Science.gov

Sample records for adult ventricular myocytes

  1. Mechanical properties of adult feline ventricular myocytes in culture.

    PubMed

    Pollack, P S; Carson, N L; Nuss, H B; Marino, T A; Houser, S R

    1991-01-01

    The contractile and electrophysiological properties of cultured adult feline ventricular myocytes were studied. Cells were field stimulated and contraction was measured using a video-based edge detector. The magnitude of contraction decreased by 36% and the rate of contraction decreased by 52% 2 h after the cells were plated on laminin-coated cover slips. The magnitude and rate of contraction then remained stable for 1 wk. The duration of contraction prolonged and a second component to the twitch frequently, but not invariably, developed after 5 days in culture. This was associated with prolongation of the action potential duration. After 7 days in culture, cells could be divided into two groups based on resting membrane potential. Norepinephrine increased the magnitude of contraction for 5 days after plating. Cultured ventricular myocytes became unresponsive to the effects of norepinephrine after 7 days. Adult cardiac myocytes maintained in primary culture continue to respond to field stimulation and retain many contractile properties for up to 7 days; however, the functional characteristics of these cells do not remain uniform during this time period. PMID:1992803

  2. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes

    PubMed Central

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L.; Vaughan-Jones, Richard D.; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-01-01

    Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. PMID:27089919

  3. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    PubMed

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. PMID:26475678

  4. Structural and Functional Plasticity in Long-term Cultures of Adult Ventricular Myocytes

    PubMed Central

    Joshi-Mukherjee, Rosy; Dick, Ivy E.; Liu, Ting; O'Rourke, Brian; Yue, David T.; Tung, Leslie

    2014-01-01

    Cultured heart cells have long been valuable for characterizing biological mechanism and disease pathogenesis. However, these preparations have limitations, relating to immaturity in key properties like excitation-contraction coupling and β-adrenergic stimulation. Progressive attenuation of the latter is intimately related to pathogenesis and therapy in heart failure. Highly valuable would be a long-term culture system that emulates the structural and functional changes that accompany disease and development, while concurrently permitting ready access to underlying molecular events. Accordingly, we here produce functional monolayers of adult guinea-pig ventricular myocytes (aGPVMs) that can be maintained in long-term culture for several weeks. At baseline, these monolayers exhibit considerable myofibrillar organization and a significant contribution of sarcoplasmic reticular (SR) Ca2+ release to global Ca2+ transients. In terms of electrical signaling, these monolayers support propagated electrical activity and manifest monophasic restitution of action-potential duration and conduction velocity. Intriguingly, β-adrenergic stimulation increases chronotropy but not inotropy, indicating selective maintenance of β-adrenergic signaling. It is interesting that this overall phenotypic profile is not fixed, but can be readily enhanced by chronic electrical stimulation of cultures. This simple environmental cue significantly enhances myofibrillar organization as well as β-adrenergic sensitivity. In particular, the chronotropic response increased, and an inotropic effect now emerges, mimicking a reversal of the progression seen in heart failure. Thus, these aGPVM monolayer cultures offer a valuable platform for clarifying long elusive features of β-adrenergic signaling and its plasticity. PMID:24076394

  5. Effect of overexpressed adenylyl cyclase VI on β1- and β2-adrenoceptor responses in adult rat ventricular myocytes

    PubMed Central

    Stark, Joalice C C; Haydock, Stephen F; Foo, Roger; Brown, Morris J; Harding, Sian E

