Sample records for adult retinal pigment

  1. Familial grouped pigmentation of the retinal pigment epithelium.

    PubMed Central

    de Jong, P T; Delleman, J W

    1988-01-01

    Grouped pigmentation of the retinal pigment epithelium was found in a father and his son. They had a normal resting potential on the electro-oculogram, but the son had a lower normal light rise. We believe this is the first description of familial grouped pigmentation. Images PMID:3390419

  2. Retinal pigment epithelium changes in Kartagener syndrome.

    PubMed

    Garcia, Maria D; Ventura, Camila V; Dias, João R; Chang, Ta Chen P; Berrocal, Audina M

    2018-06-01

    We present the first case in the literature of a patient with Kartagener syndrome and ocular findings of nonexudative age-related macular degeneration. A 55-year-old woman with Kartagener syndrome and chronic angle closure glaucoma presented for evaluation of the retina. Optos ultra-widefield imaging of the fundus showed glaucomatous cupping, drusen, and retinal pigment epithelium changes within the macular region. Humphrey visual field testing confirmed glaucomatous changes. Drusenoid pigment epithelial detachments were observed bilaterally with optical coherence tomography. We hypothesize that in addition to the lungs, spermatozoa and the Fallopian tubes, the retinal pigment epithelium may also be affected by ciliary dysfunction in individuals with Kartagener syndrome. Given recent advances in our knowledge of retinal ciliopathies, further studies are needed to understand how ciliary dysfunction affects the retina in Kartagener syndrome.

  3. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  4. Retinal Pigment Epithelium Culture;a Potential Source of Retinal Stem Cells

    PubMed Central

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-01-01

    Purpose To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Methods Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco’s Modified Eagle’s Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Results Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Conclusion Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered. PMID:23198062

  5. Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa.

    PubMed

    Brancati, Nadia; Frucci, Maria; Gragnaniello, Diego; Riccio, Daniel; Di Iorio, Valentina; Di Perna, Luigi

    2018-06-01

    Retinitis Pigmentosa is an eye disease that presents with a slow loss of vision and then evolves until blindness results. The automatic detection of the early signs of retinitis pigmentosa acts as a great support to ophthalmologists in the diagnosis and monitoring of the disease in order to slow down the degenerative process. A large body of literature is devoted to the analysis of Retinitis Pigmentosa. However, all the existing approaches work on Optical Coherence Tomography (OCT) data, while hardly any attempts have been made working on fundus images. Fundus image analysis is a suitable tool in daily practice for an early detection of retinal diseases and the monitoring of their progression. Moreover, the fundus camera represents a low-cost and easy-access diagnostic system, which can be employed in resource-limited regions and countries. The fundus images of a patient suffering from retinitis pigmentosa are characterized by an attenuation of the vessels, a waxy disc pallor and the presence of pigment deposits. Considering that several methods have been proposed for the analysis of retinal vessels and the optic disk, this work focuses on the automatic segmentation of the pigment deposits in the fundus images. The image distortions are attenuated by applying a local pre-processing. Next, a watershed transformation is carried out to produce homogeneous regions. Working on regions rather than on pixels makes the method very robust to the high variability of pigment deposits in terms of color and shape, so allowing the detection even of small pigment deposits. The regions undergo a feature extraction procedure, so that a region classification process is performed by means of an outlier detection analysis and a rule set. The experiments have been performed on a dataset of images of patients suffering from retinitis pigmentosa. Although the images present a high variability in terms of color and illumination, the method provides a good performance in terms of

  6. Rapid Retinal Release from a Cone Visual Pigment Following Photoactivation*

    PubMed Central

    Chen, Min-Hsuan; Kuemmel, Colleen; Birge, Robert R.; Knox, Barry E.

    2012-01-01

    As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated retinal release from a short-wavelength sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t1/2) of retinal release from VCOP was 7.1 s, 250-fold faster than rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t1/2 decreasing from 23 s to 4 s with pH 4.1 to 8, respectively. However, the Arrhenius activation energy (Ea) for VCOP derived from kinetic measurements between 4° and 20°C was 17.4 kcal/mol, similar to 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D2O) effect in VCOP, but less than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOPD108A) produced a pigment with an unprotonated chromophore (⌊max = 360 nm) and dramatically slowed (t1/2 ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D/ D108A) was designed to move the counterion one alpha helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (⌊max = 420 nm). Moreover, VCOPS85D/D108A mutant had retinal release kinetics (t1/2 = 7 s) and Ea (18 kcal/mol) similar to the native pigment exhibiting no pH-dependence. By contrast, the single mutant VCOPS85D had a ~3-fold decrease in retinal release rate compared to the native pigment. Photoactivated VCOPD108A had kinetics comparable to a rhodopsin counterion mutant, RhoE113Q, both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from

  7. Nitric oxide-dependent pigment migration induced by ultraviolet radiation in retinal pigment cells of the crab Neohelice granulata.

    PubMed

    Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia

    2010-01-01

    The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  8. Study on the autofluorescence profiles of iris pigment epithelium and retinal pigment epithetlium

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Qu, Junle; Chen, Danni; Sun, Yiwen; Zhao, Lingling; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    Transplantation technique of retinal pigment epithelium has been noticeable in recent years and gradually put into clinical practice in treatment of retinal degenerative diseases. Generally, immunological, histochemical, and physical methods are used to study the iris pigment epithelium (IPE) and retinal pigment epithelium (RPE) cells, which need complex sample preparation. In this paper, we provided a simple autofluorescence microscopy to investigate the fresh porcine IPE and RPE cells without any pretreatment. The results showed that the morphology and size of both were similar, round and about 15 μm. The main flourophore in both cells was similar, i.e. lipofuscin. In additional, the autofluorescence spectrum of RPE shifted blue after light-induced damage by laser illuminating. Because it was easier for IPE to be damaged by laser than for RPE, and the power of one scanning operation to get a full image was strong enough to damage IPE sample, we hadn't get any satisfied autofluorescence spectrum of IPE.

  9. Retinal pigment epithelial dystrophy in Briard dogs.

    PubMed

    Lightfoot, R M; Cabral, L; Gooch, L; Bedford, P G; Boulton, M E

    1996-01-01

    The eyes of normal Briard dogs, Briards affected with inherited retinal pigment epithelial dystrophy (RPED) and a range of normal crossbred and beagle dogs were examined and the histopathology of RPED in the Briard was compared with the histopathological features of ageing in the normal canine retina. RPED was characterised by the accumulation of auto-fluorescent lipofuscin-like inclusions in the retinal pigment epithelium (RPE), which initially involved only non-pigmented RPE cells overlying the tapetum but subsequently spread to all pigmented RPE cells. Secondary neuro-retinal degeneration was characterised by a gradual loss of the outer nuclear layer and the subsequent atrophy and degeneration of the inner retina. The loss of primary photoreceptors in the peripheral retina was accompanied by the migration of photoreceptor nuclei and appeared to resemble severe changes due to ageing. Intra-vitreal radiolabelled leucine was used to examine the rate of turnover of the outer segments of the rods in some Briards, but no significant variations were found. The activity of acid phosphatase in RPE was assayed in vitro and showed comparable regional variations in Briard and crossbred dogs. The results suggest that RPED in the Briard is unlikely to be due either to an increased rate of turnover of rod outer segments (and thus an increased phagocytic load) or to a primary insufficiency of lysosomal enzyme.

  10. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    PubMed

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  11. Effects of peptides on proliferative activity of retinal and pigmented epithelial cells.

    PubMed

    Khavinson, V Kh; Zemchikhina, V N; Trofimova, S V; Malinin, V V

    2003-06-01

    We studied the effects of Retinalamin (polypeptide preparation isolated from the retina) and a synthetic peptide Epithalon (Ala-Glu-Asp-Gly) on proliferative activity of retinal and pigmented epithelial cells. Experiments showed that Retinalamin and Epithalon (in certain concentrations) tissue-specifically stimulated proliferation of retinal and pigmented epithelial cell in culture.

  12. Blue light effect on retinal pigment epithelial cells by display devices.

    PubMed

    Moon, Jiyoung; Yun, Jieun; Yoon, Yeo Dae; Park, Sang-Il; Seo, Young-Jun; Park, Won-Sang; Chu, Hye Yong; Park, Keun Hong; Lee, Myung Yeol; Lee, Chang Woo; Oh, Soo Jin; Kwak, Young-Shin; Jang, Young Pyo; Kang, Jong Soon

    2017-05-22

    Blue light has high photochemical energy and induces cell apoptosis in retinal pigment epithelial cells. Due to its phototoxicity, retinal hazard by blue light stimulation has been well demonstrated using high intensity light sources. However, it has not been studied whether blue light in the displays, emitting low intensity light, such as those used in today's smartphones, monitors, and TVs, also causes apoptosis in retinal pigment epithelial cells. We attempted to examine the blue light effect on human adult retinal epithelial cells using display devices with different blue light wavelength ranges, the peaks of which specifically appear at 449 nm, 458 nm, and 470 nm. When blue light was illuminated on A2E-loaded ARPE-19 cells using these displays, the display with a blue light peak at a shorter wavelength resulted in an increased production of reactive oxygen species (ROS). Moreover, the reduction of cell viability and induction of caspase-3/7 activity were more evident in A2E-loaded ARPE-19 cells after illumination by the display with a blue light peak at a shorter wavelength, especially at 449 nm. Additionally, white light was tested to examine the effect of blue light in a mixed color illumination with red and green lights. Consistent with the results obtained using only blue light, white light illuminated by display devices with a blue light peak at a shorter wavelength also triggered increased cell death and apoptosis compared to that illuminated by display devices with a blue light peak at longer wavelength. These results show that even at the low intensity utilized in the display devices, blue light can induce ROS production and apoptosis in retinal cells. Our results also suggest that the blue light hazard of display devices might be highly reduced if the display devices contain less short wavelength blue light.

  13. Surgical treatment in combined hamartoma of the retina and retinal pigment epithelium.

    PubMed

    Sánchez-Vicente, J L; Rueda-Rueda, T; Llerena-Manzorro, L; Molina-Socola, F E; Contreras-Díaz, M; Szewc, M; Vital-Berral, C; Alfaro-Juárez, A; Medina-Tapia, A; López-Herrero, F; González-García, L; Muñoz-Morales, A

    2017-03-01

    The case is presented of a 39 year-old man with a combined hamartoma of the retina and retinal pigment epithelium, who experienced progressive visual loss and worsening of metamorphopsia. The patient underwent vitrectomy and epiretinal component peeling, with improvement in visual acuity, metamorphopsia, and retinal architecture, assessed by optical coherence tomography. Selected patients with combined hamartomas of the retina and retinal pigment epithelium may benefit from surgical management. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Barrier properties of cultured retinal pigment epithelium.

    PubMed

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye.

    PubMed

    Kanow, Mark A; Giarmarco, Michelle M; Jankowski, Connor Sr; Tsantilas, Kristine; Engel, Abbi L; Du, Jianhai; Linton, Jonathan D; Farnsworth, Christopher C; Sloat, Stephanie R; Rountree, Austin; Sweet, Ian R; Lindsay, Ken J; Parker, Edward D; Brockerhoff, Susan E; Sadilek, Martin; Chao, Jennifer R; Hurley, James B

    2017-09-13

    Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.

  16. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    PubMed

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  17. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  18. Bull's eye and pigment maculopathy are further retinal manifestations of an abnormal Bruch's membrane in Alport syndrome.

    PubMed

    Savige, Judy; Wang, Yanyan; Crawford, Andrew; Smith, James; Symons, Andrew; Mack, Heather; Nicholls, Kathy; Wilson, Diane; Colville, Deb

    2017-01-01

    The retinal features of Alport syndrome include a central and peripheral fleck retinopathy, temporal retinal thinning, and a macular hole. Here we describe further retinal abnormalities. We identified a case of bull's eye maculopathy 20 years previously in a 68-year-old female, and reviewed archived retinal images from our cohort of X-linked (28 males, 28 females) or autosomal recessive (n = 13) Alport syndrome. All individuals had Alport syndrome confirmed on genetic testing or renal biopsy, were examined by an ophthalmologist, and underwent retinal imaging (KOWA non-mydriatic camera, Japan). The index case had the p.Q379X variant in COL4A5 and currently had renal impairment, (eGFR = 45 ml/min/1.73 m 2 ), bilateral hearing loss, and central and peripheral retinopathies. Her maculopathy had deteriorated, and she had a bilateral central visual field loss. Optical coherence tomography (Heidelberg Spectralis) demonstrated a disrupted retinal pigment epithelium and retinal atrophy. We identified a further early bull's eye maculopathy (1/69, 1.4%) from a female with autosomal recessive disease and normal renal function. We also noted a subtle pigment maculopathy associated with an abnormal retinal pigment epithelium in 27 (27/69, 39%) subjects with Alport syndrome, in both males (8/28, 29%) and females (13/28, 46%) with X-linked disease, and in autosomal recessive disease (6/13, 38%). The bull's eye and pigment maculopathies in Alport syndrome result mainly from the damaged Bruch's membrane and overlying retinal pigment epithelium. Bull's eye maculopathy affects vision and patients should undergo regular monitoring for retinal complications.

  19. Macular pigment optical density is related to serum lutein in retinitis pigmentosa

    USDA-ARS?s Scientific Manuscript database

    Purpose: To determine whether macular pigment optical density (MPOD) is related to the degree of cystoid macular edema (CME) in patients with retinitis pigmentosa. Methods: We measured MPOD with heterochromatic flicker photometry and central foveal retinal thickness with optical coherence tomography...

  20. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods.

    PubMed

    Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin; Chakrabarti, Kalyan S; Koutalos, Yiannis; Crouch, Rosalie K; Oprian, Daniel; Cornwall, M Carter

    2012-06-01

    We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.

  1. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    PubMed

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment.

  2. Protecting the retinal pigment epithelium during macular hole surgery.

    PubMed

    Olson, Jeffrey L; On, Alexander V; Mandava, Naresh

    2005-12-01

    Herein a new surgical technique used during pars plana vitrectomy with internal limiting membrane peeling for macular hole surgery is reported. Perfluorocarbon liquid is used to tamponade the macular hole in order to prevent indocyanine green contact with the retinal pigment epithelium.

  3. Vitiligo and disorders of the retinal pigment epithelium.

    PubMed Central

    Albert, D M; Wagoner, M D; Pruett, R C; Nordlund, J J; Lerner, A B

    1983-01-01

    The association of vitiligo with inflammation of the uveal tract is well established. The relationship between vitiligo and hypopigmentation and/or degeneration of the retinal pigment epithelium (RPE) not secondary to ocular inflammation has not been adequately investigated. Sixty (27%) of 223 consecutive patients with vitiligo were found to have some evidence of RPE hypopigmentation ranging from mild, focal areas of involvement in most cases to extensive RPE degeneration with a retinitis pigmentosa-like syndrome in one patient. Fifteen (25%) patients complained of night blindness. Only 6 (4%) of 148 patients in a control group had similar funduscopic findings (p less than 0.001). None of these patients were symptomatic. There have been isolated reports of vitiligo occurring with tapetoretinal degeneration. We report 2 patients with both vitiligo and retinitis pigmentosa. Images PMID:6824621

  4. Juvenile X-linked retinoschisis presenting as juxtapapillary retinal fold mimicking combined hamartoma of the retina and retinal pigment epithelium.

    PubMed

    Pointdujour-Lim, Renelle; Say, Emil Anthony T; Shields, Carol L

    2017-04-01

    A 21-month-old boy presumptively diagnosed with combined hamartoma of the retina and retinal pigment epithelium was found to have juvenile X-linked retinoschisis with vitreomacular traction and prominent retinal folding. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  5. Retinal Pigment Epithelial Cells are a Potential Reservoir for Ebola Virus in the Human Eye

    PubMed Central

    Smith, Justine R.; Todd, Shawn; Ashander, Liam M.; Charitou, Theodosia; Ma, Yuefang; Yeh, Steven; Crozier, Ian; Michael, Michael Z.; Appukuttan, Binoy; Williams, Keryn A.; Lynn, David J.; Marsh, Glenn A.

    2017-01-01

    Purpose Success of Ebola virus (EBOV) as a human pathogen relates at the molecular level primarily to blockade the host cell type I interferon (IFN) antiviral response. Most individuals who survive Ebola virus disease (EVD) develop a chronic disease syndrome: approximately one-quarter of survivors suffer from uveitis, which has been associated with presence of EBOV within the eye. Clinical observations of post-Ebola uveitis indicate involvement of retinal pigment epithelial cells. Methods We inoculated ARPE-19 human retinal pigment epithelial cells with EBOV, and followed course of infection by immunocytochemistry and measurement of titer in culture supernatant. To interrogate transcriptional responses of infected cells, we combined RNA sequencing with in silico pathway, gene ontology, transcription factor binding site, and network analyses. We measured infection-induced changes of selected transcripts by reverse transcription-quantitative polymerase chain reaction. Results Human retinal pigment epithelial cells were permissive to infection with EBOV, and supported viral replication and release of virus in high titer. Unexpectedly, 28% of 560 upregulated transcripts in EBOV-infected cells were type I IFN responsive, indicating a robust type I IFN response. Following EBOV infection, cells continued to express multiple immunomodulatory molecules linked to ocular immune privilege. Conclusions Human retinal pigment epithelial cells may serve as an intraocular reservoir for EBOV, and the molecular response of infected cells may contribute to the persistence of live EBOV within the human eye. Translational Relevance This bedside-to-bench research links ophthalmic findings in survivors of EVD who suffer from uveitis with interactions between retinal pigment epithelial cells and EBOV. PMID:28721309

  6. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Min; Xu, Ding

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathymore » (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.« less

  7. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  8. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Gray, Daniel C.; Merigan, William; Wolfing, Jessica I.; Gee, Bernard P.; Porter, Jason; Dubra, Alfredo; Twietmeyer, Ted H.; Ahamd, Kamran; Tumbar, Remy; Reinholz, Fred; Williams, David R.

    2006-08-01

    The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. The instrument is capable of imaging single ganglion cells and their axons through retrograde transport in ganglion cells of fluorescent dyes injected into the monkey lateral geniculate nucleus (LGN). In addition, we demonstrate a method involving simultaneous imaging in two spectral bands that allows the integration of very weak signals across many frames despite inter-frame movement of the eye. With this method, we are also able to resolve the smallest retinal capillaries in fluorescein angiography and the mosaic of retinal pigment epithelium (RPE) cells with lipofuscin autofluorescence.

  9. NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration.

    PubMed

    Wang, Yujuan; Hanus, Jakub W; Abu-Asab, Mones S; Shen, Defen; Ogilvy, Alexander; Ou, Jingxing; Chu, Xi K; Shi, Guangpu; Li, Wei; Wang, Shusheng; Chan, Chi-Chao

    2016-01-08

    Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis.

  10. NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration

    PubMed Central

    Wang, Yujuan; Hanus, Jakub W.; Abu-Asab, Mones S.; Shen, Defen; Ogilvy, Alexander; Ou, Jingxing; Chu, Xi K.; Shi, Guangpu; Li, Wei; Wang, Shusheng; Chan, Chi-Chao

    2016-01-01

    Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis. PMID:26760997

  11. Effect of cadmium chloride on the distal retinal pigment cells of the fiddler crab, Uca pugilator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, P.S.; Fingerman, M.; Nguyen, L.K.

    1997-03-01

    Crustaceans have two sets of pigmentary effectors, chromatophores and retinal pigment cells. Retinal pigments control the amount of light striking the rhabdom, the photosensitive portion of each ommatidium, screening the rhabdom in bright light and uncovering it in darkness or dim light. Migration of the distal pigment in the fiddler crab, Uca pugilalor, is regulated by a light-adapting hormone and a dark-adapting hormone. The black chromatophores of this crab are also controlled by a pair of hormones. Both pigmentary effectors exhibit circadian rhythms. The effects of some organic and inorganic pollutants on the ability of Uca pugilator to change colormore » have been described. Exposure of this crab to naphthalene or cadmium results in decreased ability to disperse the pigment in their black chromatophores, the exposed crabs becoming paler than the unexposed crabs. Norepinephrine triggers release of both the black pigment-dispersing hormone and the light-adapting hormone. In view of the facts that (a) these hormones which regulate the black chromatophores and distal pigment are synthesized in and released from the eyestalk neuroendocrine complex, (b) the black pigment-dispersing hormone and the light-adapting hormone may actually be the same hormone. having two different activities and (c) release of both the black pigment-dispersing hormone and the light-adapting hormone is triggered by norepinephrine, the present investigation was carried out to determine the effect of cadmium on distal pigment migration in Uca pugilator. More specifically, for comparison with the previously reported effect of cadmium on pigment migration in the black chromatophores, we wished to determine whether the distal pigment of fiddler crabs exposed to cadmium chloride is capable of as wide a range of movement as in unexposed crabs, and if not what might be the explanation. This is the first report of the effect of a pollutant on a retinal pigment of any crustacean. 12 refs., 3 tabs.« less

  12. Loss of Retinal Function and Pigment Epithelium Changes in a Patient with Common Variable Immunodeficiency

    PubMed Central

    Halborg, Jakob; Sørensen, Torben L.

    2012-01-01

    Common variable immunodeficiency (CVID) has only scarcely been associated with ocular symptoms and rarely with retinal disease. In this case we describe a patient with distinct morphological and functional alterations in the retina. The patient presents with characteristic changes in retinal pigment epithelium, autofluorescence, and electrophysiology. PMID:23056974

  13. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    PubMed

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  14. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration.

    PubMed

    Mehat, Manjit S; Sundaram, Venki; Ripamonti, Caterina; Robson, Anthony G; Smith, Alexander J; Borooah, Shyamanga; Robinson, Martha; Rosenthal, Adam N; Innes, William; Weleber, Richard G; Lee, Richard W J; Crossland, Michael; Rubin, Gary S; Dhillon, Baljean; Steel, David H W; Anglade, Eddy; Lanza, Robert P; Ali, Robin R; Michaelides, Michel; Bainbridge, James W B

    2018-06-05

    Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of

  15. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    PubMed

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  16. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid.

    PubMed

    Sanie-Jahromi, Fatemeh; Ahmadieh, Hamid; Soheili, Zahra-Soheila; Davari, Maliheh; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Deezagi, Abdolkhalegh; Pakravesh, Jalil; Bagheri, Abouzar

    2012-04-10

    Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  17. Kinetics of Lipofuscin Formation in Aging Retinal Pigment Epithelium Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, Hans E.

    2010-03-01

    Lipofuscin is a deposit that is formed over time by aggregation and clustering of incompletely degraded membrane material in various types of cells. Lipofuscin is made of free-radical-damaged protein and fat and is known to be present in age- related macular dgeneration (AMD), Alzheimer disease, and Parkinson disease. AMD is the leading cause of blindness in adults. The degradation of retinal pigment epithelium cells (RPE) through accumulation of lipsofuscin is considered a significant pathogenic factor in the development of AMD. We will present the results of a study of the kinetics of lipofuscin growth in RPE cells using Kinetic Monte Carlo simulations and scaling theory on a cluster aggregation model. The model captures the essential physics of lipofuscin growth in the cells. A remarkable feature is that small particles may be removed from the cells while the larger ones become fixed and grow by aggregation. We compare our results with the number of lipofuscin granules in eyes with early age-related degeneration.

  18. Force dependence of phagosome trafficking in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Daniel, Rebekah; Koll, Andrew T.; Altman, David

    2014-09-01

    Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.

  19. Macular pigment levels do not influence C-Quant retinal straylight estimates in young Caucasians.

    PubMed

    Beirne, Raymond O

    2014-03-01

    Individuals with higher than normal levels of macular pigment optical density (MPOD) are less affected by disability glare, when using glare source lights with a strong short-wavelength component. The aim of this study was to investigate whether estimates of retinal straylight from the Oculus Cataract Quantifier (C-Quant), which corresponds to disability glare, are associated with estimates of macular pigment levels in young Caucasian eyes. Thirty-seven Caucasian individuals (aged 19 to 40 years) with good visual acuity, free from ocular disease and with clear ocular media participated. Macular pigment optical density was measured at 0.5 degrees eccentricity from the foveal centre using a heterochromatic flicker photometry-based densitometer instrument from MacularMetrics. Retinal straylight was estimated using the C-Quant, a commercially available device, which uses a psychophysical compensation comparison method. Mean MPOD was 0.39 ± 0.18 log units (range zero to 0.80) and was not significantly related to age (r = -0.07, p = 0.66). Mean straylight parameter (s) was 1.01 ± 0.09 log units (range 0.86 to 1.21) and was not significantly related to age (r = -0.03, p = 0.86). Although there was a small tendency for straylight measurements to be reduced in individuals with higher levels of MPOD, there was no statistically significant relationship between retinal straylight and MPOD (r = -0.17, p = 0.30). Ocular straylight, estimated by the Oculus C-Quant, is little influenced by macular pigment optical density. As the C-Quant uses balanced (white) lights, it is suggested that the previous findings on the effect of macular pigment critically depend on the use of blue-dominant glare sources. © 2013 The Author. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  20. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    PubMed Central

    2012-01-01

    Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells. PMID:22490806

  1. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    PubMed Central

    Johnson, Adam S; García, Dana M

    2007-01-01

    Background Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC. PMID:18093324

  2. Intracellular cavitation as a mechanism of short-pulse laser injury to the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Kelly, Michael William

    This research was primarily motivated to determine the retinal injury mechanism from ultra-short pulse (<1ns) lasers. The American National Standards Institute, ANSI, standards for safe retinal exposures, and mechanisms for injury, are established for pulse durations longer than 1 ns. Little data exists for shorter pulse durations. High temperatures and pressures, generated within pigmented melanosomes, leads to mechanically mediated injury for such exposures. We used nanosecond time resolved imaging to evaluate transient photo-mechanical effects on isolated melanosomes, pigmented cell cultures, and the retinal pigment epithelium, RPE, ex-vivo. Exposures between 20 ns and 100 fs were performed. We developed a unique ex-vivo model to examine transient events directly on the RPE. Evaluation of cell viability was accomplished in real time, minutes after the exposure. The threshold for cavitation (bubble formation) around single melanosomes corresponded with the threshold for intracellular cavitation and cell killing, in the nanosecond and picosecond domain. Shock waves, formed around melanosomes following sub-nanosecond exposures, did not affect the mechanism for cell killing at threshold. Although the wavelength was increased for shorter exposures (3 ps, 300 fs, and 100 fs) the threshold for intracellular cavitation decreased. All results were compared with data collected by others, using live animal models.

  3. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W.

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha}more » protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.« less

  4. Melanosome metabolism in the retinal pigmented epithelium of the opossum.

    PubMed

    Herman, K G; Steinberg, R H

    1982-01-01

    Melanosomal metabolism, including both formation and degradation of melanosomes, was studied in the retinal pigmented epithelium (RPE) of the adult opossum. The majority of the observations were made on a transitional zone between the tapetal and non-tapetal RPE, the region where melanosome metabolism was at its highest level. Formation of melanosomes, demonstrated ultrastructurally by the presence of stage-II and -III premelanosomes, was also examined autoradiographically following the incorporation of the melanin precursor, dihydroxyphenylalanine. The autoradiographic evidence indicated that many newly formed melanosomes were rapidly incorporated into complexes. Ultrastructural observations suggested that melanosome complexes were formed by at least two methods, via the fusion of melanosomes with phagosomes derived from outer segments of photoreceptors, or by the sequestration of melanosomes by cisternae. A central finding of this study, supported by both ultrastructural and histochemical data, is that there are specialized cellular regions that vary in melanosomal formation and lysosomal activity. Stage-II premelanosomes were observed only in the basal parts of the RPE cells, whereas stage-III and -IV melanosomes were found primarily in the apical RPE. Both ultrastructural and cytochemical observations indicated that degradation of melanosomes occurs only in the basal RPE. These findings are interpreted in terms of the expression of both tapetal and nontapetal characteristics in transitional cells. Finally, this study illustrates the role of lysosomal enzymes in shaping the pattern of pigmentation, and shows that the association of lysosomal activity with melanosomes depends on the functional state of the melanosome.

  5. Gypenosides protect retinal pigment epithelium cells from oxidative stress.

    PubMed

    Alhasani, Reem Hasaballah; Biswas, Lincoln; Tohari, Ali Mohammad; Zhou, Xinzhi; Reilly, James; He, Jian-Feng; Shu, Xinhua

    2018-02-01

    Oxidative stress plays a critical role in the pathogenesis of retinal degeneration. Gypenosides are the major functional components isolated from Gynostemma pentaphyllum. They have been shown to protect against oxidative stress and inflammation and have also demonstrated a protective effect on experimental optic neuritis. In order to determine the protective properties of gypenosides against oxidative stress in human retinal pigment epithelium (RPE) cells, ARPE-19 cells were treated with H 2 O 2 or H 2 O 2 plus gypenosides for 24 h. ARPE-19 cells co-treated with gypenosides had significantly increased cell viability and decreased cell death rate when compared to cells treated with H 2 O 2 alone. The level of GSH, the activities of SOD and catalase, and the expression of NRF2 and antioxidant genes were notably decreased, while there were marked increases in ROS, MDA and pro-inflammatory cytokines in ARPE-19 cells exposed to H 2 O 2 ; co-treatment with gypenosides significantly counteract these changes. Our study suggests that gypenosides protect RPE cells from oxidative damage and offer therapeutic potential for the treatment of retinal degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    PubMed

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  7. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation.

    PubMed

    Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E

    2017-06-10

    Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome.

    PubMed

    Aleman, T S; Duncan, J L; Bieber, M L; de Castro, E; Marks, D A; Gardner, L M; Steinberg, J D; Cideciyan, A V; Maguire, M G; Jacobson, S G

    2001-07-01

    To determine macular pigment (MP) in patients with inherited retinal degeneration and the response of MP and vision to supplementation of lutein. Patients with retinitis pigmentosa (RP) or Usher syndrome and normal subjects had MP optical density profiles measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity, and retinal thickness (by optical coherence tomography [OCT]) were quantified. The effects on MP and central vision of 6 months of lutein supplementation at 20 mg/d were determined. MP density in the patients as a group did not differ from normal. Among patients with lower MP, there was a higher percentage of females, smokers, and light-colored irides. Disease expression tended to be more severe in patients with lower MP. Inner retinal thickness by OCT correlated positively with MP density in the patients. After supplementation, all participants showed an increase in serum lutein. Only approximately half the patients showed a statistically significant increase in MP. Retinal nonresponders had slightly greater disease severity but were otherwise not distinguishable from responders. Central vision was unchanged after supplementation. Factors previously associated with lower or higher MP density in normal subjects showed similar associations in RP and Usher syndrome. In addition, MP in patients may be affected by stage of retinal disease, especially that leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in many but not all patients. There was no change in central vision after 6 months of lutein supplementation, but long-term influences on the natural history of these retinal degenerations require further study.

  9. Vitelliform dystrophy and pattern dystrophy of the retinal pigment epithelium: concomitant presence in a family.

    PubMed Central

    Giuffrè, G; Lodato, G

    1986-01-01

    We describe three siblings presenting unusual pigmented dystrophic lesions of the fovea. The first sibling showed macroreticular dystrophy associated with butterfly shaped dystrophy in one eye and associated with vitelliform cyst in the other eye. The second showed the atrophic outcome of a vitelliform cyst with development of subretinal neovascular membrane in one eye and a radial pigmented macular dystrophy in the other eye. The third sibling had bilateral macular vitelliform lesions. This vitelliform patterned dystrophy of the retinal pigment epithelium may represent a new form that should be classified near Best's disease and the pattern dystrophies. Images PMID:3718916

  10. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium

    PubMed Central

    Reichman, Sacha; Terray, Angélique; Slembrouck, Amélie; Nanteau, Céline; Orieux, Gaël; Habeler, Walter; Nandrot, Emeline F.; Sahel, José-Alain; Monville, Christelle; Goureau, Olivier

    2014-01-01

    Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease. PMID:24912154

  11. Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments.

    PubMed

    Giarmarco, Michelle M; Cleghorn, Whitney M; Hurley, James B; Brockerhoff, Susan E

    2018-05-09

    The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca 2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca 2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca 2+ , and energy homeostasis.

  12. Long-term results of repeated anti-vascular endothelial growth factor therapy in eyes with retinal pigment epithelial tears.

    PubMed

    Moreira, Carlos A; Arana, Luis A; Zago, Rommel J

    2013-02-01

    To evaluate the long-term results of retinal pigment epithelium tears in eyes treated with repeated anti-vascular endothelial growth factor (VEGF) therapy. Five patients with retinal pigment epithelial tears (without foveal center involvement) after anti-VEGF injection were studied retrospectively. Mean follow-up time was 52 months, with measurements of visual acuity and evaluation of macular findings by angiography and optical coherence tomography during this period. All eyes had a persistent submacular neovascular membrane 30 days after the tear. An anti-VEGF drug was reinjected until the membranes stopped leaking. The mean initial visual acuity immediately after the tear was 20/160, and the mean final visual acuity was 20/60. The number of anti-VEGF reinjections varied from two to eight during the follow-up period. Long-term optical coherence tomography analysis showed reduced fluid and remodeling of the torn retinal pigment epithelium. Long-term visual results with repeated anti-VEGF therapy are not as devastating as suggested previously. Visual acuity and metamorphopsia improve with time as long as the neovascular membrane is inactive. Optical coherence tomography changes in the macular area reflect the visual acuity improvement.

  13. Potential, Current, and Ionic Fluxes across the Isolated Retinal Pigment Epithelium and Choroid

    PubMed Central

    Lasansky, Arnaldo; de Fisch, Felisa W.

    1966-01-01

    A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current. PMID:5961357

  14. Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings.

    PubMed

    Vasconcelos-Santos, Daniel V; Sohn, Elliott H; Sadda, Srinivas; Rao, Narsing A

    2010-01-01

    The purpose of this study was to determine whether fundus autofluorescence (FAF) and spectral domain-optical coherence tomography (SD-OCT) imaging allow better assessment of retinal pigment epithelium and the outer retina in subjects with chronic Vogt-Koyanagi-Harada disease compared with examination and angiography alone. A cross-sectional analysis of a series of seven consecutive patients with chronic Vogt-Koyanagi-Harada disease undergoing FAF and SD-OCT was conducted. Chronic disease was defined as duration of intraocular inflammation >3 months. Color fundus photographs were correlated to FAF and SD-OCT images. The images were later correlated to fluorescein angiography and indocyanine green angiography. All patients had sunset glow fundus, which resulted in no apparent corresponding abnormality on FAF or SD-OCT. Lesions with decreased autofluorescence signal were observed in 11 eyes (85%), being associated with loss of the retinal pigment epithelium and involvement of the outer retina on SD-OCT. In 5 eyes (38%), some of these lesions were very subtle on clinical examination but easily detected by FAF. Lesions with increased autofluorescence signal were seen in 8 eyes (61.5%), showing variable involvement of the outer retina on SD-OCT and corresponding clinically to areas of retinal pigment epithelium proliferation and cystoid macular edema. Combined use of FAF and SD-OCT imaging allowed noninvasive delineation of retinal pigment epithelium/outer retina changes in patients with chronic Vogt-Koyanagi-Harada disease, which were consistent with previous histopathologic reports. Some of these changes were not apparent on clinical examination.

  15. 3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina

    PubMed Central

    Liu, Zhuolin; Kocaoglu, Omer P.; Miller, Donald T.

    2016-01-01

    Purpose Dysfunction of the retinal pigment epithelium (RPE) underlies numerous retinal pathologies, but biomarkers sensitive to RPE change at the cellular level are limited. In this study, we used adaptive optics optical coherence tomography (AO-OCT) in conjunction with organelle motility as a novel contrast mechanism to visualize RPE cells and characterize their 3-dimensional (3D) reflectance profile. Methods Using the Indiana AO-OCT imaging system (λc = 790 nm), volumes were acquired in the macula of six normal subjects (25–61 years). Volumes were registered in 3D with subcellular accuracy, layers segmented, and RPE and photoreceptor en face images extracted and averaged. Voronoi and two-dimensional (2D) power spectra analyses were applied to the images to quantify RPE and cone packing and cone-to-RPE ratio. Results Adaptive optics OCT revealed two distinct reflectance patterns at the depth of the RPE. One is characterized by the RPE interface with rod photoreceptor tips, the second by the RPE cell nuclei and surrounding organelles, likely melanin. Increasing cell contrast by averaging proved critical for observing the RPE cell mosaic, successful in all subjects and retinal eccentricities imaged. Retinal pigment epithelium mosaic packing and cell thickness generally agreed with that of histology and in vivo studies using other imaging modalities. Conclusions We have presented, to our knowledge, the first detailed characterization of the 3D reflectance profile of individual RPE cells and their relation to cones and rods in the living human retina. Success in younger and older eyes establishes a path for testing aging effects in larger populations. Because the technology is based on OCT, our measurements will aid in interpreting clinical OCT images. PMID:27472277

  16. Hyperosmolarity response of ocular standing potential as a clinical test for retinal pigment epithelium activity. Chorioretinal dystrophies.

    PubMed

    Yonemura, D; Kawasaki, K; Madachi-Yamamoto, S

    1984-05-30

    The hyperosmolarity response of the standing potential was recorded in retinitis pigmentosa (20 eyes), central (pericentral) retinitis pigmentosa (4 eyes), pigmented paravenous retinochoroidal atrophy (2 eyes), fundus albipunctatus (8 eyes), and Stargardt's disease (or fundus flavimaculatus) (14 eyes). The light peak/dark trough ratio (the L/D ratio) and the Diamox response were also determined. The hyperosmolarity response was greatly suppressed (less than M-4SD; M and SD indicate respectively the mean and the standard deviation in normal control subjects) in all examined eyes with retinitis pigmentosa (20 eyes) including retinitis pigmentosa sine pigmento (8 eyes), central (pericentral) retinitis pigmentosa (4 eyes), and pigmented paravenous retinochoroidal atrophy (2 eyes). The L/D ratio was larger than 1.26 (M-2.5 SD) in the half of the eyes with the above-described diseases. The hyperosmolarity response was abnormal (less than M-2 SD) in 4 of 8 eyes with fundus albipunctatus. The L/D ratio was normal in all 8 eyes. The hyperosmolarity response was abnormal (less than M-2 SD) in all 14 eyes with Stargardt's disease or fundus flavimaculatus. The L/D ratio was abnormal in 5 of these 14 eyes. The hyperosmolarity response was more frequently abnormal than the L/D ratio in the chorioretinal dystrophies mentioned above, and hence is useful particularly for early diagnosis of these disorders.

  17. Hyperosmolarity response of ocular standing potential as a clinical test for retinal pigment epithelium activity chorioretinal dystrophies.

    PubMed

    Yonemura, D; Kawasaki, K; Madachi-Yamamoto, S

    1984-05-01

    The hyperosmolarity response of the standing potential was recorded in retinitis pigmentosa (20 eyes), central (pericentral) retinitis pigmentosa (4 eyes), pigmented paravenous retinochoroidal atrophy (2 eyes), fundus albipunctatus (8 eyes), and Stargardt's disease (or fundus flavimaculatus) (14 eyes). The light peak/dark trough ratio (the L/D ratio) and the Diamox response were also determined.The hyperosmolarity response was greatly suppressed (less than M-4SD; M and SD indicate respectively the mean and the standard deviation in normal control subjects) in all examined eyes with retinitis pigmentosa (20 eyes) including retinitis pigmentosa sine pigmento (8 eyes), central (pericentral) retinitis pigmentosa (4 eyes), and pigmented paravenous retinochoroidal atrophy (2 eyes). The L/D ratio was larger than 1.26 (M-2.5 SD) in the half of the eyes with the above-described diseases.The hyperosmolarity response was abnormal (less than M-2 SD) in 4 of 8 eyes with fundus albipunctatus. The L/D ratio was normal in all 8 eyes.The hyperosmolarity response was abnormal (less than M-2 SD) in all 14 eyes with Stargardt's disease or fundus flavimaculatus. The L/D ratio was abnormal in 5 of these 14 eyes.The hyperosmolarity response was more frequently abnormal than the L/D ratio in the chorioretinal dystrophies mentioned above, and hence is useful particularly for early diagnosis of these disorders.

  18. Macular function and morphology in acute retinal pigment epithelitis.

    PubMed

    Gundogan, Fatih C; Diner, Oktay; Tas, Ahmet; Ilhan, Abdullah; Yolcu, Umit

    2014-12-01

    A 20-year-old man applied with vision loss in the left eye. Right eye examination was unremarkable. Best-corrected visual acuity (BCVA) in the left eye was 20/200. Fundus examination revealed a few yellow spots within a round-shaped macular lesion. Autofluorescence imaging showed hyperautofluorescence in the lesion. Central amplitudes in multifocal electroretinogram (mfERG) were depressed. The patient reported a rhinopharyngitis 7-10 days before the visual loss. The patient was diagnosed as acute retinal pigment epithelitis. BCVA improved gradually up to 20/20 in 4 weeks. mfERG amplitudes returned to normal. A slight pigmentary distortion was the only residual fundus finding.

  19. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis.

    PubMed

    Bianchi, Enrica; Scarinci, Fabio; Ripandelli, Guido; Feher, Janos; Pacella, Elena; Magliulo, Giuseppe; Gabrieli, Corrado Balacco; Plateroti, Rocco; Plateroti, Pasquale; Mignini, Fiorenzo; Artico, Marco

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.

  20. Diabetic retinal pigment epitheliopathy: fundus autofluorescence and spectral-domain optical coherence tomography findings.

    PubMed

    Kang, Eui Chun; Seo, Yuri; Byeon, Suk Ho

    2016-10-01

    To describe the characteristics of an unfamiliar disease entity, diabetic retinal pigment epitheliopathy (DRPE), using fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT). This retrospective study included 17 eyes from 10 proliferative diabetic retinopathy (PDR) patients with granular hypo-autofluorescence and/or variable hyper-autofluorescence on FAF (DRPE group) and 17 eyes from 10 age- and sex-matched PDR patients without abnormal autofluorescence (PDR group). Eyes with diabetic macular edema were excluded. Visual acuity (VA), retinal thickness (RT), and choroidal thickness (CT) were compared between the groups. Eyes in the DRPE group had worse logMAR VA than eyes in the PDR group (0.369 ± 0.266 vs. 0.185 ± 0.119; P = 0.026). The thickness of the retinal pigment epithelium plus the inner segment/outer segment of the photoreceptors was reduced to a greater degree in the DRPE group than the PDR group (P < 0.001). Moreover, the thickness of the outer nuclear layer plus the outer plexiform layer was thinner in the DRPE group than in the PDR (P = 0.013). However, the thickness of the inner retina showed no differences between the two groups. CT was significantly thicker in the DRPE group than in the PDR group (329.00 ± 33.76 vs. 225.62 ± 37.47 μm; P < 0.001). Eyes with DRPE showed reduced VA, a thinner outer retina, and thicker choroid in comparison with eyes with PDR. Alterations of autofluorescence on FAF and changes in the outer retinal thickness and CT on SD-OCT can be helpful for differentiating DRPE in patients with PDR.

