contribution of Rho-kinase to contractile responses of mesenteric and skeletal muscle arteries in adult rats.

    PubMed

    Gaynullina, Dina K; Sofronova, Svetlana I; Shvetsova, Anastasia A; Selivanova, Ekaterina K; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S

    2018-05-23

    Maternal thyroid deficiency can increase Rho-kinase procontractile influence in arteries of 2-week-old progeny. Here we hypothesized that augmented role of Rho-kinase persists in arteries from adult progeny of hypothyroid rats. Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. At the age of 10-12-weeks, serum T 3 /T 4 levels did not differ between PTU and CON male offspring. Cutaneous (saphenous), mesenteric, and skeletal muscle (sural) arteries were studied by wire myography, qPCR, and Western blotting. Saphenous arteries of PTU and CON groups showed similar responses to α 1 -adrenoceptor agonist methoxamine and were equally suppressed by Rho-kinase inhibitor Y27632. Responses of mesenteric arteries also did not differ between PTU and CON, but the effects of Y27632 were more prominent in the PTU group. Sural arteries of PTU rats compared to CON demonstrated augmented responses to methoxamine, increased RhoA mRNA contents and higher levels of MYPT1 phosphorylation at Thr 855 . Intergroup differences in contractile responses and phospho-MYPT1-Thr 855 were eliminated by Y27632. Rho-kinase contribution to contractile responses of mesenteric and especially sural arteries is augmented in adult PTU rats. Therefore, maternal thyroid deficiency may have long-term detrimental consequences for vasculature in adult offspring.

  10. The growth hormone secretagogue ipamorelin counteracts glucocorticoid-induced decrease in bone formation of adult rats.

    PubMed

    Andersen, N B; Malmlöf, K; Johansen, P B; Andreassen, T T; Ørtoft, G; Oxlund, H

    2001-10-01

    The ability of the growth hormone secretagogue (GHS) Ipamorelin to counteract the catabolic effects of glucocorticoid (GC) on skeletal muscles and bone was investigated in vivo in an adult rat model. Groups of 8-month-old female rats were injected subcutaneously for 3 months with GC (methylprednisolone) 9 mg/kg/day or GHS (Ipamorelin) 100 microg/kg three times daily, or both GC and GHS in combination. The maximum tetanic tension of the calf muscles was determined in vivo in a materials testing machine. The maximum tetanic tension was increased significantly, and the periosteal bone formation rate increased four-fold in animals injected with GC and GHS in combination, compared with the group injected with GC alone. In conclusion, the decrease in muscle strength and bone formation found in GC-injected rats was counteracted by simultaneous administration of the growth hormone secretagogue. Copyright 2001 Harcourt Publishers Ltd.

  11. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

    PubMed

    Gaté, Laurent; Disdier, Clémence; Cosnier, Frédéric; Gagnaire, François; Devoy, Jérôme; Saba, Wadad; Brun, Emilie; Chalansonnet, Monique; Mabondzo, Aloise

    2017-01-04

    The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO 2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m 3 of a TiO 2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO 2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects. Copyright © 2016. Published by Elsevier Ireland Ltd.

  12. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats

    PubMed Central

    Boonnate, Piyanard; Waraasawapati, Sakda; Hipkaeo, Wiphawi; Pethlert, Supattra; Sharma, Amod; Selmi, Carlo; Prasongwattana, Vitoon; Cha’on, Ubon

    2015-01-01

    Background The amount of dietary monosodium glutamate (MSG) is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology. Methods Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group). All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT) were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets. Results MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated. Conclusion Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account. PMID:26121281

  13. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats.

    PubMed

    Boonnate, Piyanard; Waraasawapati, Sakda; Hipkaeo, Wiphawi; Pethlert, Supattra; Sharma, Amod; Selmi, Carlo; Prasongwattana, Vitoon; Cha'on, Ubon

    2015-01-01

    The amount of dietary monosodium glutamate (MSG) is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology. Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group). All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT) were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets. MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated. Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account.

  14. Heart dysfunction induced by choline-deficiency in adult rats: the protective role of L-carnitine.

    PubMed

    Strilakou, Athina A; Lazaris, Andreas C; Perelas, Apostolos I; Mourouzis, Iordanis S; Douzis, Ioannis Ch; Karkalousos, Petros L; Stylianaki, Aikaterini Th; Pantos, Costas I; Liapi, Charis A

    2013-06-05

    Choline is a B vitamin co-factor and its deficiency seems to impair heart function. Carnitine, a chemical analog of choline, has been used as adjunct in the management of cardiac diseases. The study investigates the effects of choline deficiency on myocardial performance in adult rats and the possible modifications after carnitine administration. Wistar Albino rats (n=24), about 3 months old, were randomized into four groups fed with: (a) standard diet (control-CA), (b) choline deficient diet (CDD), (c) standard diet and carnitine in drinking water 0.15% w/v (CARN) and (d) choline deficient diet and carnitine (CDD+CARN). After four weeks of treatment, we assessed cardiac function under isometric conditions using the Langendorff preparations [Left Ventricular Developed Pressure (LVDP-mmHg), positive and negative first derivative of LVDP were evaluated], measured serum homocysteine and brain natriuretic peptide (BNP) levels and performed histopathology analyses. In the CDD group a compromised myocardium contractility compared to control (P=0.01), as assessed by LVDP, was noted along with a significantly impaired diastolic left ventricular function, as assessed by (-) dp/dt (P=0.02) that were prevented by carnitine. Systolic force, assessed by (+) dp/dt, showed no statistical difference between groups. A significant increase in serum BNP concentration was found in the CDD group (P<0.004) which was attenuated by carnitine (P<0.05), whereas homocysteine presented contradictory results (higher in the CDD+CARN group). Heart histopathology revealed a lymphocytic infiltration of myocardium and valves in the CDD group that was reduced by carnitine. In conclusion, choline deficiency in adult rats impairs heart performance; carnitine acts against these changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    PubMed Central

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  16. Exposure to alcohol during adolescence exerts long-term effects on stress response and the adult brain stress circuits.

    PubMed

    Allen, Camryn D; Grigoleit, Jan-Sebastian; Hong, Joonho; Bae, Sejin; Vaughan, Joan; Lee, Soon

    2016-12-17

    The hypothalamic-pituitary-adrenal (HPA) axis undergoes critical developments during adolescence. Therefore, stressors experienced during this period potentially have long-term effects on adult HPA axis function. We hypothesized that adolescent intermittent ethanol (AIE) exposure would affect adult HPA axis function, resulting in altered responses to an alcohol challenge in young adults or adults. To test these hypotheses, male rats were exposed to alcohol vapor for 6h per day from post-natal day (PND) 28-42, then acutely challenged with alcohol intragastrically (3.2-4.5g/kg) in young adults (PND 70) or adults (PND 90). Overall, we observed blunted HPA axis responses to an alcohol challenge due to AIE exposure. Specifically, AIE tended to inhibit the alcohol challenge-induced increase in plasma corticosterone (CORT) concentrations in young adult and adult rats. As well, AIE significantly blunted the alcohol challenge-induced arginine vasopressin (Avp) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus of adult rats. Results of the present study are similar to what we have previously shown, that these changes in PVN responsiveness may result from AIE-induced alterations in adrenergic neurons in brain stem regions C1-C3 known to project to the PVN. AIE elevated the number of colocalized c-fos/phenylethanolamine N-methyltransferase (PNMT)-positive cell bodies in the C1 region of adult rats. Together, these data suggest that AIE exposure produces alterations in male HPA axis responsiveness to administration of an acute alcohol challenge that may be long-lasting. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. Copyright © 2015 IBRO. Published by

  18. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  19. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex.

    PubMed

    Downer, Eric J; Gowran, Aoife; Campbell, Veronica A

    2007-10-17

    The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.

  20. Endocrine effects of lifelong exposure to low-dose depleted uranium on testicular functions in adult rat.

    PubMed

    Legendre, Audrey; Elie, Christelle; Ramambason, Camille; Manens, Line; Souidi, Maamar; Froment, Pascal; Tack, Karine

    2016-08-10

    Environmental toxicant exposure can induce disorders in sex steroidogenesis during fetal gonad development. Our previous study demonstrated that chronic adult exposure to a supra environmental concentration of depleted uranium (DU) does not impair testicular steroidogenesis in rats. In this study, we investigated the effects of lifelong exposure (embryo - adult) to low-dose DU (40 or 120mgL -1 ) on adult rat testicular steroidogenesis and spermatogenesis. A significant content of uranium was detected in testis and epididymis in the DU 120mgL -1 group and the assay in epididymal spermatozoa showed a significant content in both groups. No major defect was observed in testicular histology except a decrease in the number of basal vacuoles in the DU groups. Moreover, plasma Follicle-Stimuling Hormone [FSH] and Luteinizing Hormone [LH] levels were increased only in the DU 120mgL -1 group and intratesticular estradiol was decreased in both groups. Testosterone level was reduced in plasma and testis in the DU 40mgL -1 group. These modulations could be explained by an observed decrease in gene expression of luteinizing hormone receptor (LHR), and enzymes involved in steroid production and associated signal transduction (StAR, cyp11a1, cyp17a1, 3βhsd, 17βhsd, TGFβ1, AR). Several genes specific to germ cells and cell junctions of the blood-testis barrier were also modulated. In conclusion, these data show that fetal life is a critical window for chronic uranium exposure and that the endocrine activities of low-dose uranium could disrupt steroidogenesis through the hypothalamic-pituitary-testicular axis. Further investigation should be so useful in subsequent generations to improve risk assessment of uranium exposure. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    PubMed Central

    Lu, Zhiyan; Wu, Jinwei; Cheng, Guangyuan; Tian, Jianying; Lu, Zeqing; Bi, Yongyi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accordingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmercury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride. PMID:25368649

  2. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes.

    PubMed

    van Pelt, A M; Morena, A R; van Dissel-Emiliani, F M; Boitani, C; Gaemers, I C; de Rooij, D G; Stefanini, M

    1996-08-01

    A method for isolating A spermatogonia from the adult vitamin A-deficient (VAD) rat testis is described. After removal, the testes were decapsulated and tubules were dissected. An enzymatic digestion with collagenase, hyaluronidase, and trypsin was performed first to eliminate most of the interstitial cells. A second digestion with collagenase and hyaluronidase was performed to obtain a cell suspension with a high number of A spermatogonia. The cell suspension was further enriched with A spermatogonia by preplating on peanut agglutinin and separating on a discontinuous Percoll gradient. By this procedure, purification of the suspension to 70-90% A spermatogonia was obtained. In the seminiferous tubules of the VAD rats, only Sertoli cells, A spermatogonia, and some preleptotene spermatocytes are present. In our rats, the A spermatogonia are almost all arrested in the G1 phase of the cell cycle before the S phase of A1 spermatogonia, and presumably before their differentiation into A1 spermatogonia. After administration of vitamin A, spermatogenesis starts synchronously from these A spermatogonia. The isolation of these synchronized A spermatogonia opens ways to investigate the regulation of differentiation and proliferation of A spermatogonia and the biochemical characteristics of the subsequent types of A spermatogonia.

  3. Cardiac oxidative stress following maternal separation stress was mitigated following adolescent voluntary exercise in adult male rat.

    PubMed

    Sahafi, Ehtramolsadat; Peeri, Maghsoud; Hosseini, Mir-Jamal; Azarbyjani, Mohammad Ali

    2018-01-01

    Early life stress (ELS) is known as a risk factor for the development of depression and its associated comorbidities, such as cardiomyopathy in depressed patients. Mitochondrial dysfunction plays a critical role in the pathophysiology of depression and cardiovascular diseases. Evidence indicates that regular physical activity has therapeutic effects on both mood and cardiovascular disorders. Therefore, the voluntary running wheel exercise (RW) during adolescence may be able to attenuate the negative impact of maternal separation stress (MS) as a valid animal model of depression on the behavior and cardiac mitochondrial function of adult rats. To do this, we applied MS to rat pups by separating them from their mothers for 180min during the postnatal day (PND) 2 to PND 14. Next, the animals were randomly divided into different treatment groups (fluoxetine [FLX] and RW) and received the treatments during adolescence, between PND 28 to PND 60. Then, we evaluated the effects of MS on the rat behaviors test, and finally, we assessed reactive oxygen species, mitochondrial glutathione, ATP and cytochrome c release in the cardiac tissue of animals. Our results showed that depressive-like behaviors following MS in adult male rats were associated with oxidative stress in cardiac tissue. Further, we found that treating animals with chronic FLX or RW during adolescence improved animal's behavior as well as cardiac mitochondrial function. The results of this study highlight the importance of adolescence as a period during which treating animals with non-pharmacological agents has significant protective effects against the negative influence of ELS on mood and cardiac energy hemostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  5. Cocaine-induced locomotor activity is increased by prior handling in adolescent but not adult female rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    Adolescence is a period of transition that is associated with increased levels of stress and a heightened propensity to initiate drug use. Neuronal development is still occurring during this transitional period, which includes the continued development of the dopamine system during the adolescent period. In the present study, the effects of pre-test handling on cocaine-induced locomotor activity were investigated among female adolescent and young adult rats upon presentation to a novel environment. On postnatal days (PND) 41–44 and 56–59 animals were handled (b.i.d.) in the colony room for 3 min. On PND 45 or PND 60, animals were removed from the colony room, weighed, and administered an acute injection of either cocaine or saline and presented to a novel environment where behavior was recorded for 30 min. Adolescent females (PND 45) that were handled prior to cocaine administration demonstrated elevated levels of cocaine-induced activity relative to their age-matched non-handled counterparts and also to their handled-adult counterparts. In contrast, among non-handled animals, young adults (PND 60) exhibited elevated drug-induced locomotion at several time points during the trial. Non-handled adolescent animals demonstrated the previously described “hyporesponsive” behavioral profile relative to their non-handled adult counterparts. The results from the present experiment indicate that adolescent animals may be more sensitive to basic laboratory manipulations such as pre-test handling, and care must be taken when utilizing adolescent animals in behavioral testing. Handling appears to be a sensitive manipulation in elucidating differences in cocaine-induced behavioral activation between ages. PMID:16176824

  6. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  7. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats.

    PubMed

    Meyer, F; Peterschmitt, Y; Louilot, A

    2009-05-01

    Latent inhibition has been found to be disrupted in patients with acute schizophrenia. Striatal dopaminergic dysregulation is commonly acknowledged in schizophrenia. This disease may be consecutive to a functional disconnection between integrative regions, stemming from neurodevelopmental failures. Various anomalies suggesting early abnormal brain development have been described in the entorhinal cortex (ENT) and ventral subiculum (SUB) of patients. This study examines the consequences of a neonatal transitory blockade of the left ENT or left SUB for latent inhibition-related dopamine responses in the anterior part of the dorsal striatum using in-vivo voltammetry in freely moving adult rats. Reversible inactivation of both structures in different animals was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the functional neonatal disconnection of the ENT or SUB caused the behavioural latent inhibition expression in pre-exposed (PE)-TTX-conditioned adult rats to disappear. After postnatal inactivation of the SUB, PE-TTX-conditioned rats displayed a reversal of the latent inhibition-related striatal dopamine responses, whereas after neonatal blockade of the ENT, dopamine changes in PE-TTX-conditioned rats monitored in the anterior striatum were between those observed in PE-phosphate-buffered-saline-conditioned and non-PE-TTX-conditioned animals. These data suggest that neonatal functional inactivation of the SUB disrupts latent inhibition-related striatal dopamine responses in adult animals more than that of the ENT. They may help improve understanding of the pathophysiology of schizophrenia.

  8. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats.

    PubMed

    Park, Mi-Sook; Oh, Hyean-Ae; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Sang-Hoon; Kim, Chang-Ju; Kim, Hyun-Bae; Kim, Hong

    2014-06-01

    Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis. For this, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Male Sprague-Dawley rats were used in the experiments. The animals were randomly divided into two groups: sham-operation group and TBI-induction group. The mild TBI model was created with an electromagnetic contusion device activated at a velocity of 3.0 m/sec. The results showed that mild TBI during the pediatric stage significantly decreased memory retention. The numbers of TUNEL-positive and caspase-3-positive cells were increased in the TBI-induction group compared to those in the sham-operation group. Defective memory retention and apoptosis sustained up to the adult stage. The present results shows that mild TBI induces long-lasting cognitive impairment from pediatric to adult stages in rats through the high level of apoptosis. The finding of this study suggests that children with mild TBI may need intensive treatments for the reduction of long-lasting cognitive impairment by secondary neuronal damage.

  9. Paradoxical effects of injection stress and nicotine exposure experienced during adolescence on learning in a serial multiple choice (SMC) task in adult female rats.

    PubMed

    Renaud, Samantha M; Pickens, Laura R G; Fountain, Stephen B

    2015-01-01

    Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/h nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine/No Stress, Nicotine/No Stress, No Nicotine/Stress, and Nicotine/Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, and Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the "violation element," that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent

  10. Paradoxical Effects of Injection Stress and Nicotine Exposure Experienced During Adolescence on Learning in a Serial Multiple Choice (SMC) Task in Adult Female Rats

    PubMed Central

    Renaud, Samantha M.; Pickens, Laura R. G.; Fountain, Stephen B.

    2015-01-01

    Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/hr nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine / No Stress, Nicotine / No Stress, No Nicotine / Stress, and Nicotine / Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, & Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the “violation element,” that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without

  11. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Verhoef, Aart

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 atmore » doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of

  12. Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.

    PubMed

    Sellien, Heike; Eshenroder, Donna S; Ebner, Ford F

    2005-09-01

    Rats move their whiskers actively during tactile exploration of their environment. The whiskers emanate from densely innervated whisker follicles that are moved individually by intrinsic facial muscles and as a group by extrinsic muscles. Several descriptions of whisker movements in normal adult rats during unrestrained exploration indicate that rats move their whiskers in the 6-9 Hz range when exploring a new environment. The rate can be elevated to nearly 20 Hz for brief episodes just prior to making a behavioural decision. The present studies were undertaken to compare whisker dynamics in head-restrained and freely moving rats with symmetrical or asymmetrical numbers of whiskers on the two sides of their face and to provide a description of differences in whisker use in exploring rats after trimming all but two whiskers on one side of the face, a condition that has been shown to induce robust cortical plasticity. Head-fixed rats were trained to protract their whiskers against a contact detector with sufficient force to trigger a chocolate milk reward. Whisker movements were analyzed, and the results from head-fixed animals were compared with free-running animals using trials taken during their initial exploration of novel objects that blocked the rat's progress down an elevated runway. The results show that symmetrical whisker movements are modulated both by the nature of the task and the number of whiskers available for exploration. Rats can change their whisker movements when the sensitivity (threshold) of a contact detector is raised or lowered, or when the nature of the task requires bilateral input from the whiskers. We show that trimming some, but not all whiskers on one side of the face modifies the synchrony of whisker movement compared to untrimmed or symmetrically trimmed whiskers.

  13. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerge, Daniel R., E-mail: daniel.doerge@fda.hhs.gov; Twaddle, Nathan C.; Vanlandingham, Michelle

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 {mu}g/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 {mu}g/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 inmore » liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially

  14. The protective effect of omega-3 oil against the hepatotoxicity of cadmium chloride in adult and weanling rats

    NASA Astrophysics Data System (ADS)

    Ismail, Treefa F.; Aziz, Falah M.

    2017-09-01

    The purpose of the present study was to investigate the protective role of omega-3 oil against the toxic effect of cadmium as cadmium chloride (CdCl2) on the liver of male, dams and weanling rats from the histological, ultrastructural and immunohistochemical points of view. Thirty adult male and thirty adult female rats (dams) were used in the present work, divided randomly into five groups, six rats for each group and ten weanling male rats were chosen from each dam group. First group was considered as control group and given only standard diet and drinking water, second group was given (40 mg/ L) of CdCl2 in drinking water. The third group was given (60 mg/ L) of CdCl2 in drinking water. The fourth group was given (40 mg/L) of CdCl2 in drinking water plus omega-3 oil (4 gm/ kg diet) and the fifth group was given (60 mg/L) of CdCl2 in drinking water plus omega-3 oil (4 gm/ kg diet). All the above groups were left for 30 days for males and 42 days for the females) i.e. at the 21th day of the weanling rats birth). Both doses of CdCl2 have caused a lot of histological and ultrastructural alterations in the liver including high degeneration of hepatocytes. Electron microscope images showed thickening of mitochondrial membrane, variation in the size and shape of the mitochondria of the above cells and deposition of Cd particles in the lining of blood sinusoids. The hepatocytes of the weanling rats showed more ultrastructural changes especially the accumulation of lipid droplets. The immunohistochemical images of the mother liver showed a positive P53 reaction in the cells of the liver of CdCl2 treated rats especially those around the portal area. These reactions disappeared in the omega-3 plus CdCl2 groups. The present results suggested a protective role of omega-3 against the cadmium induced hepatotoxicity.

  15. Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-methyl-D-aspartate receptor binding levels.