    2004-01-01

    Adenylyl cyclase VI (ACVI) is one of the most abundantly expressed β adrenergic receptor (βAR)-coupled cyclases responsible for cyclic AMP (cAMP) production within the mammalian myocardium. We investigated the role of ACVI in the regulation of cardiomyocyte contractility and whether it is functionally coupled with β1 adrenergic receptor (β1AR). Recombinant adenoviruses were generated for ACVI and for antisense to ACVI (AS). Adult rat ventricular myocytes were transfected with ACVI virus, AS or both (SAS). Adenovirus for green fluorescent protein (GFP) served as control. Myocyte contraction amplitudes (% shortening) and relaxation times (R50) were analysed. ACVI function was determined using cAMP assays. ACVI-transfected cells demonstrated a strong 139 kDa ACVI protein band compared to controls. ACVI myocytes had higher steady-state intracellular cAMP levels than GFP myocytes when unstimulated (GFP vs ACVI=6.60±0.98 vs 14.2±2.1 fmol cAMP/viable cell, n=4, P<0.05) and in the presence of 1 μM isoprenaline or 10 μM forskolin. ACVI myocytes had increased basal contraction (% shortening: GFP vs ACVI: 1.90±1.36 vs 3.91±2.29, P<0.0001) and decreased basal R50 (GFP vs ACVI: 62.6±24.2 ms (n=50) vs 45.0±17.2 ms (n=248), P<0.0001). ACVI myocyte responses were increased for forskolin (Emax: GFP=6.70±1.59 (n=6); ACVI=9.06±0.69 (n=14), P<0.01) but not isoprenaline. ACVI myocyte responses were increased (Emax: GFP vs ACVI=3.16±0.77 vs 5.10±0.60, P<0.0001) to xamoterol (a partial β1AR-selective agonist) under β2AR blockade (+50 nM ICI 118, 551). AS decreased both control and ACVI-stimulated xamoterol responses (Emax: AS=2.59±1.42, SAS=1.38±0.5). ACVI response was not mimicked by IBMX. Conversely, response through β2 adrenergic receptor (β2AR) was decreased in ACVI myocytes. In conclusion, ACVI overexpression constitutively increases myocyte contraction amplitudes by raising cAMP levels. Native ACVI did not contribute to basal cAMP production or contraction

  6. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II. PMID:27586292

  7. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  8. Oxidative stress decreases microtubule growth and stability in ventricular myocytes.

    PubMed

    Drum, Benjamin M L; Yuan, Can; Li, Lei; Liu, Qinghang; Wordeman, Linda; Santana, L Fernando

    2016-04-01

    Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking. PMID:26902968

  9. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  10. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition

  11. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  12. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte

    PubMed Central

    MacDougall, David A.; Agarwal, Shailesh R.; Stopford, Elizabeth A.; Chu, Hongjin; Collins, Jennifer A.; Longster, Anna L.; Colyer, John; Harvey, Robert D.; Calaghan, Sarah

    2012-01-01

    Inotropy and lusitropy in the ventricular myocyte can be efficiently induced by activation of β1-, but not β2-, adrenoceptors (ARs). Compartmentation of β2-AR-derived cAMP-dependent signalling underlies this functional discrepancy. Here we investigate the mechanism by which caveolae (specialised sarcolemmal invaginations rich in cholesterol and caveolin-3) contribute to compartmentation in the adult rat ventricular myocyte. Selective activation of β2-ARs (with zinterol/CGP20712A) produced little contractile response in control cells but pronounced inotropic and lusitropic responses in cells treated with the cholesterol-depleting agent methyl-β-cyclodextrin (MBCD). This was not linked to modulation of L-type Ca2+ current, but instead to a discrete PKA-mediated phosphorylation of phospholamban at Ser16. Application of a cell-permeable inhibitor of caveolin-3 scaffolding interactions mimicked the effect of MBCD on phosphorylated phospholamban (pPLB) during β2-AR stimulation, consistent with MBCD acting via caveolae. Biosensor experiments revealed β2-AR mobilisation of cAMP in PKA II signalling domains of intact cells only after MBCD treatment, providing a real-time demonstration of cAMP freed from caveolar constraint. Other proteins have roles in compartmentation, so the effects of phosphodiesterase (PDE), protein phosphatase (PP) and phosphoinositide-3-kinase (PI3K) inhibitors on pPLB and contraction were compared in control and MBCD treated cells. PP inhibition alone was conspicuous in showing robust de-compartmentation of β2-AR-derived signalling in control cells and a comparatively diminutive effect after cholesterol depletion. Collating all evidence, we promote the novel concept that caveolae limit β2-AR-cAMP signalling by providing a platform that not only attenuates production of cAMP but also prevents inhibitory modulation of PPs at the sarcoplasmic reticulum. This article is part of a Special Issue entitled “Local Signaling in Myocytes”. PMID

  13. A Mathematical Model of the Mouse Ventricular Myocyte Contraction

    PubMed Central

    Mullins, Paula D.; Bondarenko, Vladimir E.