  1. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    PubMed

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In vivo imaging of the retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jessica Ijams Wolfing

    The retinal pigment epithelial (RPE) cells form an important layer of the retina because they are responsible for providing metabolic support to the photoreceptors. Techniques to image the RPE layer include autofluorescence imaging with a scanning laser ophthalmoscope (SLO). However, previous studies were unable to resolve single RPE cells in vivo. This thesis describes the technique of combining autofluorescence, SLO, adaptive optics (AO), and dual-wavelength simultaneous imaging and registration to visualize the individual cells in the RPE mosaic in human and primate retina for the first time in vivo. After imaging the RPE mosaic non-invasively, the cell layer's structure and regularity were characterized using quantitative metrics of cell density, spacing, and nearest neighbor distances. The RPE mosaic was compared to the cone mosaic, and RPE imaging methods were confirmed using histology. The ability to image the RPE mosaic led to the discovery of a novel retinal change following light exposure; 568 nm exposures caused an immediate reduction in autofluorescence followed by either full recovery or permanent damage in the RPE layer. A safety study was conducted to determine the range of exposure irradiances that caused permanent damage or transient autofluorescence reductions. Additionally, the threshold exposure causing autofluorescence reduction was determined and reciprocity of radiant exposure was confirmed. Light exposures delivered by the AOSLO were not significantly different than those delivered by a uniform source. As all exposures tested were near or below the permissible light levels of safety standards, this thesis provides evidence that the current light safety standards need to be revised. Finally, with the retinal damage and autofluorescence reduction thresholds identified, the methods of RPE imaging were modified to allow successful imaging of the individual cells in the RPE mosaic while still ensuring retinal safety. This thesis has provided a

  3. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    PubMed

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Macular Pigment and Lutein Supplementation in ABCA4-associated Retinal Degenerations

    PubMed Central

    Aleman, Tomas S.; Cideciyan, Artur V.; Windsor, Elizabeth A. M.; Schwartz, Sharon B.; Swider, Malgorzata; Chico, John D.; Sumaroka, Alexander; Pantelyat, Alexander Y.; Duncan, Keith G.; Gardner, Leigh M.; Emmons, Jessica M.; Steinberg, Janet D.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    PURPOSE To determine macular pigment (MP) optical density (OD) in patients with ABCA4-associated retinal degenerations (ABCA4-RD) and the response of MP and vision to supplementation with lutein. METHODS Stargardt disease or cone-rod dystrophy patients with foveal fixation and with known or suspected disease-causing mutations in the ABCA4 gene were included. MPOD profiles were measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity and retinal thickness were quantified. Changes in MPOD and central vision were determined in a subset of patients receiving oral supplementation with lutein for 6 months. RESULTS MPOD in patients ranged from normal to markedly abnormal. As a group, ABCA4-RD patients had reduced foveal MPOD and there was strong correlation with retinal thickness. Average foveal tissue concentration of MP, estimated by dividing MPOD by retinal thickness, was normal in patients whereas serum concentration of lutein and zeaxanthin was significantly lower than normal. After oral lutein supplementation for 6 months, 91% of the patients showed significant increases in serum lutein and 63% of the patient eyes showed a significant augmentation in MPOD. The retinal responders tended to be female, and have lower serum lutein and zeaxanthin, lower MPOD and greater retinal thickness at baseline. Responding eyes had significantly lower baseline MP concentration compared to non-responding eyes. Central vision was unchanged after the period of supplementation. CONCLUSIONS MP is strongly affected by the stage of ABCA4 disease leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in some patients. There was no change in central vision after 6 months of lutein supplementation. Long-term influences on the natural history of this supplement on macular degenerations require further study. PMID:17325179

  5. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    PubMed

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  6. Misdiagnosis of X-linked retinitis pigmentosa in a choroideremia patient with heavily pigmented fundi.

    PubMed

    Nanda, A; Salvetti, A P; Martinez-Fernandez de la Camara, C; MacLaren, R E

    2018-06-01

    Inherited retinal diseases are thought to be the leading cause of sight loss in the working age population. Mutations found in the RPGR and CHM genes cause retinitis pigmentosa (RP) and choroideremia, respectively. In the first instance, an X-linked family history of visual field loss commonly raises the suspicion of one of these two genes. In choroideremia, the classic description of a white fundal reflex secondary to the widespread chorioretinal degeneration was made over a hundred years ago in Caucasians. But, it is not so obvious in heavily pigmented fundi. Hence, the clinical diagnosis of CHM in non-Caucasian patients may be challenging in the first stages of the disease. Here we report a case of a Southeast Asian gentleman who has a family history of X-linked retinal degeneration and was found to have a confirmed in-frame deletion of 12 DNA nucleotides in exon 15 of the RPGR gene. Later in life, however, his fundal appearance showed unusual areas of circular pigment hypertrophy and clumping. He was therefore tested for carrying a disease-causing mutation in the CHM gene and a null mutation was found. Since gene therapy trials are ongoing for both of these conditions, it has now become critically important to establish the correct genetic diagnosis in order to recruit suitable candidates. Moreover, this case demonstrates the necessity to remain vigilant in the interpretation of genetic results which are inconsistent with clinical features.

  7. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Zhang, Lei

    2017-02-01

    Melanosome is an organelle for synthesis, storage and transport the melanin, a major intrinsic pigment. In retinal pigmented epithelium (RPE), it is generally accepted that melanosome plays a critical photoprotective role, and it has been shown that that loss of melanin from RPE could be an early event towards age-related macular degeneration (AMD). Meanwhile, melanosome is also the major contributor to the optical properties of RPE, due to its high refractive index and the strong optical absorption of melanin. Therefore, a characterization and understanding the optical properties of melanin is of great interest to relate the physical and chemical changes of melanosomes, and their fundamental roles in RPE-related retinal diseases such as AMD. Here, we present a theoretical study to characterize the full optical properties of melanosomes. We modeled melanosomes as uniformly melanin filled spheroids, based on their morphology under transmission electron microscopy. T-matrix method was used to simulate the wavelength dependent total scattering, backscattering, absorption cross sections, and anisotropy factor. We verified our simulation on backscattering cross section of melanosome by comparing optical coherence tomography taken in visible and NIR ranges. In addition, we studied the changes of the optical properties of melanosomes on melanin bleaching. The results suggested a spectroscopic mechanism for optical detection of melanin loss by inverse spectroscopic optical coherence tomography.

  8. PlGF gene knockdown in human retinal pigment epithelial cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  9. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium.

    PubMed

    Laurent, Virgine; Sengupta, Anamika; Sánchez-Bretaño, Aída; Hicks, David; Tosini, Gianluca

    2017-12-01

    Earlier studies in Xenopus have indicated a role for melatonin in the regulation of retinal disk shedding, but the role of melatonin in the regulation of daily rhythm in mammalian disk shedding and phagocytosis is still unclear. We recently produced a series of transgenic mice lacking melatonin receptor type 1 (MT 1 ) or type 2 (MT 2 ) in a melatonin-proficient background and have shown that removal of MT 1 and MT 2 receptors induces significant effects on daily and circadian regulation of the electroretinogram as well as on the viability of photoreceptor cells during aging. In this study we investigated the daily rhythm of phagocytic activity by the retinal pigment epithelium in MT 1 and MT 2 knock-out mice. Our data indicate that in MT 1 and MT 2 knock-out mice the peak of phagocytosis is advanced by 3 h with respect to wild-type mice and occurred in dark rather than after the onset of light, albeit the mean phagocytic activity over the 24-h period did not change among the three genotypes. Nevertheless, this small change in the profile of daily phagocytic rhythms may produce a significant effect on retinal health since MT 1 and MT 2 knock-out mice showed a significant increase in lipofuscin accumulation in the retinal pigment epithelium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pigmented-MDCK (P-MDCK) Cell Line with Tunable Melanin Expression: An In Vitro Model for the Outer Blood-Retinal-Barrier

    PubMed Central

    Kadam, Rajendra S.; Scheinman, Robert. I.; Kompella, Uday B.

    2013-01-01

    Purpose Retinal pigment epithelium, which forms the outer blood-retinal-barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal-barrier to assess the influence of melanin pigment on solute permeability. Methods A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells. Melanin content, tyrosinase activity (conversion of L-dopa to dopachrome), and transepithelial electrical resistance (TEER) were measured. Expression of tyrosinase protein and p-protein in P-MDCK cells was confirmed by confocal microscopy. Effect of L-tyrosine (0 to 2 mM) in culture medium on melanin synthesis in P-MDCK cells was evaluated. Cell uptake and transepithelial transport of pigment-binding chloroquine (Log D = 1.59) and a negative control salicylic acid (Log D = −1.14) were investigated. Results P-MDCK cells expressed tyrosinase and p-protein. Tyrosinase activity was 4.5 fold higher in P-MDCK cells as compared to wild-type MDCK cells. The transepithelial electrical resistance stabilized by day 4 in both cell types, with the TEER being 871 ± 30 and 876 ± 53 Ω.cm2 for P-MDCK and wild-type cells, respectively. Melanin content in P-MDCK cells depended on the concentration of L-tyrosine in culture medium, and increased from 3 to 54 µg/mg protein with an increase in L-tyrosine content from 0 to 2 mM. When the cells were grown in 2 mM L-tyrosine, uptake of chloroquine was 2.3 fold higher and the transepithelial transport was 2.2 fold lower in P-MDCK cells when compared to wild-type MDCK cells. No significant difference was observed for both cell uptake and transport of salicylic acid. Conclusions We developed a P-MDCK cell line with tunable melanin synthesis as a rapidly developing surrogate for retinal pigment epithelium. PMID:23003570

  11. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  12. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  13. Anti-VEGF and its impact on the outer retina: retinal pigment epithelium tear after an injection of aflibercept in contralateral eye.

    PubMed

    Campos Polo, R; Rubio Sánchez, C

    2016-05-01

    A 62-year-old woman with a history of bilateral retinal pigment epithelium detachment (PED), secondary of age-related macular degeneration (AMD), who presented with a retinal pigment epithelium (RPE) tear on her left eye after an aflibercept injection in the contralateral eye one month earlier. A RPE tear is the main complication when the anti-VEGF therapy is used for the management of the PED. Furthermore, it should be noted that systemic absorption of the drug can induce an effect on the untreated eye. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  15. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy.

    PubMed

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  16. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  17. Detachment of retinal pigment epithelium in retinopathy due to malaria.

    PubMed

    Rocha Cabrera, P; Rodríguez Talavera, I; Losada Castillo, M J; Alemán Valls, R; Lorenzo Morales, J

    2018-05-25

    A 45-year-old man was diagnosed with malaria with neurological involvement. Two months later he referred metamorphopsia in the left eye. Malarial retinopathy was observed in the fundus examination. The Optic Coherence Tomography (OCT) of the macula showed parafoveal pigment epithelium detachment (DEP). Specific anti-malarial treatment was initiated, with the disappearance of the retinopathy being observed. Plasmodium falciparum is responsible for the retinopathy in neurological malaria. A funduscopic examination and macular OCT should be performed in these patients, as it is associated with a higher mortality when there is a retinal involvement. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  19. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal.

    PubMed

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-07-17

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2',7'-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases.

  20. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  1. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing.

    PubMed

    Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A

    2012-10-31

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  2. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease.

    PubMed

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-05-01

    Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

  3. Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.

    PubMed

    Rangel-Fonseca, Piero; Gómez-Vieyra, Armando; Malacara-Hernández, Daniel; Wilson, Mario C; Williams, David R; Rossi, Ethan A

    2013-12-01

    Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.

  4. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  5. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emergedmore » cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research

  6. Retinal flavoprotein autofluorescence as a measure of retinal health.

    PubMed

    Elner, Susan G; Elner, Victor M; Field, Matthew G; Park, Seung; Heckenlively, John R; Petty, Howard R

    2008-01-01

    To establish that increased autofluorescence of mitochondrial flavoproteins, an indicator of mitochondrial oxidative stress, correlates with retinal cell dysfunction. Retinal flavoprotein autofluorescence (FA) was imaged in humans with a fundus camera modified with 467DF8-nm excitation and 535-nm emission filters and a back-illuminated, electron-multiplying, charge-coupled device camera interfaced with a computer equipped with customized image capture software. Multiple digital images, centered on the fovea, were obtained from each eye. Histograms of pixel intensities in grayscale units were analyzed for average intensity and average curve width. Adults with diabetes mellitus, age-related macular degeneration (ARMD), central serous retinopathy, and retinal dystrophies, as well as healthy control volunteers, were imaged. Monolayers of cultured human retinal pigment epithelial (HRPE) cells, HRPE cells exposed to sublethal doses of H2O2, and HRPE cells exposed to H2O2 in the presence of antioxidants were imaged for FA using fluorescent photomicroscopy. Control patients demonstrated low levels of retinal FA, which increased progressively with age. Diabetics without visible retinopathy demonstrated increased FA levels compared to control volunteers (P < .001). Diabetics with retinopathy demonstrated significantly higher FA values than those without retinopathy (P < .04). Patients with ARMD, central serous retinopathy, or retinal dystrophies also demonstrated significantly increased FA. Compared to control RPE cells, cells oxidatively stressed with H2O2 had significantly elevated FA (P < .05), which was prevented by antioxidants (P < .05). Retinal FA is significantly increased with age and diseases known to be mediated by oxidative stress. Retinal FA imaging may provide a novel, noninvasive method of assessing retinal health and retinal dysfunction prior to retinal cell death.

  7. Cultured Human Retinal Pigment Epithelial (hRPE) Sheets: A Search for Suitable Storage Conditions.

    PubMed

    Khan, Ayyad Z; Utheim, Tor P; Reppe, Sjur; Sandvik, Leiv; Lyberg, Torstein; Roald, Borghild B-H; Ibrahim, Ibrahim B; Eidet, Jon R

    2018-04-01

    The advancement of human retinal pigment epithelial cell (hRPE) replacement therapy is partly dependent on optimization of cell culture, cell preservation, and storage medium. This study was undertaken to search for a suitable storage temperature and storage medium for hRPE. hRPE monolayer sheets were cultured under standard conditions at 37°C and then randomized for storage at six temperatures (4, 16, 20, 24, 28, and 37°C) for 7 days. After revealing a suitable storage temperature, hRPE sheets were subsequently stored with and without the silk protein sericin added to the storage medium. Live/dead assay, light microscopy, pH, and phenotypic expression of various proteins were used to assess cell cultures stored at different temperatures. After 7 days of storage, hRPE morphology was best preserved at 4°C. Addition of sericin to the storage medium maintained the characteristic morphology of the preserved cells, and improved pigmentation and levels of pigmentation-related proteins in the cultured hRPE sheets following a 7-day storage period at 4°C.

  8. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  9. Novel localization of peripherin 2, the photoreceptor-specific retinal degeneration slow protein, in retinal pigment epithelium.

    PubMed

    Uhl, Patrizia B; Amann, Barbara; Hauck, Stefanie M; Deeg, Cornelia A

    2015-01-26

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU), is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis.

  10. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease

    PubMed Central

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-01-01

    Background/purpose Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. Methods A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Results Three patients, 53–60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Conclusions Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction. PMID:23385633

  11. Complement Factor H, Vitronectin, and Opticin Are Tyrosine-Sulfated Proteins of the Retinal Pigment Epithelium

    PubMed Central

    Kanan, Yogita; Siefert, Joseph C.; Kinter, Michael; Al-Ubaidi, Muayyad R.

    2014-01-01

    Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target. PMID:25136834

  12. A Proinflammatory Function of Toll-Like Receptor 2 in the Retinal Pigment Epithelium as a Novel Target for Reducing Choroidal Neovascularization in Age-Related Macular Degeneration.

    PubMed

    Feng, Lili; Ju, Meihua; Lee, Kei Ying V; Mackey, Ashley; Evangelista, Mariasilvia; Iwata, Daiju; Adamson, Peter; Lashkari, Kameran; Foxton, Richard; Shima, David; Ng, Yin Shan

    2017-10-01

    Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium

    PubMed Central

    Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine

    2012-01-01

    Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103

  14. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  15. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-03-04

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.

  16. ADULT WITH CHICKENPOX COMPLICATED BY SYSTEMIC VASCULITIS AND BILATERAL RETINAL VASCULITIS WITH RETINAL VASCULAR OCCLUSIONS.

    PubMed

    Murdock, Jennifer; Carvounis, Petros E

    2017-01-01

    To describe an adult with chickenpox resulting in systemic vasculitis and bilateral retinal vascular occlusions. Single case report. A 58-year-old man with chickenpox complicated by disseminated varicella-zoster systemic and retinal vasculitis resulting in a combined arterial and venous occlusion in one eye with multiple branch retinal vein occlusions in the other eye. There was no evidence of retinitis. The patient systemically improved after treatment with acyclovir and steroids; however, his vision remained poor. Chickenpox can be associated with systemic vasculopathy and may rarely result in multiple systemic and ocular infarcts, including severe retinal vascular occlusions.

  17. Monomethylfumarate Induces γ-Globin Expression and Fetal Hemoglobin Production in Cultured Human Retinal Pigment Epithelial (RPE) and Erythroid Cells, and in Intact Retina

    PubMed Central

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B.; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S.; Martin, Pamela M.

    2014-01-01

    Purpose. Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Methods. Human globin gene expression was evaluated by RT–quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase–qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous βs mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Results. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. Conclusions. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. PMID:24825111

  18. Melatonin Modulates Prohibitin and Cytoskeleton in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Prigge, Cameron L; Elledge, Beth; He, Weilue; Offor, Johnpaul; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-07-01

    The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. β-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and β-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration.

  19. Melatonin Modulates Prohibitin and Cytoskeleton in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivas R.; Prigge, Cameron L.; Elledge, Beth; He, Weilue; Offor, Johnpaul; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. β-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and β-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration. PMID:28845390

  20. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium

    PubMed Central

    Peng, Shaomin; Rao, Veena S.; Adelman, Ron A.

    2011-01-01

    Purpose. The retinal pigment epithelium (RPE) separates photoreceptors from choroidal capillaries, but in age-related macular degeneration (AMD) capillaries breach the RPE barrier. Little is known about human RPE tight junctions or the effects of serum on the retinal side of the RPE. Methods. Cultured human fetal RPE (hfRPE) was assessed by the transepithelial electrical resistance (TER) and the transepithelial diffusion of methylated polyethylene glycol (mPEG). Claudins and occludin were monitored by quantitative RT-PCR, immunoblotting, and immunofluorescence. Results. Similar to freshly isolated hfRPE, claudin-19 mRNA was 25 times more abundant than claudin-3. Other detectable claudin mRNAs were found in even lesser amounts, as little as 3000 times less abundant than claudin-19. Claudin-1 and claudin-10b were detected only in subpopulations of cells, whereas others were undetectable. Knockdown of claudin-19 by small interfering RNA (siRNA) eliminated the TER. siRNAs for other claudins had minimal effects. Serum affected tight junctions only when presented to the retinal side of the RPE. The TER increased 2 times, and the conductance of K+ relative to Na+ decreased without affecting the permeability of mPEG. These effects correlated with increased steady-state levels of occludin. Conclusions. Fetal human RPE is a claudin-19–dominant epithelium that has regional variations in claudin-expression. Apical serum decreases RPE permeability, which might be a defense mechanism that would retard the spread of edema due to AMD. PMID:21071746

  1. Stem cell therapy for retinal diseases

    PubMed Central

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  2. Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed Dark Adaption in Mice*

    PubMed Central

    Sahu, Bhubanananda; Sun, Wenyu; Perusek, Lindsay; Parmar, Vipulkumar; Le, Yun-Zheng; Griswold, Michael D.; Palczewski, Krzysztof; Maeda, Akiko

    2015-01-01

    Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5−/−Rdh11−/− mice as compared with Rdh5−/− mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5−/− and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision. PMID:26391396

  3. Paraoxonase Enzyme Protects Retinal Pigment Epithelium from Chlorpyrifos Insult

    PubMed Central

    Jasna, Jagan Mohan; Anandbabu, Kannadasan; Bharathi, Subramaniam Rajesh; Angayarkanni, Narayanasamy

    2014-01-01

    Retinal pigment epithelium (RPE) provides nourishment and protection to the eye. RPE dysfunction due to oxidative stress and inflammation is one of the major reason for many of the retinal disorders. Organophosphorus pesticides are widely used in the agricultural, industrial and household activities in India. However, their effects on the eye in the context of RPE has not been studied. In this study the defense of the ARPE19 cells exposed to Chlorpyrifos (1 nM to 100 µM) in terms of the enzyme paraoxonase (PON) was studied at 24 hr and 9 days of treatment. Chlorpyrifos was found to induce oxidative stress in the ARPE19 cells as seen by significant increase in ROS and decrease in glutathione (GSH) levels without causing cell death. Tissue resident Paraoxonase 2 (PON2) mRNA expression was elevated with chlorpyrifos exposure. The three enzymatic activities of PON namely, paraoxonase (PONase), arylesterase (PON AREase) and thiolactonase (PON HCTLase) were also found to be significantly altered to detoxify and as an antioxidant defense. Among the transcription factors regulating PON2 expression, SP1 was significantly increased with chlorpyrifos exposure. PON2 expression was found to be crucial as ARPE19 cells showed a significant loss in their ability to withstand oxidative stress when the cells were subjected to chlorpyrifos after silencing PON2 expression. Treatment with N-acetyl cysteine positively regulated the PON 2 expression, thus promoting the antioxidant defense put up by the cells in response to chlorpyrifos. PMID:24979751

  4. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    PubMed

    Wavre-Shapton, Silène T; Tolmachova, Tanya; Lopes da Silva, Mafalda; da Silva, Mafalda Lopes; Futter, Clare E; Seabra, Miguel C

    2013-01-01

    The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox), Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox), Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  5. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA.

    PubMed

    Nazemroaya, Fatemeh; Soheili, Zahra-Soheila; Samiei, Shahram; Deezagi, Abdolkhalegh; Ahmadieh, Hamid; Davari, Malihe; Heidari, Razeih; Bagheri, Abouzar; Darvishalipour-Astaneh, Shamila

    2017-10-01

    Retinal pigment epithelium (RPE) cells represent a great potential to rescue degenerated cells of the damaged retina. Activation of the virtually plastic properties of RPE cells may aid in recovery of retinal degenerative disorders without the need for entire RPE sheet transplantation. Poly (2-hydroxyethyl methacrylate)(PolyHEMA) is one of the most important hydrogels in the biomaterials world. This hydrophobic polymer does not normally support attachment of mammalian cells. In the current study we investigated the effect of PolyHEMA as a cell culture substrate on the growth, differentiation, and plasticity of hRPE cells. hRPE cells were isolated from neonatal human globes and cultured on PolyHEMA and polystyrene substrates (as controls) in 24-well culture plates. DMEM/F12 was supplemented with 10% fetal bovine serum (FBS) and/or 30% human amniotic fluid (HAF) for cultured cells on polystyrene and PolyHEMA coated vessels. Morphology, rate of cell proliferation and cell death, MTT assay, immunocytochemistry and Real-Time RT-PCR were performed to investigate the effects of PolyHEMA on the growth and differentiation of cultured hRPE cells. Proliferation rate of the cells that had been cultured on PolyHEMA was reduced; PolyHEMA did not induce cell death in the hRPE cultures. hRPE cells cultured on PolyHEMA formed many giant spheroid colonies. The giant colonies were re-cultured and the presence of retinal progenitor markers and markers of hRPE cells were detected in cell cultures on PolyHEMA. PolyHEMA seems to be promising for both maintenance and de-differentiation of hRPE cells and expansion of the retinal progenitor cells from the cultures that are originated from hRPE cells. J. Cell. Biochem. 118: 3080-3089, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression

    PubMed Central

    Farnoodian, Mitra; Halbach, Caroline; Slinger, Cassidy; Pattnaik, Bikash R.; Sorenson, Christine M.

    2016-01-01

    Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis. PMID:27440660

  7. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells.

    PubMed

    Cia, David; Vergnaud-Gauduchon, Juliette; Jacquemot, Nathalie; Doly, Michel

    2014-09-01

    To determine whether the green tea polyphenol epigallocatechin gallate (EGCG) could prevent H(2)O(2)-induced oxidative stress in primary rat retinal pigment epithelial cells. Primary cultures of retinal pigment epithelium (RPE) cells were established from Long-Evans newborn rats. RPE cells were pretreated with various concentrations of EGCG for 24 h before being exposed to hydrogen peroxide (H(2)O(2)) for 2 h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was quantified by flow cytometry using propidium iodide (PI). Treatment of RPE cells with EGCG alone does not affect the cell viability up to 50 µM. Exposure of RPE cells to 600 µM H(2)O(2) caused a significant decrease in cell viability; whereas pretreatment with 10, 25, and 50 µM EGCG significantly reduced this decrease in a dose-dependent manner. The proportion of PI-positive cells increased significantly in cultures treated with H(2)O(2) alone; whereas pretreatment of RPE cells with 50 µM EGCG significantly reduced H(2)O(2)-induced RPE cell death. Our study shows that EGCG pretreatment can protect primary rat RPE cells from H(2)O(2)-induced death. This suggests potential effect of EGCG in the prevention of retinal diseases associated with H(2)O(2)-induced oxidative stress.

  8. The Project MACULA Retinal Pigment Epithelium Grading System for Histology and Optical Coherence Tomography in Age-Related Macular Degeneration

    PubMed Central

    Zanzottera, Emma C.; Messinger, Jeffrey D.; Ach, Thomas; Smith, R. Theodore; Freund, K. Bailey; Curcio, Christine A.

    2015-01-01

    Purpose. To seek pathways of retinal pigment epithelium (RPE) fate in age-related macular degeneration via a morphology grading system; provide nomenclature, visualization targets, and metrics for clinical imaging and model systems. Methods. Donor eyes with geographic atrophy (GA) or choroidal neovascularization (CNV) and one GA eye with previous clinical spectral-domain optical coherence tomography (SDOCT) imaging were processed for histology, photodocumented, and annotated at predefined locations. Retinal pigment epithelial cells contained spindle-shaped melanosomes, apposed a basal lamina or basal laminar deposit (BLamD), and exhibited recognizable morphologies. Thicknesses and unbiased estimates of frequencies were obtained. Results. In 13 GA eyes (449 locations), ‘Shedding,’ ‘Sloughed,’ and ‘Dissociated’ morphologies were abundant; 22.2% of atrophic locations had ‘Dissociated’ RPE. In 39 CNV eyes (1363 locations), 37.3% of locations with fibrovascular/fibrocellular scar had ‘Entombed’ RPE; ‘Sloughed,’ ‘Dissociated,’ and ‘Bilaminar’ morphologies were abundant. Of abnormal RPE, CNV and GA both had ∼35% ‘Sloughed’/‘Intraretinal,’ with more Intraretinal in CNV (9.5% vs. 1.8%). ‘Shedding’ cells associated with granule aggregations in BLamD. The RPE layer did not thin, and BLamD remained thick, with progression. Granule-containing material consistent with three morphologies correlated to SDOCT hyperreflective foci in the previously examined GA patient. Conclusions. Retinal pigment epithelium morphology indicates multiple pathways in GA and CNV. Atrophic/scarred areas have numerous cells capable of transcribing genes and generating imaging signals. Shed granule aggregates, possibly apoptotic, are visible in SDOCT, as are ‘Dissociated’ and ‘Sloughed’ cells. The significance of RPE phenotypes is addressable in longitudinal, high-resolution imaging in clinic populations. Data can motivate future molecular phenotyping

  9. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    PubMed

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP

  10. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling

    PubMed Central

    Steinfeld, Jörg; Steinfeld, Ichie; Bausch, Alexander; Coronato, Nicola; Hampel, Meggi-Lee; Depner, Heike; Layer, Paul G.

    2017-01-01

    ABSTRACT In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies. PMID:28546339

  11. Improvement of Storage Medium for Cultured Human Retinal Pigment Epithelial Cells Using Factorial Design.

    PubMed

    Pasovic, L; Utheim, T P; Reppe, S; Khan, A Z; Jackson, C J; Thiede, B; Berg, J P; Messelt, E B; Eidet, J R

    2018-04-09

    Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.

  12. Establishment of a blue light damage model of human retinal pigment epithelial cells in vitro.

    PubMed

    Su, G; Cai, S J; Gong, X; Wang, L L; Li, H H; Wang, L M

    2016-06-24

    To establish a blue-light damage model of human retinal pigment epithelium (RPE). Fourth-generation human RPE cells were randomly divided into two groups. In group A, cells were exposed to blue light (2000 ± 500 lux) for 0 (control), 3, 6, 9, and 12 h, and cell culture was stopped after 12 h. In group B, cells were exposed to blue light at the same intensity and time periods, but cell culture was stopped after 24 h. TdT-mediated dUTP nick-end labeling (TUNEL) assay was performed to determine the most suitable illuminating time with apoptotic index. Flow cytometry was used to determine apoptotic ratio of RPEs. In group A, the apoptotic index of cells that received 6, 9 and 12 h of blue light was higher than that of control. The apoptotic index of cells receiving 9 and 12 h was higher than that of 6 h (P = 0.000). In group B, the apoptotic index and RPE cell apoptosis ratio of cells exposed to 6, 9 and 12 h of blue light were higher than that of 3 h (P = 0.000); and cells receiving 9 and 12 h had higher values than that of 6 h. This study demonstrated that the best conditions to establish a blue light damage model of human retinal pigment epithelial cells in vitro are 2000 ± 500 lux light intensity for 6 h, with 24 h of cell culture post-exposure.

  13. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    PubMed Central

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  14. Applying photoacoustics to quantification of melanin concentration in retinal pigment epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Zhang, Hao F.; Liu, Wenzhong

    2016-03-01

    The melanin in the retinal pigment epithelium (RPE) protects retina and other ocular tissues by photo-screening and acting as antioxidant and free radical scavenger. It helps maintain normal visual functions since human eye is subjected to lifelong high oxygen stress and photon exposure. Loss of the RPE melanin weakens the protection mechanism and jeopardizes ocular health. Local decrease in the RPE melanin concentration is believed to be both a cause and a sign of early-stage age-related macular degeneration (AMD), the leading blinding disease in developed world. Current technology cannot quantitatively measure the RPE melanin concentration which might be a promising marker in early AMD screening. Photoacoustic ophthalmoscopy (PAOM), as an emerging optical absorption-based imaging technology, can potentially be applied to measure the RPE melanin concentration if the dependence of the detectable photoacoustic (PA) signal amplitudes on the RPE melanin concentrations is verified. In this study, we tested the feasibility of using PA signal ratio from RPE melanin and the nearby retinal blood vessels as an indicator of the RPE melanin variation. A novel whole eye optical model was designed and Monte Carlo modeling of light (MCML) was employed. We examined the influences on quantification from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness. The results show that the scheme is robust to individual histological and illumination variations. This study suggests that PAOM is capable of quantitatively measuring the RPE melanin concentration in vivo.

  15. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Han, Meng; Blindewald-Wittich, Almut; Holz, Frank G.; Giese, Günter; Niemz, Markolf H.; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F.

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  16. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Sylvester, O'Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S; Bartoli, Manuela; Jahng, Wan Jin

    2016-02-01

    Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.

  17. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivasa R.; He, Weilue; Sylvester, O’Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S.; Jahng, Wan Jin

    2016-01-01

    Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration (AMD). Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde vs. anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases. PMID:27029380

  18. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Sylvester, O'Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S; Jahng, Wan Jin

    2016-06-01

    Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.

  19. KCNQ and KCNE Potassium Channel Subunit Expression in Bovine Retinal Pigment Epithelium

    PubMed Central

    Zhang, Xiaoming; Hughes, Bret A.

    2013-01-01

    Human, monkey, and bovine retinal pigment epithelial (RPE) cells exhibit an M-type K+ current, which in many other cell types is mediated by channels composed of KCNQ α-subunits and KCNE auxiliary subunits. Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 in the monkey RPE. Here, we investigated the expression of KCNQ and KCNE subunits in native bovine RPE. RT-PCR analysis revealed the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in the RPE, but, in Western blot analysis of RPE plasma membranes, only KCNQ5 was detected. Among the five members of the KCNE gene family, transcripts for KCNE1, KCNE2, KCNE3, and KCNE4 were detected in bovine RPE, but only KCNE1 and KCNE2 proteins were detected. Immunohistochemistry of frozen bovine retinal sections revealed KCNE1 expression near the apical and basal membranes of the RPE, in cone outer segments, in the outer nuclear layer, and throughout the inner retina. The localization of KCNE1 in the RPE basal membrane, where KCNQ5 was previously found to be present, suggests that this β-subunit may contribute to M-type K+ channels in this membrane. PMID:24416770

  20. Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf

    2007-07-01

    Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.

  1. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    PubMed

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. THE NATURE OF THE GECKO VISUAL PIGMENT

    PubMed Central

    Crescitelli, Frederick

    1956-01-01

    Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells. PMID:13385449

  3. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  4. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy.

    PubMed

    Wu, Wei; Zeng, Yuxiao; Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-04-19

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases.

  5. Quantification of retinal pigment epithelial phenotypic variation using laser scanning cytometry.

    PubMed

    Hjelmeland, L M; Fujikawa, A; Oltjen, S L; Smit-McBride, Z; Braunschweig, D

    2010-06-16

    Quantifying phenotypic variation at the level of protein expression (variegation) within populations of retinal pigment epithelium (RPE) cells may be important in the study of pathologies associated with this variation. The lack of quantitative methods for examining single cells, however, and the variable presence of pigment and/or lipofuscin complicate this experimental goal. We have applied the technique of laser scanning cytometry (LSC) to paraffin sections of mouse and human eyes to evaluate the utility of LSC for these measurements. Mouse eyes were perfusion fixed in 4% paraformaldehyde and embedded in paraffin. Postmortem human eyes were fixed and dissected to obtain a 9-mm punch, which was then embedded in paraffin. A laser scanning cytometer equipped with violet, argon, and helium-neon lasers and the detectors for blue, green, and long red were used to record the fluorescence of each individual cell at all three wavelengths. Raw data were recorded and processed using the WinCyte software. Individual nuclei were identified by the fluorescence of the 4',6-diamidino-2-phenylindole (DAPI) nuclear counterstain. Next, RPE cells were uniquely identified in the green channel using an anti-retinal pigment epithelium-specific protein 65 kDa (anti-RPE65) monoclonal antibody with an Alexa Fluor 488-labeled secondary antibody. Mn-superoxide dismutase (MnSOD) was quantified in the long-red channel using an anti-MnSOD antibody and an Alexa Fluor 647-labeled secondary antibody. MnSOD(+) and RPE65(+) cells exhibited peaks in the plot of fluorescence intensity versus cell number, which could be characterized by the mean fluorescence intensity (MFI), the coefficient of variation (CV), and the percentage of total RPE cells that were also labeled for MnSOD. RPE cells can be uniquely identified in human and mouse paraffin sections by immunolabeling with anti-RPE65 antibody. A second antigen, such as MnSOD, can then be probed only within this set of RPE. Results are plotted

  6. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium

    PubMed Central

    Sripathi, Srinivasa R.; Sylvester, O’Donnell; He, Weilue; Moser, Trevor; Um, Ji-Yeon; Lamoke, Folami; Ramakrishna, Wusirika; Bernstein, Paul S.; Bartoli, Manuela; Jahng, Wan Jin

    2016-01-01

    Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression. PMID:26661103

  7. Distribution of melanosomes across the retinal pigment epithelium of a hooded rat: implications for light damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, W.L.; Rapp, L.M.; Williams, T.P.

    1982-02-01

    Distribution of melanosomes across the retinal pigment epithelium of hooded rats (Long-Evans) is studied at the light microscopic and electron microscopic levels. This distribution is shown to be nonuniform: more melanosomes exist in the periphery than elsewhere and, importantly, there are very few melanosomes in a restricted area of the central portion of the superior hemisphere compared with the corresponding part of the inferior hemisphere. The region with fewest melanosomes is precisely the one that is highly susceptible to light damage. Because this region is the same in both pigmented and albino eyes, the paucity of melanin in this regionmore » is not the cause of its great sensitivity to light damage. Nor does light cause the nonuniform distribution of melanin. A possible explanation, involving a proposed vestigial tapetum, is given in order to explain the correlation of melanosome counts and sensitivity to light damage.« less

  8. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool

    PubMed Central

    Iwasaki, Yuko; Sugita, Sunao; Mandai, Michiko; Yonemura, Shigenobu; Onishi, Akishi; Ito, Shin-ichiro; Mochizuki, Manabu; Ohno-Matsui, Kyoko; Takahashi, Masayo

    2016-01-01

    Purpose To establish a novel protocol for differentiation of retinal pigment epithelium (RPE) with high purity from mouse induced pluripotent stem cells (iPSC). Methods Retinal progenitor cells were differentiated from mouse iPSC, and RPE differentiation was then enhanced by activation of the Wnt signaling pathway, inhibition of the fibroblast growth factor signaling pathway, and inhibition of the Rho-associated, coiled-coil containing protein kinase signaling pathway. Expanded pigmented cells were purified by plate adhesion after Accutase® treatment. Enriched cells were cultured until they developed a cobblestone appearance with cuboidal shape. The characteristics of iPS-RPE were confirmed by gene expression, immunocytochemistry, and electron microscopy. Functions and immunologic features of the iPS-RPE were also evaluated. Results We obtained iPS-RPE at high purity (approximately 98%). The iPS-RPE showed apical-basal polarity and cellular structure characteristic of RPE. Expression levels of several RPE markers were lower than those of freshly isolated mouse RPE but comparable to those of primary cultured RPE. The iPS-RPE could form tight junctions, phagocytose photoreceptor outer segments, express immune antigens, and suppress lymphocyte proliferation. Conclusion We successfully developed a differentiation/purification protocol to obtain mouse iPS-RPE. The mouse iPS-RPE can serve as an attractive tool for functional and morphological studies of RPE. PMID:27385038

  9. Interphotoreceptor matrix components in retinal cell transplants.

    PubMed

    Juliusson, B; Mieziewska, K; Bergström, A; Wilke, K; Van Veen, T; Ehinger, B

    1994-05-01

    To further investigate the functional potential of retinal transplants we have used immunocytochemistry to study the distribution of four different interphotoreceptor matrix (IPM)-specific components in rabbit retinal transplants. The different components were: interphotoreceptor retinoid-binding protein (IRBP), chondroitin-6-sulfate, F22 antigen and peanut agglutinin (PNA) binding structures. IRBP acts as a retinoid-transport protein between the neural retina and the retinal pigment epithelium. Chondroitin-6-sulfate is a glycosaminoglycan and a part of the insoluble IPM skeleton. The identity and role of the F22 antigen is not known. However, it is a 250 kDa protein localized to specific extracellular compartments such as teh IPM. PNA is a lectin with a high binding affinity for D-galactose-beta (1-3) N-acetyl-D-galactosamine disaccharide linkages and binds to IPM domains surrounding cones, but not rods. The transplants (15-day-old embryonic rabbit retina) were placed between the neural retina and retinal pigment epithelium in adult hosts. The transplants developed the typical rosette formations with photoreceptors toward the center. IRBP labeling was distinct in the IPM in the host retina. However, no IRBP labeling could be detected in the transplants. The chondroitin-6-sulfate and F22 antibodies strongly labeled the IPM in the host retina and corresponding structures in the center of rosettes. A cone-specific labeling with PNA could be seen in the host retina. In the transplants, however, PNA labeling appeared in association with many more photoreceptors than in the host retina. There is no previous study available on the IPM in retinal cell transplants.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. [Bilateral spontaneously reattached rhegmatogenous retinal detachment. Case report and differential diagnosis with pigmentary retinopathies].

    PubMed

    García-Guzmán, Jorge Guillermo; Franco-Yáñez, Yasmín; Lima-Gómez, Virgilio

    2014-01-01

    A dark pigmentation of the ocular fundus presents in degenerative diseases such as retinitis pigmentosa; this disease must be distinguished from others whose evolution is not progressive, in order to estimate the functional prognosis of the patient. To analyze the features which distinguish spontaneously reattached retinal detachment from other causes of ocular fundus pigmentation, in order to be able to identify it even in bilateral cases. A case of a female with chronic visual loss is presented, who was referred for evaluation with the diagnosis of a pigmented retinopathy. Clinical exploration discarded causes as retinitis pigmentosa, retinal inflammatory diseases or trauma. Based on the clinical features, on the topography of pigmentation and in the information provided by electroretinography, a bilateral spontaneous reattachment of rhegmatogenous retinal detachment was diagnosed made. Clinical features of this entity are discussed, as well as the diagnostic approach to distinguish it from other pigment retinopathies. Clinical features of spontaneously reattached retinal detachment allow the explorer to distinguish it from other causes of bilateral pigmentation, despite presenting bilaterally. Since the prognosis of the attached retina is better than that of a degenerative disease, the correct diagnosis makes rehabilitation easier.

  11. Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit

    PubMed Central

    Zhao, Lian; Wang, Zhenfang; Liu, Yun; Song, Ying; Li, Yiwen; Laties, Alan M.

    2007-01-01

    Purpose A cardinal pathological feature of age-related macular degeneration (AMD) is the deposition of extracellular material between the retinal pigment epithelium (RPE) and Bruch's membrane, pathologically described as sub-RPE deposits. Both the presence and local organization of these deposits contribute to the clinical manifestations of AMD, including localized deposits clinically recognized as drusen. The biogenesis of sub-RPE deposits remains elusive. This work explores the pathological processes of sub-RPE deposit formation. Methods Matrigel was injected to the subretinal space of rats to create an amorphous deposit. Tissue sections were examined by light or confocal microscopy. Results In the presence of the subretinal deposit of Matrigel, RPE cells leave Bruch's membrane to migrate toward photoreceptors and then form a new layer between the deposit and photoreceptors, resulting in RPE translocation. The new RPE layer displaces the deposit to the sub-RPE location and therefore it becomes a sub-RPE deposit. The RPE mobilization requires the presence of photoreceptors. Bruch's membrane devoid of RPE attachment becomes vulnerable to invasion by new blood vessels from the choroid. Conclusions Our work supports a novel model of sub-RPE deposit formation in which excessive material first accumulates in the subretinal space, disrupting the physical contact between RPE cells and photoreceptors. To restore the contact, RPE cells migrate toward photoreceptors and form a new layer. The subretinal material is consequently displaced to the sub-RPE location and becomes sub-RPE deposit. Our data also provide evidence that the presence of sub-RPE deposit is sufficient to induce choroidal neovascularization to penetrate Bruch's membrane. PMID:17615538

  12. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration.

    PubMed

    Wang, Yujuan; Subramanian, Preeti; Shen, Defen; Tuo, Jingsheng; Becerra, S Patricia; Chan, Chi-Chao

    2013-11-26

    AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  13. Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation

    PubMed Central

    Wang, Junhua; Westenskow, Peter D.; Fang, Mingliang; Friedlander, Martin

    2016-01-01

    Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic ‘fingerprint’ of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644974

  14. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration.

    PubMed

    MacLaren, Robert E; Uppal, Gurmit S; Balaggan, Kamaljit S; Tufail, Adnan; Munro, Peter M G; Milliken, Andrew B; Ali, Robin R; Rubin, Gary S; Aylward, G William; da Cruz, Lyndon

    2007-03-01

    To assess excision of choroidal new vessels (CNV) combined with autologous transplantation of the equatorial retinal pigment epithelium (RPE) as a means of restoring vision for patients with acute neovascular age-related macular degeneration (AMD). Prospective interventional cohort study. Twelve patients were recruited into an ethics committee approved trial with informed consent between 2004 and 2005. All had <6 months of acute visual loss owing to subfoveal neovascular AMD and were ineligible for photodynamic therapy. Patients underwent submacular removal of CNV through a single retinotomy. A full-thickness patch graft of RPE, Bruch's membrane, and choroid was harvested from the superior equatorial retina and transplanted into the subfoveal space. The graft was flattened under heavy liquid, before silicone oil exchange. Removal of silicone oil and cataract surgery were performed 3 months later. All patients underwent cataract grading, full refraction, optical coherence tomography, fundus autofluorescence, and fluorescein and indocyanine angiography preoperatively and again 6 months postoperatively. Retinal pigment epithelium samples from 3 patients were tested for ex vivo gene transfer using a recombinant lentiviral vector. Six months after surgery, successful transplantation was determined by the presence of a pigmented subfoveal graft showing RPE autofluorescence and choroidal reperfusion. Visual outcome was assessed by subjective refraction and microperimetry of the retina overlying the graft. Successful viable grafts were seen in 11 patients. Three patients had good visual function on the grafts, with mean logarithm of the minimum angle of resolution (logMAR) improving from 0.88 to 0.79 and maintained beyond 1 year. Operative complications occurred in 8 patients, including retinal detachment in 5 patients and hemorrhage affecting the graft in 4 patients. The mean visual acuity over the whole cohort fell from logMAR 0.82 to 1.16. The excised RPE choroid could

  15. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.

    PubMed

    Liu, Tao; Jung, HaeWon; Liu, Jianfei; Droettboom, Michael; Tam, Johnny

    2017-10-01

    The retinal pigment epithelial (RPE) cells contain intrinsic fluorophores that can be visualized using infrared autofluorescence (IRAF). Although IRAF is routinely utilized in the clinic for visualizing retinal health and disease, currently, it is not possible to discern cellular details using IRAF due to limits in resolution. We demonstrate that the combination of adaptive optics (AO) with IRAF (AO-IRAF) enables higher-resolution imaging of the IRAF signal, revealing the RPE mosaic in the living human eye. Quantitative analysis of visualized RPE cells in 10 healthy subjects across various eccentricities demonstrates the possibility for in vivo density measurements of RPE cells, which range from 6505 to 5388 cells/mm 2 for the areas measured (peaking at the fovea). We also identified cone photoreceptors in relation to underlying RPE cells, and found that RPE cells support on average up to 18.74 cone photoreceptors in the fovea down to an average of 1.03 cone photoreceptors per RPE cell at an eccentricity of 6 mm. Clinical application of AO-IRAF to a patient with retinitis pigmentosa illustrates the potential for AO-IRAF imaging to become a valuable complementary approach to the current landscape of high resolution imaging modalities.

  16. Protective responses to sublytic complement in the retinal pigment epithelium

    PubMed Central

    Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna

    2016-01-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  17. The effect of retinal pigment epithelial cell patch size on growth factor expression

    DOE PAGES

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less

  18. Retinal network adaptation to bright light requires tyrosinase.

    PubMed

    Page-McCaw, Patrick S; Chung, S Clare; Muto, Akira; Roeser, Tobias; Staub, Wendy; Finger-Baier, Karin C; Korenbrot, Juan I; Baier, Herwig

    2004-12-01

    The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.