    PubMed

    Metaxas, A; Willems, R; Kooijman, E J M; Renjaän, V A; Klein, P J; Windhorst, A D; Donck, L Ver; Leysen, J E; Berckel, B N M van

    2014-11-01

    Although both the onset of schizophrenia and human phencyclidine (PCP) abuse typically present within the interval from adolescence to early adulthood, the majority of preclinical research employing the PCP model of schizophrenia has been conducted on neonatal or adult animals. The present study was designed to evaluate the behavioral and neurochemical sequelae of subchronic exposure to PCP in adolescence. Male 35-42-day-old Sprague Dawley rats were subcutaneously administered either saline (10 ml · kg(-1) ) or PCP hydrochloride (10 mg · kg(-1) ) once daily for a period of 14 days (n = 6/group). The animals were allowed to withdraw from treatment for 2 weeks, and their social and exploratory behaviors were subsequently assessed in adulthood by using the social interaction test. To examine the effects of adolescent PCP administration on the regulation of N-methyl-D-aspartate receptors (NMDARs), quantitative autoradiography was performed on brain sections of adult, control and PCP-withdrawn rats by using 20 nM (3) H-MK-801. Prior subchronic exposure to PCP in adolescence had no enduring effects on the reciprocal contact and noncontact social behavior of adult rats. Spontaneous rearing in response to the novel testing arena and time spent investigating its walls and floor were reduced in PCP-withdrawn animals compared with control. The long-term behavioral effects of PCP occurred in the absence of persistent deficits in spontaneous locomotion or self-grooming activity and were not mediated by altered NMDAR density. Our results document differential effects of adolescent PCP administration on the social and exploratory behaviors of adult rats, suggesting that distinct neurobiological mechanisms are involved in mediating these behaviors. Copyright © 2014 Wiley Periodicals, Inc.

  16. Fertility of male adult rats submitted to forced swimming stress.

    PubMed

    Mingoti, G Z; Pereira, R N; Monteiro, C M R

    2003-05-01

    We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32 degrees C daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 +/- 1.25 s for control males vs 26.0 +/- 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 +/- 5.41 vs 127.02 +/- 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.

  17. Adolescent chronic restraint stress (aCRS) elicits robust depressive-like behavior in freely cycling, adult female rats without increasing anxiety-like behaviors.

    PubMed

    Hibicke, Meghan; Graham, Martha A; Hayslett, Renée L

    2017-04-01

    Stress during times of rapid development is a risk factor for Major Depressive Disorder, a mood disorder that disproportionately affects women. We developed an adolescent chronic restraint stress (aCRS) protocol using female rats to address the impact of adolescent stress on female adult depressive-like behavior. Animals were divided into 4 treatment groups: not restrained:saline (NRSAL), not restrained:desipramine (NRDES), restrained:saline (RSAL), and restrained:desipramine (RDES). NRSAL and NRDES rats were housed in a separate colony room from RSAL and RDES rats. All animals were weighed and handled daily. Beginning postnatal day (PND) 34(±1), RSAL and RDES rats were restrained for 1 hour daily for 14 consecutive days. Beginning PND 55(±1), NRDES and RDES rats were given subcutaneous desipramine (5 mg/kg), which served as a positive control, daily for 14 consecutive days. During that same time period, NRSAL and RSAL rats were given subcutaneous saline daily. aCRS (RSAL and RDES) rats showed significantly attenuated weight gain compared with nonrestrained (NRSAL and NRDES) rats during the restraint period. Weight gain normalized after the final restraint session. Behavioral testing took place PND 68-69(±1), and included open field testing, the elevated plus maze, locomotor activity, and the forced swim test (FST). RSAL rats showed significantly more immobility in the FST versus all other groups, indicating depressive-like behavior. No differences between groups were observed in the other behavioral measures. These results indicate that aCRS elicits depressive-like behavioral characteristics in adult female rats without increasing anxiety-like behaviors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Methylphenidate has nonlinear dose effects on cued response inhibition in adults but not adolescents

    PubMed Central

    Simon, Nicholas W.; Moghaddam, Bita

    2016-01-01

    Ongoing development of the dopamine system during adolescence may provide a partial mechanism for behavioral and psychiatric vulnerabilities. Despite early evidence for a hyperactive adolescent dopaminergic system, recent data suggest that adolescent dopamine may be functionally hypoactive compared to in adults. While this distinction has been established in response to dopaminergic drugs and natural rewards, little is known about age-related differences in cognitive efficacy of dopaminergic drugs. Using a recently established Cued Response Inhibition Task, we tested the effects of acute systemic methylphenidate, commonly known as Ritalin, on response inhibition and response initiation in adolescent and adults rats. First, we replicated previous data that adolescents are able to inhibit a response to a cue on par with adults, but are slower to produce a rewarded response after a stop cue. Next, we observed that methylphenidate modulated response inhibition in adult rats, with low dose (0.3 mg/kg) improving inhibition, and high dose (3 mg/kg) impairing performance. This dose-response pattern is commonly observed with psychostimulant cognitive modulation. In adolescents, however, methylphenidate had no effect on response inhibition at any dose. Latency of response initiation after the stop cue was not affected by methylphenidate in either adult or adolescent rats. These data establish that dose-response of a commonly prescribed psychostimulant medication is different in adolescents and adults. They further demonstrate that healthy adolescent response inhibition is not as sensitive to psychostimulants as in adults, supporting the idea that the dopamine system is hypoactive in adolescence. PMID:27431940

  19. A maternal methyl-containing diet alters learning ability in the Morris swimming test in adult rats.

    PubMed

    Plyusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2007-06-01

    Maternal choline diet is known to affect the processes of spatial learning. We report here our studies of learning ability in the Morris swimming test in the adult offspring of maternal rats given a methyl-containing supplement enriched with choline and betaine during pregnancy and lactation. Increases in the time taken to find the invisible platform and the duration of swimming close to the vessel walls were seen, these demonstrating worsening of learning ability in response to the maternal diet. Changes in the platform search strategy were not associated with increases in anxiety in male rats. The possible role of a maternal methyl-containing diet in altering the expression of genes controlling the development of the nervous system is discussed.

  20. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Galanin-like peptide stimulates feeding and sexual behavior via dopaminergic fibers within the medial preoptic area of adult male rats.

    PubMed

    Taylor, A; Madison, F N; Fraley, G S

    2009-03-01

    Galanin-like peptide (GALP) is located in the arcuate nucleus (Arc) of the hypothalamus and is known to regulate both food intake and sexual behaviors in adult male rats. We have previously demonstrated that ICV GALP administration elicits a significant fos response within the medial preoptic area (mPOA). GALP is known to stimulate both food intake and male-typical sex behavior, presumably by direct actions within the mPOA. Recent data from our and other labs have led us to suspect that GALP effects on sex behaviors are due to activation of incertohypothalamic dopaminergic neurons that terminate within the mPOA. To test the hypothesis that GALP activates mPOA dopaminergic systems, we utilized an immunolesion technique to eliminate dopaminergic fiber input to the mPOA via a dopamine transporter-specific toxin (DATSAP, n=8) and compared to control injections (SAP, n=8). All animals were sexually experienced adult male Long-Evans rats. DATSAP-treated male rats showed a significant (p<0.001) reduction in male sexual behaviors compared to SAP controls. We found that elimination of dopaminergic fibers within the mPOA significantly (p<0.001) eliminated all aspects of male sexual behavior under normal mating paradigms. Injections of GALP (5.0 nmol) significantly increased (p<0.01) male sex behavior and food intake in SAP control male rats but GALP did not stimulate the expression of these behaviors in DATSAP-treated rats. The orexigenic and anorexigenic effects of GALP were significantly (p<0.001) attenuated in DATSAP-treated male rats compared to SAP controls; however, ICV GALP was still able to significantly (p<0.05) reduce 24h body weight in both DATSAP and SAP rats. ICV GALP significantly (p<0.05) stimulated fos within the mPOA of SAP rats but not in DATSAP-treated male rats. These data suggest that GALP activates feeding and sexual behaviors in male rats by stimulating dopaminergic neurons that terminate within the mPOA.

  2. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Differential effects of chronic overload-induced muscle hypertrophy on mTOR and MAPK signaling pathways in adult and aged rats

    USDA-ARS?s Scientific Manuscript database

    We examined activation of the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways in adult (Y; 6 mo old; n = 16) and aged (O; 30 mo old; n = 16) male rats (Fischer 344 x Brown Norway) subjected to chronic overload-induced muscle hypertrophy of the plan...

  4. Adolescent social instability stress increases aggression in a food competition task in adult male Long-Evans rats.

    PubMed

    Cumming, Mark J; Thompson, Madison A; McCormick, Cheryl M

    2014-11-01

    Adolescent social instability stress (SS; daily 1 hr isolation + new cage partners postnatal days 30-45; thereafter with original cage partner, also in the SS condition) and control (CTL) rats competed for access to a preferred food in five sessions against their cage partner. In the first session, SS pairs displayed more aggression (face whacks, p = .02; rear attacks, p = .03), were less likely to relinquish access to the food voluntarily (p = .03), spent more time at the feeder than CTL pairs (p = .06), but did not differ in latency to access the feeder (p = .41). Pairs were considered in dominant-submissive relationships (DSR) if one rat spent significantly more time at the feeder than the other; 8 of 12 SS and 8 of 12 CTL pairs displayed DSRs (remaining: no-DSR). Aggression increased from the 1st to 5th session (p < .001), was greater in no-DSR than DSR pairs (p = .04; consistent with the proposed function of DSRs to be the reduction of aggression in groups), and was higher in SS than CTL pairs (p = .05). Because the increased aggression of SS compared with CTL pairs did not result in a significant increase in their time at the feeder, the increased aggression may be considered maladaptive, and may reflect an increased motivation for food reward. These results add to evidence that SS in adolescence modifies the adult social repertoire of rats and highlight the importance of adolescent social experiences for adult behavior. © 2014 Wiley Periodicals, Inc.

  5. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone induced impairment in social recognition

    PubMed Central

    Bychowski, Meaghan E.; Mena, Jesus D.; Auger, Catherine J.

    2013-01-01

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for three days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial CSF (aCSF) into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin dependent behavior within the male brain. PMID:23639881

  6. [Maternal methyl-containing dietary supplementation alters the ability to learn in adult rats in swimming Morris test].

    PubMed

    Pliusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2006-01-01

    Maternal choline diet influences the spatial learning processes. In this work, the learning ability of adult progeny of mothers who had received methyl diet enriched with choline and betain during pregnancy and lactation was studied in Morris test. The introduction of the diet to pregnant rats resulted in an increase in the time of search for invisible platform and time of swimming near the pool walls in offsprings, which meant a worsening of their learning ability. It was also found that change in platform searching strategy was not associated with an increase in anxiety of male rats. Possible involvement of maternal methyl diet in the change of expression of genes which control development of the nervous system is discussed.

  7. Functional capacity and cryopreservation of fetal rat pancreas in streptozotocin-diabetes. [Effectiveness of transplantation of fetal pancreas for control of diabetes in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.; Clark, W.; Molnar, I.G.

    1976-01-01

    The fetal rat pancreas has a marked capacity for growth and maturation in glucose responsivity after transplantation under the kidney capsules of adult rats. The optimal conditions for function of the organ are a 3-week period of growth in a normal rat before transfer to a diabetic animal. Under these conditions diabetes is completely reversed by one fetal pancreas, and glucose disappearance rate and plasma insulin response to glucose are normal. Shunting of the venous drainage into the liver from fetal pancreases placed beneath the kidney capsule results in a marked improvement in diabetes control, and this technique may provemore » useful in experimental or human applications. Cryopreservation of the fetal pancreas has been successfully accomplished and will serve as a useful adjuvant to this method of reversing experimental diabetes.« less

  8. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  9. The relationship of the oestrogen and progestin receptors in the abnormal uterus of the adult anovulatory rat. Effects of neonatal treatment with testosterone propionate or clomiphene citrate.

    PubMed Central

    White, J O; Moore, P A; Elder, M G; Lim, L

    1981-01-01

    The neonatal administration of testosterone propionate to Wistar rats resulted in anovulatory adults in persistent vaginal oestrus. Clomiphene citrate had a similar effect. In both groups of adults, hyperplasia of the uterine epithelium and occasional metaplasia was observed. The uterine nuclear and cytosol oestrogen and progestin receptors of these anovulatory rats were found to have affinities for their respective ligands similar to those of normal females. The nuclear oestrogen receptor comprised occupied and unoccupied components, as in normal females. The content of the nuclear oestrogen receptor was comparable with that of females in the late dioestrous or pro-oestrous phase. This content was higher in the clomiphene-treated group. Despite the relatively high nuclear oestrogen receptor content the content of progestin receptors, a putative index of the oestrogenic response, was lower in the treated rats than in normal adult females throughout the cycle. Administration of oestradiol to both treatment groups resulted in depletion of cytosol oestrogen receptor content 1 h later, which, however, was not reflected by an increase in the content of nuclear oestrogen receptors. There was no measurable increase in progesterone receptor content in treated rats after daily administration of oestrogen (5 microgram/rat) for 3 days. These changes in sex-hormone-receptor interactions involving an impairment of the normal oestrogenic response may be associated with the abnormal differentiation of the uterus in these sterile, anovulatory animals. Images Fig. 1. Fig. 2. PMID:7316994

  10. Fetal Cortical Transplants in Adult Rats Subjected to Experimental Brain Injury

    PubMed Central

    Soares, Holly; McIntosh, Tracy K.

    1991-01-01

    Fetal cortical tissue was injected into injured adult rat brains following concussive fluid percussion (FP) brain injury. Rats subjected to moderate FP injury received E16 cortex transplant injections into lesioned motor cortex 2 days, 1 week, 2 weeks, and 4 weeks post injury. Histological assessment of transplant survival and integration was based upon Nissl staining, glial fibrillary acidic protein (GFAP) immunocytochemistry, and staining for acetylcholinesterase. In addition to histological analysis, the ability of the transplants to attenuate neurological motor deficits associated with concussive FP brain injury was also tested. Three subgroups of rats receiving transplant 1 week, 2 weeks, and 4 weeks post injury Were chosen for evaluation of neurological motor function. Fetal cortical tissue injected into the injury site 4 weeks post injury failed to incorporate with injured host brain, did not affect glial scar formation, and exhibited extensive GFAP immunoreactivity. No improvement in neurological motor function was observed in animals receiving transplants 4 weeks post injury. Conversely, transplants injected 2 days, 1 week, or 2 weeks post injury survived, incorporated with host brain, exhibited little GFAP immunoreactivity, and successfully attenuated glial scarring. However, no significant improvement in motor function was observed at the one week or two week time points. The inability of the transplants to attenuate motor function may indicate inappropriate host/transplant interaction. Our results demonstrate that there exists a temporal window in which fetal cortical transplants can attenuate glial scarring as well as be successfully incorporated into host brains following FP injury. PMID:1782253

  11. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers

    PubMed Central

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-01-01

    The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399

  12. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats

    PubMed Central

    Adewale, Osonuga Odusoga; Oduyemi, Osonuga Ifabunmi; Ayokunle, Osonuga

    2014-01-01

    Objective To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats. Methods Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum. Result Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively. Conclusion Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility. PMID:25183143

  13. Methylphenidate has nonlinear dose effects on cued response inhibition in adults but not adolescents.

    PubMed

    Simon, Nicholas W; Moghaddam, Bita

    2017-01-01

    Ongoing development of the dopamine system during adolescence may provide a partial mechanism for behavioral and psychiatric vulnerabilities. Despite early evidence for a hyperactive adolescent dopaminergic system, recent data suggest that adolescent dopamine may be functionally hypoactive compared to in adults. While this distinction has been established in response to dopaminergic drugs and natural rewards, little is known about age-related differences in cognitive efficacy of dopaminergic drugs. Using a recently established Cued Response Inhibition Task, we tested the effects of acute systemic methylphenidate, commonly known as Ritalin, on response inhibition and response initiation in adolescent and adults rats. First, we replicated previous data that adolescents are able to inhibit a response to a cue on par with adults, but are slower to produce a rewarded response after a stop cue. Next, we observed that methylphenidate modulated response inhibition in adult rats, with low dose (0.3mg/kg) improving inhibition, and high dose (3mg/kg) impairing performance. This dose-response pattern is commonly observed with psychostimulant cognitive modulation. In adolescents, however, methylphenidate had no effect on response inhibition at any dose. Latency of response initiation after the stop cue was not affected by methylphenidate in either adult or adolescent rats. These data establish that dose-response of a commonly prescribed psychostimulant medication is different in adolescents and adults. They further demonstrate that healthy adolescent response inhibition is not as sensitive to psychostimulants as in adults, supporting the idea that the dopamine system is hypoactive in adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis.

    PubMed

    Abboussi, Oualid; Tazi, Abdelouahhab; Paizanis, Eleni; El Ganouni, Soumaya

    2014-05-01

    Several epidemiological studies show an increase in cannabis use among adolescents, especially in Morocco for being one of the major producers in the world. The neurobiological consequences of chronic cannabis use are still poorly understood. In addition, brain plasticity linked to ontogeny portrays adolescence as a period of vulnerability to the deleterious effects of drugs. The aim of this study was to investigate the behavioral neurogenic effects of chronic exposure to the cannabinoid agonist WIN55,212-2 during adolescence, by evaluating the emotional and cognitive performances, and the consequences on neurogenesis along the dorso-ventral axis of the hippocampus in adult rats. WIN55,212 was administered intraperitoneally (i.p.) once daily for 20 days to adolescent (27-30 PND) and adult Wistar rats (54-57 PND) at the dose of 1mg/kg. Following a 20 day washout period, emotional and cognitive functions were assessed by the Morris water maze test and the two-way active avoidance test. Twelve hours after, brains were removed and hippocampal neurogenesis was assessed using the doublecortin (DCX) as a marker for cell proliferation. Our results showed that chronic WIN55,212-2 treatment significantly increased thigmotaxis early in the training process whatever the age of treatment, induced spatial learning and memory deficits in adolescent but not adult rats in the Morris water maze test, while it had no significant effect in the active avoidance test during multitrial training in the shuttle box. In addition, the cognitive deficits assessed in adolescent rats were positively correlated to a decrease in the number of newly generated neurons in dorsal hippocampus. These data suggest that long term exposure to cannabinoids may affect more potently spatial learning and memory in adolescent compared to adult rats via a negative action on hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Adult Learners.

    ERIC Educational Resources Information Center

    Brodzinski, Frederick R., Ed.; Shriberg, Arthur, Ed.

    1984-01-01

    Presents nine articles which provide a broad overview of issues and concerns related to the delivery of student services to adult learners. Specific topics include needs and interests of adult learners, marketing, special technology, adult resource centers, adult support groups, and the role of the chief student affairs officer. (JAC)

  16. An Undergraduate Course in Adult Development: When the Virtual Adult Is an Adult

    ERIC Educational Resources Information Center

    Williams, Robert B.

    2014-01-01

    An aspect of an undergraduate psychology course on adult development was the preparation of case records on adults who consented to be studied. Participants (1) developed their abilities to observe and accurately record adult behavior across a variety of ages and contexts; (2) withheld judgments about behavior when evidence was lacking; (3)…

  17. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    PubMed Central

    JOHNSON, RYAN T.; BREEDLOVE, S. MARC; JORDAN, CYNTHIA L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to determine whether MePD astrocytes are sexually differentiated and whether ARs have a role. Unbiased stereological methods revealed laterality and sex differences in MePD astrocyte number and complexity. The right MePD contained more astrocytes than the left in all three genotypes, and the number of astrocytes was also sexually differentiated in the right MePD, with males having more astrocytes than females. In contrast, the left MePD contained more complex astrocytes than did the right MePD in all three genotypes, and males had more complex astrocytes than females in this hemisphere. TFM males were comparable to wildtype females, having fewer astrocytes on the right and simpler astrocytes on the left than do wildtype males. Taken together, these results demonstrate that astrocytes are sexually dimorphic in the adult MePD and that the nature of the sex difference is hemisphere-dependent: a sex difference in astrocyte number in the right MePD and a sex difference in astrocyte complexity in the left MePD. Moreover, functional ARs appear to be critical in establishing these sex differences in MePD astrocyte morphology. PMID:18853427

  18. Early life programming of fear conditioning and extinction in adult male rats.

    PubMed

    Stevenson, Carl W; Spicer, Clare H; Mason, Rob; Marsden, Charles A

    2009-12-28

    The early rearing environment programs corticolimbic function and neuroendocrine stress reactivity in adulthood. Although early environmental programming of innate fear has been previously examined, its impact on fear learning and memory later in life remains poorly understood. Here we examined the role of the early rearing environment in programming fear conditioning and extinction in adult male rats. Pups were subjected to maternal separation (MS; 360 min), brief handling (H; 15 min), or animal facility rearing (AFR) on post-natal days 2-14. As adults, animals were tested in a 3-day fear learning and memory paradigm which assessed the acquisition, expression and extinction of fear conditioning to an auditory cue; the recall of extinction was also assessed. In addition, contextual fear was assessed prior to cued extinction and its recall. We found that the acquisition of fear conditioning to the cue was modestly impaired by MS. However, no early rearing group differences were observed in cue-induced fear expression. In contrast, both the rate of extinction and extinction recall were attenuated by H. Finally, although contextual fear was reduced after extinction to the cue, no differences in context-induced fear were observed between the early rearing groups. These results add to a growing body of evidence supporting an important role for early environmental programming of fear conditioning and extinction. They also indicate that different early rearing conditions can program varying effects on distinct fear learning and memory processes in adulthood.

  19. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    PubMed

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  20. Greater resistance and lower contribution of free radicals to hypoxic neurotoxicity in immature rat brain compared to adult brain as revealed by dynamic changes in glucose metabolism.