    2013-01-01

    Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca2+ dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca2+ handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca2+ and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed. PMID:23671664

  14. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes

    PubMed Central

    CAO, HONG; HUANG, CONGXIN; WANG, XIN

    2016-01-01

    Allicin is the active constituent of garlic, a widely used spice and food. The remedial properties of garlic have also been extensively researched and it has been demonstrated that allicin is able to inhibit the transient outward potassium current (Ito) in atrial myocytes. However, the direct effect of allicin on Ito in ventricular myocytes has yet to be elucidated. In the present study, the effects of allicin on Ito in ventricular myocytes isolated from mice were investigated, using the whole-cell patch recording technique. The results revealed that Ito current was not significantly suppressed by allicin in the low-dose group (10 µmol/l; P>0.05). However, Ito was significantly inhibited by higher doses of allicin (30, 100 and 300 µmol/l; P<0.05 vs. control; n=6) in a concentration-dependent manner (IC50=41.6 µmol/l). In addition, a high concentration of allicin (≥100 µmol/l) was able to accelerate the voltage-dependent inactivation of Ito in mouse ventricular myocytes. In conclusion, the present study revealed that allicin inhibited the Ito in mouse ventricular myocytes, which may be the mechanism through which allicin exerts its antiarrhythmic effect. PMID:27168824

  15. Super-Resolution Scanning Patch-Clamp Reveals Clustering of Functional Ion Channels in the Adult Ventricular Myocyte

    PubMed Central

    Bhargava, Anamika; Lin, Xianming; Novak, Pavel; Mehta, Kinneri; Korchev, Yuri

    2013-01-01

    Rationale Compartmentation of ion channels on the cardiomyocyte surface is important for electrical propagation and electromechanical coupling. The specialized T-tubule and costameric structures facilitate spatial coupling of various ion channels and receptors. Existing methods like immunofluorescence and patch-clamp techniques are limited in their ability to localize functional ion channels. As such, a correlation between channel protein location and channel function remains incomplete. Objective To validate a method that permits to routinely image the topography of a live cardiomyocyte, and then study clustering of functional ion channels from a specific microdomain. Methods and Results We used scanning ion conductance microscopy and conventional cell-attached patch-clamp with a software modification that allows controlled increase of pipette tip diameter. The sharp nanopipette used for topography scan was modified into a larger patch pipette which can be positioned with nanoscale precision to a specific site of interest (crest, groove or T-tubules of cardiomyocytes), and sealed to the membrane for cell-attached recording of ion channels. Using this method, we significantly increased the probability of detecting activity of L-type calcium channels in the T-tubules of ventricular cardiomyocytes. We also demonstrated that active sodium channels do not distribute homogenously on the sarcolemma but rather, they segregate into clusters of various densities -most crowded in the crest region- that are surrounded by areas virtually free of functional sodium channels. Conclusions Our new method substantially increases the throughput of recording location-specific functional ion channels on the cardiomyocyte sarcolemma, thus allowing characterization of ion channels in relation to the microdomain in which they reside. PMID:23438901

  16. Cell swelling impairs dye coupling in adult rat ventricular myocytes. Cell volume as a regulator of cell communication