  19. Occludin Independently Regulates Permeability under Hydrostatic Pressure and Cell Division in Retinal Pigment Epithelial Cells

    PubMed Central

    Phillips, Brett E.; Cancel, Limary; Tarbell, John M.; Antonetti, David A.

    2008-01-01

    Purpose The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. Methods Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. Results Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. Conclusions The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein. PMID:18263810

  20. Superficial retinal precipitates in patients with syphilitic retinitis.

    PubMed

    Fu, Evelyn X; Geraets, Ryan L; Dodds, Emilio M; Echandi, Laura V; Colombero, Daniel; McDonald, H Richard; Jumper, J Michael; Cunningham, Emmett T

    2010-01-01

    The purpose of this study was to describe the occurrence of superficial retinal precipitates in patients with syphilitic retinitis. This was a retrospective, observational case series of nine eyes of eight patients with syphilitic retinitis associated with superficial retinal precipitates. The clinical, photographic, angiographic, and laboratory records were reviewed. Characteristics and treatment response of these superficial retinal precipitates were observed. All patients were Caucasian men, including 5 men who have sex with men (62.5%) and 6 (75.0%) who were positive for human immunodeficiency virus. None of the patients were previously diagnosed with syphilis. All patients developed panuveitis and a distinctly diaphanous or ground-glass retinitis associated with creamy yellow superficial retinal precipitates. In 3 patients (37.5%), the retinitis had a distinctive wedge-shaped appearance. Five patients (62.5%) had associated retinal vasculitis, 3 (37.5%) had serous retinal detachment, 2 (22.2%) had intraretinal hemorrhage, and 2 (22.2%) had papillitis. Within 2 weeks of initiating intravenous penicillin treatment, 7 patients (87.5%) experienced visual recovery to >or= 20/40. All affected eyes showed rapid resolution of clinical signs with minimal alternations of the retinal pigment epithelium in areas of prior retinitis after completion of antibiotic therapy. Characteristic superficial retinal precipitates may occur over areas of syphilitic retinitis. Improved recognition of this highly suggestive clinical sign may aid in early diagnosis and treatment.

  1. Retinal Changes in Uncomplicated and Severe Plasmodium knowlesi Malaria.

    PubMed

    Govindasamy, Gayathri; Barber, Bridget E; Ghani, Shuaibah A; William, Timothy; Grigg, Matthew J; Borooah, Shyamanga; Dhillon, Bal; Dondorp, Arjen M; Yeo, Tsin W; Anstey, Nicholas M; Maude, Richard J

    2016-05-01

    Plasmodium knowlesi causes severe malaria, but its pathogenesis is poorly understood. Retinal changes provide insights into falciparum malaria pathogenesis but have not been studied in knowlesi malaria. An observational study was conducted in Malaysian adults hospitalized with severe (n = 20) and nonsevere (n = 24) knowlesi malaria using indirect ophthalmoscopy (n = 44) and fundus photography (n = 29). The patients' median age was 44 years (range, 18-74 years). No coma or deaths occurred. Photography detected retinal changes in 11 of 12 patients (92%) with severe and 14 of 17 (82%) with nonsevere knowlesi malaria. Nonspecific retinal whitening occurred in 3 (35%) and 5 (29%) patients with severe and nonsevere disease, respectively; hemorrhages in 2 (17%) and 3 (18%); loss of retinal pigment epithelium in 1 (8%) and 4 (24%); and drusen in 9 (71%) and 12 (75%). All changes were mild, with no significant differences between severe and nonsevere disease. Patients with retinal hemorrhages had lower platelet counts than those without (median, 22 vs 43 × 10(9)/L; P= .04). The paucity of specific retinal findings associated with disease severity in knowlesi malaria contrasts with the retinopathy of severe adult falciparum malaria with and without coma, suggesting that falciparum-like microvascular sequestration in the brain is not a major component in severe knowlesi malaria pathogenesis. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Outer Retinal Tubulation in Degenerative Retinal Disorders

    PubMed Central

    Goldberg, Naomi R.; Greenberg, Jonathan P.; Laud, Ketan; Tsang, Stephen; Freund, K. Bailey

    2013-01-01

    Objective To demonstrate outer retinal tubulation (ORT) in various degenerative retinal disorders. Methods This was a retrospective review of the multimodal imaging of 29 eyes of 15 patients with various retinal dystrophies and inflammatory maculopathies manifesting ORT. The morphologic features of ORT and its evolution over time were analyzed using spectral-domain optical coherence tomography (SD-OCT) data. Results Outer retinal tubulation was identified as round or ovoid structures with hyper-reflective borders in pattern dystrophy (6 eyes), acute zonal occult outer retinopathy (5 eyes), retinitis pigmentosa (4 eyes), Stargardt disease (4 eyes), gyrate atrophy (2 eyes), choroideremia (2 eyes), and various other degenerative conditions. These structures appeared to develop from the invagination of photoreceptors at the junction of intact and atrophic outer retina. During follow-up, the number and distribution of ORT largely remained stable. As zones of atrophy enlarged, the frequency of ORT appeared to increase. The ORT structures were found in fewer than 10% of patients with retinitis pigmentosa, Stargardt, or pattern dystrophy. Conclusion Outer retinal tubulation is found in various degenerative retinal disorders that share in common damage to the outer retina and/or retinal pigment epithelium. The presence of ORT may be in an indicator of underlying disease stage and severity. PMID:23676993

  3. Age-related adaptive responses of mitochondria of the retinal pigment epithelium to the everyday blue LED lighting.

    PubMed

    Serezhnikova, N B; Pogodina, L S; Lipina, T V; Trofimova, N N; Gurieva, T S; Zak, P P

    2017-07-01

    The effect of everyday blue light (λ = 440-460 nm) on mitochondria of the retinal pigment epithelium of different age groups of Japanese quail was studied using electron microscopy, morphometric methods, and biochemical analysis. We have found a significant increase in the number of mitochondria, including those modified, mainly in young birds. In addition, cell metabolic activity increased in response to blue lighting. These changes are assumed to reflect an adaptive response of mitochondria aimed at neutralizing the phototoxic effect of blue light caused by accumulation of lipofuscin granules.

  4. Bucky Paper as a Support Membrane in Retinal Cell Transplantation

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor); Leng, Theodore (Inventor); Huie, Philip (Inventor); Fishman, Harvey (Inventor)

    2006-01-01

    A method for repairing a retinal system of an eye, using bucky paper on which a plurality of retina pigment epithelial cells and/or iris pigment epithelial cells and/or stem cells is deposited, either randomly or in a selected cell pattern. The cell-covered bucky paper is positioned in a sub-retinal space to transfer cells to this space and thereby restore the retina to its normal functioning, where retinal damage or degeneration, such as macular degeneration, has occurred.

  5. In situ cell surface proteomics reveals differentially expressed membrane proteins in retinal pigment epithelial cells during autoimmune uveitis.

    PubMed

    Uhl, P B; Szober, C M; Amann, B; Alge-Priglinger, C; Ueffing, M; Hauck, S M; Deeg, C A

    2014-09-23

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye and plays an important role in pathogenesis of the sight threatening disease equine recurrent uveitis (ERU). ERU is a spontaneous autoimmune mediated inflammatory disease characterised by the breakdown of the outer blood-retinal barrier and an influx of autoaggressive T-cells into the inner eye. Therefore, identification of molecular mechanisms contributing to changed function of blood-retinal barrier in ERU is important for the understanding of pathophysiology. Cell surface proteins of RPE collected from healthy horses and horses with ERU were captured by in situ biotinylation and analysed with high resolution mass spectrometry coupled to liquid chromatography (LC-MS/MS) to identify differentially expressed proteins. With label free differential proteomics, a total of 27 differently expressed cell surface proteins in diseased RPE could be detected. Significant down-regulation of three very interesting proteins, synaptotagmin 1, basigin and collectrin was verified and further characterised. We applied an innovative and successful method to detect changes in the plasma cell surface proteome of RPE cells in a spontaneous inflammatory eye disease, serving as a valuable model for human autoimmune uveitis. We were able to identify 27 differentially expressed plasma cell membrane proteins, including synaptotagmin 1, basigin and collectrin, which play important roles in cell adhesion, transport and cell communication. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Recovery of cat retinal ganglion cell sensitivity following pigment bleaching.

    PubMed Central

    Bonds, A B; Enroth-Cugell, C

    1979-01-01

    1. The threshold illuminance for small spot stimulation of on-centre cat retinal ganglion cells was plotted vs. time after exposure to adapting light sufficiently strong to bleach significant amounts of rhodopsin. 2. When the entire receptive field of an X- or Y-type ganglion cell is bleached by at most 40%, recovery of the cell's rod-system proceeds in two phases: an early relatively fast one during which the response appears transient, and a late, slower one during which responses become more sustained. Log threshold during the later phase is well fit by an exponential in time (tau = 11.5-38 min). 3. After bleaches of 90% of the underlying pigment, threshold is cone-determined for as long as 40 min. Rod threshold continues to decrease for at least 85 min after the bleach. 4. The rate of recovery is slower after strong than after weak bleaches; 10 and 90% bleaches yield time constants for the later phase of 11.5 and 38 min, respectively. This contrasts with an approximate time constant of 11 min for rhodopsin regeneration following any bleach. 5. The relationship between the initial elevation of log rod threshold extrapolated from the fitted exponential curves and the initial amount of pigment bleached is monotonic, but nonlinear. 6. After a bleaching exposure, the maintained discharge is initially very regular. The firing rate first rises, then falls to the pre-bleach level, with more extended time courses of change in firing rate after stronger exposures. The discharge rate is restored before threshold has recovered fully. 7. The change in the response vs. log stimulus relationship after bleaching is described as a shift of the curve to the right, paired with a decrease in slope of the linear segment of the curve. PMID:521963

  7. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  8. Poly(β-Amino Ester)-Nanoparticle Mediated Transfection of Retinal Pigment Epithelial Cells In Vitro and In Vivo

    PubMed Central

    Bhutto, Imran; Handa, James T.; Green, Jordan J.

    2012-01-01

    A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye

  9. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190°C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  10. Type 3 Neovascularization Associated with Retinitis Pigmentosa.

    PubMed

    Sayadi, Jihene; Miere, Alexandra; Souied, Eric H; Cohen, Salomon Y

    2017-01-01

    To report a case of type 3 neovascular lesion in a patient with retinitis pigmentosa (RP) complicated by macular edema. A 78-year-old man with a long follow-up for RP was referred for painless visual acuity decrease in the right eye. Best-corrected visual acuity was 20/125 in the right eye and 20/40 in the left. Fundus examination showed typical RP and macular edema in both eyes. In the right eye, spectral domain optical coherence tomography revealed a marked cystic macular edema associated with disruption of the Bruch membrane/retinal pigment epithelium complex overlying a pigmentary epithelium detachment, with a vascular structure which appeared to originate from the deep capillary plexus and to be connected with the subretinal pigment epithelium space. Optical coherence tomography angiography showed a high-flow vessel infiltrating the outer retinal layers in the deep capillary plexus segmentation, and a tuft-shaped, bright, high-flow network that seemed to be connected with the subretinal pigment epithelium space in the outer retinal layer segmentation. This presentation was consistent with an early type 3 neovascular lesion in the right eye. Type 3 neovascularization may be considered a possible complication of RP.

  11. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    PubMed Central

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  12. Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure

    PubMed Central

    Boyer, Nicholas P.; Higbee, Daniel; Currin, Mark B.; Blakeley, Lorie R.; Chen, Chunhe; Ablonczy, Zsolt; Crouch, Rosalie K.; Koutalos, Yiannis

    2012-01-01

    The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4−/− than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane. PMID:22570475

  13. Retinal damage from a Q-switched YAG laser.

    PubMed

    Jampol, L M; Goldberg, M F; Jednock, N

    1983-09-01

    A 42-year-old woman with sickle cell anemia and proliferative retinopathy underwent neodymium-YAG laser therapy for a taut posterior hyaloid membrane causing peripapillary and peripheral traction detachment of the retina. Vitrectomy was not done because the patient required anticoagulation. A Q-switched YAG laser was capable of cutting holes in the taut membrane, but treatment 2 to 3 mm from the retina resulted in microperforation of a retinal vein and focal areas of damage to the retinal pigment epithelium. The damage to the retinal pigment epithelium was not immediately apparent, and ophthalmoscopically visible lesions were seen only when the patient was reexamined 48 hours later.

  14. Reprogramming Human Retinal Pigmented Epithelial Cells to Neurons Using Recombinant Proteins

    PubMed Central

    Hu, Qirui; Chen, Renwei; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons. PMID:25298373

  15. Retinal thinning is uniquely associated with medial temporal lobe atrophy in neurologically normal older adults

    PubMed Central

    Casaletto, Kaitlin B.; Ward, Michael E.; Baker, Nicholas S.; Bettcher, Brianne M.; Gelfand, Jeffrey M.; Li, Yaqiao; Chen, Robert; Dutt, Shubir; Miller, Bruce; Kramer, Joel H.; Green, Ari J.

    2017-01-01

    Given the converging pathologic and epidemiologic data indicating a relationship between retinal integrity and neurodegeneration, including Alzheimer’s disease (AD), we aimed to determine if retinal structure correlates with medial temporal lobe (MTL) structure and function in neurologically normal older adults. Spectral-domain optical coherence tomography, verbal and visual memory testing, and 3T-magnetic resonance imaging of the brain were performed in 79 neurologically normal adults enrolled in a healthy aging cohort study. Retinal nerve fiber thinning and reduced total macular and macular ganglion cell volumes were each associated with smaller MTL volumes (ps < 0.04). Notably, these markers of retinal structure were not associated with primary motor cortex or basal ganglia volumes (regions relatively unaffected in AD) (ps > 0.70), or frontal, precuneus, or temporoparietal volumes (regions affected in later AD Braak staging ps > 0.20). Retinal structure was not significantly associated with verbal or visual memory consolidation performances (ps > 0.14). Retinal structure was associated with MTL volumes, but not memory performances, in otherwise neurologically normal older adults. Given that MTL atrophy is a neuropathological hallmark of AD, retinal integrity may be an early marker of ongoing AD-related brain health. PMID:28068565

  16. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    PubMed

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  17. A selected review of current retinal research and study.

    PubMed

    Cohen, J

    1979-02-01

    This paper presents a digest of 50 retinal research projects reported in one British and two American journals from July 1976 through June 1977. The articles reviewed report recent developments pertaining to effects of excessive light on retinal tissue in newborn rats, pathogenesis of cotton-wool spots, control of the blood-retinal barrier in diabetes, infections, macular diseases, variations in retinal pigment epithelium, and retinal detachment.

  18. Molecular Expression and Functional Activity of Efflux and Influx Transporters in Hypoxia Induced Retinal Pigment Epithelial Cells

    PubMed Central

    Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.

    2013-01-01

    A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654

  19. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  20. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins

    NASA Astrophysics Data System (ADS)

    Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.

    2013-03-01

    The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.

  1. Sector retinitis pigmentosa.

    PubMed

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  2. Highly efficient retinal metabolism in cones

    PubMed Central

    Miyazono, Sadaharu; Shimauchi-Matsukawa, Yoshie; Tachibanaki, Shuji; Kawamura, Satoru

    2008-01-01

    After bleaching of visual pigment in vertebrate photoreceptors, all-trans retinal is reduced to all-trans retinol by retinol dehydrogenases (RDHs). We investigated this reaction in purified carp rods and cones, and we found that the reducing activity toward all-trans retinal in the outer segment (OS) of cones is >30 times higher than that of rods. The high activity of RDHs was attributed to high content of RDH8 in cones. In the inner segment (IS) in both rods and cones, RDH8L2 and RDH13 were found to be the major enzymes among RDH family proteins. We further found a previously undescribed and effective pathway to convert 11-cis retinol to 11-cis retinal in cones: this oxidative conversion did not require NADP+ and instead was coupled with reduction of all-trans retinal to all-trans retinol. The activity was >50 times effective than the oxidizing activity of RDHs that require NADP+. These highly effective reactions of removal of all-trans retinal by RDH8 and production of 11-cis retinal by the coupling reaction are probably the underlying mechanisms that ensure effective visual pigment regeneration in cones that function under much brighter light conditions than rods. PMID:18836074

  3. Choroidal Involvement in Acute Posterior Multifocal Placoid Pigment Epitheliopathy.

    PubMed

    Mrejen, Sarah; Sarraf, David; Chexal, Saradha; Wald, Kenneth; Freund, K Bailey

    2016-01-01

    To evaluate choroidal involvement in acute posterior multifocal placoid pigment epitheliopathy (APMPPE). Retrospective study in five eyes of three patients evaluated through multimodal imaging, including enhanced-depth imaging optical coherence tomography (OCT), ultra-wide field color photography, fundus autofluorescence, and fluorescein angiography (FA). Choroidal thickness and structure were evaluated on OCT. During the acute phase, choroidal OCT showed choroidal thickening and a lucency at the level of the inner choroid. Subclinical lesions detected in the retinal periphery using wide-field retinal imaging were isoautofluorescent and corresponded to choriocapillaris filling-defects on FA. At final follow-up, all patients showed resolution of choroidal thickening and the inner choroidal lucency, as well as the disappearance of subclinical lesions. These results suggest a transient ischemic choroiditis in APMPPE that may lead to secondary permanent retinal pigment epithelium damage in the posterior pole but not in the retinal periphery. Copyright 2016, SLACK Incorporated.

  4. Polyamine-dependent migration of retinal pigment epithelial cells.

    PubMed

    Johnson, Dianna A; Fields, Carolyn; Fallon, Amy; Fitzgerald, Malinda E C; Viar, Mary Jane; Johnson, Leonard R

    2002-04-01

    Migration of retinal pigment epithelial (RPE) cells can be triggered by disruption of the RPE monolayer or injury to the neural retina. Migrating cells may re-establish a confluent monolayer, or they may invade the neural retina and disrupt visual function. The purpose of this study was to examine the role of endogenous polyamines in mechanisms of RPE migration. Endogenous polyamine levels were determined in an immortalized RPE cell line, D407, using HPLC. Activities of the two rate-limiting enzymes for polyamine synthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (SAMdc), were measured by liberation of ((14)CO(2))(.) Migration was assessed in confluent cultures by determining the number of cells migrating into a mechanically denuded area. All measurements were obtained both in control cultures and in cultures treated with synthesis inhibitors that deplete endogenous polyamines. Subcellular localization of endogenous polyamines was determined using a polyamine antibody. The polyamines, spermidine and spermine, as well as their precursor, putrescine, were normal constituents of RPE cells. The two rate-limiting synthetic enzymes were also present, and their activities were stimulated dramatically by addition of serum to the culture medium. Cell migration was similarly stimulated by serum exposure. When endogenous polyamines were depleted, migration was blocked. When polyamines were replenished through uptake, migration was restored. Polyamine immunoreactivity was limited to membrane patches in quiescent cells. In actively migrating and dividing cells, immunoreactivity was enhanced throughout the cytoplasm. Polyamines are essential for RPE migration. Pharmacologic manipulation of the polyamine pathway could provide a therapeutic strategy for regulating anomalous migration.

  5. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.

    PubMed

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F

    2015-05-19

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.

  6. MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA.

    PubMed

    Schuerch, Kaspar; Marsiglia, Marcela; Lee, Winston; Tsang, Stephen H; Sparrow, Janet R

    2016-12-01

    Using multiple imaging modalities, we evaluated the changes in photoreceptor cells and retinal pigment epithelium (RPE) that are associated with bone spicule-shaped melanin pigmentation in retinitis pigmentosa. In a cohort of 60 patients with retinitis pigmentosa, short-wavelength autofluorescence, near-infrared autofluorescence (NIR-AF), NIR reflectance, spectral domain optical coherence tomography, and color fundus images were studied. Central AF rings were visible in both short-wavelength autofluorescence and NIR-AF images. Bone spicule pigmentation was nonreflective in NIR reflectance, hypoautofluorescent with short-wavelength autofluorescence and NIR-AF imaging, and presented as intraretinal hyperreflective foci in spectral domain optical coherence tomography images. In areas beyond the AF ring outer border, the photoreceptor ellipsoid zone band was absent in spectral domain optical coherence tomography and the visibility of choroidal vessels in short-wavelength autofluorescence, NIR-AF, and NIR reflectance images was indicative of reduced RPE pigmentation. Choroidal visibility was most pronounced in the zone approaching peripheral areas of bone spicule pigmentation; here RPE/Bruch membrane thinning became apparent in spectral domain optical coherence tomography. These findings are consistent with a process by which RPE cells vacate their monolayer and migrate into inner retina in response to photoreceptor cell degeneration. The remaining RPE spread undergo thinning and consequently become less pigmented. An explanation for the absence of NIR-AF melanin signal in relation to bone spicule pigmentation is not forthcoming.

  7. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    PubMed Central

    Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.

    2013-01-01

    OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516

  8. Number and Distribution of Mouse Retinal Cone Photoreceptors: Differences between an Albino (Swiss) and a Pigmented (C57/BL6) Strain

    PubMed Central

    Jiménez-López, Manuel; Alburquerque-Béjar, Juan J.; Nieto-López, Leticia; García-Ayuso, Diego; Villegas-Pérez, Maria P.; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2014-01-01

    We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions. PMID:25029531

  9. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis.

    PubMed

    Chen, Mei; Rajapakse, Dinusha; Fraczek, Monika; Luo, Chang; Forrester, John V; Xu, Heping

    2016-06-01

    Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2000-10-01

    to evaluate the neuroprotective effect of memantine in our rat model of laser-induced retinal-lesions. Methods: Argon laser retinal lesions were...inflicted in the eyes of 36 pigmented rats. The treated group received memantine 10 mg/kg dissolved in saline, immediately after exposure to laser and then

  11. Multimodal imaging in a case of bilateral outer retinitis associated with mumps infection.

    PubMed

    Kahloun, Rim; Ben Amor, Hager; Ksiaa, Imen; Zina, Sourour; Jelliti, Bechir; Ben Yahia, Salim; Khairallah, Moncef

    2018-02-01

    To report the results of multimodal imaging of acute outer retinitis associated to mumps infection. A patient with mumps-associated outer retinitis evaluated by color fundus photography, spectral domain optical coherence tomography (SD-OCT), optical coherence tomography angiography, fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA). We report a case of a 12-year-old boy who developed bilateral outer retinitis related to mumps. Ophthalmoscopy showed confluent areas of outer retinitis involving the posterior pole and the periphery with a centrifugal gyrate pattern. SD-OCT revealed a marked disorganization of the outer retinal layers with multiple highly reflective spicules. FA shows diffuse late hyperfluorescence with optic disk staining. ICGA shows macular and peripheral hyperfluorescent lesions with a geographical pattern in the late phases. The patient was treated with acyclovir and oral prednisone. Four weeks after presentation visual acuity remained unchanged, and retinal changes seen at the acute phase had resolved leading to extensive retinal atrophy and optic disk pallor. SD-OCT showed atrophy of the retinal pigment epithelial and outer retinal layers. FAF revealed scattered hyperautofluorescent lesions. Electrophysiology showed generalized retinal dysfunction. Mumps infection should be considered in the differential diagnosis of bilateral necrotizing outer retinitis in children and young adults. A multimodal imaging approach may help distinguish mumps-associated retinitis from other causes of viral retinitis and facilitate appropriate management.

  12. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  13. Retrobulbar optic neuritis and rhegmatogenous retinal detachment in a fourteen-year-old girl with retinitis pigmentosa sine pigmento.

    PubMed

    Hatta, M; Hayasaka, S; Kato, T; Kadoi, C

    2000-01-01

    A 14-year-old girl complained of a sudden decrease in right visual acuity. The patient had night blindness, a mottled retina but no pigments, extinguished scotopic electroretinographic response, central scotoma in the right eye and rhegmatogenous retinal detachment. She had initially received laser photocoagulation around the retinal tear and then corticosteroid therapy, cryoretinopexy and segmental buckling. Her right visual acuity increased to 1.0. The association of retinitis pigmentosa sine pigmento, retrobulbar optic neuritis and rhegmatogenous retinal detachment, as demonstrated in our patient, may be uncommon. Copyright 2000 S. Karger AG, Basel

  14. Retinal iron homeostasis in health and disease

    PubMed Central

    Song, Delu; Dunaief, Joshua L.

    2013-01-01

    Iron is essential for life, but excess iron can be toxic. As a potent free radical creator, iron generates hydroxyl radicals leading to significant oxidative stress. Since iron is not excreted from the body, it accumulates with age in tissues, including the retina, predisposing to age-related oxidative insult. Both hereditary and acquired retinal diseases are associated with increased iron levels. For example, retinal degenerations have been found in hereditary iron overload disorders, like aceruloplasminemia, Friedreich's ataxia, and pantothenate kinase-associated neurodegeneration. Similarly, mice with targeted mutation of the iron exporter ceruloplasmin and its homolog hephaestin showed age-related retinal iron accumulation and retinal degeneration with features resembling human age-related macular degeneration (AMD). Post mortem AMD eyes have increased levels of iron in retina compared to age-matched healthy donors. Iron accumulation in AMD is likely to result, in part, from inflammation, hypoxia, and oxidative stress, all of which can cause iron dysregulation. Fortunately, it has been demonstrated by in vitro and in vivo studies that iron in the retinal pigment epithelium (RPE) and retina is chelatable. Iron chelation protects photoreceptors and retinal pigment epithelial cells (RPE) in a variety of mouse models. This has therapeutic potential for diminishing iron-induced oxidative damage to prevent or treat AMD. PMID:23825457

  15. Panoramic autofluorescence: highlighting retinal pathology.

    PubMed

    Slotnick, Samantha; Sherman, Jerome

    2012-05-01

    Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially

  16. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood.

    PubMed

    Walk, Anne M; Khan, Naiman A; Barnett, Sasha M; Raine, Lauren B; Kramer, Arthur F; Cohen, Neal J; Moulton, Christopher J; Renzi-Hammond, Lisa M; Hammond, Billy R; Hillman, Charles H

    2017-08-01

    Lutein and zeaxanthin are plant pigments known to preferentially accumulate in neural tissue. Macular Pigment Optical Density (MPOD), a non-invasive measure of retinal carotenoids and surrogate measure of brain carotenoid concentration, has been associated with disease prevention and cognitive health. Superior MPOD status in later adulthood has been shown to provide neuroprotective effects on cognition. Given that childhood signifies a critical period for carotenoid accumulation in brain, it is likely that the beneficial impact would be evident during development, though this relationship has not been directly investigated. The present study investigated the relationship between MPOD and the behavioral and neuroelectric indices elicited during a cognitive control task in preadolescent children. 49 participants completed a modified flanker task while event-related potentials (ERPs) were recorded to assess the P3 component of the ERP waveform. MPOD was associated with both behavioral performance and P3 amplitude such that children with higher MPOD had more accurate performance and lower P3 amplitudes. These relationships were more pronounced for trials requiring greater amounts of cognitive control. These results indicate that children with higher MPOD may respond to cognitive tasks more efficiently, maintaining high performance while displaying neural indices indicative of lower cognitive load. These findings provide novel support for the neuroprotective influence of retinal carotenoids during preadolescence. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Acute retinal necrosis as a novel complication of chickenpox in adults.

    PubMed Central

    Matsuo, T; Koyama, M; Matsuo, N

    1990-01-01

    Three patients in their 20s suffered from chickenpox while in an immunocompromised state: one in pregnancy, one during a long course of corticosteroid for severe nephrotic syndrome, and the third with repeated upper airway infection due to bronchiectasis. They developed acute retinal necrosis about three weeks after the onset of chickenpox. Since acute retinal necrosis threatens sight, this unusual complication of chickenpox in adults needs serious consideration. Images PMID:2378860

  18. Retinal patching: a new approach to the management of selected retinal breaks.

    PubMed

    Gilbert, C E; Grierson, I; McLeod, D

    1989-01-01

    Restoration of retinal continuity by a patching technique is proposed as a new means of treating selected rhegmatogenous retinal detachments where established techniques frequently fail. The patch consists of a substrate and adhesive applied to the inner surface of the retina surrounding the retinal break. Bovine eye cup experiments have been performed to explore the effectiveness of a range of adhesives, and cyanoacrylates and Tisseel have been found to be effective. Studies of these adhesives on confluent cultures of bovine retinal pigment epithelial cells and glia revealed temporary cyanoacrylate toxicity and stimulation of proliferation by Tisseel. Substrate biocompatability was investigated by observing the growth of cells on various substrates in tissue culture; biological substrates such as lens capsule supported cell growth whereas synthetic membranes only did so if pretreated with fibronectin.

  19. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

    PubMed

    Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-05-19

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.

  20. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors

    PubMed Central

    Benedicto, Ignacio; Lehmann, Guillermo L.; Ginsberg, Michael; Nolan, Daniel J.; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M.; Prusky, Glen T.; Llanos, Pierre; Rabbany, Sina Y.; Maminishkis, Arvydas; Miller, Sheldon S.; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-01-01

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease. PMID:28524846

  1. OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN CYTOMEGALOVIRUS RETINITIS: A Longitudinal Study.

    PubMed

    Invernizzi, Alessandro; Agarwal, Aniruddha; Ravera, Vittoria; Oldani, Marta; Staurenghi, Giovanni; Viola, Francesco

    2018-01-01

    To evaluate the vitreal, retinal, and choroidal features using spectral domain optical coherence tomography (SD-OCT) in eyes affected by cytomegalovirus (CMV) retinitis. Patients diagnosed with either active or inactive CMV retinitis were included in the study. Complete ophthalmic examination, serial color fundus photography, and SD-OCT (with and without enhanced depth imaging function) were performed for all the subjects at baseline and follow-up visits. The SD-OCT images were analyzed by two independent graders to evaluate the structural changes in areas of CMV retinitis. Prevalence data for vitreal, retinal, and choroidal SD-OCT features were collected. Twelve eyes from 9 patients (6 males, mean age: 52.7 ± 10.3 years) were enrolled. Nine eyes were diagnosed with active CMV retinitis at baseline. Active disease SD-OCT characteristic findings included nebulous vitritis (100%), posterior hyaloid thickening (83.3%), epiretinal membrane (100%), and retinal swelling (100%). Two distinct patterns of chorioretinal involvement were observed in active retinitis: 1) full-thickness retinitis (Full thickness retinitis) (n = 7 eyes) with choriocapillaris alterations and retinal pigment epithelial thickening and 2) cavernous retinitis (n = 3 eyes) characterized by inner retinal hyperreflectivity, large empty spaces in outer nuclear layer, and bridges of retinal tissue but retinal pigment epithelium and choriocapillaris sparing. Patients with cavernous retinitis develop retinal detachment during follow-up. Eyes with Full thickness retinitis developed choriocapillaris atrophy and choroidal thinning and retinal scars as the lesions healed. There are two distinct patterns of chorioretinal involvement in CMV retinitis. SD-OCT is a useful tool in the diagnosis, management, and prediction of the outcome of CMV retinitis.

  2. Clinical and Psychosocial Factors Influencing Retinal Screening Uptake Among Young Adults with Type 2 Diabetes.

    PubMed

    Lake, A J; Rees, G; Speight, J

    2018-05-24

    Young adults with type 2 diabetes (T2D, 18-39 years) experience early-onset and rapid progression of diabetic retinopathy (DR), the leading cause of vision loss for working age adults. Despite this, uptake of retinal screening, the crucial first step in preventing vision loss from DR, is low. The aim of this review is to summarize the clinical and psychosocial factors affecting uptake of retinal screening. Barriers include lack of diabetes-related symptoms, low personal DR risk perception, high rates of depression and diabetes-related distress, fatalism about inevitability of complications, time and financial constraints, disengagement with existing diabetes self-management services, and perceived stigma due to having a condition associated with older adults. Young adults with T2D are an under-researched population who face an accumulation of barriers to retinal screening. Tailored interventions that address the needs, characteristics, and priorities of young adults with T2D are warranted.

  3. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.

    PubMed

    Sorkio, Anni; Porter, Patrick J; Juuti-Uusitalo, Kati; Meenan, Brian J; Skottman, Heli; Burke, George A

    2015-09-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.

  4. Retinal vascular nonperfusion in siblings with Dandy-Walker variant.

    PubMed

    Rusu, Irene; Gupta, Mrinali Patel; Patel, Samir N; Oltra, Erica; Chan, R V Paul

    2016-04-01

    We report the case of a 2-month-old girl with Dandy-Walker variant who presented with strabismus, pathologic myopia measuring -16.00 D in each eye, diffuse chorioretinal atrophy and pigment mottling in the macula of both eyes, and areas of retinal capillary nonperfusion in both eyes. The patient's brother also has Dandy-Walker variant and was found to have bilateral severe myopia, myopic fundi, tilted optic disks with peripapillary atrophy, extensive areas of white without pressure, areas of lattice degeneration, and several chronic-appearing atrophic retinal holes surrounded by pigmentation. We hypothesize that children with Dandy-Walker variant may present with refractive errors such as pathologic myopia and with diverse retinal findings, including retinal ischemia. A lower threshold for ophthalmologic examination may be considered in this population. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  5. Automatic temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2012-06-01

    Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol-1 and A=3.1044 s-1. Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162+/-34 μm and 189+/-34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.

  6. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  7. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  8. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    PubMed

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  9. Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells Into Retinal Pigmented Epithelium

    PubMed Central

    Buchholz, David E.; Pennington, Britney O.; Croze, Roxanne H.; Hinman, Cassidy R.

    2013-01-01

    Controlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE. Currently, RPE derived from human embryonic stem cells are in clinical trials for the treatment of AMD. Although protocols to generate RPE from human pluripotent stem cells have become more efficient since the first report in 2004, they are still time-consuming and relatively inefficient. We have found that the addition of defined factors at specific times leads to conversion of approximately 80% of the cells to an RPE phenotype in only 14 days. This protocol should be useful for rapidly generating RPE for transplantation as well as for studying RPE development in vitro. PMID:23599499

  10. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells.

    PubMed

    Maruotti, Julien; Sripathi, Srinivas R; Bharti, Kapil; Fuller, John; Wahlin, Karl J; Ranganathan, Vinod; Sluch, Valentin M; Berlinicke, Cynthia A; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z; Bhutto, Imran; Lutty, Gerard A; Zack, Donald J

    2015-09-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.

  11. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells

    PubMed Central

    Maruotti, Julien; Sripathi, Srinivas R.; Bharti, Kapil; Fuller, John; Wahlin, Karl J.; Ranganathan, Vinod; Sluch, Valentin M.; Berlinicke, Cynthia A.; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z.; Bhutto, Imran; Lutty, Gerard A.; Zack, Donald J.

    2015-01-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule–only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. PMID:26269569

  12. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments.

    PubMed

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells' functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells' (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    PubMed

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  14. Meclofenamic acid blocks the gap junction communication between the retinal pigment epithelial cells.

    PubMed

    Ning, N; Wen, Y; Li, Y; Li, J

    2013-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.

  15. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    PubMed Central

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  16. A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro.

    PubMed

    Shadforth, Audra M A; Suzuki, Shuko; Theodoropoulos, Christina; Richardson, Neil A; Chirila, Traian V; Harkin, Damien G

    2017-06-01

    Silk fibroin provides a promising biomaterial for ocular tissue reconstruction, including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a thickness similar to that of Bruch's membrane (3 µm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell ® ). Cultures established on either material developed a cobblestone morphology, with partial pigmentation, within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na + /K + -ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned media collected from above and below the two membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrated that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Retinal photoreceptors and visual pigments in Boa constrictor imperator.

    PubMed

    Sillman, A J; Johnson, J L; Loew, E R

    2001-09-01

    The photoreceptors of Boa constrictor, a boid snake of the subfamily Boinae, were examined with scanning electron microscopy and microspectrophotometry. The retina of B. constrictor is duplex but highly dominated by rods, cones comprising 11% of the photoreceptor population. The rather tightly packed rods have relatively long outer segments with proximal ends that are somewhat tapered. There are two morphologically distinct, single cones. The most common cone by far has a large inner segment and a relatively stout outer segment. The second cone, seen only infrequently, has a substantially smaller inner segment and a finer outer segment. The visual pigments of B. constrictor are virtually identical to those of the pythonine boid, Python regius. Three different visual pigments are present, all based on vitamin A(1.) The visual pigment of the rods has a wavelength of peak absorbance (lambda(max)) at 495 +/- 2 nm. The visual pigment of the more common, large cone has a lambda(max) at 549 +/- 1 nm. The small, rare cone contains a visual pigment with lambda(max) at 357 +/- 2 nm, providing the snake with sensitivity in the ultraviolet. We suggest that B. constrictor might employ UV sensitivity to locate conspecifics and/or to improve hunting efficiency. The data indicate that wavelength discrimination above 430 nm would not be possible without some input from the rods. Copyright 2001 Wiley-Liss, Inc.

  18. Retinitis pigmentosa sine pigmenti. Debut with macular oedema.

    PubMed

    de la Mata Pérez, G; Ruiz-Moreno, O; Fernández-Pérez, S; Torrón Fernández-Blanco, C; Pablo-Júlvez, L

    2014-09-01

    A 25-year-old woman, with metamorphopsia in her left eye of one year onset. The examination revealed a bilateral cystoid macular oedema (CME) and vascular attenuation. We describe the diagnostic tests, as well as differential diagnosis and treatment response with carbonic anhydrase inhibitors. The retinitis pigmentosa sine pigment is a subtype of atypical retinitis pigmentosa characterised by the absence of pigment deposits. The night blindness is milder, and perimetric and electroretinographic impairment is lower. CME is an important cause of central vision loss, and responds to anhydrase carbonic inhibitors. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  19. Retinal Biochemistry, Physiology and Cell Biology.

    PubMed

    Smith, Ricardo Luiz; Sivaprasad, Sobha; Chong, Victor

    2016-01-01

    The vitreous, the vasculature of the retina, macular pigments, phototransduction, retinal pigment epithelium, Bruch's membrane and the extracellular matrix, all play an important role in the normal function of the retina as well as in diseases. Understanding the pathophysiology allows us to target treatment. As ocular angiogenesis, immunity and inflammation are covered elsewhere, those subjects will not be discussed in this chapter. © 2016 S. Karger AG, Basel.

  20. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.

  1. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    PubMed

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  2. Retinitis pigmentosa: genes and disease mechanisms.

    PubMed

    Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Ponzin, Diego; Sorrentino, Francesco S; Parmeggiani, Francesco

    2011-06-01

    Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.

  3. Retinitis Pigmentosa: Genes and Disease Mechanisms

    PubMed Central

    Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Ponzin, Diego; Sorrentino, Francesco S; Parmeggiani, Francesco

    2011-01-01

    Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy. PMID:22131869

  4. Phototoxicity in Human Retinal Pigment Epithelial Cells Promoted by Hypericin, a Component of St. John’s Wort†

    PubMed Central

    Wielgus, Albert R.; Chignell, Colin F.; Miller, David S.; Van Houten, Ben; Meyer, Joel; Hu, Dan-Ning; Roberts, Joan E.

    2007-01-01

    St. John’s Wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens. To determine if hypericin might also be phototoxic to the human retina, we exposed human retinal pigment epithelial cells to 10−7 to 10−5 M hypericin. Fluorescence emission detected from the cells (λexc = 488 nm; λem = 505 nm) confirmed hypericin uptake by human RPE. Neither hypericin exposure alone nor visible light exposure alone reduced cell viability. However when irradiated with 0.7 J/cm2 of visible light (λ> 400 nm) there was loss of cell viability as measured by MTS and LDH assays. The presence of hypericin in irradiated hRPE cells significantly changed the redox equilibrium of glutathione and a decrease in the activity of glutathione reductase. Increased lipid peroxidation as measured by the TBARS assay correlated to hypericin concentration in hRPE cells and visible light radiation. Thus, ingested SJW is potentially phototoxic to retina and could contribute to retinal or early macular degeneration. PMID:17576381

  5. Neuroprotective Treatment of Laser-Induced Retinal Injuries.

    DTIC Science & Technology

    1999-10-01

    evaluate the neuroprotective effect of dextromethorphan , which is FDA approved and clinically used drug, in our rat model of laser-induced retinal...lesions. Methods: Argon laser retinal lesions were inflicted in the eyes of 36 pigmented rats. The treated group received dextromethorphan 50 mg/kg...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Dextromethorphan treatment is not effective in ameliorating the

  6. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. TRANSPORT OF THIOL-CONJUGATES OF INORGANIC MERCURY IN HUMAN RETINAL PIGMENT EPITHELIAL CELLS

    PubMed Central

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg2+) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg2+ to access photoreceptor cells, it must be first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg2+, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg2+, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg2+: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na+-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury. PMID:17467761

  8. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-06-01

    Inorganic mercury (Hg{sup 2+}) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg{sup 2+} exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg{sup 2+} to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg{sup 2+}, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cellsmore » via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg{sup 2+} utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg{sup 2+}, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg{sup 2+}: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na{sup +}-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B{sup 0,+} and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B{sup 0,+} and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.« less

  9. Regulation of surface expression of TRPV2 channels in the retinal pigment epithelium.

    PubMed

    Reichhart, Nadine; Keckeis, Susanne; Fried, Frederik; Fels, Gabriele; Strauss, Olaf

    2015-06-01

    The retinal pigment epithelium (RPE) interacts closely with the photoreceptors in fulfilling tasks of visual function. Since an understanding of the RPE function is essential for understanding the patho-mechanisms involved in vision loss, we explored the regulation of the vanilloid receptor subtype transient receptor potential TRPV2 channels that trigger insulin-like growth factor-1 (IGF-1)-induced vascular endothelial growth factor A (VEGF-A) secretion. Immunohistochemistry was used to assess TRPV2 expression in retinal cross-sections or ARPE-19 cells, and surface expression of TRPV2 was quantified using confocal microscopy. Membrane currents of ARPE-19 cells were recorded using a whole-cell configuration of the patch-clamp technique. TRPV2 expression was detected in the RPE of the mouse retina as well as in ARPE-19 cells. Increasing the temperature to 45 °C activated membrane conductance sensitive to SKF-96365 and ruthenium red in 60 % of cells. Preincubation with either cannabidiol (CBD) or IGF-1 led to a three- or fourfold increase in current density, respectively, in all cells, which was blocked by SKF-96365. In contrast to IGF-1, CBD stimulation of membrane conductance was further increased by heat. TRPV2 surface expression was increased by both IGF-1 and CBD, with the increase by CBD twice as large as that by IGF-1. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished the effects on membrane conductance and surface expression. Both CBD and IGF-1 enhance TRPV2 channel activity by specific proportions of both channel activation and PI 3-kinase-dependent surface expression: IGF-1 predominantly increases ion channel activity, whereas CBD is more active in increasing TRPV2 surface expression. Thus, differential regulation of TRPV2 surface expression is an important mechanism for modulating the responsiveness of the RPE to growth factors.

  10. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.

    PubMed

    Choudhry, Netan; Golding, John; Manry, Matthew W; Rao, Rajesh C

    2016-06-01

    To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Observational study. A total of 68 patients (68 eyes) with 19 peripheral retinal features. Spectral-domain OCT-based structural features. Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision

  11. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    PubMed

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  12. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  13. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells.

    PubMed

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.

  14. The Impact of cHS4 Insulators on DNA Transposon Vector Mobilization and Silencing in Retinal Pigment Epithelium Cells

    PubMed Central

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238

  15. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.

    PubMed

    Srinivasan, Sundaramoorthy; Fernández-Sampedro, Miguel A; Morillo, Margarita; Ramon, Eva; Jiménez-Rosés, Mireia; Cordomí, Arnau; Garriga, Pere

    2018-03-27

    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Cardiovascular risk factors and retinal microvascular signs in an adult Japanese population: the Funagata Study.