    PubMed

    Maruoka, N; Murata, T; Omata, N; Fujibayashi, Y; Waki, A; Yoshimoto, M; Yano, R; Yonekura, Y; Wada, Y

    2001-01-01

    Seven-day-old rat brain slices were incubated at 36C in oxygenated Krebs-Ringer solution containing [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG), and serial two-dimensional time-resolved images of [(18)F]FDG uptake by the slices were obtained. The Gjedde-Patlak graphical method was applied to the image data, and the duration limit of hypoxia loading that allowed recovery of the fractional rate constant (k3*) of [(18)F]FDG (proportional to the cerebral glucose metabolic rate) after hypoxia loading to the unloaded control level was 50 min, and MK-801 as an N-methyl-D-aspartate antagonist had neuroprotective effects, but PBN as a free radical scavenger was ineffective. In our previous study in adult (7-week-old) rat brains [Murata et al., Exp Neurol 2000, 164:269-279], the limit of the hypoxia loading time was 20 min, and both MK-801 and PBN were effective. In the immature rat brains, the ratio of aerobic glucose metabolism to the total glucose metabolism was low compared with the adult rat brains, suggesting only a slight involvement of free radicals in hypoxic neurotoxicity. These data suggest that the higher resistance of immature brains to hypoxia compared to that of adult brains is attributable to a lower involvement of free radicals due to a lower aerobic glucose metabolic rate. Copyright 2002 S. Karger AG, Basel

  1. Young adults as users of adult healthcare: experiences of young adults with complex or life-limiting conditions.

    PubMed

    Beresford, B; Stuttard, L

    2014-08-01

    Awareness is growing that young adults may have distinctive experiences of adult healthcare and that their needs may differ from those of other adult users. In addition, the role of adult health teams in supporting positive transitions from paediatrics is increasingly under discussion. This paper contributes to these debates. It reports a qualitative study of the experiences of young adults - all with complex chronic health conditions - as users of adult health services. Key findings from the study are reported, including an exploration of factors that help to explain interviewees' experiences. Study findings are discussed in the context of existing evidence from young adults in adult healthcare settings and theories of 'young adulthood'. Implications for training and practice are considered, and priorities for future research are identified. © 2014 Royal College of Physicians.

  2. A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats.

    PubMed

    Eluwa, M A; Inyangmme, I I; Akpantah, A O; Ekanem, T B; Ekong, M B; Asuquo, O R; Nwakanma, A A

    2013-09-01

    Carbonated drinks are widely consumed because of their taste and their ability to refresh and quench thirst. These carbonated drinks also exist in the form of diet drinks, for example Diet Coke®, Pepsi®, extra. A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of female albino Wistar rats was investigated. Fifteen adult female Wistar rats weighing between 180-200 g were divided into 3 groups; designated as groups A, B and C, and each group consisted of five rats. Group A was the Control group and received distilled water, while groups B and C were the experimental groups. Group B was administered 50 ml of regular soda (RS), and group C was administered 50 ml of diet soda (DS) each per day for 21 days, and the rats were sacrificed on Day 22, and their cerebellums excised and preserved. Histological result of the sections of the cerebellum showed shrunken and degenerated Purkinje cells with hypertrophied dendrites, especially in the DS group, which was less in the RS group compared to the control group. These results suggest that diet soda has adverse effect on the cerebellum of adult female albino Wistar rats.

  3. Intraindividual variability in cognitive performance in older adults: comparison of adults with mild dementia, adults with arthritis, and healthy adults.

    PubMed

    Hultsch, D F; MacDonald, S W; Hunter, M A; Levy-Bencheton, J; Strauss, E

    2000-10-01

    Intraindividual variability in latency and accuracy of cognitive performance across both trials and occasions was examined in 3 groups of older adults: healthy adults, adults with arthritis, and adults diagnosed with mild dementia. Participants completed 2 reaction-time and 2 episodic-memory tasks on 4 occasions. Results indicated that intraindividual variability in latency was greater in individuals diagnosed with mild dementia than in adults who were neurologically intact, regardless of their health status. Individual differences in variability were stable over time and across cognitive domains. Intraindividual variability was also related to level of performance and was uniquely predictive of neurological status, independent of level of performance. Results suggest that intraindividual variability may be a behavioral indicator of compromised neurological mechanisms.

  4. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    PubMed Central

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  5. Stress responses of adolescent male and female rats exposed repeatedly to cat odor stimuli, and long-term enhancement of adult defensive behaviors.

    PubMed

    Wright, Lisa D; Muir, Katherine E; Perrot, Tara S

    2013-07-01

    In order to characterize the short- and long-term effects of repeated stressor exposure during adolescence, and to compare the effects of using two sources of cat odor as stressor stimuli, male and female adolescent rats (postnatal day (PND) ∼ 38-46) were exposed on five occasions to either a control stimulus, a cloth stimulus containing cat hair/dander, or a section of cat collar previously worn by a cat. Relative to control stimulus exposure, activity was suppressed and defensive behavior enhanced during exposure to either cat odor stimulus (most pervasively in rats exposed to the collar). Only cloth-exposed rats showed elevated levels of corticosterone (CORT), and only after repeated stressor exposure, but interestingly, rats exposed to the collar stimulus during adolescence continued to show increased behavioral indices of anxiety in adulthood. In this group, the time an individual spent in physical contact with a cagemate during the final adolescent exposure was negatively related to stress-induced CORT output in adulthood, which suggests that greater use of social support during adolescent stress may facilitate adult behavioral coping, without necessitating increased CORT release. These findings demonstrate that adolescent male and female rats respond defensively to cat odor stimuli across repeated exposures and that exposure to such stressors during adolescence can augment adult anxiety-like behavior in similar stressful conditions. These findings also suggest a potential role for social behavior during adolescent stressor exposure in mediating long-term outcomes. Copyright © 2012 Wiley Periodicals, Inc.

  6. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition.

    PubMed

    Bychowski, M E; Mena, J D; Auger, C J

    2013-08-29

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone-induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for 3 days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial cerebrospinal fluid into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin-dependent behavior within the male brain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. National health surveillance of adults with disabilities, adults with intellectual and developmental disabilities, and adults with no disabilities.

    PubMed

    Havercamp, Susan M; Scott, Haleigh M

    2015-04-01

    People with disabilities experience worse health and poorer access to health care compared to people without disability. Large-scale health surveillance efforts have largely excluded adults with intellectual and developmental disability. This study expands knowledge of health status, health risks and preventative health care in a representative US sample comparing the health of adults with no disability to adults with intellectual and developmental disability and to adults with other types of disability. The purposes of this study were (1) to identify disparities between adults with intellectual and developmental disability and adults with no disability and (2) compare this pattern of disparities to the pattern between adults with other types of disability and adults without disability. This study compares health status, health risks and preventative health care in a national sample across three groups of adults: No Disability, Disability, and Intellectual and Developmental Disability. Data sources were the 2010 Behavior Risk Factor Surveillance Survey and the National Core Indicators Consumer Survey. Adults with disability and with intellectual and developmental disability were more likely to report being in poor health compared to adults without disability. Disability and intellectual and developmental disability conferred unique health risks and health care utilization patterns. Significant disparities in health and health care utilization were found for adults with disability and developmental disability relative to adults without disability. Disability training for health care providers and health promotion research that identifies disability as a demographic group is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  9. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats.

    PubMed

    Asker, M E; Hassan, W A; El-Kashlan, A M

    2015-08-01

    The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress. © 2014 Blackwell Verlag GmbH.

  10. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia.more » We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.« less

  11. Older adults challenged financially when adult children move home.

    PubMed

    Wallace, Steven P; Padilla-Frausto, D Imelda

    2014-02-01

    This policy brief looks at the financial burdens imposed on older Californians when adult children return home, often due to a crisis not of their own making, to live with their parents. The findings show that on average in California, the amount of money that older adults need in order to maintain a minimally decent standard of living while supporting one adult child in their home increases their expenses by a minimum of 50 percent. Low-income older adults are usually on fixed incomes, so helping an adult child can provide the child with a critical safety net but at the cost of the parents' own financial well-being. Policy approaches to assisting this vulnerable population of older adults include implementing reforms to increase Supplemental Security Income (SSI), improving the availability of affordable housing, assuring that all eligible nonelderly adults obtain health insurance through health care reform's expansion of Medi-Cal and subsidies, and increasing food assistance through SNAP and senior meal programs.

  12. Do the accelerating actions of tianeptine and l-arginine on cortical spreading depression interact? An electrophysiological analysis in young and adult rats.

    PubMed

    Maia, Luciana Maria Silva de Seixas; Amancio-Dos-Santos, Angela; Germano, Paula Catirina Pereira da Silva; Falcão, Anna Carolina Santos Marinho; Duda-de-Oliveira, Desirré; Guedes, Rubem Carlos Araújo

    2017-05-22

    In the rat, we previously demonstrated that serotonin-enhancing drugs impair cortical spreading depression (CSD) and that l-arginine (arginine) treatment enhances CSD. Here, we investigated the interaction between topical application of the serotonin uptake enhancer tianeptine and systemic arginine administration on CSD. From postnatal day 7-28, female Wistar rats (n=40) received by gavage 300mg/Kg/day arginine (n=20) or water (n=20). Half of the arginine- or water-treated rats underwent CSD recording at 30-40days of age (young), while the other half was recorded at 90-120days (adult). Following baseline recording (four episodes of CSD), we applied tianeptine solution (10mg/ml) to a rectangular portion of the intact dura mater for 10-min and then elicited CSD. This procedure was repeated three times. Compared to baseline values, CSD velocities and amplitudes following tianeptine application increased, and CSD duration decreased significantly (p<0.05) in both young and adult rats, regardless of treatment group. CSD acceleration caused by systemic treatment with arginine is in agreement with previous findings. Topical cortical application of tianeptine replicated the effect of systemic application, suggesting a cortically based mechanism for tianeptine's action. However, the absence of interaction between arginine and tianeptine treatments suggests that they probably act through separate mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  14. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    PubMed

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  15. Immunohistochemical localization of carbonic anhydrase isozyme II in the gustatory epithelium of the adult rat.

    PubMed

    Daikoku, H; Morisaki, I; Ogawa, Y; Maeda, T; Kurisu, K; Wakisaka, S

    1999-06-01

    The distribution of carbonic anhydrase isozyme II (CA II)-like immunoreactivity (-LI) in the gustatory epithelium was examined in the adult rat. In the circumvallate and foliate papillae, CA II-LI was observed in the cytoplasm of the spindle-shaped taste bud cells, with weak immunoreaction in the surface of the gustatory epithelium. No neuronal elements displayed CA II-LI in these papillae. There was no apparent difference in the distribution pattern between the anterior and posterior portions of the foliate papillae. In immunoelectron microscopy, immunoreaction products for CA II were diffusely distributed in the entire cytoplasm of the taste bud cells having dense round granules at the periphery of the cells. No taste bud cells displaying CA II-LI were detected in the fungiform papillae, but a few thick nerve fibers displayed CA II-LI. In the taste buds of the palatal epithelium, neither taste bud cells nor neuronal elements exhibited CA II-LI. The present results indicate that CA II was localized in the type I cells designated as supporting cells in the taste buds located in the posterior lingual papillae of the adult animal.

  16. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    PubMed

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-11-01

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  17. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers.

    PubMed

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-11-01

    The presence of 137 Cesium ( 137 Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137 Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l -1 ) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (-11%) levels, but only for the rats exposed to 137 Cs intake in adulthood. Large changes in 17β-estradiol (-69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Failure of polycythemia-induced increase in arterial oxygen content to suppress the anorexic effect of simulated high altitude in the adult rat.

    PubMed

    Norese, María F; Lezón, Christian E; Alippi, Rosa M; Martínez, María P; Conti, María I; Bozzini, Carlos E

    2002-01-01

    The anorexic effect of exposure to high altitude may be related to the reduction in the arterial oxygen content (Ca(O2)) induced by hypoxemia and possibly the associated decreased convective oxygen transport (COT). This study was then performed to evaluate the effects of either transfusion-induced polycythemia or previous acclimation to hypobaria with endogenously induced polycythemia on the anorexic effect of simulated high altitude (SHA) in adult female rats. Food consumption, expressed in g/d/100 g body weight, was reduced by 40% in rats exposed to 506 mbar for 4 d, as compared to control rats maintained in room air. Transfusion polycythemia, which significantly increased hematocrit, hemoglobin concentration, Ca(O2), and COT, did not change the anorexic response to the exposure to hypobaric air. Depression of food intake during exposure to SHA also occurred in rats fasted during 31 h before exposure and allowed to eat ad libitum for 2 h during exposure. Body mass loss was similar in 48-h fasted rats that were either hypoxic or normoxic. Body mass loss was similar in normoxic and hypoxic rats, the former eating the amount of food freely eaten by the latter. Hypoxia-acclimated rats with endogenously induced polycythemia taken to SHA again had diminished food intake and lost body mass at rates that were very close to those found in nonacclimated ones. Exposure to SHA also led to a decrease in food consumption, body weight, and plasma leptin in adult female mice. Analysis of data suggest that body mass loss that accompanies SHA-induced hypoxia is due to hypophagia and that experimental manipulation of the blood oxygen transport capacity cannot ameliorate it. Leptin does not appear to be an inducer of the anorexic response to hypoxia, at least in mice and rats.

  19. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    PubMed

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prolongation of GFP-expressed skin graft after intrathymic injection of GFP positive splenocytes in adult rat

    NASA Astrophysics Data System (ADS)

    Hakamata, Yoji; Igarashi, Yuka; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    GFP is a fluorescent product of the jellyfish Aequorea victoria and has been used for a variety of biological experiments as a reporter molecule. While GFP possesses advantages for the non-invasive imaging of viable cells, GFP-positive cells are still considered potential xeno-antigens. It is difficult to observe the precise fate of transplanted cells/organs in recipients without immunological control. The aim of this study was to determine whether intrathymic injection of GFP to recipients and the depletion of peripheral lymphocytes could lead to donor-specific unresponsiveness to GFP-expressed cell. LEW rats were administered intraperitoneally with 0.2 ml of anti-rat lymphocyte serum (ALS) 1 day prior to intrathymic injection of donor splenocytes or adeno-GFP vector. Donor cells and vector were non-invasively inoculated into the thymus under high frequency ultrasound imaging using an echo-guide. All animals subsequently received a 7 days GFP-expressed skin graft from the same genetic background GFP LEW transgenic rat. Skin graft survival was greater in rats injected with donor splenocytes (23.6+/-9.1) compared with adeno-GFP (13.0+/-3.7) or untreated control rats (9.5+/-1.0). Intrathymic injection of donor antigen into adult rats can induce donor-specific unresponsiveness. Donor cells can be observed for a long-term in recipients with normal immunity using this strategy.

  1. Neonatal exposure to estradiol increases dopaminergic transmission in Nucleus Accumbens and morphine-induced conditioned place preference in adult female rats.

    PubMed

    Bonansco, Christian; Martínez-Pinto, Jonathan; Silva, Roxana A; Velásquez, Victoria B; Martorell, Andrés; Selva, Mónica V; Espinosa, Pedro; Moya, Pablo R; Cruz, Gonzalo; Andrés, María Estela; Sotomayor-Zárate, Ramón

    2018-01-29

    Steroid sex hormones produce physiological effects in reproductive tissues and also in non-reproductive tissues such as the brain, particularly in cortical, limbic and midbrain areas. Dopamine (DA) neurons involved in processes such as prolactin secretion (tuberoinfundibular system), motor circuit regulation (nigrostriatal system) and driving of motivated behavior (mesocorticolimbic system), are specially regulated by sex hormones. Indeed, sex hormones promote neurochemical and behavioral effects induced by drugs of abuse by tuning midbrain DA neurons in adult animals. However, the long-term effects induced by neonatal exposure to sex hormones on dopaminergic neurotransmission have not been fully studied. The focus of this work was to reveal if a single neonatal exposure with estradiol valerate (EV) results in a programming of dopaminergic neurotransmission in the nucleus accumbens (NAcc) of adult female rats. To answer this question, electrophysiological, neurochemical, cellular, molecular and behavioral techniques were used. The data show that frequency but not amplitude of the spontaneous excitatory postsynaptic current (sEPSC) is significantly increased in NAcc medium spiny neurons (MSNs) of EV-treated rats. In addition, DA content and release are both increased in the NAcc of EV-treated rats, caused by an increased synthesis of this neurotransmitter. These results are functionally associated with a higher percentage of EV-treated rats conditioned to morphine, a drug of abuse, compared with controls. In conclusion, neonatal programming with estradiol increases NAcc dopaminergic neurotransmission in the adulthood, which may be associated with increased reinforcing effects of drugs of abuse. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats.

    PubMed

    Pavón, Francisco Javier; Marco, Eva María; Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  3. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats

    PubMed Central

    Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    2016-01-01

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  4. Prenatal ozone exposure abolishes stress activation of Fos and tyrosine hydroxylase in the nucleus tractus solitarius of adult rat.

    PubMed

    Boussouar, A; Araneda, S; Hamelin, C; Soulage, C; Kitahama, K; Dalmaz, Y

    2009-03-06

    Ozone (O3) is widely distributed in the environment, with high levels of air pollution. However, very few studies have documented the effects on postnatal development of O3 during pregnancy. The long-term effects of prenatal O3 exposure in rats (0.5 ppm 12 h/day from embryonic day E5 to E20) were evaluated in the adult nucleus tractus solitarius (NTS) regulating respiratory control. Neuronal response was assessed by Fos protein immunolabeling (Fos-IR), and catecholaminergic neuron involvement by tyrosine hydroxylase (TH) labeling (TH-IR). Adult offspring were analyzed at baseline and following immobilization stress (one hour, plus two hours' recovery); immunolabeling was observed by confocal microscopy. Prenatal O3 increased the baseline TH gray level per cell (p < 0.001). In contrast, the number of Fos-IR cells, Fos-IR/TH-IR colabeled cells and proportion of TH double-labeled with Fos remained unchanged. After stress, the TH gray level (p < 0.001), number of Fos-IR cells (p < 0.001) and of colabeled Fos-IR/TH-IR cells (p < 0.05) and percentage of colabeled Fos-IR/TH-IR neurons against TH-IR cells (p < 0.05) increased in the control group. In prenatal-O3 rats, immobilization stress abolished these increases and reduced the TH gray level (p < 0.05), indicating that prenatal O3 led to loss of adult NTS reactivity to stress. We conclude that long-lasting sequelae were detected in the offspring beyond the prenatal O3 exposure. Prenatal O3 left a print on the NTS, revealed by stress. Disruption of neuronal plasticity to new challenge might be suggested.

  5. LACK OF ANTIANDROGENIC EFFECTS IN ADULT MALE RATS FOLLOWING ACUTE EXPOSURE TO 2, 2-BIS (4-CHLOROPHENYL)-1,1-DICHLOROETHYLENE (P,P'DDE)

    EPA Science Inventory

    Although the insecticide dichlorodiphenyltrichloroethane (DDT) was banned in the US in 1972, DDT and its major metabolite 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) are still persistent in the environment. DDE at high doses is antiandrogenic in fetal and adult rats and, t...

  6. Food proteins and maturation of small intestinal microvillus membranes (MVM). I. Binding characteristics of cow's milk proteins and concanavalin A to MVM from newborn and adult rats.

    PubMed

    Stern, M; Gellermann, B

    1988-01-01

    To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.

  7. TIME COURSE AND DOSE RESPONSE ASSESSMENT OF CHOLINESTERASE (CHE) INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL, METHOMYL, METHIOCARB, OXAMYL, OR PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of 5 N-methyl carbamates, the time course and dose response profiles for ChE inhibition were established for each. For the time course comparison, adult male Long Evans rats (n=5 dose group) were dosed orally with either carbaryl (CB; 30 mg/kg in corn oi...

  8. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    PubMed

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  9. Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats.

    PubMed

    Sun, Lan; Min, Li; Zhou, Hao; Li, Man; Shao, Feng; Wang, Weiwen

    2017-08-30

    Social isolation is regarded as a cause of schizophrenia spectrum disorders. Animal models of schizophrenia are constructed by repeated early environment deprivation as an important paradigm to reveal its pathological mechanism. Male Sprague Dawley rats were assigned to either social-rearing (SR) or isolated-rearing (IR) groups during postnatal days (PNDs) 21-34. On PND 56, all rats underwent behavioral testing including locomotor activity, anxiety-related behaviors in an open field and prepulse inhibition (PPI). Then, the rats were sacrificed and prefrontal cortex (PFC) tissues were separated for high-throughput proteomics analysis and Western blot validation. Rats of the IR group showed increased spontaneous locomotion, increased anxiety-like behavior and disrupted PPI compared with rats of the SR group. Based on proteomics analysis, a total of 124 PFC proteins were found to be significantly differentially expressed between the SR group and the IR group, the most remarkable of which were glial fibrillary acidic protein (GFAP), Annexin A2 (ANXA2) and vimentin (VIM), three astrocyte biomarkers. Further Western blot measurement confirmed that the levels of GFAP, ANXA2 and VIM were increased significantly in IR rats. Adolescent social isolation induced schizophrenia-like behaviors and significantly different expression of 124 PFC proteins in adult rats, especially GFAP, ANXA2 and VIM, which suggests that astrocyte development might be involved in the neural mechanism of schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  10. Health disparities among adults with developmental disabilities, adults with other disabilities, and adults not reporting disability in North Carolina.

    PubMed

    Havercamp, Susan M; Scandlin, Donna; Roth, Marcia

    2004-01-01

    The purposes of this study were (1) to identify disparities between adults with developmental disabilities and non-disabled adults in health and medical care, and (2) to compare this pattern of disparities to the pattern of disparities between adults with other disabilities and adults without disabilities. The authors compared data on health status, health risk behaviors, chronic health conditions, and utilization of medical care across three groups of adults: No Disability, Disability, and Developmental Disability. Data sources were the 2001 North Carolina Behavioral Risk Factor Surveillance System and the North Carolina National Core Indicators survey. Adults with developmental disabilities were more likely to lead sedentary lifestyles and seven times as likely to report inadequate emotional support, compared with adults without disabilities. Adults with disabilities and developmental disabilities were significantly more likely to report being in fair or poor health than adults without disabilities. Similar rates of tobacco use and overweight/obesity were reported. Adults with developmental disabilities had a similar or greater risk of having four of five chronic health conditions compared with non-disabled adults. Significant medical care utilization disparities were found for breast and cervical cancer screening as well as for oral health care. Adults with developmental disabilities presented a unique risk for inadequate emotional support and low utilization of breast and cervical cancer screenings. Significant disparities in health and medical care utilization were found for adults with developmental disabilities relative to non-disabled adults. The National Core Indicators protocol offers a sound methodology to gather much-needed surveillance information on the health status, health risk behaviors, and medical care utilization of adults with developmental disabilities. Health promotion efforts must be specifically designed for this population.