    PubMed Central

    De Mello, WC

    2013-01-01

    The influence of cell swelling on cell communication was investigated in cardiomyocytes isolated from the ventricle of adult rats. Measurements of dye coupling were performed in cell pairs using intracellular dialysis of Lucifer Yellow CH. The pipette was attached to one cell of the pair and after a gig ohm seal was achieved, the membrane was ruptured by a brief suction allowing the dye to diffuse from the pipette into the cell. Fluorescence of the dye in the injected as well as in non-dialyzed cell of the pair was continuously monitored. The results indicate that in cell pairs exposed to hypotonic solution the cell volume was increased by about 60% within 35 min and the dye coupling was significantly reduced by cell swelling. Calculation of gap junction permeability (P(j)) assuming an the intracellular volume accessible to intracellular diffusion of the dye as 12% of total cell volume, showed an average P(j) value of 0.16 ± 0.04 × 10−4 cm/s (n = 35) in the control and 0.89 ± 1.1 × 10−5 cm (n = 40) for cells exposed to hypotonic solution (P < 0.05). Similar results were found assuming intracellular volumes accessible to the dye of 20 and 30% of total cell volume, respectively. Cell swelling did not change the rate of intracellular diffusion of the dye. The results, which indicate that cell volume is an important regulator of gap junction permeability, have important implications to myocardial ischemia and heart failure as well as to heart pharmacology because changes in cell volume caused by drugs and transmitters can impair cell communication with consequent generation of slow conduction and cardiac arrhythmias. PMID:20512611

  17. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.

    PubMed Central

    Takahashi, N; Calderone, A; Izzo, N J; Mäki, T M; Marsh, J D; Colucci, W S

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli. Images PMID:7929822

  18. Models of Excitation–Contraction Coupling in Cardiac Ventricular Myocytes

    PubMed Central

    Jafri, M. Saleet

    2012-01-01

    Excitation–contraction coupling describes the processes relating to electrical excitation through force generation and contraction in the heart. It occurs at multiple levels from the whole heart, to single myocytes and down to the sarcomere. A central process that links electrical excitation to contraction is calcium mobilization. Computational models that are well grounded in experimental data have been an effective tool to understand the complex dynamics of the processes involved in excitation–contraction coupling. Presented here is a summary of some computational models that have added to the understanding of the cellular and subcellular mechanisms that control ventricular myocyte calcium dynamics. Models of cardiac ventricular myocytes that have given insight into termination of calcium release and interval–force relations are discussed in this manuscript. Computational modeling of calcium sparks, the elementary events in cardiac excitation–contraction coupling, has given insight into mechanism governing their dynamics and termination as well as their role in excitation–contraction coupling and is described herein. PMID:22821602

  19. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease. PMID:16220198

  20. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes.

    PubMed

    Despa, Sanda; Bers, Donald M

    2007-07-01

    The Na(+)/K(+)-ATPase (NKA) is the main route for Na(+) extrusion from cardiac myocytes. Different NKA alpha-subunit isoforms are present in the heart. NKA-alpha1 is predominant, although there is a variable amount of NKA-alpha2 in adult ventricular myocytes of most species. It has been proposed that NKA-alpha2 is localized mainly in T-tubules (TT), where it could regulate local Na(+)/Ca(2+) exchange and thus cardiac myocyte Ca(2+). However, there is controversy as to where NKA-alpha1 vs. NKA-alpha2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I(Pump)) measurements and the different ouabain sensitivity of NKA-alpha1 (low) and NKA-alpha2 (high) in rat heart. Ouabain-dependent I(Pump) inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-alpha2, K(1/2) = 0.38 +/- 0.16 microM) that accounts for 29.5 +/- 1.3% of I(Pump) and a low-affinity isoform (NKA-alpha1, K(1/2) = 141 +/- 17 microM) that accounts for 70.5% of I(Pump). Detubulation decreased cell capacitance from 164 +/- 6 to 120 +/- 8 pF and reduced I(Pump) density from 1.24 +/- 0.05 to 1.02 +/- 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-alpha2 accounted for only 18.2 +/- 1.1% of I(Pump). Thus, approximately 63% of I(Pump) generated by NKA-alpha2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-alpha2/NKA-alpha1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-alpha2 is approximately 4.5 times higher in the T-tubules vs. ESL, whereas NKA-alpha1 is almost uniformly distributed between the TT and ESL. PMID:17392375

  1. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes.