    PubMed

    Kawasaki, Ryo; Wang, Jie Jin; Rochtchina, Elena; Taylor, Bronwen; Wong, Tien Yin; Tominaga, Makoto; Kato, Takeo; Daimon, Makoto; Oizumi, Toshihide; Kawata, Sumio; Kayama, Takamasa; Yamashita, Hidetoshi; Mitchell, Paul

    2006-08-01

    To describe the prevalence of retinal vascular signs and their association with cardiovascular risk factors in a Japanese population. Population-based cross-sectional study. Adult persons aged 35 years or older from Funagata, Yamagata Prefecture, Japan (n = 1481). The Funagata Study is a Japanese population-based study of persons aged 35 years or older, and included 1961 nondiabetic participants (53.3% of 3676 eligible subjects). A nonmydriatic retinal photograph was taken of 1 eye to assess retinal microvascular signs. Retinal arteriolar wall signs (focal arteriolar narrowing, arteriovenous nicking, enhanced arteriolar wall reflex) and retinopathy were assessed in 1481 participants without diabetes (40.3% of eligible persons) using a standardized protocol. Using a computer-assisted method, retinal vessel diameters were measured in 921 participants with gradable retinal image (25.1% of eligible persons). Prevalence of retinal microvascular signs and their association with cardiovascular risk factors. Moderate or severe focal arteriolar narrowing, arteriovenous nicking, enhanced arteriolar wall reflex, and retinopathy were found in 8.3%, 15.2%, 18.7%, and 9.0%, respectively, of the study population. Mean (+/-standard error) values for retinal arteriolar diameter were 178.6+/-21.0 mum, and mean values (+/-standard error) for venular diameter were 214.9+/-20.6 mum. Older persons were more likely to have retinal arteriolar wall signs, retinopathy, and narrower retinal vessel diameters. After adjusting for multiple factors, each 10-mmHg increase in mean arterial blood pressure was associated with a 20% to 40% increased likelihood of retinal arteriolar signs and a 2.8-mum reduction in arteriolar diameter. Retinopathy was associated with higher body mass index and both impaired glucose tolerance and impaired fasting glucose. In nondiabetic Japanese adults, retinal arteriolar wall signs were associated with older age and increased blood pressure, whereas retinopathy was

  17. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  18. Mitochondrial Dysfunction in Retinal Diseases

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases. PMID:21978133

  19. Mitochondrial dysfunction in retinal diseases.

    PubMed

    Barot, Megha; Gokulgandhi, Mitan R; Mitra, Ashim K

    2011-12-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.

  20. Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women

    PubMed Central

    Kim, Hee-Kyoung; Min, Kyoung-Ok; Choi, Jung-Hyun; Kim, Soon-Hee

    2016-01-01

    [Purpose] In this study, the effects of low-level laser therapy (LLLT), electroacupuncture (EA), and radiofrequency (RF), which are used in physical therapy, on the pigmentation and skin tone of adult women’s faces were investigated to provide basic data for skin interventions. [Subjects and Methods] Thirty adult females were assigned to either an LLLT group (n=10), an EA group (n=10), or an RF group (n=10). The intervention was performed in two 15-minute sessions per week for six weeks. Subjects’ skin tone and pigmentation were observed before and after the intervention. [Results] The EA group showed significant reductions in pigmentation in the left and right eye rims, as well as in the left cheek. The RF group showed significant post-intervention reductions in pigmentation under the left eye, as well as in the left and right eye rims and the left cheek. The LLLT group showed significant increases in skin tone in the forehead and both eye rims. The RF group showed significant increases in skin tone under both eyes. [Conclusion] The application of LLLT, EA, and RF had positive effects on pigmentation and skin tone of adult women’s faces. PMID:27313340

  1. [Multiple retinal pigment epithelial detachments: a case report].

    PubMed

    González-Escobar, A B; González de Gor-Crooke, J L; López-Egea-Bueno, M A; García-Campos, J M

    2014-05-01

    A 47 year-old female who presented with a bilateral idiopathic multiple pigment epithelial detachment (PED) in a routine visit. This pathology is shown as a rare clinical manifestation, where the outcome is resolution of localized atrophy of the pigment epithelium, with a good functional prognosis. PED is a common clinical manifestation in several chorioretinal diseases, particularly in macular degeneration associated with age. Idiopathic PED can be considered as a kind of central type II serous chorioretinopathy. Fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) are complementary tests to study the number, extension, and nature of these PED. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  2. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium.

    PubMed

    Joseph, D P; Miller, S S

    1991-04-01

    1. Intracellular voltage recordings using conventional and double-barrelled chloride-selective microelectrodes have been used to identify several transport mechanisms at the apical and basolateral membranes of the isolated bovine retinal pigment epithelium (RPE)-choroid preparation. Intracellular recordings were obtained from two cell populations, melanotic (pigmented) and amelanotic (non-pigmented). The electrical properties of these two populations are practically identical. For melanotic cells the average apical resting membrane potential (VA) is -61 +/- 2 mV (mean +/- S.E.M., n = 49 cells, thirty-three eyes). For these cells the ratio of apical to basolateral membrane resistance (a) was 0.22 +/- 0.02. The mean transepithelial voltage and resistance were 6 +/- 1 mV and 138 +/- 7 omega cm2, respectively. 2. The apical membrane, which faces the distal retina, contains a Ba(2+)-inhibitable K+ conductance and a ouabain-inhibitable, electrogenic Na(+)-K+ pump. In addition it contains a bumetanide-sensitive mechanism, the putative Na(+)-K(+)-Cl- cotransporter. The basolateral membrane contains a DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid)-inhibitable chloride channel. The relative conductances of the apical and basolateral membranes to K+ and Cl- are TK approximately 0.9 and TCl approximately 0.7, respectively. 3. The ouabain-induced fast phase of apical membrane depolarization (0-30 s) was used to calculate the equivalent resistances of the apical (RA) and basolateral (RB) cell membranes, as well as the paracellular or shunt resistance (RS). They are: 3190 +/- 400, 17920 +/- 2730 and 2550 +/- 200 omega (mean +/- S.E.M., n = 9 tissues), respectively. From these data the equivalent electromotive forces (EMF) at the apical (EA) and basolateral (EB) membranes were also calculated. They are: -69 +/- 5.0 and -24 +/- 5.0 mV, respectively. 4. Intracellular Cl- activity (aiCl) was measured using double-barreled ion-selective microelectrodes. In the steady state

  3. [Evaluation of fundus autofluorescence in hereditary retinal diseases using Heidelberg Retina Angiograph2].

    PubMed

    Côco, Monique; Baba, Natalia Tamie; Sallum, Juliana Maria Ferraz

    2007-01-01

    To define characteristics of the fundus autofluorescence examination, verifying usefulness in the diagnosis and care of hereditary retinal diseases. 28 patients, adults, divided equally into four groups with diagnoses of Stargardt macular dystrophy, cone dystrophy, retinitis pigmentosa and healthy volunteers for the establishment of the normality pattern. An average of nine images with the filter for fluorescein angiography was obtained for the formation of the image autofluorescence using Heidelberg Retina Angiograph2. The images of each group of patients were analyzed to verify common characteristics. The fundus autofluorescence of healthy volunteers showed the foveal area darker than the surrounding retina. The images of Stargardt macular dystrophy, in general, presented an oval central lesion, with reduced autofluorescence. The main alterations of the autofluorescence in patients with cone dystrophy were reduced foveal autofluorescence with a parafoveal ring of increased autofluorescence. In general, the images of retinitis pigmentosa showed outlying pigments with reduced autofluorescence, and of the foveal area, in some cases disorganization or reduced autofluorescence. The study showed the existence of patterns of fundus autofluorescence in the hereditary retinal diseases that allow the diagnosis and better interpretation of the pathogenesis of these diseases.

  4. Precise correlation of histopathological and fluorescein angiographic morphology using retinal vascular casting.

    PubMed

    Bek, T; Prause, J U

    1996-12-01

    The histopathology of three eyes obtained post mortem from 2 patients with age-related macular degeneration was correlated with the pre mortem fluorescein angiographic morphology. A precise point-by-point correlation between histopathology and the corresponding angiographic appearance was ensured by using the cast retinal vascular system as a pattern of reference. The study showed that both the photoreceptors, the pigment epithelium, and substances accumulated between the retinal and the choroidal vascular systems, may have a blocking effect on choroidal background fluorescence as seen on fluorescein angiograms. Furthermore, it is confirmed that fluorescein angiographic hyperfluorescence may be due to a lack of blocking of the choroidal fluorescence because of a window defect in the retinal photoreceptor layer and/or the pigment epithelium.

  5. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.

    PubMed

    Hunt, Nicola C; Hallam, Dean; Karimi, Ayesha; Mellough, Carla B; Chen, Jinju; Steel, David H W; Lako, Majlinda

    2017-02-01

    No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of

  6. Congenital Hypertrophy of Retinal Pigment Epithelium for Diagnosis of Familial Adenomatous Polyposis - the First FAP registry in Iran

    PubMed

    Mirinezhad, Seyed Kazem; Mousavi, Farideh; Baghri, Masood; Sepehri, Bita; Ghavidel, Ali; Ghojazadeh, Morteza; Somi, Mohammad Hossein

    2018-01-27

    Objective: Familial adenomatous polyposis (FAP), an autosomal dominant inherited disorder is characterized by the presence of multiple adenomatous colorectal polyps, which can develop into cancer during early adulthood. Therefore, early diagnosis is essential. Most FAP patients have several extracolonic manifestations, including congenital hypertrophy of the retinal pigment epithelium (CHRPE). Whereas genetic markers may provide the main route to detection of ‘‘at risk’’ subjects , at present this approach is clearly limited and searches for a noninvasive phenotypic marker continue to be high priority.The aim of this study was to describe the pattern of distribution of CHRPE lesions and evaluate their diagnostic value in FAP patients and their family members in a local population. Methods: A total of 23 FAP patients and 26 relatives belonging to 12 families at high risk of developing FAP were subjected to colonoscopic and ophthalmological examination. Result: Retinal examinations demonstrated prevalences of CHRPE in FAP patents and their siblings of 78% and 38%, respectively. We were able to illustrate a significant correlation between FAP disease and the presence of retinal lesions. Sensitivity and specificity of CHRPE as a screening test to detect the presence of FAP are 78.3% and 61.5%, respectively, with a positive predictive value of 64.3% and a negative predictive value of 76.2 %. A “lesion form” significant difference was found between FAP and normal participants.Spearman nonparametric analysis revealed no correlation between age and number or size of lesions. Conclusion: Multiple CHRPE lesions are a diagnostic feature of FAP patients They are specific and sensitive clinical markers of this disease (specificity 60% and sensitivity 77%). Creative Commons Attribution License

  7. KCNQ5/Kv7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina

    PubMed Central

    Zhang, Xiaoming; Yang, Dongli

    2011-01-01

    Previous studies identified in retinal pigment epithelial (RPE) cells an M-type K+ current, which in many other cell types is mediated by channels encoded by KCNQ genes. The aim of this study was to assess the expression of KCNQ genes in the monkey RPE and neural retina. Application of the specific KCNQ channel blocker XE991 eliminated the M-type current in freshly isolated monkey RPE cells, indicating that KCNQ subunits contribute to the underlying channels. RT-PCR analysis revealed the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in the RPE and all five KCNQ transcripts in the neural retina. At the protein level, KCNQ5 was detected in the RPE, whereas both KCNQ4 and KCNQ5 were found in neural retina. In situ hybridization in frozen monkey retinal sections revealed KCNQ5 gene expression in the ganglion cell layer and the inner and outer nuclear layers of the neural retina, but results in the RPE were inconclusive due to the presence of melanin. Immunohistochemistry revealed KCNQ5 in the inner and outer plexiform layers, in cone and rod photoreceptor inner segments, and near the basal membrane of the RPE. The data suggest that KCNQ5 channels contribute to the RPE basal membrane K+ conductance and, thus, likely play an important role in active K+ absorption. The distribution of KCNQ5 in neural retina suggests that these channels may function in the shaping of the photoresponses of cone and rod photoreceptors and the processing of visual information by retinal neurons. PMID:21795522

  8. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C; Jahng, Wan Jin

    2012-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

  9. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress

    PubMed Central

    Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C.; Jahng, Wan Jin

    2016-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress. PMID:27974994

  10. The Self-Concept of Spanish Young Adults with Retinitis Pigmentosa

    ERIC Educational Resources Information Center

    Lopez-Justicia, Maria Dolores; Cordoba, Inmaculada Nieto

    2006-01-01

    Retinitis pigmentosa (RP) is a degenerative disease of the retina that causes the severe impairment of visual functioning similar to low vision, leading, in many cases, to blindness. Because the construct of self-concept plays a key role in personality, this study was designed to measure self-concept in a group of young adults with RP. The…

  11. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas.

    PubMed

    Alexander, Nathan S; Palczewska, Grazyna; Palczewski, Krzysztof

    2015-08-01

    Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE.

  12. Congenital grouped albinotic spots of the retinal pigment epithelium in a patient with hemihypertrophy and café au lait spots.

    PubMed

    White, Eugenia C; Sengillo, Jesse D; Cho, Galaxy Y; Bakhoum, Mathieu F; Tsang, Stephen H

    2018-05-16

    To describe the finding of circularly grouped hypomelanotic spots in the central macula of a patient with syndromic characteristics. Case report of a patient with albinotic spots grouped within the macula, café au lait spots, and left-sided hemihypertrophy. A 15-year-old boy presented with hypomelanotic spots which were hyperautofluorescent on fundus autofluorescence imaging with no disruption of the retinal laminae or photoreceptor inner and outer segment (IS/OS) junction on spectral domain optical coherence tomography. His developmental history included hemihypertrophy, café au lait spots over his axilla and extremities, and surgically corrected left-sided cryptorchidism. Other ocular history included resolved convergence insufficiency and red-green color blindness. It is essential to recognize that circularly grouped hypomelanotic spots are a benign condition. The location and arrangement of the hypomelanotic spots were atypical for congenital grouped albinotic spots of the retinal pigment epithelium (CGAS) as they were grouped within the macula in addition to a more characteristic linear "bear track" formation in the periphery. To the authors' knowledge, this is the first report of CGAS present in a patient with hemihypertrophy, café au lait spots, and cryptorchidism and may represent a novel syndromic association.

  13. Mechanisms of Retinal Damage from Chronic Laser Radiation.

    DTIC Science & Technology

    1981-07-01

    culture. The pigment epithelium is deter- mined to be almost equally susceptible to damage in vitro as in vivo and the same action spectrum is similar in...92 -97 D. Experiment III. Light Damage in Culture of Bovine Retinal Pigment Epithelium 1. Methodology a. Collection of Cells... epithelium : Mild form of damage. Figure 18 Inner segments severely damaged. Figure 19 : Cone pedicle after exposure. Figure 20 Outer plexiform layer

  14. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  15. Protein-bound water molecules in primate red- and green-sensitive visual pigments.

    PubMed

    Katayama, Kota; Furutani, Yuji; Imai, Hiroo; Kandori, Hideki

    2012-02-14

    Protein-bound water molecules play crucial roles in the structure and function of proteins. The functional role of water molecules has been discussed for rhodopsin, the light sensor for twilight vision, on the basis of X-ray crystallography, Fourier transform infrared (FTIR) spectroscopy, and a radiolytic labeling method, but nothing is known about the protein-bound waters in our color visual pigments. Here we apply low-temperature FTIR spectroscopy to monkey red (MR)- and green (MG)-sensitive color pigments at 77 K and successfully identify water vibrations using D(2)O and D(2)(18)O in the whole midinfrared region. The observed water vibrations are 6-8 for MR and MG, indicating that several water molecules are present near the retinal chromophore and change their hydrogen bonds upon retinal photoisomerization. In this sense, color visual pigments possess protein-bound water molecules essentially similar to those of rhodopsin. The absence of strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) is common between rhodopsin and color pigments, which greatly contrasts with the case of proton-pumping microbial rhodopsins. On the other hand, two important differences are observed in water signal between rhodopsin and color pigments. First, the water vibrations are identical between the 11-cis and 9-cis forms of rhodopsin, but different vibrational bands are observed at >2550 cm(-1) for both MR and MG. Second, strongly hydrogen-bonded water molecules (2303 cm(-1) for MR and 2308 cm(-1) for MG) are observed for the all-trans form after retinal photoisomerization, which is not the case for rhodopsin. These specific features of MR and MG can be explained by the presence of water molecules in the Cl(-)-biding site, which are located near positions C11 and C9 of the retinal chromophore. The averaged frequencies of the observed water O-D stretching vibrations for MR and MG are lower as the λ(max) is red-shifted, suggesting that water molecules are involved in

  16. Expression of Kir7.1 and a Novel Kir7.1 Splice Variant in Native Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Swaminathan, Anuradha; Zhang, Xiaoming; Hughes, Bret A.

    2009-01-01

    Previous studies on bovine retinal pigment epithelium (RPE) established that Kir7.1 channels compose this epithelium’s large apical membrane K+ conductance. The purpose of this study was to determine whether Kir7.1 and potential Kir7.1 splice variants are expressed in native adult human RPE and, if so, to determine their function and how they are generated. RT-PCR analysis indicated that human RPE expresses full-length Kir7.1 and a novel Kir7.1 splice variant, designated Kir7.1S. Analysis of the human Kir7.1 gene (KCNJ13) organization revealed that it contains 3 exons, 2 introns, and a novel alternative 5′ splice site in exon 2. In human RPE, the alternative usage of two competing 5′ splice sites in exon 2 gives rise to transcripts encoding full-length Kir7.1 and Kir7.1S, which is predicted to encode a truncated protein. Real-time PCR indicated that Kir7.1 transcript is nearly as abundant as GAPDH mRNA in human RPE whereas Kir7.1S transcript expression is 4-fold lower. Western blot analysis showed that the splice variant is translated in Xenopus oocytes injected with Kir7.1S cRNA and revealed the expression of full-length Kir7.1 but not Kir7.1S in adult human RPE. Co-expression of Kir7.1 with Kir7.1S in Xenopus oocytes had no effect on either the kinetics or amplitude of Kir7.1 currents. This study confirms the expression of Kir7.1 in human RPE, identifies a Kir7.1 splice variant resulting in predicted changes in protein sequence, and indicates that there no functional interaction between this splice variant and full-length Kir7.1. PMID:18035352

  17. Prevalence of choroidal nevus and retinal pigment epithelial alterations in vitiligo patients.

    PubMed

    Fleissig, Efrat; Pavlovksy, Mor; Loewenstein, Anat; Zur, Dinah; Newman, Hadas; Keren, Shay; Goldenberg, Dafna; Bar-Ilan, Efrat; Goldstein, Michaella

    2018-05-01

    To investigate ocular manifestations in patients with vitiligo by multimodal imaging, including optical coherence tomography (OCT), color fundus photography, and fundus autofluorescence (FAF). In this prospective, observational clinical study, vitiligo patients underwent ophthalmologic and dermatologic clinical assessment and imaging by spectral-domain OCT, FAF, and color fundus imaging. Ocular echography was performed as indicated. Statistical analysis was performed using paired T test and Pearson correlation. A total of 61 eyes of 31 vitiligo patients were examined. Ocular findings consisted of choroidal nevi (n = 10, 32%), of which four (40%) were bilateral; two patients (6.5%) had a prominent choroidal pattern, two (6.5%) had hypopigmentary retinal pigment epithelium (RPE) lesions, and one (3.2%) had peripapillary atrophy of the RPE. Choroidal nevi were demonstrated only in eyes of patients with generalized vitiligo and were more common with upper body involvement (p = 0.02) and more prevalent in women (p = 0.02). Hypopigmentary lesions were detected in two patients and demonstrated on OCT as RPE atrophy and as photoreceptor/RPE changes. In this case series, vitiligo patients had a higher rate of choroidal nevi than previously reported. The hypopigmentary vitiliginous fundus lesions were depicted on OCT as photoreceptor and RPE atrophy. These findings may suggest the advisability of regular ocular monitoring for vitiligo patients.

  18. Controlled exosome release from the retinal pigment epithelium in situ.

    PubMed

    Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S

    2014-12-01

    Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Retinal injury thresholds for 532, 578, and 630 nm lasers in connection to photodynamic therapy for choroidal neovascularization.

    PubMed

    Chen, Hongxia; Yang, Zaifu; Zou, Xianbiao; Wang, Jiarui; Zhu, Jianguo; Gu, Ying

    2014-01-01

    The purpose of this study was to explore the retinal injury thresholds in rabbits and evaluate the influence of retinal pigmentation on threshold irradiance at laser wavelengths of 532, 578, and 630 nm which might be involved in hypocrellin B (HB) and hematoporphyrin monomethyl ether (HMME) photodynamic therapy (PDT) for choroidal neovascularization (CNV). The eyes of pigmented and non-pigmented rabbits were exposed to 532, 578, and 630 nm lasers coupled to a slit lamp biological microscope. The exposure duration was 100 seconds and the retinal spot size was 2 mm throughout the experiment. The minimum visible lesions were detected by funduscopy at 1 and 24 hours post exposure. Bliss probit analysis was performed to determine the ED50 thresholds, fiducial limits and probit slope. In pigmented rabbits, the 24-hour retinal threshold irradiances at 532, 578, and 630 nm were 1,003, 1,475, and 1,720 mW/cm(2) , respectively. In non-pigmented rabbits, the 24-hour threshold irradiances were 1,657, 1,865, and 15,360 mW/cm(2) , respectively. The ED50 for 24-hour observation differed very little from the ED50 for 1-hour observation. The non-pigmented rabbits required a ninefold increase in threshold irradiance at 630 nm comparing to the pigmented rabbits. This study will contribute to the knowledge base for the limits of laser irradiance in application of HB or HMME PDT for CNV. © 2013 Wiley Periodicals, Inc.

  20. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium

    PubMed Central

    Koirala, Adarsha; Conley, Shannon M.; Naash, Muna I.

    2013-01-01

    Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE. PMID:23796578

  1. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.

    PubMed

    Zhang, Pingbo; Kirby, David; Dufresne, Craig; Chen, Yan; Turner, Randi; Ferri, Sara; Edward, Deepak P; Van Eyk, Jennifer E; Semba, Richard D

    2016-04-01

    The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false-positive rates of <0.1% and <1%, respectively. Forty-three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four "missing proteins" were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases

    PubMed Central

    Keeling, Eloise; Lotery, Andrew J.

    2018-01-01

    Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer’s disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived. PMID:29473871

  3. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY SHOWS INNER CHOROIDAL ISCHEMIA IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY.

    PubMed

    Dolz-Marco, Rosa; Sarraf, David; Giovinazzo, Vincent; Freund, K Bailey

    2017-01-01

    To describe multimodal imaging findings of an evolving case of acute posterior multifocal placoid pigment epitheliopathy occurring in a young healthy male. Case report of a patient with acute posterior multifocal placoid pigment epitheliopathy including comprehensive systemic and ocular examinations. Ultra-widefield autofluorescence, fluorescein angiography, indocyanine green angiography, and serial optical coherence tomography angiography were performed. A 34-year-old male presented with acute vision loss in his left eye for 2 weeks. His best-corrected visual acuity was 20/20 in his right eye and 20/200 in his left eye. Dilated funduscopic examination revealed multiple creamy white deep retinal lesions showing macular involvement of the left eye with a diffuse area of pigmentary changes. The presence of multiple areas of hypoperfusion of the inner choroid were demonstrated with fluorescein and indocyanine green angiography. Serial optical coherence tomography angiography showed multiple evolving areas of decreased flow at the level of the inner choroid. Although the pathogenesis of acute posterior multifocal placoid pigment epitheliopathy remains unknown, there is growing evidence of a primary choroidal involvement with secondary damage to the overlying retinal pigment epithelium and the outer retinal layers. Optical coherence tomography angiography may provide valuable information for the diagnosis and follow-up of this condition avoiding invasive angiographic procedures.

  4. Vigabatrin can enhance electroretinographic responses in pigmented and albino rats.

    PubMed

    Akula, James D; Noonan, Emily R; Di Nardo, Alessia; Favazza, Tara L; Zhang, Nan; Sahin, Mustafa; Hansen, Ronald M; Fulton, Anne B

    2015-08-01

    To evaluate the effects of the antiepileptic medication vigabatrin (VGB) on the retina of pigmented rats. Scotopic and photopic electroretinograms were recorded from dark- and light-adapted Long-Evans (pigmented) and Sprague Dawley (albino) rats administered, daily, 52-55 injections of 250 mg·kg(-1)·day(-1) VGB or 25-26 injections of 500 mg·kg(-1)·day(-1) VGB, or a corresponding number of sham injections. Sensitivity and saturated amplitude of the rod photoresponse (S, Rm(P3)) and postreceptor response (1/σ, Vm) were derived, as were sensitivity and amplitude of the cone-mediated postreceptor response (1/σ(cone), Vm(cone)). The oscillatory potentials and responses to a series of flickering lights (6.25, 12.5, 25 and 50 Hz) were studied in the time and frequency domains. A subset of rats' eyes was harvested for Western blotting or histology. Of the parameters derived from dark-adapted ERG responses, in both pigmented and albino rats, VGB repeatedly and reliably enhanced electroretinographic parameters; no significant ERG deficits were noted. No significant alterations were observed in ER/oxidative stress or in the Akt cell death/survival pathway. There were migrations of photoreceptor nuclei toward the RPE and outgrowths of bipolar cell dendrites into the outer nuclear layer in VGB-treated rats; these were never observed in sham-treated animals. Although VGB is associated with retinal dysfunction in patients and VGB toxicity has been demonstrated by other laboratories in the albino rat, in our pigmented and albino rats, VGB did not induce deficits in, but rather enhanced, retinal function. Nonetheless, retinal neuronal dysplasia was observed.

  5. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  6. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy.

    PubMed

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-08-01

    The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells.

  7. Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration

    PubMed Central

    Curcio, Christine A.; Zanzottera, Emma C.; Ach, Thomas; Balaratnasingam, Chandrakumar; Freund, K. Bailey

    2017-01-01

    Purpose To summarize and contextualize recent histology and clinical imaging publications on retinal pigment epithelium (RPE) fate in advanced age-related macular degeneration (AMD); to support RPE activation and migration as important precursors to atrophy, manifest as intraretinal hyperreflective foci in spectral-domain optical coherence tomography (SDOCT). Methods The Project MACULA online resource for AMD histopathology was surveyed systematically to form a catalog of 15 phenotypes of RPE and RPE-derived cells and layer thicknesses in advanced disease. Phenotypes were also sought in correlations with clinical longitudinal eye-tracked SDOCT and with ex vivo imaging–histopathology correlations in geographic atrophy (GA) and pigment epithelium detachments (PED). Results The morphology catalog suggested two main pathways of RPE fate: basolateral shedding of intracellular organelles (apparent apoptosis in situ) and activation with anterior migration. Acquired vitelliform lesions may represent a third pathway. Migrated cells are packed with RPE organelles and confirmed as hyperreflective on SDOCT. RPE layer thickening due to cellular dysmorphia and thick basal laminar deposit is observed near the border of GA. Drusenoid PED show a life cycle of slow growth and rapid collapse preceded by RPE layer disruption and anterior migration. Conclusions RPE activation and migration comprise an important precursor to atrophy that can be observed at the cellular level in vivo via validated SDOCT. Collapse of large drusen and drusenoid PED appears to occur when RPE death and migration prevent continued production of druse components. Data implicate excessive diffusion distance from choriocapillaris in RPE death as well as support a potential benefit in targeting drusen in GA. PMID:28785769

  8. Replication of Mycobacterium tuberculosis in retinal pigment epithelium.

    PubMed

    Nazari, Hossein; Karakousis, Petros C; Rao, Narsing A

    2014-06-01

    Mycobacterium tuberculosis is an important cause of posterior uveitis in tuberculosis-endemic regions. Clinical and histopathologic evidence suggests that retinal pigment epithelium (RPE) can harbor M tuberculosis. However, the mechanism of M tuberculosis phagocytosis and its growth in RPE is not clear. To investigate M tuberculosis phagocytosis, replication, and cytopathic effects in RPE cells compared with macrophages. Human fetal RPE and monocytic leukemia macrophage (THP-1) cell lines were cultured, and RPE and THP-1 cells were exposed to avirulent M tuberculosis H37Ra. Mycobacteria were added to RPE and THP-1 cells with a 5:1 multiplicity of infection. Nonphagocytized M tuberculosis was removed after 12 hours of exposure (day 0). Cells were harvested at days 0, 1, and 5 to count live and dead cells and intracellular mycobacteria. Toll-like receptor 2 (TLR2) and TLR4 expression was determined by immunohistochemistry; intracellular bacillary load, following TLR2 and TLR4 blockade. Number of intracellular M tuberculosis, cell survival, and TLR2 and TLR4 expression in RPE and THP-1 cells following exposure to M tuberculosis. At day 0, an equal number of intracellular M tuberculosis was observed per THP-1 and RPE cells (0.45 and 0.35 M tuberculosis per RPE and THP-1 cells, respectively). Mean (SD) number of intracellular M tuberculosis at day 5 was 1.9 (0.03) and 3.3 (0.01) per RPE and THP-1 cells, respectively (P < .001). Viability of infected RPE was significantly greater than that of THP-1 cells at day 5 (viable cells: 17 [8%] THP-1 vs 73% [4%] RPE; P < .05). Expression of TLR2 and TLR4 was detected in both cell types after 12 hours of exposure. Inhibition of TLR2 and TLR4 reduced intracellular M tuberculosis counts in RPE but not in THP-1 cells. Mycobacterium tuberculosis is phagocytized by RPE to a similar extent as in macrophages. However, RPE cells are better able to control bacillary growth and RPE cell survival is greater than that of THP-1 cells

  9. Clinical applications of fundus autofluorescence in retinal disease.

    PubMed

    Yung, Madeline; Klufas, Michael A; Sarraf, David

    2016-01-01

    Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to provide a density map of lipofuscin, the predominant ocular fluorophore, in the retinal pigment epithelium. Multiple commercially available imaging systems, including the fundus camera, the confocal scanning laser ophthalmoscope, and the ultra-widefield imaging device, are available to the clinician. Each offers unique advantages for evaluating various retinal diseases. The clinical applications of FAF continue to expand. It is now an essential tool for evaluating age related macular degeneration, macular dystrophies, retinitis pigmentosa, white dot syndromes, retinal drug toxicities, and various other retinal disorders. FAF may detect abnormalities beyond those detected on funduscopic exam, fluorescein angiography, or optical coherence tomography, and can be used to elucidate disease pathogenesis, form genotype-phenotype correlations, diagnose and monitor disease, and evaluate novel therapies. Given its ease of use, non-invasive nature, and value in characterizing retinal disease, FAF enjoys increasing clinical relevance. This review summarizes common ocular fluorophores, imaging modalities, and FAF findings for a wide spectrum of retinal disorders.

  10. Periarterial Plaques (Kyrieleis' Arteriolitis) in a Case of Bilateral Acute Retinal Necrosis.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Sharma, Yog Raj; Venkatesh, Pradeep; Vohra, Rajpal

    2017-01-01

    To describe unilateral periarterial plaque in a case of bilateral acute retinal necrosis (BARN) due to varicella zoster virus (VZV). Case report. A 43-year-old diabetic male presented to us with dimness of vision in the left eye for three months. He was already on oral steroids and anti-viral therapy. Best-corrected visual acuity was 6/6 OD and hand movements close to face OS. The right eye showed inferior and temporal retinal thinning and pigmentation and periarterial whitish focal Kyrieleis' plaques, specifically along arterioles. Left eye had mild vitritis, optic disc pallor, arteriolar attenuation, with retinal whitening and areas of pigmentation involving 360° of peripheral retina along with some involvement of the posterior pole. Serology for human immunodeficiency virus (HIV), herpes simplex virus (HSV), and cytomegalo virus (CMV) was negative. IgM for VZV was positive. Oral Valacyclovir 1 g thrice daily was continued and a slow taper of oral steroids was instituted. ARN should be considered as a differential diagnosis in cases with Kyrieleis' plaques and a peripheral retinal examination must be done to rule out patches of healed retinitis and vasculitis.

  11. Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration.

    PubMed

    Zhu, DanHong; Sreekumar, Parameswaran G; Hinton, David R; Kannan, Ram

    2010-03-31

    Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in

  12. Light-induced migration of retinal microglia into the subretinal space.

    PubMed

    Ng, T F; Streilein, J W

    2001-12-01

    To explore the effects of light exposure and deprivation on the distribution and function of microglia in the subretinal space of mice. Using a monoclonal antibody, 5D4, that identifies resting, ramified microglia, the distribution and density of microglia in the retina, and the subretinal space were determined by confocal microscopy and by immunohistochemistry of cryopreserved sections of eyes of albino and pigmented mice exposed to diverse levels of light, ranging from complete darkness to intense brightness. Axotomized retinal ganglion cells were retrograde labeled by fluorescent tracer to determine whether the marker colocalizes to 5D4+ cells. Electron microscopy was used to evaluate microglia for evidence of phagocytosis. 5D4+ microglia in pigmented eyes were limited to the inner retinal layers, but in albino eyes 5D4+ cells were found in the outer retinal layers and subretinal space as well. The subretinal space of eyes of albino mice raised from birth in complete darkness contained few 5D4+ cells, but exposure to light caused the rapid accumulation of 5D4+ cells at this site. 5D4+ cell density in the subretinal space correlated directly with intensity of ambient light. Retrograde labeling of axotomized ganglion cells resulted in 5D4+ cells in the subretinal space that contained the retrograde label. Subretinal microglia contained phagocytized rod outer segment discs. On intense light exposure, 5D4+ cells adopted an active morphology, but failed to express class II major histocompatibility complex (MHC) molecules. Light exposure induced retinal microglia migration into the subretinal space in albino mice. Subretinal microglia appeared to augment through phagocytosis the capacity of pigment epithelium to take up the photoreceptor debris of light toxicity. The unexpected presence of these cells in the subretinal space raises questions concerning their potential contribution to immune privilege in this space and to the fate of retinal transplants.

  13. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  14. Loss of Hfe Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells

    PubMed Central

    Gnana-Prakasam, Jaya P.; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Reddy, Sushma K.; Martin, Pamela M.; Thangaraju, Muthusamy; Smith, Sylvia B.; Ganapathy, Vadivel

    2013-01-01

    Purpose. Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe−/− mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. Methods. Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. Results. Hfe−/− RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe−/− cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe−/− RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe−/− cells. Conclusions. RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe−/− RPE cells as well as in Hjv−/− RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe−/− and Hjv−/− RPE cells. PMID:23169885

  15. Oxytocin (OXT)-stimulated inhibition of Kir7.1 activity is through PIP2-dependent Ca2+ response of the oxytocin receptor in the retinal pigment epithelium in vitro.

    PubMed

    York, Nathaniel; Halbach, Patrick; Chiu, Michelle A; Bird, Ian M; Pillers, De-Ann M; Pattnaik, Bikash R

    2017-09-01

    Oxytocin (OXT) is a neuropeptide that activates the oxytocin receptor (OXTR), a rhodopsin family G-protein coupled receptor. Our localization of OXTR to the retinal pigment epithelium (RPE), in close proximity to OXT in the adjacent photoreceptor neurons, leads us to propose that OXT plays an important role in RPE-retinal communication. An increase of RPE [Ca 2+ ] i in response to OXT stimulation implies that the RPE may utilize oxytocinergic signaling as a mechanism by which it accomplishes some of its many roles. In this study, we used an established human RPE cell line, a HEK293 heterologous OXTR expression system, and pharmacological inhibitors of Ca 2+ signaling to demonstrate that OXTR utilizes capacitative Ca 2+ entry (CCE) mechanisms to sustain an increase in cytoplasmic Ca 2+ . These findings demonstrate how multiple functional outcomes of OXT-OXTR signaling could be integrated via a single pathway. In addition, the activated OXTR was able to inhibit the Kir7.1 channel, an important mediator of sub retinal waste transport and K + homeostasis. Published by Elsevier Inc.

  16. Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    PubMed Central

    Follo, Carlo; Ozzano, Matteo; Mugoni, Vera; Castino, Roberta; Santoro, Massimo; Isidoro, Ciro

    2011-01-01

    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates. PMID:21747967

  17. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  18. Uptake and esterification of vitamin A by RCS rat retinal pigment epithelial cells in primary culture.

    PubMed

    Cia, David; Bonhomme, Brigitte; Azaïs-Braesco, Véronique; Cluzel, Jacques; Doly, Michel

    2004-02-01

    We investigated the capacity of Royal College of Surgeons (RCS) rat retinal pigment epithelial (RPE) cells to take up all-trans-retinol (ROL) (vitamin A) and to metabolize it into retinyl esters (RE). Cultures of RPE cells were established from RCS and control newborn rats. All-trans-ROL was delivered to the apical surface of the RPE monolayer. Retinoids were analyzed by high-performance liquid chromatography. The cellular retinol-binding protein type I (CRBP-I) was assessed by Western blotting. Before supplementation with ROL, RE were lower in RCS rats. After ROL supplementation, esters increased and reached values that were similar in the two strains, but the increase, expressed relative to the initial value, was higher in RCS rats. The uptake of ROL and the level of CRBP-I were greater in RCS rats. Our results provide evidence of a functional retinol esterifying enzyme in cultured RCS RPE cells and suggest that CRBP-I could play a role in the uptake and esterification of ROL in the RPE cells.

  19. Combined laser treatment in a patient with pigment dispersion secondary to a large iris pigment epithelial cyst.

    PubMed

    Aykan, Umit; Yıldırım, Ozlem

    2012-09-01

    We reported a case of bilateral extensive iris pigment epithelial cysts masquerading as pigment dispersion. A-30-year-old male patient presented with a dull pain in both eyes and a decreased visual acuity OD. He underwent a complete ophthalmic examination. OD was injected and the cells were graded as +3 and pigmented a +2, in the OS. Intraocular pressures (IOP) were measured as 42 (OD) and 22 (OS) mmHg. Gonioscopy revealed a confluent accumulation of dense pigment in both eyes. Visual fields, peripapillary retinal nerve fiber layer thickness (Spectral OCT/SLO OTI-OPKO Health. Inc, Miami, FL) and optic nerve head tomography (HRT-II Heidelberg Engineering, Heidelberg, Germany) results were within normal limits. On ultrasound biomicroscopy (UBM), bilateral extensive cysts were identified in the midzonal portion of the iris and in the ciliary body. An, antiglaucomatous treatment was started. Then, we decided to perform both Nd:YAG laser iridocystotomyc and selective laser trabeculoplasty. Fourteen months after the combined therapy, the cysts had not recurred, and still apposed and the IOPs were under control without medication.

  20. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a.

    PubMed

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Sheila; Kabiri, Mahboubeh; Mahmoudi Saber, Mohaddeseh; Dorkoosh, Farid Abedin

    2017-12-01

    Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H 2 O 2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    PubMed

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  2. Melanophore Migration and Survival during Zebrafish Adult Pigment Stripe Development Require the Immunoglobulin Superfamily Adhesion Molecule Igsf11

    PubMed Central

    Patterson, Larissa B.; Gordon, Tiffany N.; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M.

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. PMID:22916035

  3. Autophagy and KRT8/keratin 8 protect degeneration of retinal pigment epithelium under oxidative stress.

    PubMed

    Baek, Ahruem; Yoon, Soojin; Kim, Jean; Baek, Yu Mi; Park, Hanna; Lim, Daehan; Chung, Hyewon; Kim, Dong-Eun

    2017-02-01

    Contribution of autophagy and regulation of related proteins to the degeneration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD) remain unknown. We report that upregulation of KRT8 (keratin 8) as well as its phosphorylation are accompanied with autophagy and attenuated with the inhibition of autophagy in RPE cells under oxidative stress. KRT8 appears to have a dual role in RPE pathophysiology. While increased expression of KRT8 following autophagy provides a cytoprotective role in RPE, phosphorylation of KRT8 induces pathologic epithelial-mesenchymal transition (EMT) of RPE cells under oxidative stress, which is mediated by MAPK1/ERK2 (mitogen-activated protein kinase 1) and MAPK3/ERK1. Inhibition of autophagy further promotes EMT, which can be reversed by inhibition of MAPK. Thus, regulated enhancement of autophagy with concurrent increased expression of KRT8 and the inhibition of KRT8 phosphorylation serve to inhibit oxidative stress-induced EMT of RPE cells as well as to prevent cell death, suggesting that pharmacological manipulation of KRT8 upregulation through autophagy with combined inhibition of the MAPK1/3 pathway may be attractive therapeutic strategies for the treatment of AMD.

  4. Constitutive expression of HCA(2) in human retina and primary human retinal pigment epithelial cells.

    PubMed

    Yu, Alice L; Birke, Kerstin; Lorenz, Reinhard L; Welge-Lussen, Ulrich

    2014-05-01

    HCA2, a receptor of β-hydroxybutyrate and niacin, has recently been described in mouse retina and immortalized human retinal pigment epithelial (RPE) cell lines. As HCA2 might be a pharmacologic target, e.g. in diabetic retinopathy, we studied its expression in human retina and primary human RPE cells. Paraffin sections of human retina and primary human RPE cells were obtained from human donor eyes. Expression of HCA2 in human retina was investigated by immunohistochemistry of paraffin sections and by RT-PCR. HCA2 expression in primary human RPE cells was examined by immunocytochemistry and by Western-blot analysis. Positive immunohistochemical staining for HCA2 was found in paraffin sections of human retina, and positive immunocytochemical staining for HCA2 in primary human RPE cells. RT-PCR analysis detected mRNA expression of HCA2 in human retina. The expression of HCA2 protein was found in primary human RPE cells. Based on these results, HCA2 appears to be constitutively expressed in human retina and in primary human RPE cells. Although its functional role is still unknown, HCA2 may be potentially involved in the pathogenesis of various retinopathies and may offer a new therapeutic target.

  5. Pirfenidone inhibits migration, differentiation, and proliferation of human retinal pigment epithelial cells in vitro

    PubMed Central

    Wang, Jing; Yang, Yangfan; Xu, Jiangang; Lin, Xianchai; Wu, Kaili

    2013-01-01

    Purpose To investigate the effects of pirfenidone (PFD) on the migration, differentiation, and proliferation of retinal pigment epithelial (RPE) cells and demonstrate whether the drug induces cytotoxicity. Methods Human RPE cells (line D407) were treated with various concentrations of PFD. Cell migration was measured with scratch assay. The protein levels of fibronectin (FN), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), transforming growth factor beta (TGFβS), and Smads were assessed with western blot analyses. Levels of mRNA of TGFβS, FN, and Snail1 were analyzed using reverse transcriptase–polymerase chain reaction. Cell apoptosis was detected with flow cytometry using the Annexin V/PI apoptosis kit, and the percentages of cells labeled in different apoptotic stage were compared. A Trypan Blue assay was used to assess cell viability. Results PFD inhibited RPE cell migration. Western blot analyses showed that PFD inhibited the expression of FN, α-SMA, CTGF, TGFβ1, TGFβ2, Smad2/3, and Smad4. Similarly, PFD also downregulated mRNA levels of Snail1, FN, TGFβ1, and TGFβ2. No significant differences in cell apoptosis or viability were observed between the control and PFD-treated groups. Conclusions PFD inhibited RPE cell migration, differentiation, and proliferation in vitro and caused no significant cytotoxicity. PMID:24415895

  6. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

    PubMed Central

    Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.

    2002-01-01

    We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676

  7. Rod Photopigment Kinetics After Photodisruption of the Retinal Pigment Epithelium

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Advances in retinal imaging have led to the discovery of long-lasting retinal changes caused by light exposures below published safety limits, including disruption of the RPE. To investigate the functional consequences of RPE disruption, we combined adaptive optics ophthalmoscopy with retinal densitometry. Methods. A modified adaptive optics scanning light ophthalmoscope (AOSLO) measured the apparent density and regeneration rate of rhodopsin in two macaques before and after four different 568-nm retinal radiant exposures (RREs; 400–3200 J/cm2). Optical coherence tomography (OCT) was used to measure the optical path length through the photoreceptor outer segments before and after RPE disruption. Results. All tested RREs caused visible RPE disruption. Apparent rhodopsin density was significantly reduced following 1600 (P = 0.01) and 3200 J/cm2 (P = 0.007) exposures. No significant change in apparent density was observed in response to 800 J/cm2. Surprisingly, exposure to 400 J/cm2 showed a significant increase in apparent density (P = 0.047). Rhodopsin recovery rate was not significantly affected by these RREs. Optical coherence tomography measurements showed a significant decrease in the optical path length through the photoreceptor outer segments for RREs above 800 J/cm2 (P < 0.001). Conclusions. At higher RREs, optical path length through the outer segments was reduced. However, the rate of photopigment regeneration was unchanged. While some ambiguity remains as to the correlation between measured reflectivity and absolute rhodopsin density; at the lowest RREs, RPE disruption appears not to be accompanied by a loss of apparent rhodopsin density, which would have been indicative of functional loss. PMID:25316724

  8. A Psychophysical Test for Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Corwin, Thomas R; Mancini, Michael

    A new test designed to detect an hereditary eye disease called retinitis pigmentosa (RP) is described. This condition is revealed by pigmentation in the retina, but early diagnosis is difficult because the symptoms are subtle, and since it is genetically recessive it frequently occurs in families with no history of early blindness. In many cases…

  9. Effects of methylprednisolone on laser-induced retinal injuries

    NASA Astrophysics Data System (ADS)

    Rosner, Mordechai; Tchirkov, Marina; Dubinski, Galina; Solberg, Yoram; Belkin, Michael

    1997-05-01

    Methylprednisolone have been demonstrated to ameliorate retinal photic injury. In the current study we examined its effect on laser induced retinal injury. Retinal lesions were inflicted by argon laser in 36 pigmented DA rats. The treated groups received intra-peritoneally methylprednisolone in saline, injected 3 times a day for 2 days, starting immediately after exposure. The controls received the vehicle on the same schedule. The rats were sacrificed 3, 20 or 60 days after laser exposure and the lesions were evaluated by light microscopy and morphometric measurements. Laser injuries were associated with disruption of the outer retinal layers. Three and 20 days after exposure, the loss of the photoreceptor-cell nuclei was significantly milder in the treated groups as compared with controls. There was no difference 60 days after exposure. In conclusion, methylprednisolone reduced temporarily the photoreceptor cell loss in argon laser induced retinal injury, when treatment was started immediately after laser exposure. There was no long term effect.