  11. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  12. Lasting Adaptations in Social Behavior Produced by Social Disruption and Inhibition of Adult Neurogenesis

    PubMed Central

    Opendak, Maya; Offit, Lily; Monari, Patrick; Schoenfeld, Timothy J.; Sonti, Anup N.; Cameron, Heather A.

    2016-01-01

    Research on social instability has focused on its detrimental consequences, but most people are resilient and respond by invoking various coping strategies. To investigate cellular processes underlying such strategies, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Social disruption produced a preference for familiar over novel conspecifics, a change that did not involve global memory impairments or increased anxiety. Using the neuropeptide oxytocin as a tool to increase neurogenesis in the hippocampus of disrupted rats restored preference for novel conspecifics to predisruption levels. Conversely, reducing the number of new neurons by limited inhibition of adult neurogenesis in naive transgenic GFAP–thymidine kinase rats resulted in social behavior similar to disrupted rats. Together, these results provide novel mechanistic evidence that social disruption shapes behavior in a potentially adaptive way, possibly by reducing adult neurogenesis in the hippocampus. SIGNIFICANCE STATEMENT To investigate cellular processes underlying adaptation to social instability, a dominance hierarchy of rats was formed and then destabilized. Regardless of social position, rats from disrupted hierarchies had fewer new neurons in the hippocampus compared with rats from control cages and those from stable hierarchies. Unexpectedly, these changes were accompanied by changes in social strategies without evidence of impairments in cognition or anxiety regulation. Restoring adult neurogenesis in disrupted rats using oxytocin and conditionally suppressing the production of new neurons in socially naive GFAP–thymidine kinase rats showed that loss of 6-week-old neurons may be responsible for adaptive changes in social behavior. PMID:27358459

  13. Accumulation of glycogen in axotomized adult rat facial motoneurons.

    PubMed

    Takezawa, Yosuke; Baba, Otto; Kohsaka, Shinichi; Nakajima, Kazuyuki

    2015-06-01

    This study biochemically determined glycogen content in the axotomized facial nucleus of adult rats up to 35 days postinsult. The amounts of glycogen in the transected facial nucleus were significantly increased at 5 days postinsult, peaked at 7 days postinsult, and declined to the control levels at 21-35 days postinsult. Immunohistochemical analysis with antiglycogen antibody revealed that the quantity of glycogen granules in the axotomized facial nucleus was greater than that in the control nucleus at 7 days postinjury. Dual staining methods with antiglycogen antibody and a motoneuron marker clarified that the glycogen was localized mainly in motoneurons. Immunoblotting and quantification analysis revealed that the ratio of inactive glycogen synthase (GS) to total GS was significantly decreased in the injured nucleus at about 1-3 days postinsult and significantly increased from 7 to 14 days postinsult, suggesting that glycogen is actively synthesized in the early period postinjury but suppressed after 7 days postinsult. The enhanced glycogen at about 5-7 days postinsult is suggested to be responsible for the decrease in inactive GS levels, and the decrease of glycogen after 7 days postinsult is considered to be caused by increased inactive GS levels and possibly the increase in active glycogen phosphorylase. © 2015 Wiley Periodicals, Inc.

  14. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner.

    PubMed

    Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J

    2013-03-01

    Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.

  15. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  16. Chronic restraint stress impairs endocannabinoid mediated suppression of GABAergic signaling in the hippocampus of adult male rats.

    PubMed

    Hu, Wen; Zhang, Mingyue; Czéh, Boldizsár; Zhang, Weiqi; Flügge, Gabriele

    2011-07-15

    Chronic stress, a risk factor for the development of psychiatric disorders, is known to induce alterations in neuronal networks in many brain areas. Previous studies have shown that chronic stress changes the expression of the cannabinoid receptor 1 (CB1) in the brains of adult rats, but neurophysiological consequences of these changes remained unclear. Here we demonstrate that chronic restraint stress causes a dysfunction in CB1 mediated modulation of GABAergic transmission in the hippocampus. Using an established protocol, adult male Sprague Dawley rats were daily restrained for 21 days and whole-cell voltage clamp was performed at CA1 pyramidal neurons. When recording carbachol-evoked inhibitory postsynaptic currents (IPSCs) which presumably originate from CB1 expressing cholecystokinin (CCK) interneurons, we found that depolarization-induced suppression of inhibition (DSI) was impaired by the stress. DSI is a form of short-term plasticity at GABAergic synapses that is known to be CB1 mediated and has been suggested to be involved in hippocampal information encoding. Chronic stress attenuated the depolarization-induced suppression of the frequency of carbachol-evoked IPSCs. Incubation with a CB1 receptor antagonist prevented this DSI effect in control but not in chronically stressed animals. The stress-induced impairment of CB1-mediated short-term plasticity at GABAergic synapses may underlie cognitive deficits which are commonly observed in animal models of stress as well as in patients with stress-related psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    PubMed

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  18. Young Adults' Implicit and Explicit Attitudes towards the Sexuality of Older Adults.

    PubMed

    Thompson, Ashley E; O'Sullivan, Lucia F; Byers, E Sandra; Shaughnessy, Krystelle

    2014-09-01

    Sexual interest and capacity can extend far into later life and result in many positive health outcomes. Yet there is little support for sexual expression in later life, particularly among young adults. This study assessed and compared young adults' explicit and implicit attitudes towards older adult sexuality. A sample of 120 participants (18-24 years; 58% female) completed a self-report (explicit) measure and a series of Implicit Association Tests capturing attitudes towards sexuality among older adults. Despite reporting positive explicit attitudes, young people revealed an implicit bias against the sexual lives of older adults. In particular, young adults demonstrated implicit biases favouring general, as compared to sexual, activities and young adults as compared to older adults. Moreover, the bias favouring general activities was amplified with regard to older adults as compared to younger adults. Our findings challenge the validity of research relying on self-reports of attitudes about older adult sexuality.

  19. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  20. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats.

    PubMed

    Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N

    2016-02-01

    Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter. © 2015 Wiley Periodicals, Inc.

  1. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats.

    PubMed

    Oshiro, W M; Beasley, T E; McDaniel, K L; Evansky, P A; Martin, S A; Moser, V C; Gilbert, M E; Bushnell, P J

    2015-01-01

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoline alone (E0) and gasoline with 15% or 85% ethanol (E15 and E85, respectively). Rat dams were exposed for 6.5h daily to the vapors at concentrations of 0, 3000, 6000, or 9000 ppm in inhalation chambers from gestational day (GD) 9 through 20. Cage controls (offspring of non-exposed dams that remained in the animal facility during these exposures) were also assessed in the E0 experiment, but showed no consistent differences from the offspring of air-exposed controls. Offspring were tested as adults with trace fear conditioning, Morris water maze, or appetitive operant responding. With fear conditioning, no significant effects were observed on cue or context learning. In the water maze, there were no differences in place learning or escaping to a visible platform. However, during the reference memory probe (no platform) male rats exposed prenatally to E85 vapor (6000 and 9000 ppm) failed to show a bias for the target quadrant. Across studies, females (treated and some controls) were less consistent in this measure. Males showed no differences during match-to-place learning (platform moved each day) in any experiment and females showed only transient differences in latency and path length in the E0 experiment. Similarly, no differences were observed in delayed match-to-sample operant performance of E0 males or females; thus this test was not used to evaluate effects of E15 or E85 vapors. During choice reaction time assessments (only males were tested) decision and movement times were unimpaired by any prenatal exposure, while anticipatory responses were increased by vapors of E0 (9000 ppm) and E15 (6000 and 9000 ppm), and the latter group also showed reduced accuracy. E85 vapors did not disrupt

  2. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala

    PubMed Central

    McCoy, Chelsea R.; Jackson, Nateka L.; Day, Jeremy; Clinton, Sarah M.

    2016-01-01

    Understanding biological mechanisms that shape vulnerability to emotional dysfunction is critical for elucidating the neurobiology of psychiatric illnesses like anxiety and depression. To elucidate molecular and epigenetic alterations in the brain that contribute to individual differences in emotionality, our laboratory utilized a rodent model of temperamental differences. Rats bred for low response to novelty (Low Responders, LRs) are inhibited in novel situations and display high anxiety, helplessness, and diminished sociability compared to High Novelty Responder (HR) rats. Our current transcriptome profiling experiment identified widespread gene expression differences in the amygdala of adult HR/LR rats; we hypothesize that HR/LR gene expression and downstream behavioral differences stem from distinct epigenetic (specifically DNA methylation) patterning in the HR/LR brain. Although we found similar levels of DNA methyltransferase proteins in the adult HR/LR amygdala, next-generation sequencing analysis of the methylome revealed 793 differentially methylated genomic sites between the groups. Most of the differentially methylated sites were hypermethylated in HR versus LR, so we next tested the hypothesis that enhancing DNA methylation in LRs would improve their anxiety/depression-like phenotype. We found that increasing DNA methylation in LRs (via increased dietary methyl donor content) improved their anxiety-like behavior and decreased their typically high levels of Forced Swim Test (FST) immobility; however, dietary methyl donor depletion exacerbated LRs’ high FST immobility. These data are generally consistent with findings in depressed patients showing that treatment with DNA methylation-promoting agents improves depressive symptoms, and highlight epigenetic mechanisms that may contribute to individual differences in risk for emotional dysfunction. PMID:27965039

  4. Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes.

    PubMed

    Chaâbane, Mariem; Koubaa, Mohamed; Soudani, Nejla; Elwej, Awatef; Grati, Malek; Jamoussi, Kamel; Boudawara, Tahia; Ellouze Chaabouni, Semia; Zeghal, Najiba

    2017-12-01

    Nitraria retusa (Forssk.) Asch. (Nitrariaceae) is a medicinal plant which produces edible fruits whose antioxidant activity has been demonstrated. The current study elucidates the potential protective effect of N. retusa fruit aqueous extract against nephrotoxicity induced by penconazole, a triazole fungicide, in the kidney of adult rats. Adult Wistar rats were exposed either to penconazole (67 mg/kg body weight), or to N. retusa extract (300 mg/kg body weight) or to their combination. Penconazole was administered by intra-peritoneal injection every 2 days from day 7 until day 15, the sacrifice day, while N. retusa extract was administered daily by gavage during 15 days. Oxidative stress parameters, kidney biomarkers and histopathological examination were determined. Nitraria retusa extract administration to penconazole treated rats decreased kidney levels of malondialdehyde (-10%), hydrogen peroxide (-12%), protein carbonyls (PCOs, -11%) and advanced oxidation protein products (AOPP, -16%); antioxidant enzyme activities: catalase (-13%), superoxide dismutase (-8%) and glutathione peroxidase (GPx, -14%), and the levels of non-enzymatic antioxidants: non-protein thiols (-9%), glutathione (-7%) and metallothionein (-12%). Furthermore, this plant extract prevented kidney biomarker changes by reducing plasma levels of creatinine, urea, uric acid and LDH and increasing those of ALP and GGT. Histopathological alterations induced by penconazole (glomeruli fragmentation, Bowman's space enlargement, tubular epithelial cells necrosis and infiltration of inflammatory leucocytes) were attenuated following N. retusa administration. Our results indicated that N. retusa fruit extract had protective effects against penconazole-induced kidney injury, which could be attributed to its phenolic compounds.

  5. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    PubMed

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats.

    PubMed

    Al-Suhaimi, Ebtesam Abdullah

    2012-08-01

    The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.

  7. PERINATAL EXPOSURE TO ESTROGENIC COMPOUNDS AND THE SUBSEQUENT EFFECTS ON THE PROSTRATE OF THE ADULT RAT: EVALUATION OF INFLAMMATION IN THE VENTRAL AND LATERAL LOBES

    EPA Science Inventory

    Perinatal exposure to estrogenic compounds and the subsequent effects on the prostate of the adult rat: evaluation of inflammation in the ventral and lateral lobes.

    Stoker TE, Robinette CL, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National ...

  8. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    PubMed Central

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  9. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    PubMed

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  10. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  11. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    PubMed Central

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  12. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  13. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  14. PI[subscript 3]-Kinase Cascade Has a Differential Role in Acquisition and Extinction of Conditioned Fear Memory in Juvenile and Adult Rats

    ERIC Educational Resources Information Center

    Slouzkey, Ilana; Maroun, Mouna

    2016-01-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (P[subscript 3]K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear…

  15. Adult Recruitment Practices.

    ERIC Educational Resources Information Center

    Kaufman, Juliet, Ed.; And Others

    Findings of an American College Testing Program 1981 survey on college recruitment of adult students are summarized, and 12 articles on adult recruitment are presented. Titles and authors are as follows: "Adult Recruitment Practices: A Report of a National Survey" (Patricia Spratt, Juliet Kaufmann, Lee Noel); "Three Programs for Adults in Shopping…

  16. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.

    PubMed

    Zhou, Zhike; Liu, Tingting; Sun, Xiaoyu; Mu, Xiaopeng; Zhu, Gang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2017-03-30

    It has been showed that enriched environment (EE) enhances the hippocampal neurogenesis and improves the cognitive impairments, accompanied by the increased expressions of stromal cell-derived factor-1 (SDF-1) in adult rats of temporal lobe epilepsy (TLE). We examined whether the enhanced neurogenesis and improved cognitive functions induced by EE following seizures were mediated by SDF-1/CXCR4 pathway. Therefore, we investigated the effects of the EE combined with CXCR4 antagonist AMD3100 on neurogenesis, cognitive functions and the long-term seizure activity in the TLE model. Adult rats were randomly assigned as control rats, rats treated with EE, rats subjected to status epilepticus (SE), post-SE rats treated with EE, AMD3100 or EE combined with AMD3100 respectively. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the frequency and mean duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze test. EE treatment significantly, as well as improved cognitive impairments and decreased long-term seizure activity, and that these effects might be mediated through SDF-1/CXCR4 pathway during the chronic stage of TLE. Although AMD3100 reversed the effect of EE on neurogenesis, it did not abolish the cognitive improvement induced by EE following seizures. More importantly, EE combined with AMD3100 treatment significantly suppressed long-term seizure activity, which provided promising evidences to treat TLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adult Education as Vocation: A Critical Role for the Adult Educator.

    ERIC Educational Resources Information Center

    Collins, Michael

    Fixation on technique, erosion of autonomous and community interests, and efforts to increase professionalization of adult education (which tends to emphasize the differences between adult educators and adult learners rather than their common interests) have created a crisis in adult education. Contemporary practice and research on self-directed…

  18. Effect of prenatal ethanol exposure on sexual motivation in adult rats.

    PubMed

    Ávila, Mara Aparecida P; Marthos, Gabriela Cristina P; Oliveira, Liliane Gibram M; Figueiredo, Eduardo Costa; Giusti-Paiva, Alexandre; Vilela, Fabiana Cardoso

    2016-08-01

    Maternal alcohol use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral deficits. The aim of the present study was to evaluate the effect of prenatal exposure to a moderate dose of alcohol on sexual motivation during adulthood. Rats were prenatally exposed to ethanol by feeding pregnant dams a liquid diet containing 25% ethanol-derived calories on days 6 through 19 of gestation. The controls consisted of pair-fed dams (receiving an isocaloric liquid diet containing 0% ethanol-derived calories) and dams with ad libitum access to a liquid control diet. The sexual motivation of offspring was evaluated during adulthood. The results revealed that the male and female pups of dams treated with alcohol exhibited reduced weight gain, which persisted until adulthood. Both male and female adult animals from dams that were exposed to alcohol showed a reduction in the preference score in the sexual motivation test. Taken together, these results provide evidence of the damaging effects of prenatal alcohol exposure on sexual motivation responses in adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Utah Adult Education Services. Adult Education Report 1968-69.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Major purposes for the preparation of this report on public school adult education in Utah were: to provide the public with a description of achievements, trends, and needs, and with meaningful cost accounting information; to make comparisons and analyses of adult education by program, school district, and year; and to provide the adult education…

  20. Differential behavioral effects of nicotine in adult male and female rats with a history of prenatal methamphetamine exposure.

    PubMed

    Rorabaugh, Boyd; Seeley, Sarah; Evans, Mary; Marengo, Christina; D'Souza, Manoranjan

    2017-06-09

    The goal of the current study was to assess the effects of prenatal methamphetamine (MA)/saline exposure on nicotine-induced stimulant and aversive effects in both male and female adult rats. The aversive effects of nicotine were assessed using the nicotine-induced conditioned taste aversion model (0.4mg/kg, base), while the stimulant effects of nicotine were measured by assessing changes in spontaneous locomotor activity after subcutaneous administration of different doses of nicotine (0, 0.1 & 0.4mg/kg, base). The aversive effects of nicotine were significantly decreased in male, but not in female rats with a history of prenatal MA exposure compared to respective saline controls. No influence of prenatal MA exposure was observed on nicotine-induced increase in locomotor activity in either male or female rats. In conclusion, males with a history of prenatal MA exposure may be more vulnerable to nicotine addiction due to a decrease in nicotine-induced aversive effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats.

    PubMed

    Chaâbane, M; Ghorbel, I; Elwej, A; Mnif, H; Boudawara, T; Chaâbouni, S Ellouze; Zeghal, N; Soudani, N

    2017-08-01

    Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg -1 body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na + /K + -ATPase and Mg 2+ -ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells' layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.

  2. Acute Psychiatric Hospital Admissions of Adults and Elderly Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Pary, Robert J.

    1993-01-01

    Examination of the records of 240 inpatients with mental retardation and 7 with autism discharged from a university hospital indicated that elderly adults had more medical problems than did adults, more elderly adults were transferred to a state hospital, and the most common diagnosis in both adults and elderly adults was chronic schizophrenia,…

  3. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

    PubMed

    Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo

    2015-05-06

    Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

  4. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to {delta}{sup 9}-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo

    The present study evaluated the consequences of perinatal {delta}{sup 9}-tetrahydrocannabinol ({delta}{sup 9}-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB{sub 1} receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with {delta}{sup 9}-tetrahydrocannabinol, ethanol or their combination causesmore » long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, {delta}{sup 9}-THC, or EtOH + {delta}{sup 9}-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to {delta}{sup 9}-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB{sub 1} receptor antagonists may represent

  5. The effects of biological sex and gonadal hormones on learning strategy in adult rats.

    PubMed

    Hawley, Wayne R; Grissom, Elin M; Barratt, Harriet E; Conrad, Taylor S; Dohanich, Gary P

    2012-02-28

    When learning to navigate toward a goal in a spatial environment, rodents employ distinct learning strategies that are governed by specific regions of the brain. In the early stages of learning, adult male rats prefer a hippocampus-dependent place strategy over a striatum-dependent response strategy. Alternatively, female rats exhibit a preference for a place strategy only when circulating levels of estradiol are elevated. Notably, male rodents typically perform better than females on a variety of spatial learning tasks, which are mediated by the hippocampus. However, limited research has been done to determine if the previously reported male spatial advantage corresponds with a greater reliance on a place strategy, and, if the male preference for a place strategy is impacted by removal of testicular hormones. A dual-solution water T-maze task, which can be solved by adopting either a place or a response strategy, was employed to determine the effects of biological sex and hormonal status on learning strategy. In the first experiment, male rats made more correct arm choices than female rats during training and exhibited a bias for a place strategy on a probe trial. The results of the second experiment indicated that testicular hormones modulated arm choice accuracy during training, but not the preference for a place strategy. Together, these findings suggest that the previously reported male spatial advantage is associated with a greater reliance on a place strategy, and that only performance during the training phase of a dual-solution learning task is impacted by removal of testicular hormones. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    PubMed

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  7. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    PubMed

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  8. Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity

    PubMed Central

    Fan, Lir-Wan; Tien, Lu-Tai; Zheng, Baoying; Pang, Yi; Lin, Rick C. S.; Simpson, Kimberly L.; Ma, Tangeng; Rhodes, Philip G.; Cai, Zhengwei

    2010-01-01

    Our previous studies have shown that neonatal exposure to lipopolysaccharide (LPS) resulted in motor dysfunction and dopaminergic neuronal injury in the juvenile rat brain. To further examine whether neonatal LPS exposure has persisting effects in adult rats, motor behaviors were examined from postnatal day 7 (P7) to P70 and brain injury was determined in P70 rats following an intracerebral injection of LPS (1 mg/kg) in P5 Sprague-Dawley male rats. Although neonatal LPS exposure resulted in hyperactivity in locomotion and stereotyped tasks, and other disturbances of motor behaviors, the impaired motor functions were spontaneously recovered by P70. On the other hand, neonatal LPS-induced injury to the dopaminergic system such as the loss of dendrites and reduced tyrosine hydroxylase immunoreactivity in the substantia nigra persisted in P70 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P70 rat brain, as indicated by an increased number of activated microglia and elevation of interleukin-1β and interleukin-6 content in the rat brain. In addition, when challenged with methamphetamine (METH, 0.5 mg/kg) subcutaneously, rats with neonatal LPS exposure had significantly increased responses in METH-induced locomotion and stereotypy behaviors as compared to those without LPS exposure. These results indicate that although neonatal LPS-induced neurobehavioral impairment is spontaneously recoverable, the LPS exposure-induced persistent injury to the dopaminergic system and the chronic inflammation may represent the existence of silent neurotoxicity. Our data further suggest that the compromised dendritic mitochondrial function might contribute, at least partially, to the silent neurotoxicity. PMID:20875849

  9. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat.