    PubMed

    Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José

    2013-01-01

    Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel

  2. Ryanodol action on calcium sparks in ventricular myocytes

    PubMed Central

    Ramos-Franco, Josefina; Gomez, Ana M.; Nani, Alma; Liu, Yiwei; Copello, Julio A.; Fill, Michael

    2012-01-01

    The action of ryanodol on single cardiac ryanodine receptor (RyR2) channels in bilayers and local RyR2-mediated Ca2+ release events (Ca2+ sparks) in ventricular myocytes was defined. At the single channel level, ryanodol intermittently modified single channels into a long lived sub-conductance state with an average duration of 3.8±0.2 s. Unlike ryanodine, ryanodol did not change the open probability (Po) of unmodified channels and high concentrations did not promote full channel closure. Ryanodol action was Po dependent with the KD varying roughly from 20 to 80 μM as Po changed from ~0.2 to 1, respectively. Ryanodol preferentially bound during long channel openings. In intact and permeabilized rat myocytes, ryanodol evoked trains of sparks at active release sites resulting in a significant increase in overall spark frequency. Ryanodol did not increase the number of active release sites. Long lived Ca2+ release events were observed but infrequently and ryanodol action was readily reversed upon drug washout. We propose that ryanodol modifies a few channels during a Ca2+ spark. These modified channels mediate a sustained low intensity Ca2+ release that repeatedly triggers sparks at the same release site. We conclude that ryanodol is an easily generated reversible probe that can be effectively used to explore RyR2-mediated Ca2+ release in cells. PMID:20419313

  3. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes

    PubMed Central

    Zhao, Guiling; Li, Tianyu; Brochet, Didier X. P.; Rosenberg, Paul B.; Lederer, W. J.

    2015-01-01

    In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor, is unclear with respect to its cellular localization, its Ca2+-dependent mobilization, and its action on Ca2+ signaling. Confocal microscopy was used to measure Ca2+ signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca2+ using thapsigargin (2–10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca2+ depletion. Additionally, we found no store-operated Ca2+ entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca2+ content and increased SR Ca2+ leak. These changes in Ca2+ signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca2+ ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca2+ leak and that these actions are independent of store-operated Ca2+ entry, a process that is absent in normal heart cells. PMID:26261328

  4. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  5. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  6. Physiological pathway of magnesium influx in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2014-11-01

    Cytoplasmic free Mg(2+) concentration ([Mg(2+)]i) was measured in rat ventricular myocytes with a fluorescent indicator furaptra (mag-fura-2) introduced by AM-loading. By incubation of the cells in a high-K(+) (Ca(2+)- and Mg(2+)-free) solution, [Mg(2+)]i decreased from ? 0.9 mM to 0.2 to 0.5 mM. The lowered [Mg(2+)]i was recovered by perfusion with Ca(2+)-free Tyrode's solution containing 1 mM Mg(2+). The time course of the [Mg(2+)]i recovery was fitted by a single exponential function, and the first derivative at time 0 was analyzed as being proportional to the initial Mg(2+) influx rate. The Mg(2+) influx rate was inversely related to [Mg(2+)]i, being higher at low [Mg(2+)]i. The Mg(2+) influx rate was augmented by the high extracellular Mg(2+) concentration (5 mM), whereas it was greatly reduced by cell membrane depolarization caused by high K(+). Known inhibitors of TRPM7 channels, 2-aminoethoxydiphenyl borate (2-APB), NS8593, and spermine reduced the Mg(2+) influx rate with half inhibitory concentrations (IC50) of, respectively, 17 ?M, 2.0 ?M, and 22 ?M. We also studied Ni(2+) influx by fluorescence quenching of intracellular furaptra by Ni(2+). The Ni(2+) influx was activated by lowering intra- and extracellular Mg(2+) concentrations, and it was inhibited by 2-APB and NS8593 with IC50 values comparable with those for the Mg(2+) influx. Intracellular alkalization (caused by pulse application of NH4Cl) enhanced, whereas intracellular acidification (induced after the removal of NH4Cl) slowed the Mg(2+) influx. Under the whole-cell patch-clamp configuration, the removal of intracellular and extracellular divalent cations induced large inward and outward currents, MIC (Mg-inhibited cation) currents or IMIC, carried by monovalent cations likely via TRPM7 channels. IMIC measured at -120 mV was diminished to ? 50% by 100 ?M 2-APB or 10 ?M NS8593. These results suggest that TRPM7/MIC channels serve as a major physiological pathway of Mg(2+) influx in rat

  7. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts.