  10. Prevalence of myelinated retinal nerve fibres in adult Indians: the Central India Eye and Medical Study.

    PubMed

    Nangia, Vinay; Jonas, Jost B; Khare, Anshu; Bhate, Karishma; Agarwal, Shubhra; Panda-Jonas, Songhomitra

    2014-05-01

    To determine the prevalence of myelinated retinal nerve fibers in the adult Indian population. The Central India Eye and Medical Study performed in rural Central India included 4711 participants aged 30+ years. The participants underwent a detailed ophthalmic and medical examination. Readable fundus photographs were available for 8645 eyes of 4485 (95.2%) subjects. Myelinated retinal nerve fibers were detected in 52 eyes (46 subjects) with a prevalence rate of 0.58±0.08 per 100 eyes [95% confidence interval (CI): 0.42, 0.74] and 1.03±0.15 per 100 subjects (95%CI: 0.73, 1.32). Prevalence of myelinated retinal nerve fibers was significantly associated hyperopic refractive error (p=0.008; OR: 1.31; 95%CI: 1.07, 1.59). It was not significantly associated with age (p=0.11), best corrected visual acuity (logMAR; p=0.33), intraocular pressure (p=0.09), amount of nuclear cataract (p=0.93), optic disc area (p=0.60), presence of glaucomatous optic nerve atrophy (p=0.62), and early age-related macular degeneration (p=0.53). Myelinated retinal nerve fibers are present in about 10 out of 1000 adult Indians in rural Central India, with a higher prevalence in hyperopic eyes. Prevalence of myelinated retinal nerve fibers was not associated with age, visual acuity, glaucoma and macular degeneration. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Croze, Roxanne H.; Buchholz, David E.; Radeke, Monte J.; Thi, William J.; Hu, Qirui; Coffey, Peter J.

    2014-01-01

    Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture. PMID:25069775

  12. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  13. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium.

    PubMed

    Croze, Roxanne H; Buchholz, David E; Radeke, Monte J; Thi, William J; Hu, Qirui; Coffey, Peter J; Clegg, Dennis O

    2014-09-01

    Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture. ©AlphaMed Press.

  14. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells

    PubMed Central

    Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2014-01-01

    Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt

  15. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  16. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: a potential role for reducing UVB light-induced retinal damage.

    PubMed

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin; Yan, Biao

    2013-09-06

    Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy. Published by Elsevier Inc.

  17. Transplanting Retinal Cells using Bucky Paper for Support

    NASA Technical Reports Server (NTRS)

    Loftus, David J.; Cinke, Martin; Meyyappan, Meyya; Fishman, Harvey; Leng, Ted; Huie, Philip; Bilbao, Kalayaan

    2004-01-01

    A novel treatment for retinal degenerative disorders involving transplantation of cells into the eye is currently under development at NASA Ames Research Center and Stanford University School of Medicine. The technique uses bucky paper as a support material for retinal pigment epithelial (RPE) cells, iris pigment epithelial (IPE) cells, and/or stem cells. This technology is envisioned as a treatment for age-related macular degeneration, which is the leading cause of blindness in persons over age 65 in Western nations. Additionally, patients with other retinal degenerative disorders, such as retinitis pigmentosa, may be treated by this strategy. Bucky paper is a mesh of carbon nanotubes (CNTs), as shown in Figure 1, that can be made from any of the commercial sources of CNTs. Bucky paper is biocompatible and capable of supporting the growth of biological cells. Because bucky paper is highly porous, nutrients, oxygen, carbon dioxide, and waste can readily diffuse through it. The thickness, density, and porosity of bucky paper can be tailored in manufacturing. For transplantation of cells into the retina, bucky paper serves simultaneously as a substrate for cell growth and as a barrier for new blood vessel formation, which can be a problem in the exudative type of macular degeneration. Bucky paper is easily handled during surgical implantation into the eye. Through appropriate choice of manufacturing processes, bucky paper can be made relatively rigid yet able to conform to the retina when the bucky paper is implanted. Bucky paper offers a distinct advantage over other materials that have been investigated for retinal cell transplantation - lens capsule and Descemet's membrane - which are difficult to handle during surgery because they are flimsy and do not stay flat.

  18. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells.

    PubMed

    Arjamaa, Olli; Aaltonen, Vesa; Piippo, Niina; Csont, Tamás; Petrovski, Goran; Kaarniranta, Kai; Kauppinen, Anu

    2017-09-01

    Retinal diseases are closely associated with both decreased oxygenation and increased inflammation. It is not known if hypoxia-induced vascular endothelial growth factor (VEGF) expression in the retina itself evokes inflammation, or whether inflammation is a prerequisite for the development of neovascularization. Human ARPE-19 cell line and primary human retinal pigment epithelium (RPE) cells were used. ARPE-19 cells were kept either under normoxic (24 h or 48 h) or hypoxic conditions (1% O 2 , 24 h). Part of the cells were re-oxygenated (24 h). Some ARPE-19 cells were additionally pre-treated with bacterial lipopolysaccharide (LPS). The levels of IL-6, IL-8, IL-1β, and IL-18 were determined from medium samples by an enzyme-linked immunosorbent assay (ELISA) method. Primary human RPE cells were exposed to hypoxia for 24 h, and the subsequent release of IL-6 and IL-8 was measured with ELISA. VEGF secretion from ARPE-19 cells was determined up to 24 h. Hypoxia induced significant (P < 0.01) increases in the levels of both IL-6 and IL-8 in ARPE-19 cells, and LPS pre-treatment further enhanced these responses. Hypoxia exposure did not affect the IL-1β or IL-18 release irrespective of LPS pre-treatment. If primary RPE cells were incubated for 4 h in hypoxic conditions, IL-6 and IL-8 concentrations were increased by 7 and 8-fold respectively. Hypoxia increased the VEGF secretion from ARPE-19 cells in a similar manner with or without pre-treatment with LPS. Hypoxia causes an inflammatory reaction in RPE cells that is potentiated by pre-treatment with the Toll-like receptor-activating agent, LPS. The secretion of VEGF from these cells is regulated directly by hypoxia and is not mediated by inflammation.

  19. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutalos, Y.; Ebrey, T.G.; Tsuda, M.

    1989-03-21

    The authors consider the problem of color regulation in visual pigments for both bovine rhodopsin and octopus rhodopsin. Both pigments have 11-cis-retinal as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 {plus minus} 3,000 M{sup {minus}1} cm{sup {minus}1} at 475 nm. The absorption maxima of bovinemore » artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.« less

  20. Pigment dispersion syndrome: a clinical study.

    PubMed Central

    Scheie, H G; Cameron, J D

    1981-01-01

    This study involved a group of 407 patients (799 eyes) with pigment dispersion syndrome gathered from a glaucoma population of 9200 patients. The sex distribution was equal. The majority (65%) of patients were myopic. The incidence of retinal detachment was 6.4%. No patients were black, but 5 were mulatto. Approximately one-quarter of the patients wih pigment dispersion syndrome (31% of the men, 19% of the women) had glaucoma. The average age of onset of glaucoma was 15 years less than in control patients with chronic simple glaucoma. When both eyes were affected by glaucoma, the glaucoma was consistently more severe in the eye with the more heavily pigmented angle. The degree of iris transillumination was found to be of no importance in predicting the presence of glaucoma or the severity of trabecular pigmentation. The pressure in 66% of the eyes with pigmentary glaucoma was controlled medically. A higher percentage of patients with pigmentary glaucoma required surgery than patients in the control group with chronic simple glaucoma. Men with pigmentary glaucoma required surgery at a much earlier age than women with pigmentary glaucoma. PMID:7236571

  1. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution.

    PubMed

    Starnes, Austin C; Huisingh, Carrie; McGwin, Gerald; Sloan, Kenneth R; Ablonczy, Zsolt; Smith, R Theodore; Curcio, Christine A; Ach, Thomas

    2016-01-01

    The human retinal pigment epithelium (RPE) is reportedly 3% bi-nucleated. The importance to human vision of multi-nucleated (MN)-RPE cells could be clarified with more data about their distribution in central retina. Nineteen human RPE-flatmounts (9 ≤ 51 years, 10 > 80 years) were imaged at 12 locations: 3 eccentricities (fovea, perifovea, near periphery) in 4 quadrants (superior, inferior, temporal, nasal). Image stacks of lipofuscin-attributable autofluorescence and phalloidin labeled F-actin cytoskeleton were obtained using a confocal fluorescence microscope. Nuclei were devoid of autofluorescence and were marked using morphometric software. Cell areas were approximated by Voronoi regions. Mean number of nuclei per cell among eccentricity/quadrant groups and by age were compared using Poisson and binominal regression models. A total of 11,403 RPE cells at 200 locations were analyzed: 94.66% mono-, 5.31% bi-, 0.02% tri-nucleate, and 0.01% with 5 nuclei. Age had no effect on number of nuclei. There were significant regional differences: highest frequencies of MN-cells were found at the perifovea (9.9%) and near periphery (6.8%). The fovea lacked MN-cells almost entirely. The nasal quadrant had significantly more MN-cells compared to other quadrants, at all eccentricities. This study demonstrates MN-RPE cells in human macula. MN-cells may arise due to endoreplication, cell fusion, or incomplete cell division. The topography of MN-RPE cells follows the topography of photoreceptors; with near-absence at the fovea (cones only) and high frequency at perifovea (highest rod density). This distribution might reflect specific requirements of retinal metabolism or other mechanisms addressable in further studies.

  2. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    PubMed

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  3. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film

    PubMed Central

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    Purpose: A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Methods: Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle’s-medium-and-Ham’s-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. Results: The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Conclusion: Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures. PMID:26730315

  4. Congenital hypertrophy of retinal pigment epithelium (CHRPE) in patients with familial adenomatous polyposis (FAP); a polyposis registry experience.

    PubMed

    Nusliha, Anwer; Dalpatadu, Ushantha; Amarasinghe, Binara; Chandrasinghe, Pramodh Chitral; Deen, Kemal Ismail

    2014-10-18

    Familial Adenomatous Polyposis (FAP) is an autosomal dominant condition giving rise to multiple adenomatous polyps in the colon which invariably become malignant by the fourth decade. Congenital hypertrophy of retinal pigment epithelium (CHRPE) is one of its extra intestinal manifestations early in childhood seen, present in 90% of FAP population and is easy to detect. Patients diagnosed with FAP and at risk first degree family members were screened for CHRPE using a slit lamp and indirect ophthalmoscopy. The retina of 17 diagnosed FAP patients and 13 individuals at risk were examined. The site and size of CHRPE lesions were documented. Thirteen (76%) of 17 FAP patients (male-10, female - 7, median age - 30 years; range 15-55 years) had CHRPE lesions; seven (54%) had bilateral CHRPE lesions and six (46%) had unilateral lesions. A single lesion was detected in 6 (46%) while 7 (54%) patients had multiple lesions. Of 13 at risk individuals (7- male, female-6 ; median age 34; range 16-52 years), one was positive for CHRPE and 12 were free of retinal lesions. The sensitivity of the presence of a CHRPE lesion in association with colonic polyps in FAP was 76%, specificity 92%, positive predictive value 93%, and negative predictive value 75%. This study found a high sensitivity and specificity for a CHRPE lesion to be associated with colonic polyps of FAP and hence a useful screening method in a burdened health-care system. The method is minimally invasive and simple and would be of particular value in screening children at risk for FAP.

  5. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases

    PubMed Central

    Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Jha, Balendu Shekhar; Lotfi, Mostafa; Maminishkis, Arvydas; Simon, Carl G.

    2016-01-01

    Abstract Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful. PMID:27110730

  6. Expression of Inwardly Rectifying Potassium Channel Subunits in Native Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Zhang, Xiaoming; Hughes, Bret A.

    2008-01-01

    Previously, we demonstrated that the inwardly rectifying K+ (Kir) channel subunit Kir7.1 is highly expressed in bovine and human retinal pigment epithelium (RPE). The purpose of this study was to determine whether any of the 14 other members of the Kir gene family are expressed in native human RPE. Conventional reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that in addition to Kir7.1, 7 other Kir channel subunits (Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2 and Kir6.1) are expressed in the RPE, whereas in neural retina, all 14 of the Kir channel subunits examined are expressed. The identities of RT-PCR products in the RPE were confirmed by DNA sequencing. Real-time RT-PCR analysis showed, however, that transcripts of these channels are significantly less abundant than Kir7.1 in the RPE. Western blot analysis of the Kir channel subunits detected in the RPE by RT-PCR revealed the expression of Kir2.1, Kir3.1, Kir3.4, Kir4.2, Kir6.1, and possibly Kir2.2, but not Kir1.1, in both human RPE and neural retina. Our results indicate that human RPE expresses at least 5 other Kir channel subtypes in addition to Kir7.1, suggesting that multiple members of the Kir channel family may function in this epithelium. PMID:18653180

  7. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    PubMed Central

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  8. Cytomegalovirus retinitis associated with acquired immunodeficiency syndrome.

    PubMed

    Geng, Shuang; Ye, Jun-jie; Zhao, Jia-liang; Li, Tai-sheng; Han, Yang

    2011-04-01

    Cytomegalovirus (CMV) retinitis is the most severe intraocular complication that results in total retinal destruction and loss of visual acuity in patients with acquired immunodeficiency syndrome (AIDS). This study aimed to investigate the fundus characteristics, systemic manifestations and therapeutic outcomes of CMV retinitis associated with AIDS. It was a retrospective case series. CMV retinitis was present in 39 eyes (25 patients). Best corrected visual acuities, anterior segment, fundus features, fundus fluorescence angiography (FFA) and CD4(+) T-lymphocyte counts of the patients with CMV retinitis associated with AIDS were analyzed. Intravitreal injections of ganciclovir (400 µg) were performed in 4 eyes (2 patients). Retinal vasculitis, dense, full-thickness, yellow-white lesions along vascular distribution with irregular granules at the border, and hemorrhage on the retinal surface were present in 28 eyes. The vitreous was clear or mildly opaque. Late stage of the retinopathy was demonstrated in 8 eyes characterized as atrophic retina, sclerotic and attenuated vessels, retinal pigment epithelium (RPE) atrophy, and optic nerve atrophy. Retinal detachment was found in 3 eyes. The average CD4(+) T-lymphocyte count in peripheral blood of the patients with CMV retinitis was (30.6 ± 25.3) × 10(6)/L (range, (0 - 85) × 10(6)/L). After intravitreal injections of ganciclovir, visual acuity was improved and fundus lesions regressed. CMV retinitis is the most severe and the most common intraocular complication in patients with AIDS. For the patients with yellow-white retinal lesions, hemorrhage and retinal vasculitis without clear cause, human immunodeficiency virus (HIV) serology should be performed. Routine eye examination is also indicated in HIV positive patients.

  9. Ocular toxicity of beta-blockers and benzalkonium chloride in pigmented rabbits: electrophysiological and morphological studies.

    PubMed

    Chou, A; Hori, S; Takase, M

    1985-01-01

    Subconjunctival injection of 0.2 ml of the following solutions was carried out once a day for two weeks in the albino and pigmented rabbit: commercial 0.5% timolol or 1% befunolol ophthalmic solutions, both containing benzalkonium chloride, and also these drug solutions containing no preservative, ophthalmic base solutions containing benzalkonium chloride, physiological saline solution or phosphate buffer solution. One week after daily injections of the commercial drug solutions or base solutions with benzalkonium chloride, the electroretinogram (ERG) showed a marked reduction in the a- and b-wave amplitudes in the pigmented rabbit, but the ERG changes were slight in the albino rabbit. After two weeks of injections, histological studies of the pigmented rabbit eyes revealed retinal detachment, visual cell loss and atrophy of the retinal pigment epithelium and choroid; the changes in the albino rabbit eyes were minimal. Injections of the beta-blockers containing no benzalkonium resulted in no significant changes in the ERG or in the tissue structures of all rabbits. Injections of only physiological saline or phosphate buffer had no deleterious effects. Therefore, the ocular toxicity of the beta-blockers was thought to be minor and the toxic effects seen in this study were thought to be due to benzalkonium chloride, which possibly accumulates in the ocular pigments.

  10. Guidance of retinal axons in mammals.

    PubMed

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730

  12. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases.

    PubMed

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-07-28

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.

  13. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases

    PubMed Central

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-01-01

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action. PMID:28788088

  14. Minireview: Fibronectin in retinal disease.

    PubMed

    Miller, Charles G; Budoff, Greg; Prenner, Jonathan L; Schwarzbauer, Jean E

    2017-01-01

    Retinal fibrosis, characterized by dysregulation of extracellular matrix (ECM) protein deposition by retinal endothelial cells, pigment epithelial cells, and other resident cell-types, is a unifying feature of several common retinal diseases. Fibronectin is an early constituent of newly deposited ECM and serves as a template for assembly of other ECM proteins, including collagens. Under physiologic conditions, fibronectin is found in all layers of Bruch's membrane. Proliferative vitreoretinopathy (PVR), a complication of retinal surgery, is characterized by ECM accumulation. Among the earliest histologic manifestations of diabetic retinopathy (DR) is capillary basement membrane thickening, which occurs due to perturbations in ECM homeostasis. Neovascularization, the hallmark of late stage DR as well as exudative age-related macular degeneration (AMD), involves ECM assembly as a scaffold for the aberrant new vessel architecture. Rodent models of retinal injury demonstrate a key role for fibronectin in complications characteristic of PVR, including retinal detachment. In mouse models of DR, reducing fibronectin gene expression has been shown to arrest the accumulation of ECM in the capillary basement membrane. Alterations in matrix metalloproteinase activity thought to be important in the pathogenesis of AMD impact the turnover of fibronectin matrix as well as collagens. Growth factors involved in PVR, AMD, and DR, such as PDGF and TGFβ, are known to stimulate fibronectin matrix assembly. A deeper understanding of how pathologic ECM deposition contributes to disease progression may help to identify novel targets for therapeutic intervention. © 2016 by the Society for Experimental Biology and Medicine.

  15. Pilot evaluation of short-term changes in macular pigment and retinal sensitivity in different phenotypes of early age-related macular degeneration after carotenoid supplementation.

    PubMed

    Corvi, Federico; Souied, Eric H; Falfoul, Yousra; Georges, Anouk; Jung, Camille; Querques, Lea; Querques, Giuseppe

    2017-06-01

    To investigate the response of carotenoid supplementation in different phenotypes of early age-related macular degeneration (AMD) by measuring macular pigment optical density (MPOD) and retinal sensitivity. Consecutive patients with only medium/large drusen and only reticular pseudodrusen (RPD) and age-matched and sex-matched controls were enrolled. At baseline, participants underwent a complete ophthalmological examination including measurement of best-corrected visual acuity (BCVA), MPOD and retinal sensitivity. Patients were put on vitamin supplementation (lutein 10 mg/day, zeaxanthin 2 mg/day) and 3 months later underwent a repeated ophthalmological examination. Twenty patients with medium/large drusen, 19 with RPD and 15 control subjects were included. At baseline, in controls, mean MPOD and BCVA were significantly higher compared with RPD (p=0.001 and p=0.01) but similar to medium/large drusen (p=0.9 and p=0.4). Mean retinal sensitivity was significantly higher in controls compared with RPD and medium/large drusen (for all p<0.0001). After 3 months of carotenoid supplementation the mean MPOD significantly increased in RPD (p=0.002), thus showing no more difference compared with controls (p=0.3); no significant changes were found in mean retinal sensitivity and BCVA (p=0.3 and p=0.7). Medium/large drusen did not show significant changes on MPOD, retinal sensitivity and BCVA (p=0.5, p=0.7 and p=0.7, respectively). Patients with early AMD, especially RPD phenotype, show lower macular sensitivity and MPOD than controls. After supplementation, MPOD significantly increased in RPD. These results suggest different pathophysiology for RPD as compared with medium/large drusen and may open new ways to identifying further therapeutic targets in this phenotype of early AMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    PubMed

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  17. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life.

  18. Automated segmentation of serous pigment epithelium detachment in SD-OCT images

    NASA Astrophysics Data System (ADS)

    Sun, Zhuli; Shi, Fei; Xiang, Dehui; Chen, Haoyu; Chen, Xinjian

    2015-03-01

    Pigment epithelium detachment (PED) is an important clinical manifestation of multiple chorio-retinal disease processes, which can cause the loss of central vision. A 3-D method is proposed to automatically segment serous PED in SD-OCT images. The proposed method consists of five steps: first, a curvature anisotropic diffusion filter is applied to remove speckle noise. Second, the graph search method is applied for abnormal retinal layer segmentation associated with retinal pigment epithelium (RPE) deformation. During this process, Bruch's membrane, which doesn't show in the SD-OCT images, is estimated with the convex hull algorithm. Third, the foreground and background seeds are automatically obtained from retinal layer segmentation result. Fourth, the serous PED is segmented based on the graph cut method. Finally, a post-processing step is applied to remove false positive regions based on mathematical morphology. The proposed method was tested on 20 SD-OCT volumes from 20 patients diagnosed with serous PED. The average true positive volume fraction (TPVF), false positive volume fraction (FPVF), dice similarity coefficient (DSC) and positive predictive value (PPV) are 97.19%, 0.03%, 96.34% and 95.59%, respectively. Linear regression analysis shows a strong correlation (r = 0.975) comparing the segmented PED volumes with the ground truth labeled by an ophthalmology expert. The proposed method can provide clinicians with accurate quantitative information, including shape, size and position of the PED regions, which can assist diagnose and treatment.

  19. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    PubMed Central

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-01-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations—F45L, V209M and F220C—yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5. PMID:27694816

  20. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    NASA Astrophysics Data System (ADS)

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-10-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations--F45L, V209M and F220C--yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5.

  1. Retinitis pigmentosa, pigmentary retinopathies, and neurologic diseases.

    PubMed

    Bhatti, M Tariq

    2006-09-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal diseases with phenotypic and genetic heterogeneity. The pathophysiologic basis of the progressive visual loss in patients with RP is not completely understood but is felt to be due to a primary retinal photoreceptor cell degenerative process mainly affecting the rods of the peripheral retina. In most cases RP is seen in isolation (nonsyndromic), but in some other cases it may be a part of a genetic, metabolic, or neurologic syndrome or disorder. Nyctalopia, or night blindness, is the most common symptom of RP. The classic fundus appearance of RP includes retinal pigment epithelial cell changes resulting in retinal hypo- or hyperpigmentation ("salt-and-pepper"), retinal granularity, and bone spicule formation. The retinal vessels are often narrowed or attenuated and there is a waxy pallor appearance of the optic nerve head. Electroretinography will demonstrate rod and cone photoreceptor cell dysfunction and is a helpful test in the diagnosis and monitoring of patients with RP. A detailed history with pedigree analysis, a complete ocular examination, and the appropriate paraclinical testing should be performed in patients complaining of visual difficulties at night or in dim light. This review discusses the clinical manifestations of RP as well as describing the various systemic diseases, with a special emphasis on neurologic diseases, associated with a pigmentary retinopathy.

  2. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    PubMed

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  3. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line.

    PubMed

    Iloki-Assanga, Simon Bernard; Lewis-Luján, Lidianys María; Fernández-Angulo, Daniela; Gil-Salido, Armida Andrea; Lara-Espinoza, Claudia Lizeth; Rubio-Pino, José Luis

    2015-07-29

    Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.

  4. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  5. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells.

    PubMed

    Ko, Ji-Ae; Sotani, Yasuyuki; Ibrahim, Diah Gemala; Kiuchi, Yoshiaki

    2017-10-01

    Proliferative vitreoretinopathy (PVR) is the major cause of treatment failure in individuals who undergo surgery for retinal detachment. The epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells contributes to the pathogenesis of PVR. Oxidative stress is thought to play a role in the progression of retinal diseases including PVR. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line. We found that H 2 O 2 induced the contraction of RPE cells in a three-dimensional collagen gel. Analysis of a cytokine array revealed that H 2 O 2 specifically increased the release of macrophage migration inhibitory factor (MIF) from RPE cells. Reverse transcription-polymerase chain reaction and immunoblot analyses showed that H 2 O 2 increased the expression of MIF in RPE cells. Immunoblot and immunofluorescence analyses revealed that H 2 O 2 upregulated the expression of α-SMA and vimentin and downregulated that of ZO-1 and N-cadherin. Consistent with these observations, the transepithelial electrical resistance of cell was reduced by exposure to H 2 O 2 . The effects of oxidative stress on EMT-related and junctional protein expression as well as on transepithelial electrical resistance were inhibited by antibodies to MIF, but they were not mimicked by treatment with recombinant MIF. Finally, analysis with a profiling array for mitogen-activated protein kinase signalling revealed that H 2 O 2 specifically induced the phosphorylation of p38 mitogen-activated protein kinase. Our results thus suggest that MIF may play a role in induction of the EMT and related processes by oxidative stress in RPE cells and that it might thereby contribute to the pathogenesis of PVR. Proliferative vitreoretinopathy is a major complication of rhegmatogenous retinal detachment, and both oxidative stress and induction of the EMT in RPE cells are thought to contribute to the pathogenesis of this condition. We have now

  6. Melatonin: An Underappreciated Player in Retinal Physiology and Pathophysiology

    PubMed Central

    Tosini, Gianluca; Baba, Kenkichi; Hwang, Christopher K.; Iuvone, P. Michael

    2012-01-01

    In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT1 and MT2 have been identified in the mammalian retina. MT1 and MT2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential. PMID:22960156

  7. Stem Cell Therapies in Retinal Disorders.

    PubMed

    Garg, Aakriti; Yang, Jin; Lee, Winston; Tsang, Stephen H

    2017-02-02

    Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs) have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs) revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients' diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  8. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    PubMed Central

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  9. Association between choroidal pigmentation and posterior uveal melanoma in a white population

    PubMed Central

    Harbour, J W; Brantley, M A; Hollingsworth, H; Gordon, M

    2004-01-01

    Background/aims: It is well known that light skin pigmentation is a risk factor for cutaneous melanoma. The aim of this study was to investigate the analogous association between choroidal pigmentation and posterior uveal melanoma. Methods: Cross sectional study of 65 consecutive patients diagnosed with posterior uveal melanoma (melanoma group) and 218 consecutive patients referred for general retinal evaluation (control group). All patients were white. A clinical grading system for estimating choroidal pigmentation was developed and histologically validated in seven patients. Results: Melanoma patients with light iris colour were significantly more likely to have darker choroidal pigmentation than controls (p = 0.005). Darker choroidal pigmentation was associated histologically with increased density of choroidal melanocytes (p = 0.005). Conclusions: Increased choroidal pigmentation, as a result of an increase in the density of pigmented choroidal melanocytes, is not protective but may actually be a risk factor for the development of posterior uveal melanoma in white patients. This finding may have implications for understanding the pathogenesis of uveal melanoma. PMID:14693770

  10. Light-Induced Retinopathy: Young Age Protects more than Ocular Pigmentation.

    PubMed

    Polosa, Anna; Bessaklia, Hyba; Lachapelle, Pierre

    2017-06-01

    The purpose of this study was to compare the efficacy that ocular melanin confers in protecting the retina of juvenile and adult rats exposed to a bright luminous environment. Juvenile (JLE) and adult (ALE) Long-Evans pigmented rats were thus exposed to a bright cyclic light (10,000lux; white light) from postnatal day 14-28 or for 6 consecutive days, respectively. Flash electroretinograms (ERG) and retinal histology were performed at different predetermined ages, post-light exposure. Despite a significant reduction in ERG responses immediately following light exposure, with time, retinal function fully recovered in JLE compared to a 54% recovery for the ALE. In ALE, we noted a region of the supero-temporal quadrant that was highly vulnerable to light damage. This region was also devoid of melanin granules prior to the light exposure. This melanin-free zone increased in size in the days that followed the end of exposure, a process that was accompanied by the gradual degeneration of the thus uncovered photoreceptors. In contrast, melanin and photoreceptor losses were minimal in JLE. Our results suggest that the light-induced photoreceptor degeneration in ALE would be secondary to the initial destruction of the RPE and ensuing loss of melanin protection. In contrast, the melanin granules of JLE appear to be significantly more resistant to light damage, a characteristic that would explain the higher resistance of JLE photoreceptors to light damage. Our results would thus suggest that the efficacy of ocular melanin protection against light damage declines with age.

  11. Concentric retinitis pigmentosa: clinicopathologic correlations.

    PubMed

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  12. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Tokarz, Paulina; Koskela, Ali; Paterno, Jussi; Blasiak, Janusz

    2017-04-01

    Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.

  13. PHAGOCYTOSIS BY RETINAL PIGMENT EPITHELIAL CELLS IN VITRO IS AFFECTED BY EXPOSURE TO PESTICIDES.

    EPA Science Inventory

    Purpose:Agricultural and occupational exposures to the fungicides benomyl and captan and the insecticide fenthion have been associated with retinal degeneration. Exposure to insecticides has also been associated with pigmentary changes of the retina. Because retinal degeneration ...

  14. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    PubMed Central

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  15. New Wrinkles in Retinal Densitometry

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigment bleaching with 514-nm light. Reflectance measurements at 514 nm and 794 nm were recorded simultaneously. Several methods of normalization to extract the apparent optical density of the photopigment were compared. Results. We identified stimulus-related fluctuations in 794-nm reflectance that are not associated with photopigment absorptance and occur in both rods and cones. These changes had a magnitude approaching those associated directly with pigment depletion, precluding the use of infrared reflectance for normalization. We used a spatial normalization method instead, which avoided the fluctuations in the near infrared, as well as a confocal AOSLO designed to minimize light from layers other than the receptors. However, these methods produced a surprisingly low estimate of the apparent rhodopsin density (animal 1: 0.073 ± 0.006, animal 2: 0.032 ± 0.003). Conclusions. These results confirm earlier observations that changes in photopigment absorption are not the only source of retinal reflectance change during dark adaptation. It appears that the stray light that has historically reduced the apparent density of cone photopigment in retinal densitometry arises predominantly from layers near the photoreceptors themselves. Despite these complications, this method provides a valuable, objective measure of retinal function. PMID:25316726

  16. Ultrashort Laser Retinal Damage Threshold Mechanisms

    DTIC Science & Technology

    2010-01-15

    epithelium . Below one nanosecond both stress-confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant... epithelium (RPE). Below 1 ns, both stress confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant...collimated laser light is focused to a very small spot on the retina. The retinal pigment epithelium (RPE) contains melanosomes, which are the primary

  17. Membrane Peeling-Induced Retinal Alterations on Intraoperative OCT in Vitreomacular Interface Disorders From the PIONEER Study.

    PubMed

    Ehlers, Justis P; Han, Jaehong; Petkovsek, Daniel; Kaiser, Peter K; Singh, Rishi P; Srivastava, Sunil K

    2015-11-01

    To assess retinal architectural alterations that occur following membrane peeling procedures and the impact of peel technique on these alterations utilizing intraoperative optical coherence tomography (iOCT). This is a subanalysis of the prospective PIONEER iOCT study of eyes undergoing a membrane peeling for a vitreomacular interface (VMI) disorder. Intraoperative scanning was performed with a microscope-mounted OCT system. Macroarchitectural alterations (e.g., full-thickness retinal elevations) and microarchitectural alterations (e.g., relative layer thickness alterations) were analyzed. Video/iOCT correlation was performed to identify instrument-tissue manipulations resulting in macroarchitectural alterations. One hundred sixty-three eyes were included in the macroarchitectural analysis. Instrumentation utilized for membrane peeling included forceps alone for 73 eyes (45%), combined diamond-dusted membrane scraper (DDMS) and forceps for 87 eyes (53%), and other techniques in three eyes (2%). Focal retinal elevations were identified in 45 of 163 eyes (28%). Video/iOCT correlation identified 69% of alterations involved forceps compared to 26% due to DDMS. Sixteen percent of retinal alterations persisted 1 month following surgery. The microarchitectural analysis included 134 eyes. Immediately following membrane peeling, there was a significant increase in the ellipsoid zone to retinal pigment epithelium height (+20%, P < 0.00001) and the cone outer segment tips to retinal pigment epithelium height (+18%, P < 0.00001). Significant subclinical retinal architectural changes occur during membrane peeling for VMI conditions. Differences in surgical instruments may impact these architectural alterations.

  18. Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy.

    PubMed

    Pollreisz, Andreas; Messinger, Jeffrey D; Sloan, Kenneth R; Mittermueller, Tamara J; Weinhandl, Alexandra S; Benson, Emily K; Kidd, Grahame J; Schmidt-Erfurth, Ursula; Curcio, Christine A

    2018-01-01

    To assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer. Series of 249-499 sections containing 5-24 nuclei were examined per eye. Trained readers manually assigned boundaries of individual cells and x,y,z locations of M, L, and ML. A Density Recovery Profile was computed in three dimensions for M, L, and ML. The number of granules per RPE cell body in 16M, 32F, 76F, and 84M eyes, respectively, was 465 ± 127 (mean ± SD), 305 ± 92, 79 ± 40, and 333 ± 134 for L; 13 ± 9; 6 ± 7, 131 ± 55, and 184 ± 66 for ML; and 29 ± 19, 24 ± 12, 12 ± 7, and 7 ± 3 for M. Granule types were spatially organized, with M near apical processes. The effective radius, a sphere of decreased probability for granule occurrence, was 1 μm for L, ML, and M combined. In conclusion, SBFEM reveals that adult human RPE has hundreds of L, LF, and M and that granule spacing is regulated by granule size alone. When obtained for a larger sample, this information will enable hypothesis testing about organelle turnover and regulation in health, aging, and disease, and elucidate how RPE-specific signals are generated in clinical optical coherence tomography and autofluorescence imaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa.

    PubMed

    Greenstein, Vivienne C; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E; Greenberg, Jonathan P; Tsang, Stephen H; Hood, Donald C

    2012-02-01

    To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa. Twenty-one retinitis pigmentosa patients (21 eyes) with rings/arcs and 21 normal individuals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral-domain optical coherence tomography. The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial complex and outer segment plus retinal pigment epithelial complex layers were measured. Results were compared with measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence. Disruption/loss of the inner outer segment junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in eight eyes. For 19 eyes, outer segment plus and receptor plus RPE complex thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across, and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8, and 17.0 ± 2.4 dB, respectively. Structural and functional changes can occur inside the hyperfluorescent ring/arc in retinitis pigmentosa.

  20. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms.

    PubMed

    Cechmanek, Paula Bernice; McFarlane, Sarah

    2017-08-01

    The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Effects of Secreted Mast Cell Mediators on Retinal Pigment Epithelial Cells: Focus on Mast Cell Tryptase.

    PubMed

    Arai, Rei; Usui-Ouchi, Ayumi; Ito, Yosuke; Mashimo, Keitaro; Murakami, Akira; Ebihara, Nobuyuki

    2017-01-01

    Numerous mast cells are present in the choroid, but the effects of mast cell mediators on retinal pigment epithelial (RPE) cells are not well understood. We investigated the influence of mast cell mediators on RPE cells in vitro, focusing on tryptase. Expression of receptors was examined by the reverse transcription polymerase chain reaction. We also assessed production of interleukin 8 and vascular endothelial growth factor (VEGF) after RPE cells were stimulated with mast cell mediators by using an antibody array and enzyme-linked immunosorbent assay. Furthermore, we investigated the influence of tryptase on RPE cell migration and integrity by the scratch assay and the transepithelial resistance. RPE cells expressed protease-activated receptor 2 (PAR2), histamine receptor 1, tumor necrosis factor- α (TNF- α ) receptor 1, and CCR 1, 3, 4, 8, and 11. Tryptase, PAR2 agonists, histamine, and TNF- α all enhanced interleukin 8 production by RPE cells, while only tryptase enhanced VEGF production. Tryptase also enhanced expression of phosphorylated extracellular signal-regulated kinases 1/2, resulting in increased migration of RPE cells. However, tryptase did not alter epithelial integrity or the expression of zonula occludens-1 and junctional adhesion molecule-A by RPE cells. Mast cell mediators, especially tryptase, may influence RPE cell inflammation.

  2. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions.

    PubMed

    Tian, J; Ishibashi, K; Honda, S; Boylan, S A; Hjelmeland, L M; Handa, J T

    2005-11-01

    To determine the transcriptional proximity of retinal pigment epithelium (RPE) cells grown under different culture conditions and native RPE. ARPE-19 cells were grown under five conditions in 10% CO(2): "subconfluent" in DMEM/F12+10% FBS, "confluent" in serum and serum withdrawn, and "differentiated" for 2.5 months in serum and serum withdrawn medium. Native RPE was laser microdissected. Total RNA was extracted, reverse transcribed, and radiolabelled probes were hybridised to an array containing 5,353 genes. Arrays were evaluated by hierarchical cluster analysis and significance analysis of microarrays. 78% of genes were expressed by native RPE while 45.3--47.7% were expressed by ARPE-19 cells, depending on culture condition. While the most abundant genes were expressed by native and cultured cells, significant differences in low abundance genes were seen. Hierarchical cluster analysis showed that confluent and differentiated, serum withdrawn cultures clustered closest to native RPE, and that serum segregated cultured cells from native RPE. The number of differentially expressed genes and their function, and profile of expressed and unexpressed genes, demonstrate differences between native and cultured cells. While ARPE-19 cells have significant value for studying RPE behaviour, investigators must be aware of how culture conditions can influence the mRNA phenotype of the cell.

  3. Generation of Transplantable Retinal Pigmented Epithelial (RPE) Cells for Treatment of Age-Related Macular Degeneration (AMD).

    PubMed

    Surendran, Harshini; Rathod, Reena J; Pal, Rajarshi

    2018-06-13

    Age-related macular degeneration (AMD) is the foremost cause of blindness in people over the age of 60 worldwide. Clinically, this disease starts with distortion in central vision eventually leading to legal blindness. Vision loss has a significant impact on quality of life and incurs a substantial cost to the economy. Furthermore, AMD is a complex and progressive neurodegenerative disorder that triggers visual impairment due to the loss of retinal pigmented epithelium (RPE) and the light-sensitive photoreceptors that they support, protect and provide nutrition. Currently, there is no curative treatment for the most common form of this disease, i.e., dry AMD. A novel approach to treat AMD involves the transplantation of RPE cells derived from human induced pluripotent stem cells (iPSCs) in the outer retina. These iPSC-derived RPE cells not only show characteristics similar to native RPE but also could replace as well as regenerate damaged pathologic RPE and produce supportive growth factors and cytokines. Several clinical trials are being conducted taking advantage of a variety of cell- and tissue engineering-based approaches. Here, we present a simple, cost effective, and scalable cell-culture model for generation of purified RPE thus providing the foundation for developing an allogeneic cell therapy for AMD.

  4. Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging

    PubMed Central

    Liu, Wenzhong; Nesper, Peter; Park, Justin; Zhang, Hao F.; Fawzi, Amani A.

    2016-01-01

    Purpose To demonstrate the versatility and performance of a compact Bayer filter snapshot hyperspectral fundus camera for in-vivo clinical applications including retinal oximetry and macular pigment optical density measurements. Methods 12 healthy volunteers were recruited under an Institutional Review Board (IRB) approved protocol. Fundus images were taken with a custom hyperspectral camera with a spectral range of 460–630 nm. We determined retinal vascular oxygen saturation (sO2) for the healthy population using the captured spectra by least squares curve fitting. Additionally, macular pigment optical density was localized and visualized using multispectral reflectometry from selected wavelengths. Results We successfully determined the mean sO2 of arteries and veins of each subject (ages 21–80) with excellent intrasubject repeatability (1.4% standard deviation). The mean arterial sO2 for all subjects was 90.9% ± 2.5%, whereas the mean venous sO2 for all subjects was 64.5% ± 3.5%. The mean artery–vein (A–V) difference in sO2 varied between 20.5% and 31.9%. In addition, we were able to reveal and quantify macular pigment optical density. Conclusions We demonstrated a single imaging tool capable of oxygen saturation and macular pigment density measurements in vivo. The unique combination of broad spectral range, high spectral–spatial resolution, rapid and robust imaging capability, and compact design make this system a valuable tool for multifunction spectral imaging that can be easily performed in a clinic setting. PMID:27767345

  5. Retinol esterification in bovine retinal pigment epithelium: reversibility of lecithin:retinol acyltransferase.

    PubMed Central

    Saari, J C; Bredberg, D L; Farrell, D F

    1993-01-01

    Esterification of all-trans-retinol is a key reaction of the vertebrate visual cycle, since it produces an insoluble, relatively non-toxic, form of the vitamin for storage and supplies substrate for the isomerization reaction. CoA-dependent and -independent pathways have been described for retinol esterification in retinal pigment epithelium (RPE). The CoA-independent reaction, catalysed by lecithin:retinol acyltransferase (LRAT) was examined in more detail in this study. Addition of retinol to RPE microsomes results in a burst of retinyl ester synthesis, followed by a rapid apparent cessation of the reaction. However, [3H]retinol, added when retinyl ester synthesis has apparently ceased, is rapidly incorporated into retinyl ester without a net increase in the amount of ester. The specific radioactivities of [3H]retinol and [3H]retinyl ester reach the same value. [14C]Palmitate from palmitoyl-CoA is incorporated into preexisting retinyl ester in the absence of net ester synthesis, too. These exchange reactions suggest that the reaction has reached equilibrium at the plateau of the progress curve and that only the accumulation of retinyl ester, and not its synthesis, has stopped during this phase of the reaction. Studies with geometrical isomers of retinol revealed that the rate of exchange of all-trans-retinol with all-trans-retinyl esters was about 6 times more rapid than exchange of 11-cis-retinol with 11-cis-retinyl ester. This is the first demonstration of the reversibility of LRAT and the first example of stereospecificity of retinyl ester synthesis in the visual system. Reversal of the LRAT reaction could contribute to the mobilization of 11-cis-retinol from 11-cis-retinyl ester pools. Images Figure 3 PMID:8489497

  6. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    PubMed

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  7. Unilateral retinitis pigmentosa: 30 years follow-up

    PubMed Central

    Weller, Julia M; Michelson, Georg; Juenemann, Anselm G

    2014-01-01

    This case report depicts the clinical course of a female patient with unilateral retinitis pigmentosa (RP), who presented first in 1984 at the age of 43 years. At the beginning, there were cells in the vitreous leading to the diagnosis of uveitis with vasculitis. Within 30 years, the complete clinical manifestation of RP developed with bone spicule-shaped pigment deposits, pale optic disc, narrowed arterioles, cystoid macular oedema, posterior subcapsular cataract, concentric narrowing of the visual field and undetectable electroretinogram signal. At the age of 72 years, there are still no signs of retinal dystrophy in the other eye. PMID:24515232

  8. Temporal Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24 Hours Post-Exposure to 1064 nm, 3.6 ns Pulsed Laser Light

    DTIC Science & Technology

    2005-05-01

    REPORT DATE (DD-MM-VYYVY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 31-05-2005 TECHNICAL-FINAL 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Temporal...Some biochemical studies have investigated free radical formation in the melanosomes of the retinal pigment epithelial (RPE), which are hypothesized to...unpublished). This finding is consistent with others indicating that shorter wavelengths do more damage at equivalent energies. ( 2 ) A tenfold increase in

  9. MRI of Retinal Free Radical Production With Laminar Resolution In Vivo

    PubMed Central

    Berkowitz, Bruce A.; Lewin, Alfred S.; Biswal, Manas R.; Bredell, Bryce X.; Davis, Christopher; Roberts, Robin

    2016-01-01

    Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo. PMID:26886890

  10. The role of fundus autofluorescence in late-onset retinitis pigmentosa (LORP) diagnosis.

    PubMed

    Lee, Tamara J; Hwang, John C; Chen, Royce W S; Lima, Luiz H; Wang, Nan-Kai; Tosi, Joaquin; Freund, K Bailey; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-09-01

    To demonstrate the utility and characteristics of fundus autofluorescence in late-onset retinitis pigmentosa. Observational case series. Patients diagnosed with late-onset retinitis pigmentosa were identified retrospectively in an institutional setting. Twelve eyes of six patients were identified and medical records were reviewed. All patients presented with slowly progressive peripheral field loss and initial clinical examination revealed only subtle retinal changes. There was a notable lack of intraretinal pigment migration in all patients. Five out of six patients underwent magnetic resonance imaging of the brain to rule out intracranial processes and all were referred from another ophthalmologist for further evaluation. Fundus autofluorescence was ultimately employed in all patients and revealed more extensive retinal pathology than initially appreciated on clinical examination. Fundus autofluorescence directed the workup toward a retinal etiology in all cases and led to the eventual diagnosis of late-onset retinitis pigmentosa through electroretinogram testing. Fundus autofluorescence may be a more sensitive marker for retinal pathology than stereo fundus biomicroscopy alone in late-onset retinitis pigmentosa. Early use of fundus autofluorescence imaging in the evaluation of patients with subtle retinal lesions and complaints of peripheral field loss may be an effective strategy for timely and cost-efficient diagnosis.