    PubMed

    Selvaraj, Jayaraman; Sathish, Sampath; Mayilvanan, Chinnaiyan; Balasubramanian, Karundevi

    2013-01-01

    Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180-200 g were used in this study. Rats were divided into four groups. Group I: control (treated with 1 % ethanol only), group II: aldosterone treated (10 μg /kg body weight, twice daily for 15 days), group III: aldosterone treated (20 μg /kg body weight, twice daily for 15 days), and group IV: aldosterone treated (40 μg/kg body weight, twice daily for 15 days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, β-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.

  10. Distinct Effects of Repeated Restraint Stress on Basolateral Amygdala Neuronal Membrane Properties in Resilient Adolescent and Adult Rats

    PubMed Central

    Hetzel, Andrea; Rosenkranz, J Amiel

    2014-01-01

    Severe and repeated stress has damaging effects on health, including initiation of depression and anxiety. Stress that occurs during development has long-lasting and particularly damaging effects on emotion. The basolateral amygdala (BLA) plays a key role in many affective behaviors, and repeated stress causes different forms of BLA hyperactivity in adolescent and adult rats. However, the mechanism is not known. Furthermore, not every individual is susceptible to the negative consequences of stress. Differences in the effects of stress on the BLA might contribute to determine whether an individual will be vulnerable or resilient to the effects of stress on emotion. The purpose of this study is to test the cellular underpinnings for age dependency of BLA hyperactivity after stress, and whether protective changes occur in resilient individuals. To test this, the effects of repeated stress on membrane excitability and other membrane properties of BLA principal neurons were compared between adult and adolescent rats, and between vulnerable and resilient rats, using in vitro whole-cell recordings. Vulnerability was defined by adrenal gland weight, and verified by body weight gain after repeated restraint stress, and fecal pellet production during repeated restraint sessions. We found that repeated stress increased the excitability of BLA neurons, but in a manner that depended on age and BLA subnucleus. Furthermore, stress resilience was associated with an opposite pattern of change, with increased slow afterhyperpolarization (AHP) potential, whereas vulnerability was associated with decreased medium AHP. The opposite outcomes in these two populations were further distinguished by differences of anxiety-like behavior in the elevated plus maze that were correlated with BLA neuronal excitability and AHP. These results demonstrate a substrate for BLA hyperactivity after repeated stress, with distinct membrane properties to target, as well as age-dependent factors that

  11. Flavored e-cigarette use: Characterizing youth, young adult, and adult users.

    PubMed

    Harrell, M B; Weaver, S R; Loukas, A; Creamer, M; Marti, C N; Jackson, C D; Heath, J W; Nayak, P; Perry, C L; Pechacek, T F; Eriksen, M P

    2017-03-01

    The purpose of this study is to investigate how the use of flavored e-cigarettes varies between youth (12-17 years old), young adults (18-29 years old), and older adults (30 + years old). Cross-sectional surveys of school-going youth ( n  = 3907) and young adult college students ( n  = 5482) in Texas, and young adults and older adults ( n  = 6051) nationwide were administered in 2014-2015. Proportions and 95% confidence intervals were used to describe the percentage of e-cigarette use at initiation and in the past 30 days that was flavored, among current e-cigarette users. Chi-square tests were applied to examine differences by combustible tobacco product use and demographic factors. Most e-cigarette users said their first and "usual" e-cigarettes were flavored. At initiation, the majority of Texas school-going youth (98%), Texas young adult college students (95%), and young adults (71.2%) nationwide said their first e-cigarettes were flavored to taste like something other than tobacco, compared to 44.1% of older adults nationwide. Fruit and candy flavors predominated for all groups; and, for youth, flavors were an especially salient reason to use e-cigarettes. Among adults, the use of tobacco flavor at initiation was common among dual users (e-cigarettes + combustible tobacco), while other flavors were more common among former cigarette smokers (P = 0.03). Restricting the range of e-cigarette flavors (e.g., eliminating sweet flavors, like fruit and candy) may benefit youth and young adult prevention efforts. However, it is unclear what impact this change would have on adult smoking cessation.

  12. Older Adults Make Less Advantageous Decisions than Younger Adults: Cognitive and Psychological Correlates

    PubMed Central

    Fein, George; McGillivray, Shannon; Finn, Peter

    2007-01-01

    This study tested the hypotheses that older adults make less advantageous decisions than younger adults on the Iowa gambling task (IGT). Less advantageous decisions, as measured by the IGT, are characterized by choices that favor larger versus smaller immediate rewards, even though such choices may result in long-term negative consequences. The IGT, and measures of neuropsychological function, personality, and psychopathology were administered to 164 healthy adults 18–85 years of age. Older adults performed less advantageously on the IGT compared with younger adults. Additionally, a greater number of older adult’s IGT performances were classified as ‘impaired’ when compared to younger adults. Less advantageous decisions were associated with obsessive symptoms in older adults and with antisocial symptoms in younger adults. Performance on the IGT was positively associated with auditory working memory and psychomotor function in young adults, and in immediate memory in older adults. PMID:17445297

  13. Perinatal n-3 fatty acid deficiency selectively reduces myo-inositol levels in the adult rat PFC: an in vivo (1)H-MRS study.

    PubMed

    McNamara, Robert K; Able, Jessica; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lindquist, Diana M

    2009-03-01

    To investigate the effects of omega-3 fatty acid deficiency on phosphatidylinositol signaling in brain, myo-inositol (mI) concentrations were determined in the prefrontal cortex (PFC) of omega-3 fatty acid deficient rats by in vivo proton magnetic resonance spectroscopy ((1)H-MRS). To generate graded deficits in PFC docosahexaenoic acid (22:6n-3) (DHA) composition, perinatal and postweaning alpha-linolenic acid (18:3n-3) (ALA) deficiency models were used. Adult male rats were scanned in a 7T Bruker Biospec system and a (1)H-MRS spectrum acquired from the bilateral medial PFC. Rats were then challenged with SKF83959, a selective agonist at phosphoinositide (PI)-coupled dopamine D(1) receptors. Postmortem PFC fatty acid composition was determined by gas chromatography. Relative to controls, PFC DHA composition was significantly reduced in adult postweaning (-27%) and perinatal (-65%) ALA-deficiency groups. Basal PFC mI concentrations were significantly reduced in the perinatal deficiency group (-21%, P = 0.001), but not in the postweaning deficiency group (-1%, P = 0.86). Among all rats, DHA composition was positively correlated with mI concentrations and the mI/creatine (Cr) ratio. SKF83959 challenge significantly increased mI concentrations only in the perinatal deficiency group (+16%, P = 0.02). These data demonstrate that perinatal deficits in cortical DHA accrual significantly and selectively reduce mI concentrations and augment receptor-generated mI synthesis.

  14. Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction.

    PubMed

    Hill, D L; Phillips, L M

    1994-05-01

    Unilateral chorda tympani nerve sectioning was combined with institution of a sodium-restricted diet in adult rats to determine the role that environment has on the functional properties of regenerating taste receptor cells. Rats receiving chorda tympani sectioning but no dietary manipulation (cut controls) and rats receiving only the dietary manipulation (diet controls) had normal responses to a concentration series of NaCl, sodium acetate (NaAc), and NH4Cl. However, responses from the regenerated nerve in NaCl-restricted rats (40-120 d postsectioning) to NaCl and NaAc were reduced by as much as 30% compared to controls, indicating that regenerating taste receptors are influenced by environmental (dietary) factors. Responses to NH4Cl were normal; therefore, the effect appears specific to sodium salts. Surprisingly, in the same rats, NaCl responses from the contralateral, intact chorda tympani were up to 40% greater than controls. Thus, in the same rat, there was over a twofold difference in sodium responses between the right and left chorda tympani nerves. A study of the time course of the functional alterations in the intact nerve revealed that responses to NaCl were extremely low immediately following sectioning (about 20% of the normal response), and then increased monotonically during the following 50 d until relative response magnitudes became supersensitive. This function occurred even when the cut chorda tympani was prevented from reinnervating lingual epithelia, demonstrating that events related to regeneration do not play a role in the functional properties of the contralateral side of the tongue.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  16. Fish oil supplementation of rats during pregnancy reduces adult disease risks in their offspring.

    PubMed

    Joshi, Sadhana; Rao, Shobha; Golwilkar, Ajit; Patwardhan, Manisha; Bhonde, Ramesh

    2003-10-01

    Metabolic programming in utero due to maternal undernutrition is considered to increase the risk of adult diseases in offspring. It is therefore of relevance to investigate how dietary supplementation of specific nutrients can ameliorate the negative effects of maternal malnutrition. We examined the effects of supplementing fish oil or folic acid, both of which are conventional supplements in maternal intervention, on risk factors in the offspring as adults. Pregnant female rats from 4 groups (n = 6/group) were fed casein diets with 18 g/100 g protein (control diet), 12 g/100 g protein supplemented with 8 mg folic acid/kg diet (0.08 mg/kg diet) (FAS), 12 g/100 g protein without folic acid (FAD) or 12 g/100 g protein supplemented with 7 g/100 g fish oil (FOIL). Pups were weaned to a standard laboratory diet with 18 g/100 g protein. Serum glucose, insulin and cholesterol and plasma homocysteine levels were measured in the offspring at 6 and 11 mo of age. Serum glucose in 11-mo-old male and female pups was greater (P < 0.05) in both the FAS (males 2.46 +/- 0.51, females 2.49 +/- 0.29 mmol/L) and FAD groups (2.48 +/- 0.28 and 2.67 +/- 0.41 mmol/L) than in controls (2.03 +/- 0.15 and 2.02 +/- 0.18 mmol/L). Serum insulin concentrations were higher (P < 0.05) in the FAD group (males 1476 +/- 317, females 1441 +/- 220 pmol/L) but were lower in males from the FAS group (483 +/- 165 pmol/L) compared with controls (males 917 +/- 373, females 981 +/- 264 pmol/L). Glucose and insulin concentrations did not differ between the control and FOIL groups. Plasma homocysteine levels were lower (P < 0.05) only in 11-mo-old folate-deficient males; none of the other groups differed from the controls. Maternal supplementation of fish oil to a diet containing marginal protein was beneficial in maintaining circulating glucose, insulin, cholesterol and homocysteine levels in the offspring as adults.

  17. Sirolimus and tacrolimus rather than cyclosporine A cause bone loss in healthy adult male rats.

    PubMed

    Rubert, Mercedes; Montero, Mercedes; Guede, David; Caeiro, Jose-Ramón; Martín-Fernández, Marta; Díaz-Curiel, Manuel; de la Piedra, Concepción

    2015-06-01

    The aim of this work was to study the effects of cyclosporine (CsA), tacrolimus (FK-506), and rapamycin (RAPA) on bone mass, femoral microstructure, femoral biomechanical properties, and bone remodeling in healthy adult male rats. Forty-eight 5-month-old male Wistar rats were used. CsA (2 mg/kg/day), FK-506 (3 mg/kg/day), RAPA (1.25 mg/kg/day), or water (0.5 ml/rat/day, control group) were administered orally for 3 months. After sacrifice, mean values of immunosuppressants in blood were: CsA (670.4 ng/ml), FK-506 (19.2 ng/ml), and RAPA (4.8 ng/ml). Levels of biochemical parameters were normal in all groups. Femoral BMD was decreased in FK-506 and RAPA groups and lumbar BMD in FK-506 group. Trabecular volume fraction (BV/TV) decreased only in FK-506 group. RAPA and CsA affected femoral cortical structure, but FK-506 did not. FK-506 produced an increase in bone remodeling, and CsA a decrease. FK-506 group showed a decrease in biomechanical parameters relative to all groups. RAPA group showed a decrease in ultimate stress vs control group, and CsA group presented an increase in biomechanical parameters versus control group. We found that administration of both RAPA and FK-506 as monotherapy for healthy rats produced osteopenia. CsA treatment only produces slight damages in the cortical zone of the femur.

  18. Physical activity during hospitalization: Activities and preferences of adults versus older adults.

    PubMed

    Meesters, Jorit; Conijn, D; Vermeulen, H M; Vliet Vlieland, Tpm

    2018-04-16

    Inactivity during hospitalization leads to a functional decline and an increased risk of complications. To date, studies focused on older adults. This study aims to compare the physical activities performed by older adult and adult hospitalized patients. Patients hospitalized for >3 days at a university hospital completed a questionnaire regarding their physical activities (% of days on which an activity was performed divided by the length of stay) and physical activity needs during hospitalization. Crude and adjusted comparisons of older adult (>60 years) and adult (≤60 years) patients were performed using parametric testing and regression analyses. Of 524 patients, 336 (64%) completed the questionnaire, including 166 (49%) older adult patients. On average, the patients were physically active on 35% or less of the days during their hospitalization. Linear regression analysis showed no significant associations between being an older adult and performing physical activities after adjusting for gender, length of stay, surgical intervention, and meeting physical activity recommendations prior to hospitalization. Most patients were well informed regarding physical activity during hospitalization; however, the older adult patients reported a need for information regarding physical activities after hospitalization more frequently (odds ratios, 2.47) after adjusting for educational level, gender, and physical therapy during hospitalization. Both older adult and adult patients are physically inactive during hospitalization, and older adult patients express a greater need for additional information regarding physical activity after hospitalization than adult patients. Therefore, personalized strategies that inform and motivate patients to resume physical activities during hospitalization are needed regardless of age.

  19. Dietary intake and nutritional status in cancer patients; comparing adults and older adults.

    PubMed

    Gómez Valiente da Silva, Henyse; Fonseca de Andrade, Camila; Bello Moreira, Annie Seixas

    2014-04-01

    Evaluate the nutrient intake and nutritional status of food in cancer patients admitted to a university hospital, with comparison of adult and older adult age category. Cross-sectional study. This study involved cancer patients admitted to a hospital in 2010. Dietary habits were collected using a Brazilian food frequency questionnaire. Participants were divided in two groups: adults or older adults and in 4-cancer category: hematologic, lung, gastrointestinal and others. Body Mass Index evaluated nutritional status. A total of 86 patients with a mean age of 56.5 years, with 55% males and 42% older adults were evaluated. The older adult category had a higher frequency of being underweight (24.4% vs 16.3%, p < 0.01) and a lower frequency of being overweight (7% vs. 15.1%, p < 0.01) than adults. Both, adult and older adults had a high frequency of smoking, alcohol consumption and physical inactivity. The older adults had lower consumption of calories, intake of iron and folic acid. Inadequacy of vitamin intake was observed in both groups; respectively, 52%, 43%, 95%, 76% and 88% for Vitamin A, C, D, E and folic acid. The older adults had a higher folic acid and calcium inadequacy than the adults (97% vs 82%, p <0.01; 88% vs 72%, p < 0.01). There was no association of micronutrient intake with cancer, nor with nutritional status. The food intake, macro and micronutrients ingestion is insufficient among cancer individuals. Food intake of older adults was inferior, when compared to the adult category. There was a high prevalence of BMI excess in the adult group and a worst nutritional status in the older adult category. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. In utero methanesulfonyl fluoride differentially affects learning and maze performance in the absence of long-lasting cholinergic changes in the adult rat.

    PubMed

    Carcoba, Luis M; Santiago, Miguel; Moss, Donald E; Cabeza, Rafael

    2008-02-01

    There is increasing evidence that acetylcholinesterase (AChE) may have various specific developmental roles in brain development. Nevertheless, specific effects of AChE inhibition during early brain development have not been adequately described. Therefore, methanesulfonyl fluoride (MSF), an irreversible AChE inhibitor that shows high selectivity for the CNS was used to produce AChE inhibition in utero to study subsequent adult behaviors, sleep, and cholinergic markers. Rats exposed to MSF in utero showed a deficit in spatial learning tasks using appetitive motivation but, surprisingly, they performed equally well or better than controls when aversive motivation was used. One hypothesis was that MSF treatment in utero affected the response to stress. Tests of anxiety however showed no differences in basal levels of anxiety. Studies of sleep behavior, however, indicated a higher level of REM sleep which is only seen during the light phase of male rats exposed to MSF in utero as compared to controls. No differences in cholinergic markers in the brains of adults were found except that females exposed to MSF in utero had a higher level of ChAT activity in the synaptosomal fraction of the hippocampus. Even so, whether cholinergic alterations accompany the in utero MSF exposure remains to be determined. The failure to find widespread changes in cholinergic markers in the adult brains suggests changes in behaviors should be further investigated by testing the participation of postsynaptic mechanisms, measuring of cholinergic markers during earlier development periods and the possible participation of other neurotransmitter systems to clearly reveal the role of the cholinergic system following in utero MSF exposure.

  1. Adult Day Care

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Adult Day Care Adult Day Care Centers are designed to provide care and ... adults who need assistance or supervision during the day. Programs offer relief to family members and caregivers, ...

  2. What Does It Take to Be an Adult in Austria? Views of Adulthood in Austrian Adolescents, Emerging Adults, and Adults

    ERIC Educational Resources Information Center

    Sirsch, Ulrike; Dreher, Eva; Mayr, Eva; Willinger, Ulrike

    2009-01-01

    The present study examined the defining features of emerging adulthood, subjects' conceptions of the transition to adulthood, and the perceived adult status in Austria. The sample consisted of 775 subjects (226 adolescents, 317 emerging adults, 232 adults). Results showed that most Austrian emerging adults feel themselves to be between adolescence…

  3. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes

    PubMed Central

    Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão‐Pires, Inês; van der Velden, Jolanda

    2017-01-01

    Key points This paper describes a novel model that allows exploration of matrix‐induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function.Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca2+ handling and myofilament function.Cell shortening and Ca2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix.Matrix stiffness‐impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness.Matrix stiffness‐induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Abstract Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte–matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix‐induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca2+ handling but does not alter myofilament‐generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness‐induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness

  4. Evaluating the anti-fertility potential of α-chlorohydrin on testis and spermatozoa in the adult male wild Indian house rat (Rattus rattus).

    PubMed

    Madhu, Nithar Ranjan; Sarkar, Bhanumati; Biswas, Surjyo Jyoti; Behera, Biplab Kumar; Patra, Ashis

    2011-01-01

    To examine the effects of α-chlorohydrin on testis and cauda epididymis in the male house rat (Rattus rattus), 24 adult male rats were segregated into two groups. Group I rats were force-fed daily by intragastric intubation with α-chlorohydrin at a single dose of 1.0 mg/100 g body weight/d for 5, 15, and 45 days. Another group was fed with distilled water, which served as the control. The treated male rats were paired with 24 adult proestrus female rats for 5 days after the last oral treatment and fertility was tested. At the end of the experiments, all of the male rats were weighed and killed by cervical dislocation. The right testes were removed, weighed, and processed for ultrastructural changes of spermatozoa from the cauda epididymis and testis under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The seminiferous tubular area, nuclear diameter of the Sertoli and Leydig cells, percentage of spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids, spermatozoa, and Sertoli cells in each group were compared morphometrically. Our results showed that the percentages of primary spermatocytes steadily increased from 5 to 15 days, but primary and secondary spermatocytes decreased significantly at 45 days. There was a steady decline in the percentages of spermatozoa and spermatids at all fixation intervals in the treated animals, but the percentages of spermatogonia and Sertoli cells increased significantly at 15 and 45 days. Seminiferous tubular areas, nuclear diameter of Leydig and Sertoli cells, and fertility rates were reduced after 45 days of treatment. SEM and TEM studies revealed severe morphological abnormalities in the spermatozoa, including deglutination of the acrosomal part, loss of head capsules, and fragmentation of tail fibrils. There was an enhanced anti-fertility effect and a lower number of implantation sites in the rats treated for 5 days. Our results validate α-chlorohydrin as a successful anti

  5. Neonatal finasteride administration alters hippocampal α4 and δ GABAAR subunits expression and behavioural responses to progesterone in adult rats.

    PubMed

    Modol, Laura; Casas, Caty; Navarro, Xavier; Llidó, Anna; Vallée, Monique; Pallarès, Marc; Darbra, Sònia

    2014-02-01

    Allopregnanolone is a neurosteroid that has been reported to fluctuate during early developmental stages. Previous experiments reported the importance of neonatal endogenous allopregnanolone levels for the maturation of the central nervous system and particularly for the hippocampus. Changes in neonatal allopregnanolone levels have been related to altered adult behaviour and with psychopathological susceptibility, including anxiety disorders, schizophrenia and drug abuse. However, the mechanism underlying these changes remains to be elucidated. In the present study we assessed changes in hippocampal expression of α4 and δ GABAA receptor (GABAAR) subunits as a consequence of neonatal finasteride (a 5-α reductase inhibitor) administration during early development (PD6 to PD15) in male rats. We observed that the treatment altered the temporal window of the natural peak in the expression of these subunits during development. Additionally, the level of these subunits were higher than in non-handled and control animals in the adult hippocampus. We observed that in adulthood, neonatal finasteride-treated animals presented an anxiogenic-like profile in response to progesterone administration which was absent in the rest of the groups. In conclusion, these results corroborate the relevance of neonatal maintenance of neurosteroid levels for behavioural anxiety responses in the adult, and point to some of the mechanisms involved in this alterations.

  6. Influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy.

    PubMed

    Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2018-05-22

    Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Comparing the impact of chronic energy restriction and vitamin E supplementation on the behavior of adult rats.