    PubMed

    Gadeberg, Hanne C; Bryant, Simon M; James, Andrew F; Orchard, Clive H

    2016-01-15

    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes. PMID:26566728

  8. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts

    PubMed Central

    Gadeberg, Hanne C.; Bryant, Simon M.; James, Andrew F.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes. PMID:26566728

  9. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  10. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes.

    PubMed Central

    Harrison, S M; McCall, E; Boyett, M R

    1992-01-01

    1. The contraction, measured optically, and the intracellular Na+ activity (aNai), measured with the Na(+)-sensitive fluorescent dye SBFI, have been recorded simultaneously in rat and guinea-pig ventricular myocytes. 2. In rat and guinea-pig ventricular myocytes at rest, aNai was 7.8 +/- 0.3 mM (n = 4) and 5.1 +/- 0.3 mM (n = 16), respectively. 3. When both rat and guinea-pig ventricular myocytes were stimulated at 1 Hz after a rest there was usually a gradual increase in twitch shortening (referred to as a 'staircase') over several minutes accompanied by an increase in aNai over a similar time course. Twitch shortening increased by 21 +/- 3% (n = 6) and 20 +/- 4% (n = 16) (of steady-state twitch shortening during 1 Hz stimulation) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes, respectively. 4. When rat and guinea-pig ventricular myocytes were exposed to strophanthidin to block the Na(+)-K+ pump, there were increases in twitch shortening and aNai over similar time courses. Twitch shortening increased by 24 +/- 4% (n = 5) and 20 +/- 3% (n = 10) (of control twitch shortening) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes respectively. 5. The inotropic effect of cardiac glycosides, such as strophanthidin, is widely regarded to be principally the result of the rise in aNai. The similarity of the relation between twitch shortening and aNai during the staircase and on application of strophanthidin suggests that the progressive increase in the strength of contraction during the staircase was also linked to the rise in aNai. 6. In guinea-pig, but not rat, ventricular myocytes there was hysteresis in the relation between twitch shortening and aNai on application and wash-off of strophanthidin. This indicates that strophanthidin has another inotropic action in guinea-pig ventricular myocytes. 7. A computer model of excitation-contraction coupling has been developed to simulate the staircase and the action of cardiac glycoside

  11. Glycogen Synthase Kinase-3β Plays a Pro-Apoptotic Role in β-Adrenergic Receptor-Stimulated Apoptosis in Adult Rat Ventricular Myocytes: Role of β1 Integrins

    PubMed Central

    Menon, Bindu; Johnson, Jennifer N.; Ross, Robert S.; Singh, Mahipal; Singh, Krishna

    2007-01-01

    β-adrenergic receptor (β-AR) stimulation induces apoptosis in adult rat ventricular myocytes (ARVM). β1 integrin signaling plays a protective role in β-AR-stimulated apoptosis. Glycogen synthase kinase-3β (GSK-3β), a multifunctional serine/threonine kinase, negatively regulates cardiac hypertrophy. Here we show that β-AR stimulation (isoproterenol; 15 min) increases tyr216 phosphorylation and GSK-3β activity. Inclusion of LiCl, inhibitor of GSK-3β, in the reaction mix or expression of catalytically inactive GSK-3β (KM-GSK) inhibited β-AR-stimulated GSK-3β activity. Inhibition of tyrosine kinase using genistein or chelation of intracellular Ca2+ using BAPTA-AM inhibited β-AR-stimulated increases in tyr216 phosphorylation and GSK-3β activity. Inhibition of GSK-3β using pharmacological inhibitors or infection with KM-GSK decreased β-AR-stimulated cytosolic cytochrome C release and apoptosis. Expression of β1 integrins increased ser9 phosphorylation and inhibited β-AR-stimulated increase in GSK-3β activity. Wortmannin, inhibitor of PI3-kinase, reversed the effects of β1 integrins on GSK-3β activity and apoptosis. Purified active matrix metalloproteinase-2 (MMP-2), shown to interfere with β1 integrin signaling, increased GSK-3β activity, while inhibition of MMP-2 inhibited β-AR-stimulated increases in GSK-3β activity. β-AR stimulation induced nuclear accumulation of GSK-3β. β-AR stimulation (3 h) increased the expression of transcription factor Gadd153 (growth arrest- and DNA damage-inducible gene 153). These data suggest that β-AR stimulation increases GSK-3β activity. Activation of GSK-3β plays a pro-apoptotic role in β-AR stimulated apoptosis via the involvement of mitochondrial death pathway. β1 integrins inactivate GSK-3β and play an anti-apoptotic role via the involvement of PI3-kinase pathway. The apoptotic effects of GSK-3β may be mediated, at least in part, via its nuclear localization and induction of pro-apoptotic genes