  11. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD.more » Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.« less

  12. Contribution to the theory of photopic vision: Retinal phenomena

    NASA Technical Reports Server (NTRS)

    Calvet, H.

    1979-01-01

    Principles of thermodynamics are applied to the study of the ultramicroscopic anatomy of the inner eye. Concepts introduced and discussed include: the retina as a three-dimensional sensor, light signals as coherent beams in relation to the dimensions of retinal pigments, pigment effects topographed by the conjugated antennas effect, visualizing lights, the autotropic function of hemoglobin and some cytochromes, and reversible structural arrangements during photopic adaptation. A paleoecological diagram is presented which traces the evolution of scotopic vision (primitive system) to photopic vision (secondary system) through the emergence of structures sensitive to the intensity, temperature, and wavelengths of the visible range.

  13. Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3

    PubMed Central

    Kleinman, Mark E; Kaneko, Hiroki; Cho, Won Gil; Dridi, Sami; Fowler, Benjamin J; Blandford, Alexander D; Albuquerque, Romulo JC; Hirano, Yoshio; Terasaki, Hiroko; Kondo, Mineo; Fujita, Takashi; Ambati, Balamurali K; Tarallo, Valeria; Gelfand, Bradley D; Bogdanovich, Sasha; Baffi, Judit Z; Ambati, Jayakrishna

    2012-01-01

    The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these “naked” siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide. PMID:21988875

  14. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration

    PubMed Central

    Sato, Shinya

    2016-01-01

    Key points This study explores the nature of the cis retinol that Müller cells in the retina provide to cones for the regeneration of their visual pigment.We report that the retina visual cycle provides cones exclusively with 11‐cis chromophore in both salamander and mouse and show that this selectivity is dependent on the 11‐cis‐specific cellular retinaldehyde binding protein (CRALBP) present in Müller cells.Even though salamander blue cones and green rods share the same visual pigment, only blue cones but not green rods are able to dark‐adapt in the retina following a bleach and to use exogenous 9‐cis retinol for pigment regeneration, suggesting that access to the retina visual cycle is cone‐specific and pigment‐independent.Our results show that the retina produces 11‐cis retinol that can be oxidized and used for pigment regeneration and dark adaptation selectively in cones and not in rods. Abstract Chromophore supply by the retinal Müller cells (retina visual cycle) supports the efficient pigment regeneration required for cone photoreceptor function in bright light. Surprisingly, a large fraction of the chromophore produced by dihydroceramide desaturase‐1, the putative all‐trans retinol isomerase in Müller cells, appears to be 9‐cis retinol. In contrast, the canonical retinal pigment epithelium (RPE) visual cycle produces exclusively 11‐cis retinal. Here, we used the different absorption spectra of 9‐cis and 11‐cis pigments to identify the isoform of the chromophore produced by the visual cycle of the intact retina. We found that the spectral sensitivity of salamander and mouse cones dark‐adapted in the isolated retina (with only the retina visual cycle) was similar to that of cones dark‐adapted in the intact eye (with both the RPE and retina visual cycles) and consistent with pure 11‐cis pigment composition. However, in mice lacking the cellular retinaldehyde binding protein (CRALBP), cone spectral sensitivity contained a

  15. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  16. Benzo(a)pyrene and X-rays induce reversions of the pink-eyed unstable mutation in the retinal pigment epithelium of mice.

    PubMed

    Bishop, A J; Kosaras, B; Sidman, R L; Schiestl, R H

    2000-12-20

    The pink-eyed unstable (p(un)) mutation is the result of a 70kb tandem duplication within the murine p gene. Homologous deletion/recombination of the locus to wild-type occurs spontaneously in embryos and results in pigmented spots in the fur and eye that persist for life. Such deletion events are also inducible by a variety of DNA damaging agents, as we have observed previously with the fur spot assay. Here, we describe the use of the retinal pigment epithelium (RPE) of the eye to detect reversion events induced with two differently acting agents. Benzo(a)pyrene (B(a)P) induces a high frequency, and X-ray exposure a more modest increase, of p(un) reversion in both the fur and the eye. The eye-spot assay requires fewer mice for significant results than the fur spot assay. Previous work had elucidated the cell proliferation pattern in the RPE and a position effect variegation phenotype in the pattern of p(un) reversions, which we have confirmed. Acute exposure to B(a)P or X-rays resulted in an increased frequency of reversion events. The majority of the spontaneous reversions lie toward the periphery of the RPE whereas induced events are found more centrally, closer to the optic nerve head. The induced distribution corresponds to the major sites of cell proliferation in the RPE at the time of exposure, and further advocates the proposal that dividing cells are at highest risk to develop deletions.

  17. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  18. Denoising and segmentation of retinal layers in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Dash, Puspita; Sigappi, A. N.

    2018-04-01

    Optical Coherence Tomography (OCT) is an imaging technique used to localize the intra-retinal boundaries for the diagnostics of macular diseases. Due to speckle noise, low image contrast and accurate segmentation of individual retinal layers is difficult. Due to this, a method for retinal layer segmentation from OCT images is presented. This paper proposes a pre-processing filtering approach for denoising and segmentation methods for segmenting retinal layers OCT images using graph based segmentation technique. These techniques are used for segmentation of retinal layers for normal as well as patients with Diabetic Macular Edema. The algorithm based on gradient information and shortest path search is applied to optimize the edge selection. In this paper the four main layers of the retina are segmented namely Internal limiting membrane (ILM), Retinal pigment epithelium (RPE), Inner nuclear layer (INL) and Outer nuclear layer (ONL). The proposed method is applied on a database of OCT images of both ten normal and twenty DME affected patients and the results are found to be promising.

  19. Adaptive optics retinal imaging: emerging clinical applications.

    PubMed

    Godara, Pooja; Dubis, Adam M; Roorda, Austin; Duncan, Jacque L; Carroll, Joseph

    2010-12-01

    The human retina is a uniquely accessible tissue. Tools like scanning laser ophthalmoscopy and spectral domain-optical coherence tomography provide clinicians with remarkably clear pictures of the living retina. Although the anterior optics of the eye permit such non-invasive visualization of the retina and associated pathology, the same optics induce significant aberrations that obviate cellular-resolution imaging in most cases. Adaptive optics (AO) imaging systems use active optical elements to compensate for aberrations in the optical path between the object and the camera. When applied to the human eye, AO allows direct visualization of individual rod and cone photoreceptor cells, retinal pigment epithelium cells, and white blood cells. AO imaging has changed the way vision scientists and ophthalmologists see the retina, helping to clarify our understanding of retinal structure, function, and the etiology of various retinal pathologies. Here, we review some of the advances that were made possible with AO imaging of the human retina and discuss applications and future prospects for clinical imaging.

  20. Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells.

    PubMed

    Huang, Wu-Yang; Wu, Han; Li, Da-Jing; Song, Jiang-Feng; Xiao, Ya-Dong; Liu, Chun-Quan; Zhou, Jian-Zhong; Sui, Zhong-Quan

    2018-02-21

    Blueberry anthocyanins are considered protective of eye health because of their recognized antioxidant properties. In this study, blueberry anthocyanin extract (BAE), malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal) all reduced H 2 O 2 -induced oxidative stress by decreasing the levels of reactive oxygen species and malondialdehyde and increasing the levels of superoxide dismutase, catalase, and glutathione peroxidase in human retinal pigment epithelial cells. BAE and the anthocyanin standards enhanced cell viability from 63.69 ± 3.36 to 86.57 ± 6.92% (BAE), 115.72 ± 23.41% (Mv), 98.15 ± 9.39% (Mv-3-glc), and 127.97 ± 20.09% (Mv-3-gal) and significantly inhibited cell apoptosis (P < 0.01 for all). Mitogen-activated-protein-kinase pathways, including ERK1/2 and p38, were involved in the bioactivities. In addition, the anthocyanins decreased vascular-endothelial-cell-growth-factor levels and activated Akt-signal pathways. These combined results supported the hypothesis that blueberry anthocyanins could inhibit the induction and progression of age-related macular degeneration (AMD) through antioxidant mechanisms.

  1. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

    PubMed Central

    Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress. PMID:28194256

  2. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone).

    PubMed

    Masuda, Tomomi; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.

  3. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    PubMed

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  4. Rescue of photoreceptors by BDNF gene transfer using in vivo electroporation in the RCS rat of retinitis pigmentosa.

    PubMed

    Zhang, Meng; Mo, Xiaofen; Fang, Yuan; Guo, Wenyi; Wu, Jihong; Zhang, Shenghai; Huang, Qian

    2009-09-01

    To investigate the feasibility of introducing brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial cells in vivo by electroporation and whether this method can rescue photoreceptors of retinitis pigmentosa in Royal College Surgeons (RCS) rats. The BDNF-GFP fusion eukaryotic-expressing plasmid was constructed and subretinally or intravitreously injected into the eyes of RCS rats followed by in vivo electroporation. The expression of BDNF mRNA and protein was detected by RT-PCR and Western immunoblot analysis. The number of surviving photoreceptors was counted, and the TdT-dUTP terminal nick-end labeling (TUNEL) method was used to detect the apoptotic retinal cells at different timepoints after introduction of BDNF plasmid. Treated eyes showed a significantly higher rescue ratio and a lower number of TUNEL-positive photoreceptors than did the control eyes at various timepoints. These findings provide evidence that electroporation is an effective method for gene transfer into retinal pigment epithelial cells, and the rescue of photoreceptors can be achieved by BDNF gene transfection with electroporation.

  5. Retinitis pigmentosa.

    PubMed

    Hamel, Christian

    2006-10-11

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms). Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema), and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis).

  6. Retinitis pigmentosa

    PubMed Central

    Hamel, Christian

    2006-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms). Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema), and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis). PMID:17032466

  7. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    PubMed

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p < 0.05). We found significant correlations between inner retinal layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  8. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye.

    PubMed

    Raji, B; Dansault, A; Leemput, J; de la Houssaye, G; Vieira, V; Kobetz, A; Arbogast, L; Masson, C; Menasche, M; Abitbol, M

    2007-08-10

    Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve

  9. Development and recovery of laser-induced retinal injury in rats

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Epstein, Yoram; Rosner, Mordechai

    2005-04-01

    Retinal photocoagulation lesions undergo primary and secondary degeneration followed by partial healing. This study follows the sequential changes in laser-induced retinal lesion over a time span of 60 days. Argon laser lesions were created in 36 pigmented rats. Sections of the retinal lesions were evaluated by light microscopy 1, 24, 48, 72 hours, and 20, and 60 days after the injury (six animals at each time point). The diameter of the lesion was equal to that of the laser spot 1h after irradiation and increased by 24h. It decreased later, slightly during the following 48h and significantly by 20 days. The destruction of photoreceptors was most severe after 24-48h. The nuclei in the outer-nuclear layer were pyknotic at the lesion site at 1h and disappeared later. Healing processes began 72h after the irradiation and was completed by 60 days. Filling-in by sliding of near nuclei was observed by the 60th day. Reversible changes were seen also in the retinal pigment epithelium (with formation of a plaque at 72h and its degradation later on) and in the choroid (disorganization of capillaries by 48h with later reorganization). Conclusions: The development of a laser-induced injury is gradual. The photoreceptors are damaged first and than the damage spreads to other layers of retina and to areas adjacent the primary injury site. The extension of the damage is later stopped and the adjacent tissues tend to fill the lesion and remodel the retina.

  10. Altered Expression of Retinal Molecular Markers in the Canine RPE65 Model of Leber Congenital Amaurosis

    PubMed Central

    Hernández, Maria; Pearce-Kelling, Susan E.; Rodriguez, F. David; Aguirre, Gustavo D.; Vecino, Elena

    2010-01-01

    Purpose. Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. Methods. Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. Results. Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. Conclusions. The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans. PMID:20671290

  11. [Surgical managment of retinal detachment].

    PubMed

    Haritoglou, C; Wolf, A

    2015-05-01

    The detachment of the neurosensory retina from the underlying retinal pigment epithelium can be related to breaks of the retina allowing vitreous fluid to gain access to the subretinal space, to exudative changes of the choroid such as tumours or inflammatory diseases or to excessive tractional forces exerted by interactions of the collagenous vitreous and the retina. Tractional retinal detachment is usually treated by vitrectomy and exudative detachment can be addressed by treatment of the underlying condition in many cases. In rhegmatogenous retinal detachment two different surgical procedures, vitrectomy and scleral buckling, can be applied for functional and anatomic rehabilitation of our patients. The choice of the surgical procedure is not really standardised and often depends on the experience of the surgeon and other more ocular factors including lens status, the number of retinal breaks, the extent of the detachment and the amount of preexisting PVR. Using both techniques, anatomic success rates of over 90 % can be achieved. Especially in young phakic patients scleral buckling offers the true advantage to prevent the progression of cataract formation requiring cataract extraction and intraocular lens implantation. Therefore, scleral buckling should be considered in selected cases as an alternative surgical option in spite of the very important technical refinements in modern vitrectomy techniques. Georg Thieme Verlag KG Stuttgart · New York.

  12. Activation of KGFR-Akt-mTOR-Nrf2 signaling protects human retinal pigment epithelium cells from Ultra-violet.

    PubMed

    Hu, Haitao; Hao, Lanxiang; Tang, Chunzhou; Zhu, Yunxi; Jiang, Qin; Yao, Jin

    2018-01-15

    Ultra-violet (UV) radiation causes oxidative injuries to human retinal pigment epithelium (RPE) cells. We tested the potential effect of keratinocyte growth factor (KGF) against the process. KGF receptor (KGFR) is expressed in ARPE-19 cells and primary human RPE cells. Pre-treatment with KGF inhibited UV-induced reactive oxygen species (ROS) production and RPE cell death. KGF activated nuclear-factor-E2-related factor 2 (Nrf2) signaling in RPE cells, causing Nrf2 Ser-40 phosphorylation, stabilization and nuclear translocation as well as expression of Nrf2-dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown (by targeted shRNAs) or S40T mutation almost reversed KGF-induced RPE cell protection against UV. Further studies demonstrated that KGF activated KGFR-Akt-mTORC1 signaling to mediate downstream Nrf2 activation. KGFR shRNA or Akt-mTORC1 inhibition not only blocked KGF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified KGF-mediated RPE cell protection against UV. We conclude that KGF-KGFR activates Akt-mTORC1 downstream Nrf2 signaling to protect RPE cells from UV radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    PubMed

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells

    PubMed Central

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736

  15. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  16. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis

    PubMed Central

    Omarova, Saida; Charvet, Casey D.; Reem, Rachel E.; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S.; Pikuleva, Irina A.

    2012-01-01

    Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1–/– mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1–/– retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1–/– mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration. PMID:22820291

  17. Syphilitic retinitis and uveitis in HIV-positive adults.

    PubMed

    Hughes, Edward H; Guzowski, Magdalena; Simunovic, Matthew P; Hunyor, Alex P; McCluskey, Peter

    2010-12-01

    The incidence of new infection with syphilis is increasing, particularly in men who have sex with men, with HIV co-infection common. There has been a corresponding increase in ophthalmic manifestations that can be varied in presentation. Thirteen consecutive patients with syphilitic uveitis presenting to two ophthalmic departments in Sydney are described. Twelve patients were male, of whom 10 were homosexual and six HIV-positive. Peripheral retinitis with panuveitis was the commonest ophthalmic presentation (n = 7, 54%), and six cases were initially treated with vitreous tap and intravitreal foscarnet as a precaution in case of viral retinitis. Retinitis was present in six of six (100%) HIV-positive and only one of seven (14%) HIV-negative patients (χ² 10.6, P < 0.01). Other ophthalmic presentations included anterior uveitis, vitritis, multifocal choroiditis, scleritis and papillitis. All patients responded to 10-14 days' intravenous penicillin with good final visual outcomes (6/12 or better in all eyes). This case series reinforces the importance of considering syphilis in the differential diagnosis of many ocular presentations, but in particular retinitis. Retinitis appears to be the predominant presentation in HIV-infected individuals, suggesting that HIV infection may somehow modulate the disease. © 2010 The Authors. Clinical and Experimental Ophthalmology © 2010 Royal Australian and New Zealand College of Ophthalmologists.

  18. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa.

    PubMed

    Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D

    2012-02-07

    Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.

  19. Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy.

    PubMed

    Dysli, Chantal; Wolf, Sebastian; Tran, Hoai Viet; Zinkernagel, Martin S

    2016-12-01

    The purpose of this study was to investigate fundus autofluorescence lifetimes in patients with choroideremia and to identify tissue-specific lifetime characteristics and potential prognostic markers. Autofluorescence lifetimes of the retina were measured in two spectral channels (498-560 nm and 560-720 nm) in patients with choroideremia and age-matched healthy controls. Furthermore, autofluorescence intensities and spectral-domain optical coherence tomography (OCT) data were acquired and compared to fundus autofluorescence lifetime data. Sixteen eyes from 8 patients with advanced choroideremia (mean ± SD age, 55 ± 13 years) were included in this study and compared with 10 age-matched healthy participants. Whereas fundus autofluorescence intensity measurement identified areas of remaining retinal pigment epithelium (RPE), autofluorescence lifetime maps identified areas with remaining photoreceptor layers in OCT but RPE atrophy. In these areas, mean (±SEM) lifetimes were 567 ± 59 ps in the short and 603 ± 49 ps in the long spectral channels (+98% and +88% compared to controls). In areas of combined RPE atrophy and loss of photoreceptors, autofluorescence lifetimes were significantly prolonged by 1116 ± 63 ps (+364%) in the short and by 915 ± 52 ps (+270%) in the long spectral channels compared with controls. Because autofluorescence lifetimes identify areas of remaining photoreceptors in the absence of RPE, this imaging modality may be useful to monitor disease progression in the natural course of disease and in context of potential future therapeutic interventions.

  20. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  1. HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Tong, Yuehong; Ben Ami, Tal; Hong, Sungmin; Heintzmann, Rainer; Gerig, Guido; Ablonczy, Zsolt; Curcio, Christine A; Ach, Thomas; Smith, R Theodore

    2016-12-01

    To elucidate the molecular pathogenesis of age-related macular degeneration (AMD) and interpretation of fundus autofluorescence imaging, the authors identified spectral autofluorescence characteristics of drusen and retinal pigment epithelium (RPE) in donor eyes with AMD. Macular RPE/Bruch membrane flat mounts were prepared from 5 donor eyes with AMD. In 12 locations (1-3 per eye), hyperspectral autofluorescence images in 10-nm-wavelength steps were acquired at 2 excitation wavelengths (λex 436, 480 nm). A nonnegative tensor factorization algorithm was used to recover 5 abundant emission spectra and their corresponding spatial localizations. At λex 436 nm, the authors consistently localized a novel spectrum (SDr) with a peak emission near 510 nm in drusen and sub-RPE deposits. Abundant emission spectra seen previously (S0 in Bruch membrane and S1, S2, and S3 in RPE lipofuscin/melanolipofuscin, respectively) also appeared in AMD eyes, with the same shapes and peak wavelengths as in normal tissue. Lipofuscin/melanolipofuscin spectra localizations in AMD eyes varied widely in their overlap with drusen, ranging from none to complete. An emission spectrum peaking at ∼510 nm (λex 436 nm) appears to be sensitive and specific for drusen and sub-RPE deposits. One or more abundant spectra from RPE organelles exhibit characteristic relationships with drusen.

  2. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  3. Efficient gene delivery to primary human retinal pigment epithelial cells: The innate and acquired properties of vectors.

    PubMed

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Soheila; Atyabi, Fatemeh; Akbari Javar, Hamid; Abedin Dorkoosh, Farid

    2017-02-25

    The purpose of this study is designing non-viral gene delivery vectors for transfection of the primary human retinal pigment epithelial cells (RPE). In the design process of gene delivery vectors, considering physicochemical properties of vectors alone does not seem to be enough since they interact with constituents of the surrounding environment and hence gain new characteristics. Moreover, due to these interactions, their cargo can be released untimely or undergo degradation before reaching to the target cells. Further, the characteristics of cells itself can also influence the transfection efficacy. For example, the non-dividing property of RPE cells can impede the transfection efficiency which in most studies was ignored by using immortal cell lines. In this study, vectors with different characteristics differing in mixing orders of pDNA, PEI polymer, and PLGA/PEI or PLGA nanoparticles were prepared and characterized. Then, their characteristics and efficacy in gene delivery to RPE cells in the presence of vitreous or fetal bovine serum (FBS) were evaluated. All formulations showed no cytotoxicity and were able to protect pDNA from premature release and degradation in extracellular media. Also, the adsorption of vitreous or serum proteins onto the surface of vectors changed their properties and hence cellular uptake and transfection efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  5. New animal models to study the role of tyrosinase in normal retinal development.

    PubMed

    Lavado, Alfonso; Montoliu, Lluis

    2006-01-01

    Albino animals display a hypopigmented phenotype associated with several visual abnormalities, including rod photoreceptor cell deficits, abnormal patterns of connections between the eye and the brain and a general underdevelopment of central retina. Oculocutaneous albinism type I, a common form of albinism, is caused by mutations in the tyrosinase gene. In mice, the albino phenotype can be corrected by functional tyrosinase transgenes. Tyrosinase transgenic animals not only show normal pigmentation but the correction of all visual abnormalities associated with albinism, confirming a role of tyrosinase, a key enzyme in melanin biosynthesis, in normal retinal development. Here, we will discuss recent work carried out with new tyrosinase transgenic mouse models, to further analyse the role of tyrosinase in retinal development. We will first report a transgenic model with inducible tyrosinase expression that has been used to address the regulated activation of this gene and its associated effects on the development of the visual system. Second, we will comment on an interesting yeast artificial chromosome (YAC)-tyrosinase transgene, lacking important regulatory elements, that has highlighted the significance of local interactions between the retinal pigment epithelium (RPE) and developing neural retina.

  6. Visible-light OCT to quantify retinal oxygen metabolism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Hao F.; Yi, Ji; Chen, Siyu; Liu, Wenzhong; Soetikno, Brian T.

    2016-03-01

    We explored, both numerically and experimentally, whether OCT can be a good candidate to accurately measure retinal oxygen metabolism. We first used statistical methods to numerically simulate photon transport in the retina to mimic OCT working under different spectral ranges. Then we analyze accuracy of OCT oximetry subject to parameter variations such as vessel size, pigmentation, and oxygenation. We further developed an experimental OCT system based on the spectral range identified by our simulation work. We applied the newly developed OCT to measure both retinal hemoglobin oxygen saturation (sO2) and retinal retinal flow. After obtaining the retinal sO2 and blood velocity, we further measured retinal vessel diameter and calculated the retinal oxygen metabolism rate (MRO2). To test the capability of our OCT, we imaged wild-type Long-Evans rats ventilated with both normal air and air mixtures with various oxygen concentrations. Our simulation suggested that OCT working within visible spectral range is able to provide accurate measurement of retinal MRO2 using inverse Fourier transform spectral reconstruction. We called this newly developed technology vis-OCT, and showed that vis-OCT was able to measure the sO2 value in every single major retinal vessel around the optical disk as well as in micro retinal vessels. When breathing normal air, the averaged sO2 in arterial and venous blood in Long-Evans rats was measured to be 95% and 72%, respectively. When we challenge the rats using air mixtures with different oxygen concentrations, vis-OCT measurement followed analytical models of retinal oxygen diffusion and pulse oximeter well.

  7. The Role of Fundus Autofluorescence in Late-Onset Retinitis Pigmentosa (LORP) Diagnosis

    PubMed Central

    Lee, Tamara J.; Hwang, John C.; Chen, Royce W. S.; Lima, Luiz H.; Wang, Nan-Kai; Tosi, Joaquin; Freund, K. Bailey; Yannuzzi, Lawrence A.; Tsang, Stephen H.

    2015-01-01

    Purpose To demonstrate the utility and characteristics of fundus autofluorescence in late-onset retinitis pigmentosa. Methods Observational case series. Patients diagnosed with late-onset retinitis pigmentosa were identified retrospectively in an institutional setting. Twelve eyes of six patients were identified and medical records were reviewed. Results All patients presented with slowly progressive peripheral field loss and initial clinical examination revealed only subtle retinal changes. There was a notable lack of intraretinal pigment migration in all patients. Five out of six patients underwent magnetic resonance imaging of the brain to rule out intracranial processes and all were referred from another ophthalmologist for further evaluation. Fundus autofluorescence was ultimately employed in all patients and revealed more extensive retinal pathology than initially appreciated on clinical examination. Fundus autofluorescence directed the workup toward a retinal etiology in all cases and led to the eventual diagnosis of late-onset retinitis pigmentosa through electroretinogram testing. Conclusion Fundus autofluorescence may be a more sensitive marker for retinal pathology than stereo fundus biomicroscopy alone in late-onset retinitis pigmentosa. Early use of fundus autofluorescence imaging in the evaluation of patients with subtle retinal lesions and complaints of peripheral field loss may be an effective strategy for timely and cost-efficient diagnosis. PMID:23899229

  8. Realtime temperature determination during retinal photocoagulation on patients

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Koinzer, Stefan; Schlott, Kerstin; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Miura, Yoko; Birngruber, Reginald; Roider, Johann

    2011-03-01

    Retinal photocoagulation is a long time established treatment for a variety of retinal diseases, most commonly applied for diabetic macular edema and diabetic retinopathy. The damage extent of the induced thermal coagulations depend on the temperature increase and the time of irradiation. So far, the induced temperature rise is unknown due to intraocular variations in light transmission and scattering and RPE/choroidal pigmentation, which can vary inter- and intraindividually by more than a factor of four. Thus in clinical practice, often stronger and deeper coagulations are applied than therapeutically needed, which lead to extended retinal damage and strong pain perception. The final goal of this project focuses on a dosimetry control, which automatically generates a desired temperature profile and thus coagulation strength for every individual coagulation spot, ideally unburden the ophthalmologist from any laser settings. In this paper we present the first realtime temperature measurements achieved on patients during retinal photocoagulation by means of an optoacoustic method, making use of the temperature dependence of the thermal expansion coefficient of retinal tissue. Therefore, nanosecond probe laser pulses are repetitively and simultaneously applied with the treatment radiation in order to excite acoustic waves, which are detected at the cornea with an ultrasonic transducer embedded in the contact lens and then are processed by PC.

  9. The Blood-Retinal Barrier in the Management of Retinal Disease: EURETINA Award Lecture.

    PubMed

    Cunha-Vaz, José

    2017-01-01

    Retinal diseases are the main causes of blindness in the Western world. Diabetic retinopathy and age-related macular degeneration continue to increase in prevalence and as main causes of vision loss. Intravitreal anti-VEGF and steroid injections have raised new expectations for their successful treatment. These agents act by stabilizing the blood-retinal barrier (BRB). Our group defined the BRB by identifying for the first time the tight junctions that unite retinal endothelial cells and are the basis for the inner BRB, an observation later confirmed in retinal pigment epithelial cells and in brain vessels. A major role of active transport processes was also identified. Today, the BRB is understood to play a fundamental role in retinal function in both health and disease. Retinal edema, an ubiquitous manifestation of retinal disease, is directly associated with breakdown of the BRB and with vision loss. In its most common form (i.e., vasogenic edema), due to breakdown of the BRB, Starling's law of capillary filtration may be used to interpret the mechanisms of fluid accumulation in the retina. The main factors involved in the development of retinal edema are BRB permeability, capillary hydrostatic pressure, tissue hydrostatic pressure, tissue osmotic pressure, and plasma osmotic pressure. In the clinical environment, breakdown of the BRB has been identified by fluorescein angiography and vitreous fluorometry, requiring the intravenous administration of fluorescein. An OCT-based method, OCT-Leakage, recently introduced by our group is capable of noninvasively identifying and quantifying sites of alteration of the BRB by mapping areas of lower-than-normal optical reflectivity, thus reflecting changes in the retinal extracellular fluid. We found good correspondence between the location of increased areas of low optical reflectivity identified by OCT-Leakage and the main sites of leakage on fluorescein angiography. Furthermore, with OCT-Leakage the areas of abnormal

  10. Nanomaterials and Retinal Toxicity | Science Inventory | US ...

    EPA Pesticide Factsheets

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature and then crossing the blood-retinal barrier; and through the choroidal blood supply, crossing the Bruch's membrane and the retinal pigment epithelium (RPE). The blood-retinal barrier is functionally similar to the blood-brain barrier, normally restricting transport of larger sized materials, but particles in the lower nanomaterial size range can be expected to transit. The blood flow to the retinal choroid is, on a tissue mass basis, one of the highest in the body raising the potential for rapid delivery of nanomaterials to the RPE. In vitro, RPE cells rapidly uptake nano particles, transport and agglomerate them in the perinuclear cytoplasm. In vivo studies have shown that the eye can uptake nanomaterials and retain them longer than many other tissues after cessation of exposure. Toxicity from nanomaterials to the neural retina or the RPE would be expected to follow common mechanisms identified for other tissues including generation of reactive oxygen species, alteration of cellular redox status, altered intracellular signaling, and release of toxic metal ions from soluble metallic particles. The retina and other ocular tissues, however, have potential for additional phototoxic mechanism

  11. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium

    PubMed Central

    Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373

  12. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium.

    PubMed

    Dardik, Rima; Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch's membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases.

  13. 7,8-Dihydroxyflavone ameliorates high-glucose induced diabetic apoptosis in human retinal pigment epithelial cells by activating TrkB.

    PubMed

    Yu, Xiaoyi; Liu, Qiuhong; Wang, Xiaochuan; Liu, Hong; Wang, Yan

    2018-01-01

    In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy. Copyright © 2017. Published by Elsevier Inc.

  14. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease)

    PubMed Central

    Wavre-Shapton, Silène T.; Calvi, Alessandra A.; Turmaine, Mark; Seabra, Miguel C.; Cutler, Daniel F.; Futter, Clare E.; Mitchison, Hannah M.

    2015-01-01

    Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3Δex1-6 null mice, revealing classic ‘fingerprint’ lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3Δex1-6 RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3Δex1-6-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3Δex1-6 RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE. PMID:26450516

  15. Visual pigments, oil droplets, lens, and cornea characterization in the whooping crane (Grus americana)

    USGS Publications Warehouse

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane, Grus americana (Gruiformes: Gruidae). G. americana (an endangered species) is one of only two North American crane species and represents a large, long-lived bird where ultraviolet sensitivity may be degraded by chromatic aberrations and entrance of ultraviolet light into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate if the ocular media (i.e., the lens and cornea) absorbs UV light. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, while the cone visual pigments λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2), and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cutoff wavelength (λcut) values similarly fell within ranges recorded from other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type), and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system, although based on the λmax of the SWS1 visual pigment (404 nm) may also have some ability for UV sensitivity.

  16. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D.

    PubMed

    Stunkel, Maria L; Brodie, Scott E; Cideciyan, Artur V; Pfeifer, Wanda L; Kennedy, Elizabeth L; Stone, Edwin M; Jacobson, Samuel G; Drack, Arlene V

    2018-06-01

    GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. Retrospective case series. Multicenter study of 5 patients (3 male, 2 female). All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. What factors influence uptake of retinal screening among young adults with type 2 diabetes? A qualitative study informed by the theoretical domains framework.

    PubMed

    Lake, Amelia J; Browne, Jessica L; Rees, Gwyneth; Speight, Jane

    2017-06-01

    Young adults with type 2 diabetes (T2D, 18-39years) face increased risk of vision loss from diabetic retinopathy (DR). Retinal screening is essential to detect DR, yet screening rates for this group are low and little is known about the underlying factors influencing this important behavior. Using the theoretical domains framework (TDF) to guide data collection and analysis, we explored screening barriers and facilitator, contrasting them with a comparator group of older adults with T2D (40+ years). Thirty semi-structured telephone interviews (10 younger, 20 older adults) were conducted. Data were coded into TDF domains with salience identified by "frequency" of reference. Screening facilitators and barriers were systematically compared between groups. Although many screening facilitators and barriers were shared by younger and older adults, additional factors highly relevant to the former included: social comparison with others ('social influences'); concern for the impact on the family unit, unrealistic optimism and perceived invulnerability ('beliefs about consequences'); lack of time and financial resources ('environmental context and resources'), and DR misconceptions ('knowledge'). This study demonstrated that young adult retinal screening behavior was influenced by additional social cognitive factors compared to older adults, providing a first-step evidence base for clinicians and other health professionals, and potential targets for future eye health and retinal screening interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Outer Retinal Assessment Using Spectral-Domain Optical Coherence Tomography in Patients With Alzheimer's and Parkinson's Disease.

    PubMed

    Uchida, Atsuro; Pillai, Jagan A; Bermel, Robert; Bonner-Jackson, Aaron; Rae-Grant, Alexander; Fernandez, Hubert; Bena, James; Jones, Stephen E; Leverenz, James B; Srivastava, Sunil K; Ehlers, Justis P

    2018-06-01

    To investigate outer retinal parameters among patients with various chronic neurodegenerative disorders by using spectral-domain coherence tomography (OCT) in a prospective cross-sectional cohort study. A total of 132 participants were enrolled following a comprehensive diagnostic evaluation with neurologic, neuropsychology, and magnetic resonance imaging volumetric evaluations. Participants were 50 years or older, either diagnosed with Alzheimer's disease (AD) dementia, amnestic mild cognitive impairment (MCI), non-AD dementia, Parkinson's disease (PD), or age- and sex-matched controls. All participants underwent a macular cube scan for both eyes by using the Cirrus 4000 HD-OCT (Zeiss, Oberkochen, Germany). The OCT image with the best quality was selected for further analysis. Outer retinal parameters including ellipsoid zone mapping and outer nuclear layer metrics were evaluated with a novel software platform. One hundred twenty-four eyes of 124 participants with AD dementia (24 eyes), amnestic MCI (22 eyes), non-AD dementia (20 eyes), PD (22 eyes), and age- and sex-matched controls (36 eyes) were included in the analysis. Eight eyes were excluded either due to the presence of macular disease or poor quality of the OCT image. The mean ages of participants were 65.9 ± 8.9 years. The outer retinal thickness measures did not show any statistical significance between the groups. However, ellipsoid zone to retinal pigment epithelium volume correlated with cognitive testing scores in all study participants. There were no identifiable differences in the outer retinal metrics across neurodegenerative disease groups and controls. The relationship between the degree of cognitive impairment and ellipsoid zone to retinal pigment epithelium volume warrants further study.

  19. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    PubMed

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  20. Real time speckle monitoring to control retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Brinkmann, Ralf

    2017-07-01

    Photocoagulation is a treatment modality for several retinal diseases. Intra- and inter-individual variations of the retinal absorption as well as ocular transmission and light scattering makes it impossible to achieve a uniform effective exposure with one set of laser parameters. To guarantee a uniform damage throughout the therapy a real-time control is highly requested. Here, an approach to realize a real-time optical feedback using dynamic speckle analysis in-vivo is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633 nm diode laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. An algorithm is presented that can discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes and that seems to be robust to noise in-vivo. Tissue changes in rabbits during retinal coagulation could be observed for different lesion strengths. This algorithm can run on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage.

  1. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Khalooghi, Keynoush; Ahmadieh, Hamid; Kanavi, Mojgan Rezaie; Samiei, Shahram; Pakravesh, Jalil

    2011-06-01

    The retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina. Tissue engineering using amniotic membrane as a substrate to culture RPE cells may provide a promising new strategy to replace damaged RPE. We established a method of culturing RPE cells over the amniotic membrane as a support for their growth and transplantation. The transcription of specific genes involved in cellular function of native RPE, including RPE65, CRALBP, VEGF, CD68, and tyrosinase, were then measured using quantitative real-time PCR. Data showed a considerable increase in transcription of RPE65, CD68, and VEGF in RPE cells cultured on amniotic membrane. The amounts of CRALBP and tyrosinase transcripts were not affected. This may simply indicate that amniotic membrane restricted dedifferentiation of RPE cells in culture. The results suggest that amniotic membrane may be considered as an elective biological substrate for RPE cell culture.

  2. Pathogenesis of rhegmatogenous retinal detachment: predisposing anatomy and cell biology.

    PubMed

    Mitry, Danny; Fleck, Brian W; Wright, Alan F; Campbell, Harry; Charteris, David G

    2010-01-01

    The pathogenesis of rhegmatogenous retinal detachment is complex, and our knowledge of the exact mechanism of vitreoretinal attachment and detachment remains incomplete. We performed a Medline, Ovid, and EMBASE search using search words rhegmatogenous, retinal detachment, vitreous, and retinal adhesion. All appropriate articles were reviewed, and the evidence was compiled. Cortical vitreous contains fibrillar collagens type II, V/XI, and IX. The inner limiting membrane of the retina contains collagens type I, IV, VI, and XVIII as well as numerous other glycoproteins and potential adhesion molecules. The distribution and age-related changes in the structure of these molecules play an important role in the formation of a retinal break, which may compromise and disrupt the normal mechanisms of neurosensory retinal adhesion. Rhegmatogenous retinal detachment development is intimately related to changes in the fibrillar structure of the aging vitreous culminating in posterior vitreous detachment with regions of persistent and tangential vitreoretinal traction predisposing to retinal tear formation. A complex interplay of factors such as weakening of vitreoretinal adhesion, posterior migration of the vitreous base, and molecular changes at the vitreoretinal interface are important in predisposing to focal areas of vitreoretinal traction precipitating rhegmatogenous retinal detachment. Once formed, the passage of liquefied vitreous through a retinal break may overwhelm normal neurosensory-retinal pigment epithelium adhesion perpetuating and extending detachment and causing visual loss. To understand the molecular events underlying rhegmatogenous retinal detachment so that new therapies can be developed, it is important to appreciate the structural organization of the vitreous, the biology underlying vitreous liquefaction and posterior vitreous detachment, and the mechanisms of vitreoretinal attachment and detachment.

  3. Bilateral midperipheral large drusen and retinal pigment epithelial detachments associated with multifocal areas of choroidal neovascularization: a histopathologic study.

    PubMed

    Tabandeh, Homayoun; Dubovy, Sander; Green, W Richard

    2006-01-01

    The ocular histopathologic features of a patient with bilateral multiple midperipheral areas of choroidal vascularization, large drusen, and detachments of the retinal pigment epithelium (RPE) are presented. The eyes were obtained at autopsy and fixed in 4% buffered formaldehyde. Serial sections through the macula area and inferior segments were prepared. Light as well as electron microscopy was performed. Microscopic examination disclosed numerous large drusen measuring up to 200 micro m in height and 280 micro m in diameter and areas of serous RPE detachments in the midperiphery of both eyes. Some of the large drusen had choroidal vascularization. Areas of sub-RPE neovascularization that measured up to 6.5 mm in diameter were present in the midperiphery of both eyes. The choroidal origin for neovascularization was evident in 10 areas. A 1-mm area of hemorrhagic detachment of the RPE contiguous with choroidal neovascularization (CNV) was present in the immediate postequatorial area temporally in the left eye. No drusen, basal deposit, or CNV was present in the macular area. Multifocal midperipheral RPE detachments and CNV can occur in the absence of significant age-related macular disease.

  4. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  5. Stem cells in clinical trials for treatment of retinal degeneration.

    PubMed

    Klassen, Henry

    2016-01-01

    After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.

  6. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal.

    PubMed

    Quazi, Faraz; Molday, Robert S

    2014-04-01

    The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within retinal-binding proteins. Previous studies have focused on the role of the ATP-binding cassette transporter ABCA4 associated with Stargardt macular degeneration and retinol dehydrogenases (RDH) in the clearance of all-trans-retinal from photoreceptors following photoexcitation. How rod and cone cells prevent the accumulation of 11-cis-retinal in photoreceptor disk membranes in excess of what is required for visual pigment regeneration is not known. Here we show that ABCA4 can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), the Schiff-base conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disk membranes. This transport function together with chemical isomerization to its all-trans isomer and reduction to all-trans-retinol by RDH can prevent the accumulation of excess 11-cis-retinal and its Schiff-base conjugate and the formation of toxic bisretinoid compounds as found in ABCA4-deficient mice and individuals with Stargardt macular degeneration. This segment of the visual cycle in which excess 11-cis-retinal is converted to all-trans-retinol provides a rationale for the unusually high content of PE and its long-chain unsaturated docosahexaenoyl group in photoreceptor membranes and adds insight into the molecular mechanisms responsible for Stargardt macular degeneration.

  7. Detection of oxidative stress biomarker-induced assembly of gold nanoparticles in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Yasmin, Z.; Lee, Y.; Maswadi, S.; Glickman, R.; Nash, K. L.

    2013-02-01

    Oxidative stress (OS) is increasingly implicated as an underlying pathogenic mechanism in a wide range of diseases, resulting from an imbalance between the production of reactive oxygen species (ROS) and the system's ability to detoxify the reactive intermediates or repair the resulting damage. ROS can be difficult to detect directly; however, they can be detected indirectly from the effects on oxidative stress biomarkers (OSB), such as glutathione (GSH), 3-nitrotyrosine, homocysteine, and cysteine. Moreover the reaction of transition metals with thiol-containing amino acids (for example GSH) oxidized by ROS can yield reactive products that accumulate with time and contribute to aging and diseases. The study of the interaction between OSB using functionalized nanoparticles (fNPs) has attracted interest because of potential applications in bio-sensors and biomedical diagnostics. A goal of the present work is to use fNPs to detect and ultimately quantitate OS in retinal pigment epithelial (RPE) cells subjected to external stressors, e.g. nonionizing (light) and ionizing (gamma) radiation. Specifically, we are investigating the assembly of gold fNPs mediated by the oxidation of GSH in irradiated RPE cells. The dynamic interparticle interactions had been characterized in previously reported work by monitoring the evolution of the surface plasmon resonance band using spectroscopic analysis (UV-VIS absorption). Here we are comparing the dynamic evolution of fNP assembly using photoacoustic spectroscopy (PAS). We expect that PAS will provide a more sensitive measure allowing these fNP sensors to measure OS in cell-based models without the artifacts limiting the use of current methods, such as fluorescent indicators.

  8. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaijun; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou; Jiang, Yiqian

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolishedmore » escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.« less

  9. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    PubMed

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  10. Optical Coherence Tomography Angiography of Pigmented Paravenous Retinochoroidal Atrophy.

    PubMed

    Cicinelli, Maria Vittoria; Giuffrè, Chiara; Rabiolo, Alessandro; Parodi, Maurizio Battaglia; Bandello, Francesco

    2018-05-01

    A 58-year-old man with bilateral pigmented paravenous retinochoroidal atrophy (PPRCA) associated with macular coloboma in the right eye underwent color fundus photography and fundus autofluorescence with the California ultra-widefield retinal imaging system (Optos, Dunfermline, UK), spectral-domain optical coherence tomography (SD-OCT) (Heidelberg Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany), and en face OCT angiography (OCTA) (AngioPlex, Cirrus HD-OCT 5000; Carl Zeiss Meditec, Dublin, CA). The patient presented with a visual acuity of counting fingers in the right eye and 20/32 in the left eye. Fundus examination and SD-OCT showed typical PPRCA alterations in both eyes and a macular coloboma in the right eye. The OCTA showed relative sparing of the retinal capillary plexuses, with diffuse defects in the choriocapillaris. The authors concluded OCTA imaging of PPRCA suggests more insights of the pathogenesis of this disease, showing that the disease primarily affects the choroidal vascular network, with a relative sparing of the retinal vasculature. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:381-383.]. Copyright 2018, SLACK Incorporated.

  11. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick.