    PubMed

    Diniz, Derlange B; de Oliveira, Suzana L; Melo, Liana L; Amaya-Farfan, Jaime

    2009-09-01

    The purpose of this work was to investigate the influence of energy restriction and vitamin E supplementation on memory, learning, anxiety and spontaneous locomotion in adult rats. Three-month-old male Wistar rats were grouped according to diet: Control (AIN 93-M; n=18), Supplemented (AIN 93-M + 1425 IU all-rac-alpha-tocopheryl acetate/kg diet; n=22) and Restricted (AIN 93-M with 30% reduction in carbohydrate energy; n=23). Sixteen weeks after, the passive avoidance (PA), elevated plus-maze (EPM) and open field (OF) tests were applied. In the EPM test, the behavioral profile of the supplemented group was characterized by a lower frequency of entries into the open arms (P < 0,026), whereas the restricted group showed a lower frequency of head dipping (P < 0,003). The ratio between the time span of the shocks and the number of attempts were larger for the supplemented than for the non-supplemented animals (P = 0,0474), thus suggesting a delay in learning in the PA test. Taken together, these results suggest that a long-term combination of carbohydrate energy restriction in rats should not cause negative behavioral alterations. Compared with vitamin E supplementation, the restricted diet performed equally or better in rats as an alternate antioxidant diet.

  8. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    PubMed Central

    Zhu, Y.; Ning, D.; Wang, F.; Liu, C.; Xu, Y.; Jia, X.; Zhu, D.

    2012-01-01

    Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4) treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5 µg T4 /100 g body weight (BW) treated group, 20 µg T4/100 g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 µg T4/100 g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty µg T4/100 g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations. PMID:22688303

  9. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex123

    PubMed Central

    Beshara, Simon; Beston, Brett R.; Pinto, Joshua G. A.

    2015-01-01

    Abstract Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  10. Cancer in Older Adults

    MedlinePlus

    ... Home > Navigating Cancer Care > For Older Adults For Older Adults A full-text transcript is available. More than ... Advanced Cancer For Children For Teens For Young Adults For Older Adults Aging and Cancer Cancer Care Decisions for ...

  11. Stress-induced behaviour in adult and old rats: effects of neonatal asphyxia, body temperature and chelation of iron.

    PubMed

    Rogalska, J; Caputa, M; Wentowska, K; Nowakowska, A

    2006-11-01

    Perinatal asphyxia in mammals leads to iron accumulation in the brain, which results in delayed neurobehavioural disturbances, including impaired learning and abnormal alertness over their entire life span. The aim of this investigation was to verify our hypothesis that newborn rats, showing reduced normal body temperature, are protected against neurotoxicity of the asphyxia up to senescence. Alertness was studied in adult and old male Wistar rats after exposure to critical neonatal anoxia: (i) at physiological neonatal body temperature of 33 degrees C, (ii) at body temperature elevated to 37 degrees C, or (iii) at body temperature elevated to 39 degrees C (the thermal conditions remained unchanged both during anoxia and for 2 h postanoxia). To elucidate the effect of iron-dependent postanoxic oxidative damage to the brain, half of the group (iii) was injected with deferoxamine, a chelator of iron. Postanoxic behavioural disturbances were recorded in open-field, elevated plus-maze, and sudden silence tests when the rats reached the age of 12 and 24 months. Open-field stress-induced motor activity was reduced in rats subjected to neonatal anoxia under hyperthermic conditions. In contrast, these rats were hyperactive in the plus-maze test. Both the plus-maze and sudden silence tests show reduced alertness of these rats to external stimuli signalling potential dangers. The behavioural disturbances were prevented by body temperature of 33 degrees C and by administration of deferoxamine.

  12. Mechanisms of L-Triiodothyronine-Induced Inhibition of Synaptosomal Na+-K+-ATPase Activity in Young Adult Rat Brain Cerebral Cortex

    PubMed Central

    Sarkar, Pradip K.; Biswas, Avijit; Ray, Arun K.; Martin, Joseph V.

    2013-01-01

    The role of thyroid hormones (TH) in the normal functioning of adult mammalian brain is unclear. Our studies have identified synaptosomal Na+-K+-ATPase as a TH-responsive physiological parameter in adult rat cerebral cortex. L-triiodothyronine (T3) and L-thyroxine (T4) both inhibited Na+-K+-ATPase activity (but not Mg2+-ATPase activity) in similar dose-dependent fashions, while other metabolites of TH were less effective. Although both T3 and the β-adrenergic agonist isoproterenol inhibited Na+-K+-ATPase activity in cerebrocortical synaptosomes in similar ways, the β-adrenergic receptor blocker propranolol did not counteract the effect of T3. Instead, propranolol further inhibited Na+-K+-ATPase activity in a dose-dependent manner, suggesting that the effect of T3 on synaptosomal Na+-K+-ATPase activity was independent of β-adrenergic receptor activation. The effect of T3 on synaptosomal Na+-K+-ATPase activity was inhibited by the α2-adrenergic agonist clonidine and by glutamate. Notably, both clonidine and glutamate activate Gi-proteins of the membrane second messenger system, suggesting a potential mechanism for the inhibition of the effects of TH. In this paper, we provide support for a nongenomic mechanism of action of TH in a neuronal membrane-related energy-linked process for signal transduction in the adult condition. PMID:24307963

  13. Development of Anticipatory 50 kHz USV Production to a Social Stimuli in Adolescent and Adult Male Sprague-Dawley Rats

    PubMed Central

    Willey, Amanda R.; Spear, Linda P.

    2011-01-01

    This study examined ontogenetic differences in anticipatory 50 kHz ultrasonic vocalization (USV) production to social interactions in male Sprague-Dawley rats. Adults increased USVs across days when tested socially but not when left alone (Exp 1), and displayed anticipatory USVs to return to the cage-mate (Exp 2). Adolescents did not display evidence of anticipatory USVs. To the extent that anticipatory USVs index incentive salience, this suggests an adolescent attenuation of incentive salience of social interactions. PMID:22004980

  14. Effective literacy instruction for adults with specific learning disabilities: implications for adult educators.

    PubMed

    Hock, Michael F

    2012-01-01

    Adults with learning disabilities (LD) attending adult basic education, GED programs, or community colleges are among the lowest performers on measures of literacy. For example, on multiple measures of reading comprehension, adults with LD had a mean reading score at the third grade level, whereas adults without LD read at the fifth grade level. In addition, large numbers of adults perform at the lowest skill levels on quantitative tasks. Clearly, significant instructional challenges exist for adults who struggle with literacy issues, and those challenges can be greater for adults with LD. In this article, the literature on adults with LD is reviewed, and evidenced-based instructional practices that significantly narrow the literacy achievement gap for this population are identified. Primary attention is given to instructional factors that have been shown to affect literacy outcomes for adults with LD. These factors include the use of explicit instruction, instructional technology, and intensive tutoring in skills and strategies embedded in authentic contexts.

  15. Adult Development. What do Teachers of Adults Need To Know?

    ERIC Educational Resources Information Center

    Whiting, Susan; And Others

    The first part of this two-part paper provides a general review of adult development and is premised on an understanding of andragogy. Andragogy is the art and science of helping adults learn. It is based on the following four assumptions about adults: (1) as people mature they become less dependent and more self-directed; (2) experiences serve as…

  16. The protective role of melatonin on L-arginine-induced acute pancreatitis in adult male albino rats.

    PubMed

    Sadek, A S; Khattab, R T

    2017-01-01

    Acute pancreatitis (AP) is an inflammatory disease that has an increasing incidence worldwide. AP is associated with high morbidity and mortality rates ranging 15-40% in its severe form. Oxidative stress plays an important role in pancreatic acinar cell injury in case of AP. Melatonin (Mel) is proven to have both antioxidant and anti-inflammatory effects. The aim of the work was to investigate the protective role of Mel against L-arginine (L-arg)-induced AP in adult male albino rats. Thirty-six adult male albino rats were used in this study. Animals were divided into four groups; Control group (Group A; n = 6), Mel group (Group B; n = 6), L-arg group (Group C; n = 12) receiving two doses of L-arg injection with 1 h interval in-between, and L-arg+Mel group (Group D; n = 12) receiving Mel 1 h after each L-arg injection. 24 h after the second L-arg injection, the serum levels of amylase (AM), lipase (LP), interleukin-6 (IL-6) and tumour necrotic factor-alpha (TNF-α) were determined. Then, pancreatic specimens were processed for histological and immunohistochemical staining with vascular endothelial growth factor (VEGF) and the area percentage of VEGF and collagen content were measured by digital image analysis. Microscopic examination revealed that animals received L-arg only (Group C) showed loss of the pancreatic lobular architecture with marked fibrosis, acinar degeneration, inflammatory reaction and marked oedema with vascular congestion. Also, L-arg-induced AP caused a significant elevation of the serum levels of AM, LP, IL-6. All these histo-pathological and serological parameters were markedly improved by Mel administration. Melatonin exhibits strong therapeutic effects in the course of AP. Hence, the use of Mel as adjuvant treatment in AP is recommended.

  17. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress

    PubMed Central

    KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE

    2015-01-01

    The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395

  18. Assessing Autism in Adults: An Evaluation of the Developmental, Dimensional and Diagnostic Interview-Adult Version (3Di-Adult)

    ERIC Educational Resources Information Center

    Mandy, William; Clarke, Kiri; McKenner, Michele; Strydom, Andre; Crabtree, Jason; Lai, Meng-Chuan; Allison, Carrie; Baron-Cohen, Simon; Skuse, David

    2018-01-01

    We developed a brief, informant-report interview for assessing autism spectrum conditions (ASC) in adults, called the Developmental, Dimensional and Diagnostic Interview-Adult Version (3Di-Adult); and completed a preliminary evaluation. Informant reports were collected for participants with ASC (n = 39), a non-clinical comparison group (n = 29)…

  19. Delirium in older adults attending adult day care and family caregiver distress.

    PubMed

    Bull, Margaret J

    2011-06-01

    BACKGROUND; Delirium is a critical, costly, frequently reversible problem in older adults. Findings of previous studies indicate that delirium occurs in up to 65% of hospitalised older adults and up to 80% of terminally ill patients. Few studies address the frequency of delirium in community dwelling older adults and the extent to which delirium symptoms create distress for their family caregivers. To determine the frequency of delirium in older people attending two adult day centers (ADC) in the United States and identify the extent to which delirium symptoms were associated with family caregivers' mental health symptoms, and ways of coping with the older adults' care. A descriptive, cross-sectional design was used. Thirty older adults and their family caregivers were randomly selected from the rosters of the ADC. Only 6.7% of the older adults had a positive screen for delirium. The majority of family caregivers (96.6%) stated that they had no knowledge of delirium prior to participating in this study. Both older adults and their family caregivers need education about delirium symptoms and risks. © 2010 Blackwell Publishing Ltd.

  20. Adult care providers' perspectives on the transition to adult care for emerging adults with Type 1 diabetes: a cross-sectional survey.

    PubMed

    Michaud, S; Dasgupta, K; Bell, L; Yale, J-F; Anjachak, N; Wafa, S; Nakhla, M

    2018-03-25

    To assess adult diabetes care providers' current transition practices, knowledge about transition care, and perceived barriers to implementation of best practices in transition care for emerging adults with Type 1 diabetes mellitus. We administered a 38-item web-based survey to adult diabetes care providers identified through the Québec Endocrinologist Medical Association and Diabetes Québec. Fifty-three physicians responded (35%). Fewer than half of all respondents (46%) were familiar with the American Diabetes Association's transition care position statement. Approximately one-third of respondents reported a gap of >6 months between paediatric and adult diabetes care. Most (83%) believed communication with the paediatric team was adequate; however, only 56% reported receiving a medical summary and 2% a psychosocial summary from the paediatric provider. Respondents believed that the paediatric team should improve emerging adults' preparation for transition care by developing their self-management skills and improve teaching about the differences between paediatric and adult-oriented care. Only 31% had a system for identifying emerging adults lost to follow-up in adult care. Perceived barriers included difficulty accessing psychosocial services, emerging adults' lack of motivation, and inadequate transition preparation. Most (87%) were interested in having additional resources, including a self-care management tool and a registry to track those lost to follow-up. Our findings highlight the need to better engage adult care providers into transition care practices. Despite adult physicians' interest in transition care, implementation of transition care recommendations and resources in clinical care remains limited. Enhanced efforts are needed to improve access to mental health services within the adult healthcare setting. © 2018 Diabetes UK.

  1. An Italian multicentre study on adult atopic dermatitis: persistent versus adult-onset disease.

    PubMed

    Megna, Matteo; Patruno, Cataldo; Balato, Anna; Rongioletti, Franco; Stingeni, Luca; Balato, Nicola

    2017-08-01

    Atopic dermatitis (AD) is a chronic, recurrent, inflammatory skin disease which predominantly affects children. However, AD may persist until adulthood (persistent AD), or directly start in adults (adult-onset AD). AD often shows a non-flexural rash distribution, and atypical morphologic variants in adults and specific diagnostic criteria are lacking. Moreover, adult AD prevalence as well as detailed data which can characterize persistent vs adult-onset subtype are scant. The aim of this study was to investigate on the main features of adult AD particularly highlighting differences between persistent vs adult-onset form. An Italian multicentre observational study was conducted between April 2015-July 2016 through a study-specific digital database. 253 adult AD patients were enrolled. Familiar history of AD was negative in 81.0%. Erythemato-desquamative pattern was the most frequent clinical presentation (74.3%). Flexural surface of upper limbs was most commonly involved (47.8%), followed by eyelid/periocular area (37.9%), hands (37.2%), and neck (32%). Hypertension (7.1%) and thyroiditis (4.3%) were the most frequent comorbidities. A subgroup analysis between persistent (59.7%) vs adult-onset AD patients (40.3%) showed significant results only regarding AD severity (severe disease was more common in persistent group, p < 0.05), itch intensity (higher in adult-onset disease), and comorbidities (hypertension was more frequent in adult-onset group, p < 0.01). Adult AD showed uncommon features such as significant association with negative AD family history and lacking of association with systemic comorbidities respect to general population. No significant differences among persistent vs adult-onset subgroup were registered except for hypertension, itch intensity, and disease severity.

  2. Prolactin release, oestrogens and proliferation of prolactin-secreting cells in the anterior pituitary gland of adult male rats.

    PubMed

    Pérez, R L; Machiavelli, G A; Romano, M I; Burdman, J A

    1986-03-01

    Relationships among the release of prolactin, the effect of oestrogens and the proliferation of prolactin-secreting cells were studied under several experimental conditions. Administration of sulpiride or oestradiol released prolactin and stimulated cell proliferation in the anterior pituitary gland of adult male rats. Clomiphene completely abolished the rise in cell proliferation, but did not interfere with the sulpiride-induced release of prolactin. Treatment with oestradiol plus sulpiride significantly increased serum prolactin concentrations and the mitotic index compared with the sum of the stimulation produced by both drugs separately. Bromocriptine abolished the stimulatory effect of oestradiol on the serum prolactin concentration and on cell proliferation. In oestradiol- and/or sulpiride-treated rats, 80% of the cells in mitoses were lactotrophs. The remaining 20% did not stain with antisera against any of the pituitary hormones. The number of prolactin-secreting cells in the anterior pituitary gland significantly increased after the administration of oestradiol or sulpiride. The results demonstrate that treatment with sulpiride and/or oestradiol increases the proliferation and the number of lactotrophs in the anterior pituitary gland of the rat.

  3. 17β-Estradiol regulates cyclin A1 and cyclin B1 gene expression in adult rat seminiferous tubules.

    PubMed

    Bois, Camille; Delalande, Christelle; Bouraïma-Lelong, Hélène; Durand, Philippe; Carreau, Serge

    2012-04-01

    Spermatogenesis, which is the fundamental mechanism allowing male gamete production, is controlled by several factors, and among them, estrogens are likely concerned. In order to enlighten the potential role of estrogen in rat spermatogenesis, seminiferous tubules (ST) from two groups of seminiferous epithelium stages (II-VIII and IX-I) were treated with either 17β-estradiol (E(2)) agonists or antagonists for estrogen receptors (ESRs). In this study, we show that cyclin A1 and cyclin B1 gene expression is controlled by E(2) at a concentration of 10(-9) M only in stages IX-I. This effect is mimicked by a treatment with the G-protein coupled estrogen receptor (GPER) agonist G1 and is abolished by treatment with the ESR antagonist ICI 182 780. Moreover, using letrozole, a drug that blocks estrogen synthesis, we demonstrate that these genes are under the control of E(2) within rat ST. Thus, germ cell differentiation may be regulated by E(2) which acts through ESRs and GPER, expressed in adult rat ST.

  4. Diffusion tensor imaging reveals changes in the adult rat brain following long-term and passive moderate acoustic exposure.

    PubMed

    Abdoli, Sherwin; Ho, Leon C; Zhang, Jevin W; Dong, Celia M; Lau, Condon; Wu, Ed X

    2016-12-01

    This study investigated neuroanatomical changes following long-term acoustic exposure at moderate sound pressure level (SPL) under passive conditions, without coupled behavioral training. The authors utilized diffusion tensor imaging (DTI) to detect morphological changes in white matter. DTIs from adult rats (n = 8) exposed to continuous acoustic exposure at moderate SPL for 2 months were compared with DTIs from rats (n = 8) reared under standard acoustic conditions. Two distinct forms of DTI analysis were applied in a sequential manner. First, DTI images were analyzed using voxel-based statistics which revealed greater fractional anisotropy (FA) of the pyramidal tract and decreased FA of the tectospinal tract and trigeminothalamic tract of the exposed rats. Region of interest analysis confirmed (p < 0.05) that FA had increased in the pyramidal tract but did not show a statistically significant difference in the FA of the tectospinal or trigeminothalamic tract. The results of the authors show that long-term and passive acoustic exposure at moderate SPL increases the organization of white matter in the pyramidal tract.

  5. The Recreational Drug Ecstasy Disrupts the Hypothalamic-Pituitary-Gonadal Reproductive Axis in Adult Male Rats

    PubMed Central

    Dickerson, Sarah M.; Walker, Deena M.; Reveron, Maria E.; Duvauchelle, Christine L.; Gore, Andrea C.

    2009-01-01

    Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug ±-3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal (HPG) reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA or saline either once (acute) or for 20 days (chronic), and were euthanized 7 days following last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone (LH) concentrations, and serum testosterone levels, as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the HPG axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage. PMID:18309234

  6. Evaluation of a novel delayed-type hypersensitivity assay to Candida albicans in adult and neonatal rats.

    PubMed

    Thorn, Mitchell; Hudson, Adam W; Kreeger, John; Kawabe, Thomas T; Bowman, Christopher J; Collinge, Mark

    2015-01-01

    Delayed-type hypersensitivity (DTH) is a T-cell-mediated immune response that may be used for immunotoxicity testing in non-clinical species. However, in some cases DTH assays using T-dependent antigens may be confounded by the production of antibodies to the antigen. The authors have previously modified a DTH assay, initially validated in the mouse, for use in juvenile rats to assess the effect of immunosuppressive drugs on the developing rat immune system. The assay measures footpad swelling induced by subcutaneous footpad injection of Candida albicans (C. albicans) derived-chitosan in rats previously sensitized with C. albicans. Antibodies to chitosan are not produced in this model. However, considerable inter-animal variability inherent in the footpad swelling assay can make it difficult to precisely quantify the magnitude of the immune response and inhibition by immunosuppressants, particularly if complete suppression is not observed. This report describes the development of an ex vivo assay to assess DTH in rats using interferon (IFN)-γ production by splenocytes, obtained from rats sensitized with C. albicans, as the quantifiable measure of the DTH response. Adult and neonatal rats administered dexamethasone (DEX), a known immunosuppressant, exhibited immunosuppression as evidenced by a reduction in ex vivo IFNγ production from splenocytes challenged with C. albicans-derived chitosan. Current data indicate that the ex vivo based DTH assay is more sensitive than the conventional footpad swelling assay due to a lower background response and the ability to detect a response as early as post-natal day (PND) 12. The ex vivo based rat DTH assay offers a highly sensitive and quantitative alternative to the footpad swelling assay for the assessment of the immunotoxic potential of drugs. The increased sensitivity of the ex vivo DTH assay may be useful for identifying smaller changes in response to immunotoxic drugs, as well as detecting responses earlier in animal

  7. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.

    PubMed

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2008-05-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.

  8. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease

    PubMed Central

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2017-01-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8–E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1–F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1–F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states. PMID:18304984

  9. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat.

    PubMed

    Fernandez, M; Pirondi, S; Manservigi, M; Giardino, L; Calzà, L

    2004-10-01

    Oligodendrocyte development and myelination are under thyroid hormone control. In this study we analysed the effects of chronic manipulation of thyroid status on the expression of a wide spectrum of oligodendrocyte precursor cells (OPCs) markers and myelin basic protein (MBP) in the subventricular zone (SVZ), olfactory bulb and optic nerve, and on neural stem cell (NSC) lineage in adult rats. Hypo- and hyperthyroidism were induced in male rats, by propyl-thio-uracil (PTU) and L-thyroxin (T4) treatment, respectively. Hypothyroidism increased and hyperthyroidism downregulated proliferation in the SVZ and olfactory bulb (Ki67 immunohistochemistry and Western blotting, bromodeoxyuridine uptake). Platelet-derived growth factor receptor alpha (PDGFalpha-R) and MBP mRNA levels decreased in the optic nerve of hypothyroid rats; the same also occurred at the level of MBP protein. Hyperthyroidism slightly upregulates selected markers such as NG2 in the olfactory bulb. The lineage of cells derived from primary cultures of NSC prepared from the forebrain of adult hypo- and hyperthyroid also differs from those derived from control animals. Although no difference of in vitro proliferation of NSCs was observed in the presence of epidermal growth factor, maturation of oligodendrocytes (defined by process number and length) was enhanced in hyperthyroidism, suggesting a more mature state than in control animals. This difference was even greater when compared with the hypothyroid group, the morphology of which suggested a delay in differentiation. These results indicate that thyroid hormone affects NSC and OPC proliferation and maturation also in adulthood.