    PubMed

    Schwahn, H N; Kaymak, H; Schaeffel, F

    2000-01-01

    Atropine has previously been found to suppress visually induced myopia both in animals and humans. The mechanism of its action is unclear. We have studied its retinal effects in an in vitro preparation, using the retina-pigment epithelium-choroid complex of the chick eye. In vivo, deprivation myopia was induced by translucent goggles. Atropine solution was injected into the vitreous at two-day intervals. Dopamine release from the retina following atropine injection in vivo and from the in vitro retina preparation was quantified by HPLC-EC. In vitro preparations of the isolated chick retina-pigment epithelium-choroid were superfused with atropine. Light-induced potentials (local ERG), slow standing potentials from the retinal pigment epithelium/neural retina, and extracellular potassium concentrations were recorded. In line with previous findings, intravitreal injections of atropine (25 microg, 250 microg) reduced deprivation myopia in a dose-dependent manner. Atropine increased the release of the neurotransmitter dopamine into the superfusate in vitro at 100-500 microM and into the vitreous in vivo at 250 microg. Before an increase was measured in the vitreous, the retinal dopamine content was elevated. In concentrations equivalent to the intravitreal concentration to suppress myopia in vivo (200-800 microM), atropine induced spreading depression (SD) in the in vitro preparation. In contrast, muscarinic agonists, acetylcholine and pilocarpine, did not induce SD. Atropine reduced the ERG b- and d-wave, led to damped oscillations of RPE potentials, and reversed the ERG c-wave. Atropine suppressed myopia only at doses at which severe nonspecific side effects were observed in the retina. Atropine seems to intrude massively into the vital functions of the retina as indicated by the occurrence of SD. We conclude that atropine, by inducing SD, boosts neurotransmitter release from cellular stores, which may cancel out a presumed retinal signal that controls eye growth and

  12. Fundus oculi pigmentation studies simulating the fs-LASIK process Fundus oculi pigmentation studies simulating the fs-LASIK process

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-06-01

    The femtosecond-laser in situ keratomileusis (fs-LASIK) technique has successfully entered the refractive surgery market to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses based on photodisruption. The laser pulses in the near infrared range (NIR) generate a laser-induced breakdown (LIOB) in the cornea. By propagating through the eye, a certain amount of the pulse is deposited in the cornea and the remaining energy interacts with the strong absorbing tissue behind. Due to the absorption by the retinal pigment epithelium and the transfer of the thermal energy to surrounding tissue, the transmitted energy can induce damage to the retina. The aim of this project was to find out the threshold influences concerning the tissue and the correlation between the results of the macroscopical appraisal and the fundus oculi pigmentation by simulating the fs-LASIK procedure with two various laser systems in the continuous wave (CW) and fs-regime. Therefore ex-vivo determinations were carried out macroscopically and histopathologically on porcine tissue.

  13. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  14. Photooxidative damage in retinal pigment epithelial cells via GRP78 and the protective role of grape skin polyphenols.

    PubMed

    Zhao, Zhao; Sun, Tao; Jiang, Yun; Wu, Lijiang; Cai, Xiangzhong; Sun, Xiaodong; Sun, Xiangjun

    2014-12-01

    Blue light induced oxidative damage and ER stress are related to the pathogenesis of age-related macular degeneration (AMD). However, the mechanism of blue light-induced damage remained obscure. The objective of this work is to assess the photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of ER stress associated apoptotic proteins, and investigate the mechanism underlying the protective effects of grape skin extracts. To mimic lipofuscin-mediated photooxidation in vivo, ARPE-19 cells that accumulated A2E, one of lipofuscin fluorophores, were used as a model system to investigate the mechanism of photooxidative damage and the protective effects of grape skin polyphenols. Exposure of A2E containing ARPE-19 cells to blue light resulted in significant apoptosis and increases in levels of GRP78, CHOP, p-JNK, Bax, cleaved caspase-9, and cleaved caspase-3, indicating that photooxidative damage to RPE cells is mediated by the ER-stress-induced intrinsic apoptotic pathway. Cells in which GRP78 had been knocked down with shRNA were more vulnerable to photooxidative damage. Pre-treatment of blue-light-exposed A2E containing ARPE-19 cells, with grape skin extracts, inhibited apoptosis, in a dose dependent manner. Knockdown GRP78 blocked the protective effect of grape skin extracts.

  15. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    PubMed

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  16. Characterization of visual pigments, oil droplets, lens and cornea in the whooping crane Grus americana

    PubMed Central

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate whether the ocular media (i.e. the lens and cornea) absorb UV radiation. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, whereas the cone visual pigment λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2) and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cut-off wavelength (λcut) values similarly fell within ranges recorded in other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type) and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system; however, as a consequence of the λmax of the SWS1 visual pigment (404 nm), it might also have some UV sensitivity. PMID:25267845

  17. Longitudinal Structural changes in Late-onset Retinal Degeneration

    PubMed Central

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A.

    2016-01-01

    Purpose To characterize longitudinal structural changes in early stages of late-onset retinal degeneration (L-ORD) to investigate pathogenic mechanisms. Methods Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence (FAF) images, near infrared reflectance (NIR-R) fundus images, and spectral domain optical coherence tomography (SD-OCT) scans were acquired during follow-up. Results Both patients, aged 45 and 50 years, had good visual acuities (> 20/20 OU) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on FAF and NIR-R imaging. Baseline SD-OCT imaging revealed subretinal deposits that resemble reticular pseudodrusen (RPD) described in age-related macular degeneration (AMD). During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial (RPE) layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt RPE and outer retinal atrophy. Conclusions Structural changes in early stage L-ORD revealed by multimodal imaging resemble those of RPD observed in AMD and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations. PMID:27388725

  18. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in albino and pigmented rats.

    PubMed

    Lezmi, Stéphane; Rokh, Najla; Saint-Macary, Gérard; Pino, Michael; Sallez, Valérie; Thevenard, Françoise; Roome, Nigel; Rosolen, Serge

    2013-06-07

    Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Serous retinal detachment accompanied by MEWDS in a myopic patient with dome-shaped macula.

    PubMed

    Shin, Min Kyu; Byon, Ik Soo; Park, Sung Who; Lee, Ji Eun

    2014-01-01

    Macular serous retinal detachment (MSRD) is a rare complication in highly myopic patients with an inferior staphyloma, tilted disc, or dome-shaped macula. Multiple evanescent white dot syndrome (MEWDS) presents with sudden visual loss and multiple yellowish dots that resolve spontaneously within several weeks. The authors report the development and spontaneous resolution of subretinal fluid accompanied by MEWDS in a myopic patient with a dome-shaped macula. Dysfunction of the retinal pigment epithelium due to MEWDS likely induced temporary MSRD in this patient. Copyright 2014, SLACK Incorporated.

  20. UV-A induced oxidative stress is more prominent in naturally pigmented aged human RPE cells compared to non-pigmented human RPE cells independent of zinc treatment.

    PubMed

    Biesemeier, Antje; Kokkinou, Despina; Julien, Sylvie; Heiduschka, Peter; Berneburg, Mark; Bartz-Schmidt, Karl Ulrich; Schraermeyer, Ulrich

    2008-02-27

    To investigate the effects of zinc supplementation on human amelanotic (ARPE-19) and native pigmented retinal pigment epithelial cells (hRPE) under normal light conditions and after ultraviolet A light exposure. hRPE cells, containing both melanin and lipofuscin granules, were prepared from human donor eyes of 60-70 year old patients. Cells of the amelanotic ARPE-19 cell line and pigmented hRPE cells were treated with zinc chloride and subjected to oxidative stress by UV-A irradiation. Intracellular H(2)O(2) formation was measured using a fluorescence oxidation assay. Additionally, apoptosis and viability assays were performed. Control cells were treated identically except for irradiation and zinc supplementation. Under normal light conditions, zinc treated hRPE cells produced less H(2)O(2) than unsupplemented hRPE cells. Viability and apoptosis events did not change. After UV-A irradiation, ARPE and hRPE cells were greatly impaired in all tests performed compared to the non-irradiated controls. No differences were found after zinc supplementation. hRPE cells showed a higher apoptosis and mortality rate than non-pigmented cells when stressed by UV-A light. ARPE cells never showed any zinc related effects. In contrast, without irradiation, zinc supplementation reduced H(2)O(2) production in pigmented hRPE cells slightly. We did not find any zinc effect in irradiated hRPE cells. After UV light exposure, pigmented cells showed a higher apoptosis and mortality than cells lacking any pigmentation. We conclude that cells with pigmentation consisting of melanin and lipofuscin granules have more prooxidative than antioxidative capacity when stressed by UV light exposure compared to cells lacking any pigmentation.

  1. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to 'internal photons' inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350-700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.

  2. Gene Therapy for MERTK-Associated Retinal Degenerations

    PubMed Central

    Matthes, Michael T.; Yang, Haidong; Hauswirth, William W.; Deng, Wen-Tao; Vollrath, Douglas

    2016-01-01

    MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome. PMID:26427450

  3. Retinal Pigment Epithelial Tears in the Era of Intravitreal Pharmacotherapy: Risk Factors, Pathogenesis, Prognosis and Treatment (An American Ophthalmological Society Thesis)

    PubMed Central

    Sarraf, David; Joseph, Anthony; Rahimy, Ehsan

    2014-01-01

    Purpose: To describe the risk factors, pathogenesis, and prognosis of retinal pigment epithelial (RPE) tears and to demonstrate our hypothesis that continued anti–vascular endothelial growth factor (VEGF) therapy after an RPE tear has occurred correlates with improved long-term visual and anatomical outcomes. Methods: We searched a database of 10,089 patients and retrospectively identified a large case series of 56 eyes with neovascular age-related macular degeneration (AMD) complicated by an RPE tear over an 8-year period. Baseline visual acuity (VA) was tabulated and analysis of the RPE tear was performed with multimodal imaging. Follow-up VA, progression of the tear, and severity of fibrosis were evaluated, and each was correlated with number of anti-VEGF injections. Results: Average follow-up for the 56 eyes was 42 months, and mean logMAR VA at baseline was 0.88 (Snellen VA 20/150) with minimal decline over 3 years. LogMAR VA plotted against number of anti-VEGF injections demonstrated that more frequent and cumulative injections correlated with better VA (P<.0001). A greater number of anti-VEGF injections was associated with minimal progression of the RPE tear, reduced fibrosis, and lower risk of a large, end-stage exudative disciform scar. Conclusions: Fifteen to 20% of vascularized pigment epithelial detachments (PEDs) may develop RPE tears after anti-VEGF therapy due to progressive contraction of the type 1 choroidal neovascular membrane in a PED at risk. Continued monitoring of RPE tears for exudative changes warranting anti-VEGF therapy may stabilize VA, improve anatomical outcomes, reduce fibrosis, and decrease the risk of developing a large blinding end-stage exudative disciform scar. PMID:25646033

  4. Inner retinal vasculopathy in Zika virus disease.

    PubMed

    Singh, Mandeep S; Marquezan, Maria Carolina; Omiadze, Revaz; Reddy, Ashvini K; Belfort, Rubens; May, William N

    2018-06-01

    Zika virus infection is associated with vision-threatening ocular complications including uveitis and outer retinopathy. The aim of this report is to describe a case of an adult patient with serologically confirmed Zika infection who presented with retinal vascular abnormalities that coincided with systemic post-viral neurological manifestations of the disease. A 34-year-old white female presented with symptoms of peripheral neuropathy following serologically confirmed Zika virus infection that was acquired in Puerto Rico four months prior to presentation. Ocular evaluation revealed perifoveal microaneurysms which were not associated with visual symptoms. These data potentially expand the phenotypic spectrum of Zika virus retinopathy. In addition to outer retinal abnormalities which are well-described in infants and adults, inner retinal vascular abnormalities may also occur and may be temporally associated with post-viral neurological sequelae of Zika virus infection. Clinicians should be aware of potential retinal involvement in affected patients who present with neurological symptoms after recovery from acute Zika virus infection.

  5. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.

    PubMed

    Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa

    2016-01-01

    Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information.

  6. Chronic Central Serous Chorioretinopathy in a Patient with Pigment Dispersion Syndrome: A Possible Correlation.

    PubMed

    Kourkoutas, Dimitrios; Tsakonas, George; Karamaounas, Aristotelis; Karamaounas, Nikolaos

    2017-01-01

    Chronic central serous chorioretinopathy (CSCR) is a progressive chorioretinopathy with widespread atrophic RPE abnormalities and serous retinal detachments (SRDs) present for 6 months or longer. We report a case of CSCR in a 38-year-old patient with Pigment Dispersion Syndrome (PDS). In the presented case of CSCR, the chronic course of the disease may in part be associated with an underlying generalized degenerative dysfunction of the pigmented cells of the eye on grounds of PDS. We suggest that a chronic course of disease may be suspected in the setting of CSCR with concurrent RPE pathology, such as what is found in PDS.

  7. Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice

    PubMed Central

    Huang, Liang; Hu, Fang; Xie, Xiaoling; Harder, Jeffery; Fernandes, Kimberly; Zeng, Xiang-yun; Libby, Richard; Gan, Lin

    2014-01-01

    Purpose To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs). Methods Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed. Results Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment. Conclusion Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice. PMID:24736625

  8. Identification of individual adult female Javan lutungs (Trachypithecus auratus sondaicus) by using patterns of dark pigmentation in the pubic area.

    PubMed

    Tsuji, Yamato; Widayati, Kanthi Arum; Hadi, Islamul; Suryobroto, Bambang; Watanabe, Kunio

    2013-01-01

    In a series of field surveys of wild Javan lutungs (Trachypithecus auratus sondaicus) conducted at Pangandaran Nature Reserve in West Java, Indonesia, from 2011 to 2012, we tried to use a method of individual identification by using individual-specific patterns of dark pigmentation in the pubic area. During the 2011 dry season, we used a digital SLR camera with a 400-mm telephoto lens to photograph the pubic area of each individual of a habituated group. These photographs were the basis for identifying 14 different adult females. During the rainy season of 2011 and the dry season of 2012, we checked the presence/absence of each of the identified individuals and found that these patterns were stable, at least during our study period. We found that two adult females and one adult female disappeared from the subject group between the first and second and between the second and third surveys, respectively, and that one adult female gave birth between the first and second surveys, but the infant had disappeared from the group between the second and third surveys. We could not confirm the validity of the method for juvenile females because of the dense white hair in their pubic areas and the fact that few individuals had clear patterns. Furthermore, we could not use this method for males because of the lack of pigmentation in the pubic area. As patterns of pigmentation in the pubic area are known to be present in other Trachypithecus species, our method can be useful for identification of individual adult females of these species, on which few individual-based behavioral studies have been conducted. Collecting individual-based behavioral data would enable us to track the presence of individuals in groups or movements between groups; determine the effects of social rank and age on within-group competition and copulation; and examine population data.

  9. Comparison of Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Pigment Dispersion Syndrome, Pigmentary Glaucoma, and Healthy Subjects with Spectral-domain OCT.

    PubMed

    Arifoglu, Hasan Basri; Simavli, Huseyin; Midillioglu, Inci; Berk Ergun, Sule; Simsek, Saban

    2017-01-01

    To evaluate the ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thickness in pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) with RTVue spectral domain optical coherence tomography (SD-OCT). A total of 102 subjects were enrolled: 29 with PDS, 18 with PG, and 55 normal subjects. Full ophthalmic examination including visual field analysis was performed. SD-OCT was used to analyze GCC superior, GCC inferior, and average RNFL thickness. To compare the discrimination capabilities, the areas under the receiver operating characteristic curves were assessed. Superior GCC, inferior GCC, and RNFL thickness values of patients with PG were statistically signicantly lower than those of patients with PDS (p < 0.001) and healthy individuals (p < 0.001 for all). No statistically significant difference was found between PDS and normal subjects in same parameters (p > 0.05). The SD-OCT-derived GCC and RNFL thickness parameters can be useful to discriminate PG from both PDS and normal subjects.

  10. Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice.

    PubMed

    Saliba, Alexandra; Du, Yunpeng; Liu, Haitao; Patel, Shyam; Roberts, Robin; Berkowitz, Bruce A; Kern, Timothy S

    2015-01-01

    Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied. Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo. PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers. PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy.

  11. Prominin-1 Is a Novel Regulator of Autophagy in the Human Retinal Pigment Epithelium

    PubMed Central

    Bhattacharya, Sujoy; Yin, Jinggang; Winborn, Christina S.; Zhang, Qiuhua; Yue, Junming; Chaum, Edward

    2017-01-01

    Purpose Prominin-1 (Prom1) is a transmembrane glycoprotein, which is expressed in stem cell lineages, and has recently been implicated in cancer stem cell survival. Mutations in the Prom1 gene have been shown to disrupt photoreceptor disk morphogenesis and cause an autosomal dominant form of Stargardt-like macular dystrophy (STGD4). Despite the apparent structural role of Prom1 in photoreceptors, its role in other cells of the retina is unknown. The purpose of this study is to investigate the role of Prom1 in the highly metabolically active cells of the retinal pigment epithelium (RPE). Methods Lentiviral siRNA and the genome editing CRISPR/Cas9 system were used to knockout Prom1 in primary RPE and ARPE-19 cells, respectively. Western blotting, confocal microscopy, and flow sight imaging cytometry assays were used to quantify autophagy flux. Immunoprecipitation was used to detect Prom1 interacting proteins. Results Our studies demonstrate that Prom1 is primarily a cytosolic protein in the RPE. Stress signals and physiological aging robustly increase autophagy with concomitant upregulation of Prom1 expression. Knockout of Prom1 increased mTORC1 and mTORC2 signaling, decreased autophagosome trafficking to the lysosome, increased p62 accumulation, and inhibited autophagic puncta induced by activators of autophagy. Conversely, ectopic overexpression of Prom1 inhibited mTORC1 and mTORC2 activities, and potentiated autophagy flux. Through interactions with p62 and HDAC6, Prom1 regulates autophagosome maturation and trafficking, suggesting a new cytoplasmic role of Prom1 in RPE function. Conclusions Our results demonstrate that Prom1 plays a key role in the regulation of autophagy via upstream suppression of mTOR signaling and also acting as a component of a macromolecular scaffold involving p62 and HDAC6. PMID:28437526

  12. Role of Unfolded Protein Response Dysregulation in Oxidative Injury of Retinal Pigment Epithelial Cells

    PubMed Central

    Chen, Chen; Cano, Marisol; Wang, Joshua J.; Li, Jingming; Huang, Chuangxin; Yu, Qiang; Herbert, Terence P.; Handa, James T.

    2014-01-01

    Abstract Aims: Age-related macular degeneration (AMD), a major cause of legal blindness in the elderly, is associated with genetic and environmental risk factors, such as cigarette smoking. Recent evidence shows that cigarette smoke (CS) that contains high levels of potent oxidants preferably targets retinal pigment epithelium (RPE) leading to oxidative damage and apoptosis; however, the mechanisms are poorly understood. The present study aimed to investigate the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in CS-related RPE apoptosis. Results: ER stress and proapoptotic gene C/EBP homologous protein (CHOP) were induced in the RPE/choroid complex from mice exposed to CS for 2 weeks and in human RPE cells treated with hydroquinone, a potent oxidant found at high concentrations in CS. Suppressing ER stress or inhibiting CHOP activation by pharmacological chaperones or genetic approaches attenuated hydroquinone-induced RPE cell apoptosis. In contrast to enhanced CHOP activation, protein level of active X-box binding protein 1 (XBP1), a major regulator of the adaptive UPR, was reduced in hydroquinone-treated cells. Conditional knockout of XBP1 gene in the RPE resulted in caspase-12 activation, increased CHOP expression, and decreased antiapoptotic gene Bcl-2. Furthermore, XBP1-deficient RPE cells are more sensitive to oxidative damage induced by hydroquinone or NaIO3, a CS-unrelated chemical oxidant. Conversely, overexpressing XBP1 protected RPE cells and attenuated oxidative stress-induced RPE apoptosis. Innovation and Conclusion: These findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells. Thus, the modulation of the UPR signaling may provide a promising target for the treatment of AMD. Antioxid. Redox Signal. 20, 2091–2106. PMID:24053669

  13. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Current focus of stem cell application in retinal repair

    PubMed Central

    Alonso-Alonso, María L; Srivastava, Girish K

    2015-01-01

    The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them. PMID:25914770

  15. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  16. Personalized therapeutic strategies for patients with retinitis pigmentosa.

    PubMed

    Zheng, Andrew; Li, Yao; Tsang, Stephen H

    2015-03-01

    Retinitis pigmentosa (RP) encompasses many different hereditary retinal degenerations that are caused by a vast array of different gene mutations and have highly variable disease presentations and severities. This heterogeneity poses a significant therapeutic challenge, although an answer may eventually be found through two recent innovations: induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome editing. This review discusses the wide-ranging applications of iPSCs and CRISPR-including disease modelling, diagnostics and therapeutics - with an ultimate view towards understanding how these two technologies can come together to address disease heterogeneity and orphan genes in a novel personalized medicine platform. An extensive literature search was conducted in PubMed and Google Scholar, with a particular focus on high-impact research published within the last 1 - 2 years and centered broadly on the subjects of retinal gene therapy, iPSC-derived outer retina cells, stem cell transplantation and CRISPR/Cas gene editing. For the retinal pigment epithelium, autologous transplantation of gene-corrected grafts derived from iPSCs may well be technically feasible in the near future. Photoreceptor transplantation faces more significant unresolved technical challenges but remains an achievable, if more distant, goal given the rapid pace of advancements in the field.

  17. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy.

    PubMed

    Sauer, Lydia; Peters, Sven; Schmidt, Johanna; Schweitzer, Dietrich; Klemm, Matthias; Ramm, Lisa; Augsten, Regine; Hammer, Martin

    2017-08-01

    To investigate the impact of macular pigment (MP) on fundus autofluorescence (FAF) lifetimes in vivo by characterizing full-thickness idiopathic macular holes (MH) and macular pseudo-holes (MPH). A total of 37 patients with MH and 52 with MPH were included. Using the fluorescence lifetime imaging ophthalmoscope (FLIO), based on a Heidelberg Engineering Spectralis system, a 30° retinal field was investigated. FAF decays were detected in a short (498-560 nm; ch1) and long (560-720 nm; ch2) wavelength channel. τ m , the mean fluorescence lifetime, was calculated from a three-exponential approximation of the FAF decays. Macular coherence tomography scans were recorded, and macular pigment's optical density (MPOD) was measured (one-wavelength reflectometry). Two MH subgroups were analysed according to the presence or absence of an operculum above the MH. A total of 17 healthy fellow eyes were included. A longitudinal FAF decay examination was conducted in nine patients, which were followed up after surgery and showed a closed MH. In MH without opercula, significant τ m differences (p < 0.001) were found between the hole area (MHa) and surrounding areas (MHb) (ch1: MHa 238 ± 64 ps, MHb 181 ± 78 ps; ch2: MHa 275 ± 49 ps, MHb 223 ± 48 ps), as well as between MHa and healthy eyes or closed MH. Shorter τ m , adjacent to the hole, can be assigned to areas with equivalently higher MPOD. Opercula containing MP also show short τ m . In MPH, the intactness of the Hele fibre layer is associated with shortest τ m . Shortest τ m originates from MP-containing retinal layers, especially from the Henle fibre layer. Fluorescence lifetime imaging ophthalmoscope (FLIO) provides information on the MP distribution, the pathogenesis and topology of MH. Macular pigment (MP) fluorescence may provide a biomarker for monitoring pathological changes in retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization

    PubMed Central

    Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-01-01

    Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296

  19. Studying melanin and lipofuscin in RPE cell culture models

    PubMed Central

    Boulton, Michael E

    2014-01-01

    The retinal pigment epithelium contains three major types of pigment granules; melanosomes, lipofuscin and melanolipofuscin. Melanosomes in the retinal pigment epithelium (RPE) are formed during embryogenesis and mature during early postnatal life while lipofuscin and melanolipofuscin granules accumulate as a function of age. The difficulty in studying the formation and consequences of melanosomes and lipofuscin granules in RPE cell culture is compounded by the fact that these pigment granules do not normally occur in established RPE cell lines and pigment granules are rapidly lost in adult human primary culture. This review will consider options available for overcoming these limitations and permitting the study of melanosomes and lipofuscin in cell culture and will briefly evaluate the advantages and disadvantages of the different protocols. PMID:25152361

  20. Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder.

    PubMed

    Lyons, C J; Castano, G; McCormick, A Q; Applegarth, D

    2004-02-01

    Neonatal adrenoleucodystrophy (NALD) is a rare disorder resulting from abnormal peroxisomal biogenesis. Affected patients present in infancy with developmental delay, hypotonia, and seizures. Blindness and nystagmus are prominent features. The authors suggest a characteristic leopard spot pigmentary pattern in the peripheral retina to be diagnostic. Three patients are reported with this presentation; the characteristic retinal appearance resulted in early diagnosis for one of these. Leopard spot retinopathy in an infant with hypotonia, seizures, developmental delay, with or without dysmorphic features and hearing impairment, is a clue to the diagnosis of NALD.

  1. Ultrastructural analysis of the pigment dispersion syndrome in DBA/2J mice.

    PubMed

    Schraermeyer, Mareike; Schnichels, Sven; Julien, Sylvie; Heiduschka, Peter; Bartz-Schmidt, Karl-Ulrich; Schraermeyer, Ulrich

    2009-11-01

    To characterise ocular pigment abnormalities associated with iris atrophy in DBA/2J mice as a model for human pigment dispersion syndrome. Immunohistochemistry, electron and light microscopy were performed to examine the eyes of DBA/2J mice ranging in age from 2.5 to 18 months old. The focus of our study was the description of the ultrastructural modifications in the irides of DBA/2J mice. The DBA/2J mice presented modifications in the melanosomes in all the pigmented parts of the eye, including the retinal pigment epithelial cells and choroidal melanocytes of the ciliary pigment epithelium. The extracellular matrix of the iris stroma disappeared with ageing. Pigmented cells detached from the iris and migrated into the trabecular meshwork exclusively on the anterior iris surface. These cells were identified as macrophages by immunohistochemistry and electron microscopy. There was no evidence that melanocytes or iris pigment epithelial cells migrated into the trabecular meshwork, but they became more and more depigmented. The aqueous outflow was blocked by pigment-laden cells, but not by cellular debris or melanosomes. No substantial amount of extracellular melanosomes was observed. The morphology of melanosomes is aberrant in all pigment cells in the eyes of DBA/2J mice. We conclude that the disease process begins with the transfer of both immature melanosomes from the iris pigment epithelium (IPE) and melanocytes to macrophages, which subsequently migrate into the trabecular meshwork. Accumulating macrophages cause a blockade of the chamber angle. As the disease progresses, the IPE, melanocytes and iris stroma, including blood vessels, disappear, leading to iris atrophy. It is speculated that the loss of these pigment cells is partly caused by reduction of the iris stroma.

  2. Multimodal Imaging of Disease-Associated Pigmentary Changes in Retinitis Pigmentosa

    PubMed Central

    Schuerch, Kaspar; Marsiglia, Marcela; Lee, Winston; Tsang, Stephen H.; Sparrow, Janet R.

    2016-01-01

    Purpose Using multiple imaging modalities we evaluated the changes in photoreceptor cells and RPE that are associated with bone spicule-shaped melanin pigmentation in retinitis pigmentosa (RP). Methods In a cohort of 60 RP patients, short-wavelength autofluorescence (SW-AF), near-infrared (NIR)-AF, NIR-reflectance (NIR-R), spectral domain optical coherence tomography (SD-OCT) and color fundus images were studied. Results Central AF rings were visible in both SW-AF and NIR-AF images. Bone spicule pigmentation was non-reflective in NIR-R, hypoautofluorescent with SW-AF and NIR-AF imaging and presented as intraretinal hyperreflective foci in SD-OCT images. In areas beyond the AF ring outer border, the photoreceptor ellipsoid zone (EZ) band was absent in SD-OCT scans and the visibility of choroidal vessels in SW-AF, NIR-AF and NIR-R images was indicative of reduced RPE pigmentation. Choroidal visibility was most pronounced in the zone approaching peripheral areas of bone spicule pigmentation; here RPE/Bruch’s membrane thinning became apparent in SD-OCT scans. Conclusions These findings are consistent with a process by which RPE cells vacate their monolayer and migrate into inner retina in response to photoreceptor cell degeneration. The remaining RPE spread, undergo thinning and consequently become less pigmented. An explanation for the absence of NIR-AF melanin signal in relation to bone spicule pigmentation is not forthcoming. PMID:28005673

  3. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    NASA Astrophysics Data System (ADS)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  4. Retinal degeneration is delayed by tissue factor pathway inhibitor-2 in RCS rats and a sodium-iodate-induced model in rabbits.

    PubMed

    Obata, R; Yanagi, Y; Tamaki, Y; Hozumi, K; Mutoh, M; Tanaka, Y

    2005-04-01

    To investigate the in vivo effects of tissue factor pathway inhibitor 2 (TFPI-2), which stimulates proliferation of retinal pigment epithelial cells, but not the proliferation of fibroblast and vascular endothelial cells in vitro, on retinal degeneration using a sodium-iodate (SI)-induced model in rabbits and Royal Collage of Surgeons (RCS) rats. 79 microg of recombinant TFPI-2 (rTFPI-2) or vehicle alone was injected intravitreously to 18 eyes of 12 pigmented rabbits a day after 20 mg/kg of SI was intravenously administered. Retinal function was assessed 4, 7, 14, and 21 days after the injection by analysing amplitudes of the c-wave of a bright flash electroretinogram. Additionally, 10 microg of rTFPI-2 or vehicle alone was injected intravitreously to 11 eyes of RCS rats at both 3 and 4 weeks old, then the retina was examined histologically at 5 weeks old. The rTFPI-2-treated eyes in rabbits showed a significantly less decrease in the relative amplitude of the c-wave than control eyes on days 4 and 7. The thickness of the outer nuclear layer was significantly thicker and the vacuole in the photoreceptor layer was less frequently observed in the rTFPI-2-treated RCS rats than the controls. Intravitreal injection of TFPI-2 rescues SI-induced retinal degeneration in rabbits and naturally occurring retinal degeneration in RCS rats at least partly. These results may suggest that this compound can be utilized in the treatment of retinal degeneration.

  5. Inhibition or Stimulation of Autophagy Affects Early Formation of Lipofuscin-Like Autofluorescence in the Retinal Pigment Epithelium Cell

    PubMed Central

    Lei, Lei; Tzekov, Radouil; Li, Huapeng; McDowell, J. Hugh; Gao, Guangping; Smith, W. Clay; Tang, Shibo; Kaushal, Shalesh

    2017-01-01

    The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is dependent on the effectiveness of photoreceptor outer segment material degradation. This study explored the role of autophagy in the fate of RPE lipofuscin degradation. After seven days of feeding with either native or modified rod outer segments, ARPE-19 cells were treated with enhancers or inhibitors of autophagy and the autofluorescence was detected by fluorescence-activated cell sorting. Supplementation with different types of rod outer segments increased lipofuscin-like autofluorescence (LLAF) after the inhibition of autophagy, while the induction of autophagy (e.g., application of rapamycin) decreased LLAF. The effects of autophagy induction were further confirmed by Western blotting, which showed the conversion of LC3-I to LC3-II, and by immunofluorescence microscopy, which detected the lysosomal activity of the autophagy inducers. We also monitored LLAF after the application of several autophagy inhibitors by RNA-interference and confocal microscopy. The results showed that, in general, the inhibition of the autophagy-related proteins resulted in an increase in LLAF when cells were fed with rod outer segments, which further confirms the effect of autophagy in the fate of RPE lipofuscin degradation. These results emphasize the complex role of autophagy in modulating RPE autofluorescence and confirm the possibility of the pharmacological clearance of RPE lipofuscin by small molecules. PMID:28353645

  6. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function.

    PubMed

    Nishiguchi, Koji M; Friedman, James S; Sandberg, Michael A; Swaroop, Anand; Berson, Eliot L; Dryja, Thaddeus P

    2004-12-21

    Mice lacking the transcription factor Nrl have no rod photoreceptors and an increased number of short-wavelength-sensitive cones. Missense mutations in NRL are associated with autosomal dominant retinitis pigmentosa; however, the phenotype associated with the loss of NRL function in humans has not been reported. We identified two siblings who carried two allelic mutations: a predicted null allele (L75fs) and a missense mutation (L160P) altering a highly conserved residue in the domain involved in DNA-binding-site recognition. In vitro luciferase reporter assays demonstrated that the NRL-L160P mutant had severely reduced transcriptional activity compared with the WT NRL protein, consistent with a severe loss of function. The affected patients had night blindness since early childhood, consistent with a severe reduction in rod function. Color vision was normal, suggesting the presence of all cone color types; nevertheless, a comparison of central visual fields evaluated with white-on-white and blue-on-yellow light stimuli was consistent with a relatively enhanced function of short-wavelength-sensitive cones in the macula. The fundi had signs of retinal degeneration (such as vascular attenuation) and clusters of large, clumped, pigment deposits in the peripheral fundus at the level of the retinal pigment epithelium (clumped pigmentary retinal degeneration). Our report presents an unusual clinical phenotype in humans with loss-of-function mutations in NRL.

  7. A comparison of caveolae and caveolin-1 to folate receptor α in retina and retinal pigment epithelium

    PubMed Central

    Bridges, Christy C.; El-Sherbeny, Amira; Roon, Penny; Ola, M. Shamsul; Kekuda, Ramesh; Ganapathy, Vadivel; Cameron, Richard S.; Cameron, Patricia L.

    2015-01-01

    Summary Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor α and participate in folate uptake. Our laboratory has recently localized folate receptor α to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor α. We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor α. Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor α. This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE. PMID:11508338

  8. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation

    PubMed Central

    Shaw, Peter X.; Fang, Jiahua; Sang, Alan; Wang, Yan; Kapiloff, Michael S.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors. PMID:27679853

  9. Cell replacement and visual restoration by retinal sheet transplants

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.

    2012-01-01

    Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a ‘nursing’ role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance – they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy. PMID:22771454

  10. A tailored intervention to promote uptake of retinal screening among young adults with type 2 diabetes - an intervention mapping approach.

    PubMed

    Lake, Amelia J; Browne, Jessica L; Abraham, Charles; Tumino, Dee; Hines, Carolyn; Rees, Gwyneth; Speight, Jane

    2018-05-31

    Young adults (18-39 years) with type 2 diabetes are at risk of early development and rapid progression of diabetic retinopathy, a leading cause of vision loss and blindness in working-age adults. Retinal screening is key to the early detection of diabetic retinopathy, with risk of vision loss significantly reduced by timely treatment thereafter. Despite this, retinal screening rates are low among this at-risk group. The objective of this study was to develop a theoretically-grounded, evidence-based retinal screening promotion leaflet, tailored to young adults with type 2 diabetes. Utilising the six steps of Intervention Mapping, our multidisciplinary planning team conducted a mixed-methods needs assessment (Step 1); identified modifiable behavioural determinants of screening behaviour and constructed a matrix of change objectives (Step 2); designed, reviewed and debriefed leaflet content with stakeholders (Steps 3 and 4); and developed program implementation and evaluation plans (Steps 5 and 6). Step 1 included in-depth qualitative interviews (N = 10) and an online survey that recruited a nationally-representative sample (N = 227), both informed by literature review. The needs assessment highlighted the crucial roles of knowledge (about diabetic retinopathy and screening), perception of personal risk, awareness of the approval of significant others and engagement with healthcare team, on retinal screening intentions and uptake. In Step 2, we selected five modifiable behavioural determinants to be targeted: knowledge, attitudes, normative beliefs, intention, and behavioural skills. In Steps 3 and 4, the "Who is looking after your eyes?" leaflet was developed, containing persuasive messages targeting each determinant and utilising engaging, cohort-appropriate imagery. In Steps 5 and 6, we planned Statewide implementation and designed a randomised controlled trial to evaluate the leaflet. This research provides an example of a systematic, evidence

  11. Ketorolac inhibits choroidal neovascularization by suppression of retinal VEGF

    PubMed Central

    Kim, Stephen J.; Toma, Hassanain S.; Barnett, Joshua M.; Penn, John S.

    2011-01-01

    We assessed the effect of topical ketorolac on laser-induced choroidal neovascularization (CNV), measured retinal PGE2 and VEGF levels after laser treatment, and determined the effect of ketorolac on PGE2 and VEGF production. Six laser burns were placed in eyes of rats which then received topical ketorolac 0.4% or artificial tears four times daily until sacrifice. Fluorescein angiography (FA) was performed at 2 and 3 weeks and retinal pigment epithelium-choroid-sclera flat mounts were prepared. The retina and vitreous were isolated at 1, 3, 5, 7, and 14 days after laser treatment and tested for VEGF and PGE2. Additional animals were lasered and treated with topical ketorolac or artificial tears and tested at 3 and 7 days for retinal and vitreous VEGF and PGE2. Ketorolac reduced CNV on FA by 27% at 2 weeks (P < 0.001) and 25% at 3 weeks (P < 0.001). Baseline retina and vitreous PGE2 levels were 29.4 μg/g and 16.5 μg/g respectively, and reached 51.2 μg/g and 26.9 μg/g respectively, 24 h after laser treatment (P < 0.05). Retinal VEGF level was 781 pg/g 24 h after laser treatment and reached 931 pg/g by 7 days (P < 0.01). Ketorolac reduced retinal PGE2 by 35% at 3 days (P < 0.05) and 29% at 7 days (P < 0.001) and retinal VEGF by 31% at 3 days (P = 0.10) and 19% at 7 days (P < 0.001). Topical ketorolac inhibited CNV and suppressed retinal PGE2 and VEGF production. PMID:20659449

  12. Development of an integrated automated retinal surgical laser system.

    PubMed

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  13. Culture of adult transgenic zebrafish retinal explants for live-cell imaging by multiphoton microscopy

    PubMed Central

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-01-01

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina i.e. they migrate between the basal inner nuclear layer (INL) and the outer nuclear layer (ONL), respectively, in a process described as interkinetic nuclear migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP]mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM. PMID:28287581

  14. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    PubMed

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP] mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  15. Correlation between refraction level and retinal breaks in myopic eye.

    PubMed

    Alimanović-Halilović, Emina

    2008-11-01

    In this study we analyzed 180 myopic eyes in order to determine the refraction that is "critical" for the occurrence of retinal breaks as a main cause of retinal detachment. Detachment of retina involves separation of the neurosensory retina from the pigmented epithelium with the severe impairment of vision. After the focused ophthalmological assessment, determination of objective refraction, indirect binocular ophthalmoscopy, we compared the diagnosed retinal breaks according to the shape with the refraction. All the examined eyes were divided into six groups according to the axis length. Mean age of our patients was between 48,43 and 51,60 years with SD ranging from 13,88 to 18,45. The age differences among the groups were not statistically significant. This study included 102 (56,7%) male and 78 (43,3%) female patients and no statistically significant differences between genders was found regarding the occurrence of retinal breaks compared to refraction. The most dominant ruptures were the round ones (28,2%), followed by oval (25%), the category of multiple small holes (19,2%), horseshoe shaped (15,3%), and finally holes with operculum. In cases with myopic refraction ranging between 3,50 and 7,49 dsph, the frequency of retinal breaks statistically significantly differs from all other analyzed refractions. Also, there is positive correlation between the above mentioned myopic refraction and the frequency of retinal breaks. In order to prevent retinal detachment in a myopic eye, we suggest further thorough examinations of the eye fundus in patients with the above mentioned myopia. Diagnosing retinal breaks involves the application of adequate therapy: laser photocoagulation, cryotherapy, sclera buckling and pneumatic retinopexy.

  16. Ultra-Widefield Steering-Based SD-OCT Imaging of the Retinal Periphery

    PubMed Central

    Choudhry, Netan; Golding, John; Manry, Matthew W.; Rao, Rajesh C.

    2016-01-01

    Objective To describe the spectral-domain optical coherence tomography (SD-OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Design Observational study. Participants 68 patients (68 eyes) with 19 peripheral retinal features. Main Outcome Measures SD-OCT-based structural features. Methods Nineteen peripheral retinal features including: vortex vein, congenital hypertrophy of the retinal pigment epithelium (CHRPE), pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment (RRD), typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen were identified by peripheral clinical examination. Near infrared (NIR) scanning laser ophthalmoscopy (SLO) images and SD-OCT of these entities were registered to UWF color photographs. Results SD-OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, RPE loss or hypertrophy were seen in several entities including CHRPE, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision-threatening pathologies

  17. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  18. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  19. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy

    PubMed Central

    Shin, Ji Soo

    2017-01-01

    Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292

  20. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    PubMed

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  1. Fundus autofluorescence and optical coherence tomography in the management of progressive outer retinal necrosis

    PubMed Central

    Yeh, Steven; Wong, Wai T.; Weichel, Eric D.; Lew, Julie C.; Chew, Emily Y.; Nussenblatt, Robert B.

    2011-01-01

    A 41 year-old female patient with acquired immune deficiency syndrome (AIDS) presented with progressive nasal visual field loss in her right eye. Ophthalmic exam revealed widespread areas of retinal opacification with hemorrhage consistent with progressive outer retinal necrosis (PORN), which was confirmed by polymerase chain reaction (PCR) for varicella zoster virus (VZV) DNA. The patient was treated with intravenous and intravitreal foscarnet and ganciclovir with a resultant improvement clinically. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging revealed progressive changes indicative of widespread retinal pigment epithelial (RPE) and outer retinal dysfunction. OCT was useful in documenting progressive changes in macular architecture during therapy including neurosensory elevation, cystoid macular edema, and severe outer retinal necrosis, at initial exam, 1 week, and 1 month follow-up. Fundus autofluorescence revealed areas of stippled, hyperfluorescence within extensive zones of hypofluorescence, which progressed during the follow-up period. These areas appeared to represent lipofuscin or its photoreactive components within larger regions of RPE loss. The combination of OCT and FAF was useful in the characterization of the RPE and retinal anatomy in this patient with PORN. PMID:20337261

  2. Genome editing: the breakthrough technology for inherited retinal disease?

    PubMed

    Smith, Andrew J; Carter, Stephen P; Kennedy, Breandán N

    2017-10-01

    Genetic alterations resulting in a dysfunctional retinal pigment epithelium and/or degenerating photoreceptors cause impaired vision. These juxtaposed cells in the retina of the posterior eye are crucial for the visual cycle or phototransduction. Deficits in these biochemical processes perturb neural processing of images capturing the external environment. Notably, there is a distinct lack of clinically approved pharmacological, cell- or gene-based therapies for inherited retinal disease. Gene editing technologies are rapidly advancing as a realistic therapeutic option. Areas covered: Recent discovery of endonuclease-mediated gene editing technologies has culminated in a surge of investigations into their therapeutic potential. In this review, the authors discuss gene editing technologies and their applicability in treating inherited retinal diseases, the limitations of the technology and the research obstacles to overcome before editing a patient's genome becomes a viable treatment option. Expert opinion: The ability to strategically edit a patient's genome constitutes a treatment revolution. However, concerns remain over the safety and efficacy of either transplanting iPSC-derived retinal cells following ex vivo gene editing, or with direct gene editing in vivo. Ultimately, further refinements to improve efficacy and safety profiles are paramount for gene editing to emerge as a widely available treatment option.

  3. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    PubMed

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  4. Plastic roles of pericytes in the blood-retinal barrier.

    PubMed

    Park, Do Young; Lee, Junyeop; Kim, Jaeryung; Kim, Kangsan; Hong, Seonpyo; Han, Sangyeul; Kubota, Yoshiaki; Augustin, Hellmut G; Ding, Lei; Kim, Jin Woo; Kim, Hail; He, Yulong; Adams, Ralf H; Koh, Gou Young

    2017-05-16

    The blood-retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRβ) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRβ signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression.

  5. p21 controls patterning but not homologous recombination in RPE development.

    PubMed

    Bishop, A J R; Kosaras, B; Hollander, M C; Fornace, A; Sidman, R L; Schiestl, R H

    2006-01-05

    p21/WAF1/CIP1/MDA6 is a key cell cycle regulator. Cell cycle regulation is an important part of development, differentiation, DNA repair and apoptosis. Following DNA damage, p53 dependent expression of p21 results in a rapid cell cycle arrest. p21 also appears to be important for the development of melanocytes, promoting their differentiation and melanogenesis. Here, we examine the effect of p21 deficiency on the development of another pigmented tissue, the retinal pigment epithelium. The murine mutation pink-eyed unstable (p(un)) spontaneously reverts to a wild-type allele by homologous recombination. In a retinal pigment epithelium cell this results in pigmentation, which can be observed in the adult eye. The clonal expansion of such cells during development has provided insight into the pattern of retinal pigment epithelium development. In contrast to previous results with Atm, p53 and Gadd45, p(un) reversion events in p21 deficient mice did not show any significant change. These results suggest that p21 does not play any role in maintaining overall genomic stability by regulating homologous recombination frequencies during development. However, the absence of p21 caused a distinct change in the positions of the reversion events within the retinal pigment epithelium. Those events that would normally arrest to produce single cell events continued to proliferate uncovering a cell cycle dysregulation phenotype. It is likely that p21 is involved in controlling the developmental pattern of the retinal pigment. We also found a C57BL/6J specific p21 dependent ocular defect in retinal folding, similar to those reported in the absence of p53.

  6. Cytotoxicity of All-Trans-Retinal Increases Upon Photodegradation†

    PubMed Central

    Różanowska, Małgorzata; Handzel, Kinga; Boulton, Michael E.; Różanowski, Bartosz

    2013-01-01

    All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored. PMID:22515697

  7. Pharmacotherapy of retinal disease with visual cycle modulators.

    PubMed

    Hussain, Rehan M; Gregori, Ninel Z; Ciulla, Thomas A; Lam, Byron L

    2018-04-01

    Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. Areas covered: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. Expert opinion: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.

  8. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING.

    PubMed

    Hafler, Brian P

    2017-03-01

    Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

  9. EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression

    PubMed Central

    McGuigan, David B.; Heon, Elise; Cideciyan, Artur V.; Ratnapriya, Rinki; Lu, Monica; Sumaroka, Alexander; Roman, Alejandro J.; Batmanabane, Vaishnavi; Garafalo, Alexandra V.; Stone, Edwin M.; Jacobson, Samuel G.

    2017-01-01

    Mutations in the EYS (eyes shut homolog) gene are a common cause of autosomal recessive (ar) retinitis pigmentosa (RP). Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT), and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit), some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK. PMID:28704921

  10. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    PubMed

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  11. The influence of elastin degradation products, glucose and atorvastatin on metalloproteinase-1, -2, -9 and tissue inhibitor of metalloproteinases-1, -2, -3 expression in human retinal pigment epithelial cells.

    PubMed

    Dorecka, Mariola; Francuz, Tomasz; Garczorz, Wojciech; Siemianowicz, Krzysztof; Romaniuk, Wanda

    2014-01-01

    Hyperglycemia and increased concentrations of elastin degradation products (EDPs) are common findings in patients with diabetes, atherosclerosis and hypertension. The aim of this study was to assess the influence of high glucose, EDPs and atorvastatin on MMP-1, MMP-2, MMP-9 and TIMP1-3 gene expression in human retinal pigment epithelial cells (HRPE) in vitro. HRPE were cultured for 24 hours with the substances being tested (glucose, EDPs), alone or in combination. Additionally, the cells were treated with atorvastatin in two different concentrations (1 or 10 μM). After incubation, total cellular RNA was extracted and used for gene expression evaluation. Gene expression was measured using the real-time RT-PCR technique. Glucose, EDPs and atorvastatin had no impact on TIMP-1 and TIMP-3 expression. HRPE cells treated with glucose or EDPs with the addition of atorvastatin had a statistically significant decrease of TIMP-2 expression; glucose alone decreased MMP-1 expression. Atorvastatin decreased expression of all assessed genes, except TIMP-1 and TIMP-3 in a dose-dependent manner. Our results confirm the importance of MMPs and TIMPs in retinal vascular biology. Atorvastatin-induced MMPs gene expression can deeply affect extracellular matrix turnover, which may play an important role in the progression of ocular diseases.

  12. Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse.

    PubMed

    Lukáts, Akos; Dkhissi-Benyahya, Ouria; Szepessy, Zsuzsanna; Röhlich, Pál; Vígh, Béla; Bennett, Nigel C; Cooper, Howard M; Szél, Agoston

    2002-07-01

    To decide whether the identical topography of short- and middle-wavelength cone photoreceptors in two species of rodents reflects the presence of both opsins in all cone cells. Double-label immunocytochemistry using antibodies directed against short-wavelength (S)-and middle- to long-wavelength (M/L)-sensitive opsin were used to determine the presence of visual pigments in cones of two species of rodents, the Siberian hamster (Phodopus sungorus) and the pouched mouse (Saccostomus campestris) from South Africa. Topographical distribution was determined from retinal whole-mounts, and the colocalization of visual pigments was examined using confocal laser scanning microscopy. Opsin colocalization was also confirmed in consecutive semithin tangential sections. The immunocytochemical results demonstrate that in both the Siberian hamster and the pouched mouse all retinal cones contain two visual pigments. No dorsoventral gradient in the differential expression of the two opsins is observed. The retina of the Siberian hamster and the pouched mouse is the first example to show a uniform coexpression of M and S cone opsins in all cones, without any topographical gradient in opsin expression. This finding makes these two species good models for the study of molecular control mechanisms in opsin coexpression in rodents, and renders them suitable as sources of dual cones for future investigations on the role and neural connections of this cone type.

  13. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy.

    PubMed

    Tschernutter, M; Schlichtenbrede, F C; Howe, S; Balaggan, K S; Munro, P M; Bainbridge, J W B; Thrasher, A J; Smith, A J; Ali, R R

    2005-04-01

    The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required for phagocytosis of shed photoreceptor outer segments. The absence of Mertk results in accumulation of outer segment debris. This subsequently leads to progressive loss of photoreceptor cells. In order to evaluate the efficacy of lentiviral-mediated gene replacement therapy in the RCS rat, we produced recombinant VSV-G pseudotyped HIV-1-based lentiviruses containing a murine Mertk cDNA driven by a spleen focus forming virus (SFFV) promoter. The vector was subretinally injected into the right eye of 10-day-old RCS rats; the left eye was left untreated as an internal control. Here, we present a detailed assessment of the duration and extent of the morphological rescue and the resulting functional benefits. We examined animals at various time points over a period of 7 months by light and electron microscopy, and electroretinography. We observed correction of the phagocytic defect, slowing of photoreceptor cell loss and preservation of retinal function for up to 7 months. This study demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the treatment of such disorders.

  14. Biophysical mechanism of transient retinal phototropism in rod photoreceptors.

    PubMed

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-02-13

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  15. Biophysical mechanism of transient retinal phototropism in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-03-01

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  16. TUBULOINTERSTITIAL NEPHRITIS AND UVEITIS SYNDROME WITH A PRIMARY PRESENTATION OF ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY.

    PubMed

    Lee, Andrew R; Sharma, Sumit; Mahmoud, Tamer H

    2017-01-01

    To report a case of tubulointerstitial nephritis and uveitis syndrome with a primary presentation of acute posterior multifocal placoid pigment epitheliopathy after use of lamotrigine. Retrospective case report with ultra-widefield fundus imaging, optical coherence tomography, and fluorescein angiography. A 19-year-old woman presented with decreased visual acuity and acute renal failure after starting lamotrigine. Her examination demonstrated 1+ anterior chamber cell and numerous white deep retinal plaque-like lesions predominantly in the macula in both eyes. After extensive ophthalmic and systemic evaluation, the patient was diagnosed with tubulointerstitial nephritis and uveitis syndrome with a primary presentation of acute posterior multifocal placoid pigment epitheliopathy. She had excellent visual recovery with topical and systemic steroids. Acute posterior multifocal placoid pigment epitheliopathy is a rare but important clinical presentation of tubulointerstitial nephritis and uveitis syndrome. Oral corticosteroid treatment can be considered for tubulointerstitial nephritis but is generally not necessary for acute posterior multifocal placoid pigment epitheliopathy.

  17. Gestational Lead Exposure Selectively Decreases Retinal Dopamine Amacrine Cells and Dopamine Content in Adult Mice

    PubMed Central

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O’Callaghan, James P.

    2011-01-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤1, ≤10, ~25 and ~40 µg/dL, respectively, on PN10 and by PN30 all were ≤1 µg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. PMID:21703292

  18. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    PubMed

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Retinitis pigmentosa-associated cystoid macular oedema: pathogenesis and avenues of intervention

    PubMed Central

    Strong, S; Liew, G; Michaelides, M

    2017-01-01

    Hereditary retinal diseases are now the leading cause of blindness certification in the working age population (age 16–64 years) in England and Wales, of which retinitis pigmentosa (RP) is the most common disorder. RP may be complicated by cystoid macular oedema (CMO), causing a reduction of central vision. The underlying pathogenesis of RP-associated CMO (RP-CMO) remains uncertain, however, several mechanisms have been proposed, including: (1) breakdown of the blood-retinal barrier, (2) failure (or dysfunction) of the pumping mechanism in the retinal pigment epithelial, (3) Müller cell oedema and dysfunction, (4) antiretinal antibodies and (5) vitreous traction. There are limited data on efficacy of treatments for RP-CMO. Treatments attempted to date include oral and topical carbonic anhydrase inhibitors, oral, topical, intravitreal and periocular steroids, topical non-steroidal anti-inflammatory medications, photocoagulation, vitrectomy with internal limiting membrane peel, oral lutein and intravitreal antivascular endothelial growth factor injections. This review summarises the evidence supporting these treatment modalities. Successful management of RP-CMO should aim to improve both quality and quantity of vision in the short term and may also slow central vision loss over time. PMID:27913439

  20. Complement and UV-irradiated photoreceptor outer segments increase the cytokine secretion by retinal pigment epithelial cells.

    PubMed

    Lueck, Katharina; Hennig, Maren; Lommatzsch, Albrecht; Pauleikhoff, Daniel; Wasmuth, Susanne

    2012-03-15

    Age-related macular degeneration (AMD) is accompanied by increased complement activation, and by lipofuscin accumulation in retinal pigment epithelial (RPE) cells due to incomplete degradation of photoreceptor outer segments (POS). The influence of POS, ultraviolet (UV)-irradiated POS and human complement sera (HCS) on cytokine secretion from RPE cells was therefore examined. RPE cells were incubated with POS or UV-POS every other day for 1 week. The autofluorescence (AF) was measured photometrically and by flow cytometry. Senescence-associated genes were analyzed by RT-PCR. Internalization and degradation of POS were determined using phagocytosis and degradation assays, and lysosomal function by neutral red uptake. RPE cells in polycarbonate cell culture inserts were incubated apically with POS or UV-POS and afterward basally with HCS. C7-deficient HCS was used as control. The integrity of the cell monolayer was assessed by measuring the transepithelial electrical resistance (TER) and the permeability. Interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1, and vascular endothelial growth factor were quantified by ELISA. POS treatment led to an increased AF and senescence marker expression, which were further elevated in response to UV-POS. UV-POS were preferentially accumulated over POS and the lysosomal function was impaired due to UV-POS. HCS intensified the cytokine production compared with controls. POS had no effect, though UV-POS combined with HCS induced a significant increase in all cytokines. RPE cultivation with UV-POS might serve as a model to investigate the accumulation of lipofuscin-like structures. The enhanced cytokine secretion due to UV-POS with HCS may account for an increased susceptibility for lipofuscin-loaded cells to complement, inducing a proinflammatory environment as observed in AMD.

  1. Retinal Mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis.

    PubMed

    Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Gerhards, Hartmut; Ueffing, Marius; Deeg, Cornelia A

    2007-06-01

    Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.

  2. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells).

    PubMed

    Yamamoto, Atsushi; Akanuma, Shin-Ichi; Tachikawa, Masanori; Hosoya, Ken-Ichi

    2010-05-01

    System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood-tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood-retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl(-)-independent and saturable manner with K(m) values of 8.71 and 220 microM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells.

  3. Cigarette Smoke-Related Hydroquinone Dysregulates MCP-1, VEGF and PEDF Expression in Retinal Pigment Epithelium in Vitro and in Vivo

    PubMed Central

    Pons, Marianne; Marin-Castaño, Maria E.

    2011-01-01

    Background Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice. Principal Findings MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo. Conclusion We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might

  4. Rapid purification method for vitamin A-derived aging pigments A2E and iso-A2E using cation exchange resin.

    PubMed

    Jee, Eun Hye; Kim, So Ra; Jang, Young Pyo

    2012-08-17

    A2E, known to be involved in the pathogenesis of age-related macular degeneration (AMD), is one of the major compounds that accumulate as fluorescent pigments in retinal pigment epithelial (RPE) cells with age and in some retinal disorders. While the biomimetic synthesis of A2E and its cis-isomer, iso-A2E is as simple as 'one-pot' reaction, the purification of these amphiphillic compounds has been a bottleneck for the mass production of these pathophysiologically important eye pigments. In order to provide a new method of rapid purification of A2E and iso-A2E, we employed a cation exchange resin for the separation of these pigments from crude reaction mixture. The reaction mixture was loaded on a weak acid resin and was eluted with 80% methanol with sodium hydroxide (pH 12), 100% methanol, and 100% methanol with 0.1% trifluoroacetic acid (TFA) in sequence. A2E and isoA2E were eluted only with 100% methanol solution containing TFA. Most of unreacted starting materials and intermediates were removed with 80% methanol containing sodium hydroxide. The new method can be used as a relatively simple and economic way to purify A2E and iso-A2E compared to conventional HPLC technique. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Laser Marking of the Meridian of Retinal Breaks at the Ora: A Novel Technique for Pneumatic Retinopexy.

    PubMed

    Yan, Peng; Minaker, Samuel; Mandelcorn, Efrem D

    2016-06-01

    Localization of retinal breaks in rhegmatogenous retinal detachment (RRD) after pneumatic retinopexy (PR) can be challenging once the retina is reattached. Laser can be applied to the pigmented and always-attached ora serrata in the meridian of the retinal breaks prior to pneumatic retinopexy, resulting in subsequent rapid localization of the breaks even in the presence of a gas bubble or media opacity. Ten cases of indirect laser photocoagulation marking at the ora prior to intraocular gas injection in PR for RRD. Subsequent laser retinopexy was completed 48 hours after utilizing the landmarks at the ora to localize the reattached retinal breaks. In all 10 cases, laser photocoagulation marking was easily applied to the ora in the meridian of the retinal breaks prior to gas injection with no complications. The retinal breaks were subsequently identified 48 hours after gas injection. Laser marking of the ora prior to pneumatic retinopexy is a rapid and effective way to localize the re-attached retina breaks. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:570-572.]. Copyright 2016, SLACK Incorporated.

  6. Triple retinal infection with human immunodeficiency virus type 1, cytomegalovirus, and herpes simplex virus type 1. Light and electron microscopy, immunohistochemistry, and in situ hybridization.

    PubMed

    Rummelt, V; Rummelt, C; Jahn, G; Wenkel, H; Sinzger, C; Mayer, U M; Naumann, G O

    1994-02-01

    This report describes the histopathologic and virologic findings of the retina from a 55-year-old bisexual patient with the acquired immune deficiency syndrome (AIDS), who had concurrent human immunodeficiency virus type 1 (HIV-1), cytomegalovirus (CMV), and herpes simplex virus type 1 (HSV-1) retinitis, and was treated with ganciclovir. The eyes were obtained at autopsy and processed for light microscopy and transmission electron microscopy. Immunohistochemical stains for HSV-1, CMV, HIV-1, varicella zoster virus, and glial fibrillary acidic protein were carried out using the peroxidase-antiperoxidase and streptavidin-biotin-alkaline phosphatase techniques. For in situ hybridization, a radiolabeled CMV DNA probe (Eco-RI-Y fragment of strain AD 169) was used. Results of histopathologic examination showed a full-thickness necrotizing retinitis with cytomegalic and herpes viral intranuclear inclusions in cells of the neurosensory retina, retinal vascular endothelium, and the retinal pigment epithelium. Some areas of the retina were replaced by glial tissue. The choroid contained only a few chronic inflammatory cells. Immunoperoxidase studies disclosed CMV antigens diffusely distributed throughout all layers of the retina and the retinal pigment epithelium. Herpes simplex virus type 1 antigens were present in retinal cells and the retinal vascular endothelium. Human immunodeficiency virus type 1 antigens were found in mononuclear cells in all layers of the sensory retina. Dual infections with HIV-1 and CMV of individual multinucleated giant cells of glial origin were demonstrated immunohistochemically. Transmission electron microscopy showed herpes viral particles in the vascular endothelium of the retinal vessels and the choriocapillaris. Human immunodeficiency virus particles were identified in the endothelium of the choriocapillaris. The possibility of multiple viral infections of the retina, mimicking classic CMV retinitis, should be considered in the clinical and

  7. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  8. Reversibility of Retinal Microvascular Changes in Severe Falciparum Malaria

    PubMed Central

    Maude, Richard J.; Kingston, Hugh W. F.; Joshi, Sonia; Mohanty, Sanjib; Mishra, Saroj K.; White, Nicholas J.; Dondorp, Arjen M.

    2014-01-01

    Malarial retinopathy allows detailed study of central nervous system vascular pathology in living patients with severe malaria. An adult with cerebral malaria is described who had prominent retinal whitening with corresponding retinal microvascular obstruction, vessel dilatation, increased vascular tortuosity, and blood retinal barrier leakage with decreased visual acuity, all of which resolved on recovery. Additional study of these features and their potential role in elucidating the pathogenesis of cerebral malaria is warranted. PMID:24935949

  9. Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation

    PubMed Central

    Kojima, Keiichi; Matsutani, Yuki; Yamashita, Takahiro; Yanagawa, Masataka; Imamoto, Yasushi; Yamano, Yumiko; Wada, Akimori; Hisatomi, Osamu; Nishikawa, Kanto; Sakurai, Keisuke; Shichida, Yoshinori

    2017-01-01

    Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the retinal chromophore has been suggested to contribute to the rod’s background noise, which limits the visual threshold for scotopic vision. Therefore, rhodopsin must exhibit low thermal isomerization rate compared with cone visual pigments to adapt to scotopic condition. In this study, we determined whether amphibian blue-sensitive cone pigments in green rods exhibit low thermal isomerization rates to act as rhodopsin-like pigments for scotopic vision. Anura blue-sensitive cone pigments exhibit low thermal isomerization rates similar to rhodopsin, whereas Urodela pigments exhibit high rates like other vertebrate cone pigments present in cones. Furthermore, by mutational analysis, we identified a key amino acid residue, Thr47, that is responsible for the low thermal isomerization rates of Anura blue-sensitive cone pigments. These results strongly suggest that, through this mutation, anurans acquired special blue-sensitive cone pigments in their green rods, which could form the molecular basis for scotopic color vision with normal red rods containing green-sensitive rhodopsin. PMID:28484015

  10. Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye.

    PubMed

    Kim, Jin Young; Park, Raehee; Lee, Jin Hwan J; Shin, Jinyeon; Nickas, Jenna; Kim, Seonhee; Cho, Seo-Hee

    2016-11-15

    Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.

    2011-01-01

    Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414

  12. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.

    PubMed

    Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D

    2013-02-05

    Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.

  13. Esculetin Protects Human Retinal Pigment Epithelial Cells from Lipopolysaccharide-induced Inflammation and Cell Death.

    PubMed

    Ozal, S Altan; Turkekul, Kader; Gurlu, Vuslat; Guclu, Hande; Erdogan, Suat

    2018-05-26

    Age-related macular degeneration (AMD) is the most common cause of visual loss. The dry AMD is characterized by retinal pigment epithelium (RPE) death and changes in AMD lead to severe loss of vision. Coumarin-derived esculetin has a number of therapeutic and pharmacological effects such as anti-inflammatory and antioxidant with various mechanisms. The purpose of this study was to investigate the effects of esculetin treatment on lipopolysaccharide (LPS)-induced inflammation, oxidative stress, and cell survival. Human RPE cells (ARPE-19) were incubated for 24-72 h with 5 μg/ml LPS to induce inflammation and oxidative stress. Esculetin (5 μM) was used to protect the cells from LPS-induced damage. The cell viability was evaluated by quantitative 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. Interleukin 6 (IL-6), IL-12, and vascular endothelial growth factor (VEGF) levels were determined by enzyme-linked immunosorbent assay (ELISA). IL-1β, tumor necrosis factor receptor (TNFR), TNF-related apoptosis-inducing ligand (TRAIL), catalase, glutathione peroxidase (GPx), superoxide dismutase 1 (CuZnSOD) and SOD2 (MnSOD) mRNA expressions were analyzed by RT-quantitative polymerase chain reaction. Apoptosis was monitored by cell-based cytometer. NF-kappa B (NF-κB) p65/RelA levels were determined by ELISA, and NF-κB protein expression and extracellular signal-regulated kinase (ERK1/2) phosphorylation were evaluated by Western blot analysis. Esculetin treatment significantly suppressed LPS-induced cell death mediated by apoptosis and necrosis in a concentration-dependent manner. While LPS caused significant inflammation with cytokine increase in cells, esculetin reduced the expression of LPS-induced cytokines, VEGF, TNFR, and TRAIL. Furthermore, exposure to LPS increased the expression of GPx and mitochondrial MnSOD, leading to oxidative stress in the cells. Esculetin treatment attenuated phosphorylation of ERK1/2 and NF-κB expression mediated by LPS

  14. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon

    PubMed Central

    Takenaka, Naomi; Yokoyama, Shozo

    2009-01-01

    At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (λmax’s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76–86%, 14–24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I~IV, V~VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the λmax’s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to thereonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor λmax-shifts individually. PMID:17590287

  15. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers

    PubMed Central

    Calford, M B; Wang, C; Taglianetti, V; Waleszczyk, W J; Burke, W; Dreher, B

    2000-01-01

    In eight adult cats intense, sharply circumscribed, monocular laser lesions were used to remove all cellular layers of the retina. The extents of the retinal lesions were subsequently confirmed with counts of α-ganglion cells in retinal whole mounts; in some cases these revealed radial segmental degeneration of ganglion cells distal to the lesion.Two to 24 weeks later, area 17 (striate cortex; V1) was studied electrophysiologically in a standard anaesthetized, paralysed (artificially respired) preparation. Recording single- or multineurone activity revealed extensive topographical reorganization within the lesion projection zone (LPZ).Thus, with stimulation of the lesioned eye, about 75 % of single neurones in the LPZ had ‘ectopic’ visual discharge fields which were displaced to normal retina in the immediate vicinity of the lesion.The sizes of the ectopic discharge fields were not significantly different from the sizes of the normal discharge fields. Furthermore, binocular cells recorded from the LPZ, when stimulated via their ectopic receptive fields, exhibited orientation tuning and preferred stimulus velocities which were indistinguishable from those found when the cells were stimulated via the normal eye.However, the responses to stimuli presented via ectopic discharge fields were generally weaker (lower peak discharge rates) than those to presentations via normal discharge fields, and were characterized by a lower-than-normal upper velocity limit.Overall, the properties of the ectopic receptive fields indicate that cortical mechanisms rather than a retinal ‘periphery’ effect underlie the topographic reorganization of area 17 following monocular retinal lesions. PMID:10767137

  16. Spectral domain optical coherence tomography and fundus autofluorescence findings in cytomegalovirus retinitis in HIV-infected patients.

    PubMed

    Yashiro, Shigeko; Nishijima, Takeshi; Yamamoto, Yuuka; Sekine, Yumi; Yoshida-Hata, Natsuyo; Iida, Tomohiro; Oka, Shinichi

    2018-05-01

    To assess the usefulness of spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) findings in cytomegalovirus (CMV) retinitis. Observational case series. Thirteen eyes of 11 human immunodeficiency virus (HIV)-positive patients with CMV retinitis underwent full ophthalmologic examinations, SD-OCT, and 4 eyes of 4 patients underwent FAF. FAF images included short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (IR-AF). CMV retinitis was classified into proposed categories of acute, subacute, remission, and recurrent; the acute stage was further subdivided into initial, early, and late stages. In the initial stage, vertical structural disruption of all retinal layers was observed by SD-OCT, and FAF showed hyperautofluorescence on SW-AF and hypoautofluorescence on IR-AF. In the early stage, SD-OCT showed significant retinal thickening; cells and debris from the retinal surface to the vitreous; enlarged vessels with/without thickened vessel walls; and highly complicated serous retinal detachment. In the late to subacute stage, features observed included rhegmatogenous retinal detachment with shrinking posterior hyaloid membrane and waving from the ellipsoid zone to the retinal pigment epithelium. In remission, FAF findings were hypoautofluorescence on SW-AF and hyperautofluorescence on IR-AF. Although the number of examined eyes was limited, SD-OCT and FAF provide new information in various stages of CMV retinitis in patients with HIV infection that is not obtainable by conventional examination and which may be of great benefit when screening for the initial stage of CMV retinitis.

  17. Analysis of the scattering performance of human retinal tissue layers

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun

    2017-02-01

    Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.

  18. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  19. Altered cytokine profiles of human retinal pigment epithelium: Oxidant injury and replicative senescence

    PubMed Central

    Cao, Sijia; Walker, Gregory B.; Wang, Xuefeng; Cui, Jing Z.

    2013-01-01

    Purpose Age-related macular degeneration (AMD) is a local, chronic inflammatory disease of the eye that is influenced by oxidative stress and dysregulation of the retinal pigment epithelium (RPE) associated with aging. The purpose of this study is to characterize the effects of oxidative stress and replicative senescence on the secreted cytokine profiles of RPE in vitro. Methods We used multiple, serial passages of human RPE cells from primary culture as an in vitro model of aging. Responses of early passage 5 (P5) and late passage 21 (P21) RPE cells were compared. Oxidative stress was induced in RPE cells (P5) by exposure to 75 μM hydroquinone (HQ) for 24 h. The secretome profiles of the RPE cells were measured with a multiplex suspension assay that assayed human cytokine, chemokine, and growth factors. Immunohistochemistry on younger (≤55 years old) and older (≥70 years old) human post-mortem donor eyes was used to verify selected cytokines. Results Supernatant of HQ-treated RPE cultures exhibited increased secreted levels of vascular endothelial growth factor (VEGF), interleukin (IL)-12, and IL-10 that reached statistical significance (p<0.05). Supernatant of late passage P21 RPE cultures exhibited decreased secreted levels of stromal cell-derived factor (SDF)-1α, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-8, IL-15, IL-6, and an increased level of IL-1ra compared to early passage P5 RPE cultures that reached statistical significance (p<0.05). Immunohistochemical analysis demonstrated increased expression of IL-1ra in RPE cells from older post-mortem donor eyes (≥70 years old) versus younger eyes (≤55 years old). Conclusions Our data demonstrate a unique cytokine secretion profile of primary culture RPE cells at early and late passage. Our in vitro data suggest an age-specific modulation of cytokine secretion in RPE and is consistent with immunohistochemical analysis on post-mortem eyes. The secretion profile associated with RPE under

  20. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING

    PubMed Central

    HAFLER, BRIAN P.

    2017-01-01

    Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762

  1. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells.

    PubMed

    Kannan, Ram; Zhang, Ning; Sreekumar, Parameswaran G; Spee, Christine K; Rodriguez, Anthony; Barron, Ernesto; Hinton, David R

    2006-12-22

    To investigate whether oxidative stress modulates vascular endothelial growth factor (VEGF)-A and VEGF-C expression and polarized secretion in a human retinal pigment epithelium cell line (ARPE-19). Long-term culture of ARPE-19 cells in Dulbecco's modified Eagle medium (DMEM)/F12 containing 1% fetal bovine serum (FBS) on transwell filters (12 mm or 6 mm, pore size 0.4 microm) was performed to produce polarized retinal pigment epithelium (RPE) monolayers. The integrity of polarized monolayer was established by measurement of transepithelial resistance (TER) and presence of tight junctions assessed by zonula occludens (ZO-1) and occludin expression and apical Na/K ATPase localization. Paracellular permeability was studied using radiolabeled mannitol. Confluent cells were treated with tertiary butyl hydrogen peroxide (tBH) for varying durations (0-5 h) and doses (50-200 microM). VEGF-A and -C expression was evaluated by western blot and quantitative RT-PCR, while secretion to the apical and basolateral surfaces was quantitated by ELISA. Polarity of ARPE-19 cells was verified by the localization of tight junction proteins, ZO-1 and its binding partner occludin by confocal microscopy as well as by localization of Na,K-ATPase at the apical surface. The TER in confluent ARPE-19 cells averaged 48.7+/-2.1 Omega. cm(2) and tBH treatment (0-5 h) did not alter TER significantly (46.9+/-1.9 Omega. cm(2); p>0.05 versus controls) or ZO-1 expression. Whole cell mRNA in nonpolarized ARPE-19 increased with tBH at 5 h both for VEGF-A and VEGF-C and the increase was significant (p<0.05 vs controls). A similar, maximal increase at 5 h tBH treatment was also observed for VEGF-A and VEGF-C cellular protein levels. The secretion of VEGF-A and VEGF-C in nonpolarized ARPE showed an increase with tBH exposure. The levels of secretion of VEGF-A and -C were significantly higher in polarized monolayers and were stimulated significantly with tBH at both apical and basolateral domains. The

  2. Macular pigment optical density in young adults of South Asian origin.

    PubMed

    Howells, Olivia; Eperjesi, Frank; Bartlett, Hannah

    2013-04-17

    To assess the range of macular pigment optical density (MPOD) in a healthy group of young adults of South Asian origin; to investigate whether any dietary factors or personal characteristics were related to intersubject variations in MPOD; and to compare the mean MPOD of the South Asian group with the mean MPOD of a white group. Heterochromatic flicker photometry was used to measure the macular pigment (MP) levels of 169 healthy volunteers, of which 117 were Asian and 52 were white. In addition, the Asian participants completed a questionnaire pertaining to the various physical, ocular, lifestyle, dietary, and environmental factors that may be associated with MPOD or AMD. The mean MPOD of the Asian subjects was 0.43 ± 0.14. The male participants had a higher mean MPOD than the females (0.47 ± 0.13 vs. 0.41 ± 0.14, P < 0.01). Possible associations also emerged between MPOD and form of refractive correction, and iris color. No MPOD associations were found for the other variables examined in the questionnaire. The mean MPOD of the white subject group was 0.33 ± 0.13, which was significantly lower than the Asian group (P < 0.0005). This study adds to the currently limited information on MPOD in South Asians, and while a comparison between Asians and Whites was not the main focus here, highly significant differences between these two ethnicities were revealed. This provokes the possibility that South Asian individuals could have a lower risk for AMD, and it warrants further study.

  3. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-03-06

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na + /K + ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  4. Ganglion cell distribution and retinal resolution in the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Mass, Alla M; Ketten, Darlene R; Odell, Daniel K; Supin, Alexander Ya

    2012-01-01

    The topographic organization of retinal ganglion cells was examined in the Florida manatee (Trichechus manatus latirostris) to assess ganglion cell size and distribution and to estimate retinal resolution. The ganglion cell layer of the manatee's retina was comprised primarily of large neurons with broad intercellular spaces. Cell sizes varied from 10 to 60 μm in diameter (mean 24.3 μm). The retinal wholemounts from adult animals measured 446-501 mm(2) in area with total ganglion cell counts of 62,000-81,800 (mean 70,200). The cell density changed across the retina, with the maximum in the area below the optic disc and decreasing toward the retinal edges and in the immediate vicinity of the optic disc. The maximum cell density ranged from 235 to 337 cells per millimeter square in the adult retinae. Two wholemounts obtained from juvenile animals were 271 and 282 mm(2) in area with total cell numbers of 70,900 and 68,700, respectively (mean 69,800), that is, nearly equivalent to those of adults, but juvenile retinae consequently had maximum cell densities that were higher than those of adults: 478 and 491 cells per millimeter square. Calculations indicate a retinal resolution of ∼19' (1.6 cycles per degree) in both adult and juvenile retinae. Copyright © 2011 Wiley Periodicals, Inc.

  5. Retinal vasculitis and cystoid macular edema after body tattooing: a case report.

    PubMed

    Moschos, M M; Guex-Crosier, Y

    2004-05-01

    To report a case of retinal vasculitis occurring after the placement of permanent tattoos. A 21-year-old male was referred to our department with impairment of visual acuity. Permanent tattoos covered the head, body, arms and legs. The patient was examined with ophthalmoscopy, fluorescein angiography, indocyanine green angiography and optical coherence tomography. Systemic medical and laboratory work-up were performed in order to exclude an infectious agent or an inflammatory disease. He had no history of intravenous drug abuse. Our patient presented severe posterior uveitis associated with retinal vasculitis and cystoid macular edema. Laboratory tests ruled out all diseases causing vasculitis. HIV and B, C hepatitis tests were negative. Cystoid macular edema and vasculitis were resolved after immunosuppressive therapy. This is the first description of a retinal vasculitis associated with cystoid macular edema in a completely healthy individual after the placement of permanent tattoos. A phagocytosis of tattoo pigments leading to their lysis is described in the literature as a mechanism causing vasculitis.

  6. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    PubMed

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  7. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures

    PubMed Central

    Davari, Maliheh; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Purpose Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. Methods RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2–7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid–binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Results Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum–treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. Conclusions This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases. PMID:24265548

  8. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lin, Cong; Lv, Lei; Chen, Jing; Xu, Chongchong; Wang, Songtao; Gu, Dandan; Zheng, Hua; Yu, Hurong; Li, Yan; Xiao, Honglei; Zhou, Guomin

    2015-06-01

    Human pluripotent stem cells (hPSCs) have the potential to differentiate along the retinal lineage. However, most induction systems are dependent on multiple small molecular compounds such as Dkk-1, Lefty-A, and retinoic acid. In the present study, we efficiently differentiated hPSCs into retinal cells using a retinal differentiation medium (RDM) without the use of small molecular compounds. This novel differentiation system recapitulates retinal morphogenesis in humans, i.e. hPSCs gradually differentiate into optic vesicle-shaped spheres, followed by optic cup-shaped spheres and, lastly, retinal progenitor cells. Furthermore, at different stages, hPSC-derived retinal cells mirror the transcription factor expression profiles seen in their counterparts during human embryogenesis. Most importantly, hinge epithelium was found between the hPSC-derived neural retina (NR) and retinal pigment epithelium (RPE). These data suggest that our culture system provides a new method for generating hPSC-derived retinal cells that, for the first time, might be used in human transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear.

    PubMed

    He, Li; Frost, Michael R; Siegwart, John T; Norton, Thomas T

    2018-03-01

    Hyperopic refractive error is detected by retinal neurons, which generate GO signals through a direct emmetropization signaling cascade: retinal pigment epithelium (RPE) into choroid and then into sclera, thereby increasing axial elongation. To examine signaling early in this cascade, we measured gene expression in the retina and RPE after short exposure to hyperopia produced by minus-lens wear. Gene expression in each tissue was compared with gene expression in combined retina + RPE. Starting 24 days after normal eye opening, three groups of juvenile tree shrews (n = 7 each) wore a monocular -5 D lens. The untreated fellow eye served as a control. The "6h" group wore the lens for 6 h; the "24h" group wore the lens for 24 h; each group provided separate retina and RPE tissues. Group "24hC" wore the lens for 24 h and provided combined retina + RPE tissue. Quantitative PCR was used to measure the relative differences (treated eye vs. control eye) in mRNA levels for 66 candidate genes. In the retina after 6 h, mRNA levels for seven genes were significantly regulated: EGR1 and FOS (early intermediate genes) were down-regulated in the treated eyes. Genes with secreted protein products, BMP2 and CTGF, were down-regulated, whilst FGF10, IL18, and SST were up-regulated. After 24 h the pattern changed; only one of the seven genes still showed differential expression; BMP2 was still down-regulated. Two new genes with secreted protein products, IGF2 and VIP, were up-regulated. In the RPE, consistent with its role in receiving, processing, and transmitting GO signaling, differential expression was found for genes whose protein products are at the cell surface, intracellular, in the nucleus, and are secreted. After 6 h, mRNA levels for 17 genes were down-regulated in the treated eyes, whilst four genes (GJA1, IGF2R, LRP2, and IL18) were up-regulated. After 24 h the pattern was similar; mRNA levels for 14 of the same genes were still down-regulated; only LRP2

  10. Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19

    PubMed Central

    Choi, Kyungsun; Lee, Kihwang; Ryu, Seung-Wook; Im, Minju; Kook, Koung Hoon

    2012-01-01

    Purpose Transforming growth factor-β (TGF-β) plays a key role in transforming retinal pigment epithelial (RPE) cells into mesenchymal fibroblastic cells, which are implicated in proliferative vitreoretinopathy. Herein, we tested the effect of pirfenidone, a novel antifibrotic agent, on TGF-β1-mediated fibrogenesis in the human RPE cell line ARPE-19. Methods The effect of pirfenidone on the TGF-β1-induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. Fibronectin and collagen production was measured with enzyme-linked immunosorbent assay, and cell migration activity was investigated using a scratch assay. Immunoblot analyses of cofilin, sma and mad protein (smad) 2/3, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular signal-related kinase expression were conducted to elucidate the cell signaling networks that contribute to the antifibrotic effect of pirfenidone. Results Treatment with TGF-β1 induced typical phenotypic changes such as formation of stress fiber running parallel to the long axis of cells and enhanced migration and production of extracellular matrix components such as collagen type I and fibronectin. This fibroblast-like phenotype induced by TGF-β1 was significantly inhibited by pretreatment with pirfenidone in a dose-dependent manner. We also elucidated the TGF-β signaling pathways as the target of the inhibitory effect of pirfenidone. Pirfenidone inhibited TGF-β signaling by preventing nuclear accumulation of active Smad2/3 complexes rather than phosphorylation of Smad2/3. Conclusions These results collectively provide a rational background for future evaluation of pirfenidone as a potential antifibrotic agent for treating proliferative vitreoretinopathy and other fibrotic retinal disorders. PMID:22550395

  11. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice.

    PubMed

    Fox, Donald A; Hamilton, W Ryan; Johnson, Jerry E; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B; O'Callaghan, James P

    2011-11-01

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was ≤ 1, ≤ 10, ~25 and ~40 μg/dL, respectively, on PN10 and by PN30 all were ≤ 1 μg/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    PubMed

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  13. BDNF improves the efficacy ERG amplitude maintenance by transplantation of retinal stem cells in RCS rats.

    PubMed

    Tian, Chunyu; Weng, Chuan Chuang; Yin, Zheng Qin

    2010-01-01

    The aim of this study was to evaluate the efficacy of subretinal transplantation of rat retinal stem cell when combined with Brain-derived neurotrophic factor (BDNF) in a rat model of retinal degeneration - Royal College of Surgeons (RCS) rats. Retinal stem cells were derived from embryonic day 17 Long-Evans rats and pre-labeled with fluorescence pigment-DiI prior to transplant procedures. RCS rats received injections of retinal stem cells, stem cells+BDNF, phosphate buffered saline or BNDF alone (n = 3 eyes for each procedure). At 1, 2 and 3 months after transplantation, the electroretinogram (ERG) was assessed and the outer nuclear layer thickness measured. The eyes receiving retinal stem cell and stem cell+BDNF transplants showed better photoreceptor maintenance than the other groups (P < 0.01) at all time points. One month after retina transplantation, the amplitudes of rod-ERG and Max-ERG b waves were significantly higher the eyes with stem cells+BDNF (P < 0.01), however, this difference was not seen at two and three months post transplantation. BDNF treatment alone group (without transplanted cells) had no effect when compared to buffer injections. The present results indicate that BDNF can enhance the short-term efficacy of the retinal stem cell transplantation in treating retinal degenerative disease.

  14. [Paediatric retinal detachment and hereditary vitreoretinal disorders].

    PubMed

    Meier, P

    2013-09-01

    The number of retinal detachments in children is very low in comparison to the number in adults. One predisposing factor for development of paediatric retinal detachment is suffering from hereditary vitreoretinal degeneration (e.g., Stickler syndrome, Wagner syndrome, Kniest dysplasia, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, Knobloch syndrome, incontinentia pigmenti, Norrie disease). Hereditary vitreoretinopathies are characterised by an abnormal-appearing vitreous gel with associated retinal changes. In most of these eyes further ocular abnormalities can be diagnosed. A group of hereditary disorders is associated with characteristic systemic abnormalities. Allied conditions should be considered in the clinical diagnosis. Vitreoretinopathies are the most common cause of inherited retinal detachment. In most eyes primary vitrectomy is necessary, and disease-specific surgical treatment is discussed. Georg Thieme Verlag KG Stuttgart · New York.

  15. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment

    PubMed Central

    Mantopoulos, Dimosthenis; Murakami, Yusuke; Comander, Jason; Thanos, Aristomenis; Roh, Miin; Miller, Joan W.; Vavvas, Demetrios G.

    2011-01-01

    Background Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. Methodology/Principal Findings Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm2 vs. 1314±68/mm2, P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. Conclusions/Significance Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment. PMID:21961034

  16. Concentration-Dependence of Vitamin C in Combinations with Vitamin E and Zeaxanthin on Light-Induced Toxicity to Retinal Pigment Epithelial Cells†

    PubMed Central

    Różanowska, Małgorzata; Bakker, Linda; Boulton, Michael E.; Różanowski, Bartosz

    2012-01-01

    The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α-tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE-19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell reductive activity. 20 min exposure to visible light and photosensitizer decreased cell viability to ~42%. Lipophilic antioxidants increased viabilities to ~70%, ~61% and ~75% for α-tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ~70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mM ascorbate, respectively. 45 min exposure increased cell death to ~74% and to >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α-Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate but did not prevent from ascorbate-mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate-mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate but do not ameliorate its deleterious effects. PMID:22924673

  17. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells

    PubMed Central

    Goto, So; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-01-01

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1–/– mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1–/– mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1–/– pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1–/– mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1–/– choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. PMID:29609731

  18. Reversibility of retinal microvascular changes in severe falciparum malaria.

    PubMed

    Maude, Richard J; Kingston, Hugh W F; Joshi, Sonia; Mohanty, Sanjib; Mishra, Saroj K; White, Nicholas J; Dondorp, Arjen M

    2014-09-01

    Malarial retinopathy allows detailed study of central nervous system vascular pathology in living patients with severe malaria. An adult with cerebral malaria is described who had prominent retinal whitening with corresponding retinal microvascular obstruction, vessel dilatation, increased vascular tortuosity, and blood retinal barrier leakage with decreased visual acuity, all of which resolved on recovery. Additional study of these features and their potential role in elucidating the pathogenesis of cerebral malaria is warranted. © The American Society of Tropical Medicine and Hygiene.

  19. Associations between recent severe hypoglycemia, retinal vessel diameters, and cognition in adults with type 1 diabetes.

    PubMed

    Ryan, Christopher M; Klein, Barbara E K; Lee, Kristine E; Cruickshanks, Karen J; Klein, Ronald

    Mild cognitive dysfunction has been identified in children and adults with type 1 diabetes, but most studies have failed to find a relationship between severe hypoglycemia and cognition, despite reports of such associations in older adults with type 2 diabetes. Focusing on older adults with type 1 diabetes, we examined the associations between cognitive performance and recent episodes of severe hypoglycemia, retinal vessel diameters and the presence of micro- and macrovascular complications. Cognitive functioning was assessed in 244 participants enrolled in the Wisconsin Epidemiologic Study of Diabetic Retinopathy. The mean (SD; range) age at assessment in 2012-14 was 55.2 (8.3; 37-82) years and the mean (SD) duration of diabetes was 41.1 (5.6) years. Three cognitive domains were assessed in this cross-sectional study: mental efficiency and executive function, nonverbal memory, and verbal memory. Multivariate modeling demonstrated that although age and/or education are most strongly associated with performance on measures of mental efficiency, three diabetes-related variables were also associated with poorer test scores: an episode of severe hypoglycemia in the past year (β=-0.360 [95% CI, -0.672, -0.047]), retinal arteriolar and venular diameters (β=0.140 [95% CI, 0.062, 0.219]; β=-0.127 [95% CI -0.207, -0.047]), and carotid artery plaque (β=-0.372 [95% CI -0.741, -0.003]). In addition, recent severe hypoglycemia was associated with poorer nonverbal memory (β=-0.522 [95% CI, -0.849, -0.194]). For middle-aged and older adults with long-duration type 1 diabetes, poorer cognition was associated with a recent episode of severe hypoglycemia as well as with the presence of micro- and/or macrovascular conditions. Given the increasing numbers of aging adults with type 1 diabetes, future longitudinal studies are needed to identify causality and to determine whether diabetes management techniques that reduce the onset or severity of vascular complications and

  20. Severe early onset retinitis pigmentosa in a Moroccan patient with Heimler syndrome due to novel homozygous mutation of PEX1 gene.

    PubMed

    Ratbi, Ilham; Jaouad, Imane Cherkaoui; Elorch, Hamza; Al-Sheqaih, Nada; Elalloussi, Mustapha; Lyahyai, Jaber; Berraho, Amina; Newman, William G; Sefiani, Abdelaziz

    2016-10-01

    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. It is the mildest form known to date of peroxisome biogenesis disorder caused by hypomorphic mutations of PEX1 and PEX6 genes. We report on a second Moroccan family with Heimler syndrome with early onset, severe visual impairment and important phenotypic overlap with Usher syndrome. The patient carried a novel homozygous missense variant c.3140T > C (p.Leu1047Pro) of PEX1 gene. As standard biochemical screening of blood for evidence of a peroxisomal disorder did not provide a diagnosis in the individuals with HS, patients with SNHL and retinal pigmentation should have mutation analysis of PEX1 and PEX6 genes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.