  10. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Chiaia, Nicolas L; Stojic, Andrey S; Rhoades, Robert W

    2003-09-01

    Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.

  11. Adult Schistosoma mansoni express cathepsin L proteinase activity.

    PubMed

    Smith, A M; Dalton, J P; Clough, K A; Kilbane, C L; Harrop, S A; Hole, N; Brindley, P J

    1994-09-01

    This report presents the deduced amino acid sequence of a novel cathepsin L proteinase from Schistosoma mansoni, and describes cathepsin L-like activity in extracts of adult schistosomes. Using consensus primers specific for cysteine proteinases, gene fragments were amplified from adult S. mansoni cDNA by PCR and cloned. One of these fragments showed marked identity to Sm31, the cathepsin B cysteine proteinase of adult S. mansoni, whereas another differed from Sm31 and was employed as a probe to isolate two cDNAs from an adult S. mansoni gene library. Together these cDNAs encoded a novel preprocathepsin L of 319 amino acids; this zymogen is predicted to be processed in vivo into a mature, active cathepsin L proteinase of 215 amino acids. Closest homologies were with cathepsins L from rat, mouse, and chicken (46-47% identity). Southern hybridization analysis suggested that only one or a few copies of the gene was present per genome, demonstrated that its locus was distinct from that of Sm31, and that a homologous sequence was present in Schistosoma japonicum. Because these results indicated that schistosomes expressed a cathepsin L proteinase, extracts of adult S. mansoni were examined for acidic, cysteine proteinase activity. Based on rates of cleavage of peptidyl substrates employed to discriminate between classes of cysteine proteinases, namely cathepsin L (Z-phe-arg-AMC), cathepsin B (Z-arg-arg-AMC) and cathepsin H (Bz-arg-AMC), the extracts were found to contain vigorous cathepsin L-like activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection.

    PubMed

    Liu, Hao; Skinner, Robert D; Arfaj, Ahmad; Yates, Charlotte; Reese, Nancy B; Williams, Keith; Garcia-Rill, Edgar

    2010-10-30

    This study investigated whether l-dopa (DOPA), locomotor-like passive exercise (Ex) using a motorized bicycle exercise trainer (MBET), or their combination in adult rats with complete spinal cord transection (Tx) preserves and restores low frequency-dependent depression (FDD) of the H-reflex. Adult Sprague-Dawley rats (n=56) transected at T8-9 had one of five treatments beginning 7 days after transection: Tx (transection only), Tx+Ex, Tx+DOPA, Tx+Ex+DOPA, and control (Ctl, no treatment) groups. After 30 days of treatment, FDD of the H-reflex was tested. Stimulation of the tibial nerve at 0.2, 1, 5, and 10Hz evoked an H-reflex that was recorded from plantar muscles of the hind paw. No significant differences were found at the stimulation rate of 1Hz. However, at 5Hz, FDD of the H-reflex in the Tx+Ex, Tx+DOPA and Ctl groups was significantly different from the Tx group (p<0.01). At 10Hz, all of the treatment groups were significantly different from the Tx group (p<0.01). No significant difference was identified between the Ctl and any of the treatment groups. These results suggest that DOPA significantly preserved and restored FDD after transection as effectively as exercise alone or exercise in combination with DOPA. Thus, there was no additive benefit when DOPA was combined with exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Different effects of vitamin D hormone treatment on depression-like behavior in the adult ovariectomized female rats.

    PubMed

    Fedotova, Julia; Dudnichenko, Tatyana; Kruzliak, Peter; Puchavskaya, Zhanna

    2016-12-01

    Vitamine D (VD) has important functions in the human brain and may play a role in affective-related disorders. VD receptors are expressed in multiple brain regions associated with depressive disorders. The aim of the preclinical study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0mg/kg/day,s.c., once daily, for 14days) on the depression-like behavior and corticosterone levels in the blood samples following ovariectomy in female rats. Cholecalciferol was administered to the ovariectomized (OVX) rats and OVX rats treated with 17β-estradiol (17β-E 2 , 0.5μg/rat,s.c., once daily, for 14days). Depression-like behavior and spontaneous locomotor activity were assessed in the forced swimming test (FST) and the open field test (OFT), respectively. The corticosterone levels in the blood serum before and after FST were measured in all experimental groups. Treatment with cholecalciferol in high dose (5.0mg/kg/day,s.c.) significantly decreased the immobility time of OVX rats in the FST. Co-administration of cholecalciferol in high dose with 17β-E 2 exerted a markedly synergistic antidepressant-like effect in the OVX rats on the same model of depression-like behavior testing. Cholecalciferol in high dose (5.0mg/kg/day,s.c.) administered alone or together with 17β-E 2 significantly enhanced frequency of grooming for the OVX rats in the OFT. Moreover, cholecalciferol in high dose administered alone or together with 17β-E 2 significantly decreased the elevated corticosterone levels in the blood serum of OVX rats following the FST. These results indicate that Cholecalciferol in high dose has a marked antidepressant-like effect in the adult female rats with low levels of estrogen. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Effects of thyroid hormone on Leydig cell regeneration in the adult rat following ethane dimethane sulphonate treatment.

    PubMed

    Ariyaratne, H B; Mills, N; Mason, J I; Mendis-Handagama, S M

    2000-10-01

    We tested the effects of thyroid hormone on Leydig cell (LC) regeneration in the adult rat testis after ethane dimethyl sulphonate (EDS) treatment. Ninety-day-old, thyroid-intact (n = 96) and thyroidectomized (n = 5) male Sprague-Dawley rats were injected intraperitoneally (single injection) with EDS (75 mg/kg) to destroy LC. Thyroid-intact, EDS-treated rats were equally divided into three groups (n = 32 per group) and treated as follows: control (saline-injected), hypothyroid (provided 0.1% propyl thiouracil in drinking water), and hyperthyroid (received daily subcutaneous injections of tri-iodothyronine, 100 microg/kg). Testing was done at Days 2, 7, 14, and 21 for thyroid-intact rats and at Day 21 for thyroidectomized rats after the EDS treatment. Leydig cells were absent in control and hyperthyroid rats at Days 2, 7, and 14; in hypothyroid rats at all ages; and in thyroidectomized rats at Day 21. The LC number per testis in hyperthyroid rats was twice as those of controls at Day 21. 3beta-Hydroxysteroid dehydrogenase (LC marker) immunocytochemistry results agreed with these findings. Mesenchymal cell number per testis was similar in the three treatment groups of thyroid-intact rats on Days 2 and 7, but it was different on Days 14 and 21. The highest number was in the hypothyroid rats, and the lowest was in the hyperthyroid rats. Serum testosterone levels could be measured in control rats only on Day 21, were undetectable in hypothyroid rats at all stages, and were detected in hyperthyroid rats on Days 14 and 21. These levels in hyperthyroid rats were twofold greater than those of controls on Day 21. Serum androstenedione levels could be measured only in the hyperthyroid rats on Day 21. Testosterone and androstenedione levels in the incubation media showed similar patterns to those in serum, but with larger values. These findings indicate that hypothyroidism inhibits LC regeneration and hyperthyroidism results in accelerated differentiation of more mesenchymal

  15. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat.

    PubMed

    Li, Guohu; Xiao, Yuhui; Estrella, Jaymie L; Ducsay, Charles A; Gilbert, Raymond D; Zhang, Lubo

    2003-07-01

    Epidemiologic studies showed an association between adverse intrauterine environment and ischemic heart disease in the adult. We tested the hypothesis that prenatal hypoxia increased the susceptibility of adult heart to ischemia-reperfusion (I-R) injury. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% oxygen from day 15 to 21) groups. Hearts of 6-month-old male progeny were studied using Langendorff preparation and were subjected to two protocols of I-R: 10 minutes of ischemia and 3 hours of reperfusion (I-R(10)) or 25 minutes of ischemia and 3 hours of reperfusion (I-R(25)). Prenatal hypoxia did not change basal left ventricular (LV) function. I-R(10) produced myocardial stunning and a transient decrease in LV function in control hearts but caused myocardial infarction and a persistent decrease in postischemic recovery of LV function in hypoxic hearts. I-R(25) caused myocardial infarction in both control and hypoxic hearts, which was significantly higher in hypoxic hearts. The postischemic recovery of LV function was significantly reduced in hypoxic hearts. I-R(25)-induced activation of caspase-3 and apoptosis in the left ventricle were significantly higher in hypoxic than control hearts. There was a significant decrease in LV heat shock protein 70 and endothelial nitric oxide synthase levels in hypoxic hearts. Prenatal hypoxia did not change beta(1)-adrenoreceptor levels but significantly increased beta(2)-adrenoreceptor in the left ventricle. In addition, it increased G(s)alpha but decreased G(i)alpha. Prenatal chronic hypoxia increases the susceptibility of adult heart to I-R injury. Several possible mechanisms may be involved, including an increase in beta(2)-adrenoreceptor and the G(s)alpha/G(i)alpha ratio, and a decrease in heat shock protein 70 and endothelial nitric oxide synthase in the left ventricle.

  16. Impact of chemical proportions on the acute neurotoxicity of a mixture of seven carbamates in preweanling and adult rats.

    PubMed

    Moser, Virginia C; Padilla, Stephanie; Simmons, Jane Ellen; Haber, Lynne T; Hertzberg, Richard C

    2012-09-01

    Statistical design and environmental relevance are important aspects of studies of chemical mixtures, such as pesticides. We used a dose-additivity model to test experimentally the default assumptions of dose additivity for two mixtures of seven N-methylcarbamates (carbaryl, carbofuran, formetanate, methomyl, methiocarb, oxamyl, and propoxur). The best-fitting models were selected for the single-chemical dose-response data and used to develop a combined prediction model, which was then compared with the experimental mixture data. We evaluated behavioral (motor activity) and cholinesterase (ChE)-inhibitory (brain, red blood cells) outcomes at the time of peak acute effects following oral gavage in adult and preweanling (17 days old) Long-Evans male rats. The mixtures varied only in their mixing ratios. In the relative potency mixture, proportions of each carbamate were set at equitoxic component doses. A California environmental mixture was based on the 2005 sales of each carbamate in California. In adult rats, the relative potency mixture showed dose additivity for red blood cell ChE and motor activity, and brain ChE inhibition showed a modest greater-than additive (synergistic) response, but only at a middle dose. In rat pups, the relative potency mixture was either dose-additive (brain ChE inhibition, motor activity) or slightly less-than additive (red blood cell ChE inhibition). On the other hand, at both ages, the environmental mixture showed greater-than additive responses on all three endpoints, with significant deviations from predicted at most to all doses tested. Thus, we observed different interactive properties for different mixing ratios of these chemicals. These approaches for studying pesticide mixtures can improve evaluations of potential toxicity under varying experimental conditions that may mimic human exposures.

  17. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    PubMed

    Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni

    2015-11-01

    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastrointestinal motility, and cardiovascular function in healthy adult rats.

    PubMed

    López-Miranda, V; Soto-Montenegro, M L; Uranga-Ocio, J A; Vera, G; Herradón, E; González, C; Blas, C; Martínez-Villaluenga, M; López-Pérez, A E; Desco, M; Abalo, R

    2015-11-01

    Monosodium glutamate (MSG) is a flavor-enhancer widely used as a food additive. However, its safe dietary concentration and its toxicity, including its possible implication in the recent metabolic syndrome pandemia, is still a controversial issue. Therefore, a deep knowledge of its effects upon regular dietary use is needed. Our aim was to evaluate the effects of chronic exposure to MSG on feeding behavior, abdominal fat, gastrointestinal motility, and cardiovascular function in rats. Two groups of adult male Wistar rats were used: control and treated with MSG (4 g/L in drinking water) for 6 weeks. Different functional parameters were determined and the histological structure was analyzed in tissues of interest. Compared to control animals, chronic MSG increased water intake but did not modify food ingestion or body weight gain. Neither the abdominal fat volume nor the fat fraction, measured by magnetic resonance imaging, was modified by MSG. Monosodium glutamate did not alter general gastrointestinal motility, but significantly increased the colonic response to mechanical stimulation. It slightly reduced endothelium-dependent relaxation in aorta, without significantly modifying any other cardiovascular parameters. No significant histological alterations were detected in salivary glands, intestinal wall, aorta, heart, and kidney. Chronic treatment with MSG in the adult rat increased water intake. This supports its potential to improve acceptance of low-fat regimens and to increase hydration in the elderly and sportspeople, often at risk of dehydration. Changes in colonic contractility and cardiovascular function could have some long-term repercussions warranting further research. © 2015 John Wiley & Sons Ltd.

  19. Effect of chronic administration of sildenafil citrate (Viagra) on the histology of the retina and optic nerve of adult male rat.

    PubMed

    Eltony, Sohair A; Abdelhameed, Sally Y

    2017-04-01

    Abnormal vision has been reported by 3% of patients treated with sildenafil citrate (Viagra). Although many men use Viagra for an extended period for treatment of erectile dysfunction, the implications of the long term-daily use of it on the retina and optic nerve are unclear. To investigate the effect of chronic daily use of sildenafil citrate in a dose equivalent to men preferred therapeutic dose on the histology of the retina and optic nerve of adult male rat. Eighteen adult male Wistar rats were equally divided into three groups. Group I: control. Group II: treated with sildenafil citrate orally (10mg/kg/day) for 8 weeks. Group III (withdrawal): treated as group II and then left for 4 weeks without treatment. Specimens from the retina and optic nerve were processed for light and electron microscopy. In sildenafil citrate treated group, the retina and optic nerve revealed vacuolations and congested blood capillaries with apoptotic endothelial and pericytic cells, and thickened basal lamina. Caspase-3 (apoptotic marker) and CD31 (endothelial marker) expression increased. Glial cells revealed morphological changes: Müller cells lost their processes, activated microglia, astrocytic clasmatodendrosis, degenerated oligodendrocytes surrounded by disintegrated myelin sheathes of the optic nerve fibers. The retina and optic nerve of the withdrawal group revealed less vacuolations and congestion, and partial recovery of the glial cells. Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat. Partial recovery was observed after drug withdrawal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Adult Experience.

    ERIC Educational Resources Information Center

    Belsky, Janet

    The 14 chapters of this textbook chronicle adult development from youth through old age, emphasizing both research and interviews with adults at various stages in their lives. Topics covered include the following: (1) the academic field of adult development; (2) theories and research methods; (3) aging and disease prevention; (4) sexuality and…

  1. Sepsis in Older Adults.

    PubMed

    Rowe, Theresa A; McKoy, June M

    2017-12-01

    Sepsis disproportionally affects older adults with more than 60% of sepsis diagnoses attributed to adults aged 65 years and older. Identifying, diagnosing, and treating sepsis in older individuals remain a challenge for clinicians, and few studies focus specifically on older adults with multiple medical comorbidities. Principles guiding management of sepsis for older adults are generally the same as in younger adults; however, unique considerations particularly pertinent to the care older adults include antimicrobial selection and dosing, delirium management, and goals of care discussions. Other factors, such as medical comorbidities, cognitive impairment, and functional status, impact outcomes more than age alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. In utero methanesulfonyl fluoride differentially affects learning and maze performance in the absence of long-lasting cholinergic changes in the adult rat

    PubMed Central

    Carcoba, Luis M .; Santiago, Miguel; Moss, Donald E.; Cabeza, Rafael

    2008-01-01

    There is increasing evidence that acetylcholinesterase (AChE) may have various specific developmental roles in brain development. Nevertheless, specific effects of AChE inhibition during early brain development have not been adequately described. Therefore, methanesulfonyl fluoride (MSF), an irreversible AChE inhibitor that shows high selectivity for the CNS was used to produce AChE inhibition in utero to study subsequent adult behaviors, sleep, and cholinergic markers. Rats exposed to MSF in utero showed a deficit in spatial learning tasks using appetitive motivation but, surprisingly, they performed equally well or better than controls when aversive motivation was used. One hypothesis was that MSF treatment in utero affected the response to stress. Tests of anxiety however showed no differences in basal levels of anxiety. Studies of sleep behavior, however, indicated a higher level of REM sleep which is only seen during the light phase of male rats exposed to MSF in utero as compared to controls. No differences in cholinergic markers in the brains of adults were found except that females exposed to MSF in utero had a higher level of ChAT activity in the synaptosomal fraction of the hippocampus. Even so, whether cholinergic alterations accompany the in utero MSF exposure remains to be determined. The failure to find widespread changes in cholinergic markers in the adult brains suggests changes in behaviors should be further investigated by testing the participation of postsynaptic mechanisms, measuring of cholinergic markers during earlier development periods and the possible participation of other neurotransmitter systems to clearly reveal the role of the cholinergic system following in utero MSF exposure. PMID:17920111

  3. Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat.

    PubMed

    Genovese, P; Núñez, M E; Pombo, C; Bielli, A

    2010-04-01

    To test whether undernutrition during foetal to pre-pubertal life would have long lasting effects on testicular histology in adult male offspring, eleven adult Sprague-Dawley pregnant rats were divided into two groups: Control group, n = 4, fed ad libitum, during gestation and lactation (until 25 day post-partum). Underfed group pregnant females (n = 7) were kept in cages where only dams had access to food (standard rat chow, 33.5% of ad libitum intake of Control group pregnant dams). After parturition, litters were adjusted to either 14 (Underfed group) or eight (Control group) pups. Mothers were weighed weekly. At 25 day of age pups were weaned, housed at four animals per cage, fed ad libitum and weighed weekly until euthanized at 100 day of age. Testes were processed for standard histology and morphometrical evaluation. At weaning, mother weight was lower in underfed than in Control group (mean +/- SD): 214.1 +/- 26.2 g vs 361.9 +/- 33.1 g. Body weight at 100 days of age (254 +/- 26.9 g vs 342.4 +/- 10.2 g, p adult life, strongly suggesting lower daily sperm production.

  4. [German National Physical Activity Recommendations for Adults and Older Adults: Methods, Database and Rationale].

    PubMed

    Füzéki, Eszter; Vogt, Lutz; Banzer, Winfried

    2017-03-01

    National physical activity recommendations are regarded as crucial elements of comprehensive physical activity promotion strategies. To date, Germany has no such national physical activity recommendations. The aim of this study was to provide physical activity recommendations based on a comprehensive summary of scientific evidence on the relationships between physical activity and a range of health outcomes in adults and older adults. The recommendations were developed in a 3-phase process (systematic literature review, development and use of quality criteria, synthesis of content) based on already existing high-quality guidelines. Based on the analysis of documents included in this study, the following recommendations were formulated. To gain wide-ranging health benefits, adults and older adults should be physically active regularly and avoid inactivity. Adults and older adults should carry out at least 150 min/week moderate intensity or 75 min/week high intensity aerobic activity. Adults and older adults can also reach the recommended amount of physical activity by performing activities in an appropriate combination in both intensity ranges. Optimally, physical activity should be distributed over the week and it can be accumulated in bouts of at least 10 min. Physical activity beyond 150 min/week yields further health benefits. At the same time, physical activity below 150 min/week is associated with meaningful health gains. Accordingly, all adults and older adults should be encouraged to be physically active whenever possible. Adults and older adults should also perform muscle strengthening activities at least twice a week. Regular balance exercises (3 times a week) can reduce the risk of falls in older adults. Adults and older adults should avoid long periods of sitting and should break up sitting time by physical activity. Physical activity can lead to adverse events, such as musculoskeletal injuries, which can be mitigated through appropriate

  5. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and Sertoli cells (Fshr, Dhh, and Sox9) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  6. A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis.

    PubMed

    Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan

    2017-01-01

    Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig ( Lhcgr , Cyp11a1, Hsd3b1, Cyp17a1 , and Hsd17b3 ) and Sertoli cells ( Fshr , Dhh , and Sox9 ) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down

  7. Pilot Project in Computer Assisted Instruction for Adult Basic Education Students. Adult Learning Centers, the Adult Program, 1982-83.

    ERIC Educational Resources Information Center

    Buckley, Elizabeth; Johnston, Peter

    In February 1977, computer assisted instruction (CAI) was introducted to the Great Neck Adult Learning Centers (GNALC) to promote greater cognitive and affective growth of educationally disadvantaged adults. The project expanded to include not only adult basic education (ABE) students studying in the learning laboratory, but also ABE students…

  8. Evaluation of Adult Education Programs. California Adult Education.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    To assist adult educators in finding meaningful ways to measure the effectiveness of instruction, this monograph provides selected illustrations of specific methods used by adult education instructors to verify student learning. Obtained from teachers in the field, the examples are from programs in (1) dental assisting, (2) instrument pilot ground…

  9. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats

    PubMed Central

    Fernandez, Gina M.; Lew, Brandon J.; Vedder, Lindsey C.; Savage, Lisa M

    2017-01-01

    Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5 g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain derived neurotrophic factor (BNDF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24-hrs after the final EtOH exposure (acute abstinence), 3-weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure. PMID:28257889

  10. Alibis for Adult Play

    PubMed Central

    2017-01-01

    The social meanings of play sit at odds with norms of responsible and productive adult conduct. To be “caught” playing as an adult therefore risks embarrassment. Still, many designers want to create enjoyable, nonembarrassing play experiences for adults. To address this need, this article reads instances of spontaneous adult play through the lens of Erving Goffman’s theory of the interaction order to unpack conditions and strategies for nonembarrassing adult play. It identifies established frames, segregated audiences, scripts supporting smooth performance, managing audience awareness, role distancing, and, particularly, alibis for play: Adults routinely provide alternative, adult-appropriate motives to account for their play, such as child care, professional duties, creative expression, or health. Once legitimized, the norms and rules of play themselves then provide an alibi for behavior that would risk being embarrassing outside play. PMID:29706842

  11. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    PubMed

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    PubMed

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  13. Adult Learning Assumptions

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    The purpose of this study is to examine Knowles' theory of andragogy and his six assumptions of how adults learn while providing evidence to support two of his assumptions based on the theory of andragogy. As no single theory explains how adults learn, it can best be assumed that adults learn through the accumulation of formal and informal…

  14. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  15. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    NASA Technical Reports Server (NTRS)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  16. Comparative Proteomic Analysis of Hymenolepis diminuta Cysticercoid and Adult Stages

    PubMed Central

    Sulima, Anna; Savijoki, Kirsi; Bień, Justyna; Näreaho, Anu; Sałamatin, Rusłan; Conn, David Bruce; Młocicki, Daniel

    2018-01-01

    Cestodiases are common parasitic diseases of animals and humans. As cestodes have complex lifecycles, hexacanth larvae, metacestodes (including cysticercoids), and adults produce proteins allowing them to establish invasion and to survive in the hostile environment of the host. Hymenolepis diminuta is the most commonly used model cestode in experimental parasitology. The aims of the present study were to perform a comparative proteomic analysis of two consecutive developmental stages of H. diminuta (cysticercoid and adult) and to distinguish proteins which might be characteristic for each of the stages from those shared by both stages. Somatic proteins of H. diminuta were isolated from 6-week-old cysticercoids and adult tapeworms. Cysticercoids were obtained from experimentally infected beetles, Tenebrio molitor, whereas adult worms were collected from experimentally infected rats. Proteins were separated by GeLC-MS/MS (one dimensional gel electrophoresis coupled with liquid chromatography and tandem mass spectrometry). Additionally protein samples were digested in-liquid and identified by LC-MS/MS. The identified proteins were classified according to molecular function, cellular components and biological processes. Our study showed a number of differences and similarities in the protein profiles of cysticercoids and adults; 233 cysticercoid and 182 adult proteins were identified. From these proteins, 131 were present only in the cysticercoid and 80 only in the adult stage samples. Both developmental stages shared 102 proteins; among which six represented immunomodulators and one is a potential drug target. In-liquid digestion and LC-MS/MS complemented and confirmed some of the GeLC-MS/MS identifications. Possible roles and functions of proteins identified with both proteomic approaches are discussed. PMID:29379475

  17. The effects of an acute challenge with the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, on social inhibition in adolescent and adult male rats

    PubMed Central

    Spear, Linda P.

    2013-01-01

    Rationale NMDA antagonists consistently produce social inhibition in adult animals, although effects of these manipulations on social behavior of adolescents are relatively unknown. Objectives The aim of this study was to assess potential age differences in the socially inhibitory effects of the non-competitive NMDA antagonist, MK-801, as well as NR2 subunit selective effects, given the regional and developmental differences that exist for the NR2 subunit during ontogeny. Methods In separate experiments, adolescent and adult male Sprague–Dawley rats were treated acutely with MK-801 (0, 0.05, 0.1, 0.2 mg/kg, i.p.), the NR2A antagonist, PEAQX (2.5, 5, 10, 20 mg/kg, s.c.), or the NR2B antagonist, ifenprodil (1.5, 3, 6, 12 mg/kg, i.p.), 10 min prior to a social interaction test. Results Adolescents required higher doses of MK-801 (0.1 and 0.2 mg/kg) to induce social suppression, whereas adults demonstrated reductions in social activity after all doses. Likewise, adolescents required higher doses of ifenprodil (6 and 12 mg/kg) to produce social inhibitory effects relative to adults (all doses). In contrast, adults were less sensitive to PEAQX than adolescents, with adults showing social inhibition after 20 mg/kg whereas adolescents showed this effect following 10 and 20 mg/kg. Although locomotor activity was generally reduced at both ages by all drugs tested, ANCOVAs using locomotor activity as a covariate revealed similar patterns of social inhibitory effects. Conclusions Adolescents are less sensitive than adults to the disruption of social behavior by NMDA and NR2B-selective receptor antagonism, but not by an NR2A antagonist—age differences that may be related to different subunit expression patterns during development. PMID:24043344

  18. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats

    PubMed Central

    KONG, Lingfa; WEI, Quanwei; FEDAIL, Jaafar Sulieman; SHI, Fangxiong; NAGAOKA, Kentaro; WATANABE, Gen

    2015-01-01

    Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-Dawley rats were randomly divided into three groups: control, hypothyroid (hypo-T) and hyperthyroid (hyper-T). The results showed the body weights decreased significantly in both the hypo-T and hyper-T groups and that uterine weights were decreased significantly in the hypo-T group. The serum concentrations of total triiodothyronine (T3) and thyroxine (T4), as well as estradiol (E2), were significantly decreased in the hypo-T group, but increased in the hyper-T group. The progesterone (P4) concentrations in the hypo- and hyperthyroid rats markedly decreased. Immunohistochemistry results provided evidence that thyroid hormone nuclear receptor α/β (TRα/β) and three NOS isoforms were located in different cell types of rat uteri. The NO content and total NOS and inducible NOS (iNOS) activities were markedly diminished in the hypo-T group but increased in the hyper-T group. Moreover, the activities of both glutathione peroxidase (GSH-Px) and catalase (CAT) exhibited significant decreases and increases in the hypo-T and hyper-T groups, respectively. The malondialdehyde (MDA) contents in both the hypo-T and hyper-T groups showed a significant increase. Total superoxide dismutase (T-SOD) activity in the hypo- and hyper-T rats markedly decreased. In conclusion, these results indicated that thyroid hormones have an important influence on the modulation of uterine antioxidative status. PMID:25797533

  19. Adults Studying Pure Mathematics in Adult Tertiary Preparation.

    ERIC Educational Resources Information Center

    Bennison, Anne

    2002-01-01

    Investigated the experiences of a group of adults enrolled in the Pure Mathematics module of the Certificate IV in Adult Tertiary Preparation in 2000 at one of the Institutes of TAFE in Brisbane, Australia. Classroom learning experiences, exposure to technology, and the impact of returning to study on other facets of students' lives were…

  20. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes

    PubMed Central

    1991-01-01

    Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and

  1. Effective Literacy Instruction for Adults with Specific Learning Disabilities: Implications for Adult Educators

    ERIC Educational Resources Information Center

    Hock, Michael F.

    2012-01-01

    Adults with learning disabilities (LD) attending adult basic education, GED programs, or community colleges are among the lowest performers on measures of literacy. For example, on multiple measures of reading comprehension, adults with LD had a mean reading score at the third grade level, whereas adults without LD read at the fifth grade level.…

  2. Ovarian structure and hormonal status of the UChA and UChB adult rats in response to ethanol.

    PubMed

    Chuffa, Luiz Gustavo A; Padovani, Carlos R; Martinez, Francisco E

    2009-01-20

    In females, chronic alcoholism has a current and dangerous incidence to fertility. This work had the goal of elucidating the alterations on the ovary of UChA and UChB adult rats (ethanol 10% (v/v) voluntary drinkers). After the treatment period, 42 female rats divided into three experimental groups (UChA, UChB and Wistar) suffered decapitation and their ovaries were removed and processed to further analysis on light and electron microscopy. The ovary was entirely sliced and stained by hematoxylin-eosin, toluidine blue, periodic acid Schiff (PAS) and Masson's tricromic. Thereby, the enzymatic reaction to acid and alkaline phosphatase, estral cyclicity, reproductive hormonal status and frequency in oestrous-related ovarian structures were assigned. The UChB rats showed an increase in body mass gain index and the ovaries relative weight was significantly lower comparing to the other groups. UCh rats presented the longest estral cycle durations and also persistent oestrous phasis, with uninterrupted cycles. Advanced follicular atresia was common in UCh animals, and degenerating intracellular fragments could be observed through acid phosphatase and electron microscopy techniques. There were some estral cyclicity irregularities caused by chronic ethanol intake in the UCh groups which were consequently reflected as morphologic injury in the ovary structure.

  3. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  4. How Japanese adults perceive memory change with age: middle-aged adults with memory performance as high as young adults evaluate their memory abilities as low as older adults.

    PubMed

    Kinjo, Hikari; Shimizu, Hiroyuki

    2014-01-01

    The characteristics of self-referent beliefs about memory change with age. The relationship between beliefs and memory performance of three age groups of Japanese adults was investigated. The beliefs measured by the Personal Beliefs about Memory Instrument (Lineweaver & Hertzog, 1998) differed among the age groups and between sexes. In most scales, the ratings by middle-aged adults were as low as those by older adults, which were lower than those by young adults. Women perceived their memory abilities as lower than men's, with no interaction between age and sex, suggesting the difference remains across the lifespan. For middle-aged adults, the better they performed in cued-recall, free recall, and recognition, the lower they evaluated their memory self-efficacy, while few relationships were found for other groups. Our results suggest that cognitive beliefs change with age and that investigating the beliefs of the middle-aged adults is indispensable to elucidate the transition of beliefs.

  5. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS.

    PubMed

    Moreno, S; Farioli-Vecchioli, S; Cerù, M P

    2004-01-01

    Peroxisome proliferator-activated and retinoid X receptors (PPARs and RXRs) are transcription factors belonging to the steroid hormone receptor superfamily. Upon activation by their ligands, PPARs and RXRs bind to their target genes as heterodimers. Ligands of these receptors include lipophylic molecules, such as retinoids, fatty acids and eicosanoids, the importance of which in the metabolism and functioning of the nervous tissue is well documented. The immunohistochemical distribution of PPARs and RXRs in the CNS of the adult rat was studied by means of a sensitive biotinyl-tyramide method. All PPAR (alpha, beta/delta and gamma) and RXR (alpha, beta and gamma) isotypes were detected and found to exhibit specific patterns of localization in the different areas of the brain and spinal cord. The presence of the nuclear receptors was observed in both neuronal and glial cells. While PPAR beta/delta and RXR beta showed a widespread distribution, alpha and gamma isotypes exhibited a more restricted pattern of expression. The frontal cortex, basal ganglia, reticular formation, some cranial nerve nuclei, deep cerebellar nuclei, and cerebellar Golgi cells appeared rather rich in all studied receptors. Based on our data, we suggest that in the adult CNS, PPARs and RXRs, besides playing roles common to many other tissues, may have specific functions in regulating the expression of genes involved in neurotransmission, and therefore play roles in complex processes, such as aging, neurodegeneration, learning and memory.

  6. Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats.

    PubMed

    Fuentes, Silvia; Carrasco, Javier; Armario, Antonio; Nadal, Roser

    2014-08-01

    Exposure to stress during childhood and adolescence increases vulnerability to developing several psychopathologies in adulthood and alters the activity of the hypothalamic-pituitary-adrenal (HPA) axis, the prototypical stress system. Rodent models of juvenile stress appear to support this hypothesis because juvenile stress can result in reduced activity/exploration and enhanced anxiety, although results are not always consistent. Moreover, an in-depth characterization of changes in the HPA axis is lacking. In the present study, the long-lasting effects of juvenile stress on adult behavior and HPA function were evaluated in male rats. The juvenile stress consisted of a combination of stressors (cat odor, forced swim and footshock) during postnatal days 23-28. Juvenile stress reduced the maximum amplitude of the adrenocorticotropic hormone (ACTH) levels (reduced peak at lights off), without affecting the circadian corticosterone rhythm, but other aspects of the HPA function (negative glucocorticoid feedback, responsiveness to further stressors and brain gene expression of corticotrophin-releasing hormone and corticosteroid receptors) remained unaltered. The behavioral effects of juvenile stress itself at adulthood were modest (decreased activity in the circular corridor) with no evidence of enhanced anxiety. Imposition of an acute severe stressor (immobilization on boards, IMO) did not increase anxiety in control animals, as evaluated one week later in the elevated-plus maze (EPM), but it potentiated the acoustic startle response (ASR). However, acute IMO did enhance anxiety in the EPM, in juvenile stressed rats, thereby suggesting that juvenile stress sensitizes rats to the effects of additional stressors. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Measuring child awareness for adult symptomatic HIV using a verbal assessment tool: concordance between adult-child dyads on adult HIV-associated symptoms and illnesses.

    PubMed

    Becker, Elisabeth; Kuo, Caroline; Operario, Don; Moshabela, Mosa; Cluver, Lucie

    2015-11-01

    This study assessed children's awareness for adult HIV-associated symptoms and illnesses using a verbal assessment tool by analysing inter-rater reliability between adult-child dyads. This study also evaluated sociodemographic and household characteristics associated with child awareness of adult symptomatic HIV. A cross-sectional survey using a representative community sample of adult-child dyads (N=2477 dyads) was conducted in KwaZulu-Natal, South Africa. Analyses focused on a subsample (n=673 adult-child dyads) who completed verbal assessment interviews for symptomatic HIV. We used an existing validated verbal autopsy approach, originally designed to determine AIDS-related deaths by adult proxy reporters. We adapted this approach for use by child proxy reporters for reporting on HIV-associated symptoms and illnesses among living adults. Analyses assessed whether children could reliably report on adult HIV-associated symptoms and illnesses and adult provisional HIV status. Adult-child pairs concurred above the 65th percentile for 9 of the 10 HIV-associated symptoms and illnesses with sensitivities ranging from 10% to 100% and specificities ranging from 20% to 100%. Concordant reporting between adult-child dyads for the adult's provisional HIV status was 72% (sensitivity=68%, specificity=73%). Children were more likely to reliably match adult's reports of provisional HIV status when they lived in households with more household members, and households with more robust socioeconomic indicators including access to potable water, food security and television. Children demonstrate awareness of HIV-associated symptoms and illnesses experienced by adults in their household. Children in households with greater socioeconomic resources and more household members were more likely to reliably report on the adult's provisional HIV status. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats.

    PubMed

    Fuentes, Silvia; Carrasco, Javier; Hatto, Abigail; Navarro, Juan; Armario, Antonio; Monsonet, Manel; Ortiz, Jordi; Nadal, Roser

    2018-01-01

    Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an

  9. Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats

    PubMed Central

    Fuentes, Silvia; Carrasco, Javier; Hatto, Abigail; Navarro, Juan; Armario, Antonio; Monsonet, Manel; Ortiz, Jordi

    2018-01-01

    Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an

  10. Changes in adaptability following perinatal morphine exposure in juvenile and adult rats.

    PubMed

    Klausz, Barbara; Pintér, Ottó; Sobor, Melinda; Gyarmati, Zsuzsa; Fürst, Zsuzsanna; Tímár, Júlia; Zelena, Dóra

    2011-03-05

    The problem of drug abuse among pregnant women causes a major concern. The aim of the present study was to examine the adaptive consequences of long term maternal morphine exposure in offspring at different postnatal ages, and to see the possibility of compensation, as well. Pregnant rats were treated daily with morphine from the day of mating (on the first two days 5mg/kgs.c. than 10mg/kg) until weaning. Male offspring of dams treated with physiological saline served as control. Behavior in the elevated plus maze (EPM; anxiety) and forced swimming test (FST; depression) as well as adrenocorticotropin and corticosterone hormone levels were measured at postpartum days 23-25 and at adult age. There was only a tendency of spending less time in the open arms of the EPM in morphine treated rats at both ages, thus, the supposed anxiogenic impact of perinatal exposure with morphine needs more focused examination. In response to 5min FST morphine exposed animals spent considerable longer time with floating and shorter time with climbing at both ages which is an expressing sign of depression-like behavior. Perinatal morphine exposure induced a hypoactivity of the stress axis (adrenocorticotropin and corticosterone elevations) to strong stimulus (FST). Our results show that perinatal morphine exposure induces long term depression-like changes. At the same time the reactivity to the stress is failed. These findings on rodents presume that the progenies of morphine users could have lifelong problems in adaptive capability and might be prone to develop psychiatric disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction.

    PubMed

    Levay, Elizabeth A; Paolini, Antonio G; Govic, Antonina; Hazi, Agnes; Penman, Jim; Kent, Stephen

    2008-08-22

    Environmental stimuli such as caloric availability during the perinatal period exert a profound influence on the development of an organism. Studies in this domain have focused on the effects of under- and malnutrition while the effects of more mild levels of restriction have not been delineated. Rat dams and their offspring were subjected to one of five dietary regimens: control, CR50% for 3 days preconception, CR25% during gestation, CR25% during lactation, and CR25% during gestation, lactation, and post-weaning (lifelong). The pup retrieval test and maternal observations were conducted during lactation to quantify maternal care. In the pup retrieval test, dams that were concurrently experiencing CR (i.e., from the lactation and lifelong groups) displayed shorter latencies to retrieve all pups than the control and preconception groups and the lactation group constructed better nests than all groups. Adult offspring were tested in three tests of anxiety: the elevated plus maze, open field, and emergence test. No differences were observed in the elevated plus maze; however, in the open field preconception animals made fewer entries and spent more time in the central zone than controls. In addition, preconception offspring exhibited longer latencies to full body emergence, spent less time fully emerged, and spent more time engaged in risk assessment behaviours than all other groups. Offspring from the preconception group were also on average 11% heavier than control rats throughout life and displayed 37% higher serum leptin concentrations than controls. A potential role for leptin in the anxiogenic effect of preconception CR is discussed.

  12. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    PubMed

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte

  13. Chronic Δ⁸-THC Exposure Differently Affects Histone Modifications in the Adolescent and Adult Rat Brain.

    PubMed

    Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana

    2017-10-04

    Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.

  14. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less

  15. Parametrial adipose tissue and metabolic dysfunctions induced by fructose-rich diet in normal and neonatal-androgenized adult female rats.

    PubMed

    Alzamendi, Ana; Castrogiovanni, Daniel; Ortega, Hugo H; Gaillard, Rolf C; Giovambattista, Andres; Spinedi, Eduardo

    2010-03-01

    Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.

  16. Dynamic culture yields engineered myocardium with near-adult functional output

    PubMed Central

    Jackman, Christopher P.; Carlson, Aaron L.; Bursac, Nenad

    2016-01-01

    Engineered cardiac tissues hold promise for cell therapy and drug development, but exhibit inadequate function and maturity. In this study, we sought to significantly improve the function and maturation of rat and human engineered cardiac tissues. We developed dynamic, free-floating culture conditions for engineering “cardiobundles”, 3-dimensional cylindrical tissues made from neonatal rat cardiomyocytes or human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in fibrin-based hydrogel. Compared to static culture, 2-week dynamic culture of neonatal rat cardiobundles significantly increased expression of sarcomeric proteins, cardiomyocyte size (~2.1-fold), contractile force (~3.5-fold), and conduction velocity of action potentials (~1.4-fold). The average contractile force per cross-sectional area (59.7 mN/mm2) and conduction velocity (52.5 cm/sec) matched or approached those of adult rat myocardium, respectively. The inferior function of statically cultured cardiobundles was rescued by transfer to dynamic conditions, which was accompanied by an increase in mTORC1 activity and decline in AMPK phosphorylation and was blocked by rapamycin. Furthermore, dynamic culture effects did not stimulate ERK1/2 pathway and were insensitive to blockers of mechanosensitive channels, suggesting increased nutrient availability rather than mechanical stimulation as the upstream activator of mTORC1. Direct comparison with phenylephrine treatment confirmed that dynamic culture promoted physiological cardiomyocyte growth rather than pathological hypertrophy. Optimized dynamic culture conditions also augmented function of human cardiobundles made reproducibly from cardiomyocytes derived from multiple hPSC lines, resulting in significantly increased contraction force (~2.5-fold) and conduction velocity (~1.4-fold). The average specific force of 23.2 mN/mm2 and conduction velocity of 25.8 cm/sec approached the functional metrics of adult human myocardium. In conclusion

  17. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  18. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    PubMed

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was

  19. Nordic-Baltic cooperation in adult education: A collective story of Estonian adult educators

    NASA Astrophysics Data System (ADS)

    Jõgi, Larissa; Karu, Katrin

    2017-03-01

    Adult Education has many values, including experiences and co-operation among people, and the fact that adult education is full of stories from adult educators, which can help to understand trends in the past and developments in the present. Established in 1991 as part of a more general regional cooperation among five Nordic and three Baltic countries (NB8), Nordic-Baltic cooperation in adult education has been mutually enriching and has resulted in the growth of a professional network. The cooperation has led participants through a time of new sources of values, knowledge and contacts, socialisation and transformation, inspiration and challenges, which has influenced their experiences and professional identities. This paper is based on the results of a study entitled "Nordic-Baltic cooperation in adult education: Experience and stories" and focuses on the experiences and professional identities of two generations of Estonian adult educators. The empirical data for the study were collected using narrative-biographical interviews. The paper discusses two research questions: (1) What is the perception and influence of experiences for adult educators? and (2) How have their experiences influenced the professional identity of adult educators?

  20. Becoming adults: Challenges in the transition to adult roles.

    PubMed

    Furstenberg, Frank F

    2015-09-01

    This article summarizes the reasons for the slower passage to adult status (at least measured by demographic markers) and discusses some of the important implications of what today's pattern of becoming an adult means for young people, their families, and the larger society. By no means should this article be considered a review of the growing body of evidence on the changing pattern of adult transition. Indeed, there are many reviews of the literature on this topic, including books by Richard Settersten and Barbara Ray (2010) and Jeffrey Arnett (2015). The authors intention, rather, is to provide a short overview of the topic and to identify public policies needed to make social institutions capable of adapting successfully to this later regime for entering adulthood. Indeed, entering adulthood still involves school completion, home leaving, and entering a job that is full-time. For many young adults, it also includes forming a partnership and having children, though, as discussed later, these expectations are no longer universal in American society.