  12. Resveratrol protects rabbit ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload

    PubMed Central

    Li, Wei; Wang, Yue-peng; Gao, Ling; Zhang, Peng-pai; Zhou, Qing; Xu, Quan-fu; Zhou, Zhi-wen; Guo, Kai; Chen, Ren-hua; Yang, Huang-tian; Li, Yi-gang

    2013-01-01

    Aim: To investigate whether resveratrol suppressed oxidative stress-induced arrhythmogenic activity and Ca2+ overload in ventricular myocytes and to explore the underlying mechanisms. Methods: Hydrogen peroxide (H2O2, 200 μmol/L)) was used to induce oxidative stress in rabbit ventricular myocytes. Cell shortening and calcium transients were simultaneously recorded to detect arrhythmogenic activity and to measure intracellular Ca2+ ([Ca2+]i). Ca2+/calmodulin-dependent protein kinases II (CaMKII) activity was measured using a CaMKII kit or Western blotting analysis. Voltage-activated Na+ and Ca2+ currents were examined using whole-cell recording in myocytes. Results: H2O2 markedly prolonged Ca2+ transient duration (CaTD), and induced early afterdepolarization (EAD)-like and delayed afterdepolarization (DAD)-like arrhythmogenic activity in myocytes paced at 0.16 Hz or 0.5 Hz. Application of resveratrol (30 or 50 μmol/L) dose-dependently suppressed H2O2-induced EAD-like arrhythmogenic activity and attenuated CaTD prolongation. Co-treatment with resveratrol (50 μmol/L) effectively prevented both EAD-like and DAD-like arrhythmogenic activity induced by H2O2. In addition, resveratrol markedly blunted H2O2-induced diastolic [Ca2+]i accumulation and prevented the myocytes from developing hypercontracture. In whole-cell recording studies, H2O2 significantly enhanced the late Na+ current (INa,L) and L-type Ca2+ current (ICa,L) in myocytes, which were dramatically suppressed or prevented by resveratrol. Furthermore, H2O2-induced ROS production and CaMKII activation were significantly prevented by resveratrol. Conclusion: Resveratrol protects ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload through inhibition of INa,L/ICa,L, reduction of ROS generation, and prevention of CaMKII activation. PMID:23912472

  13. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.

    PubMed Central

    Bassani, R A; Bassani, J W; Bers, D M

    1994-01-01

    Transport systems responsible for removing Ca2+ from the myoplasm during relaxation in isolated ferret ventricular myocytes were studied using caffeine-induced contractures. Internal calcium concentration ([Ca2+]i) was measured with the fluorescent calcium indicator indo-1, and the results were compared with our recent detailed characterizations in rabbit and rat myocytes. Relaxation and [Ca2+]i decline during a twitch in ferret myocytes were fast and similar to that in rat myocytes (i.e. half-time, t 1/2 approximately 100-160 ms). During a caffeine-induced contracture (SR Ca2+ accumulation prevented), relaxation was still relatively fast (t 1/2 = 0.57 s) and similar to relaxation in rabbit supported mainly by a strong Na(+)-Ca2+ exchange. When both the SR Ca2+ uptake and Na(+)-Ca2+ exchange are blocked (by caffeine and 0 Na+, 0 Ca2+ solution) relaxation in the ferret myocyte is remarkably fast (approximately 5-fold) compared with rabbit and rat myocytes. The decline of the Cai2+ transient was also fast under these conditions. These values were similar to those in rat under conditions where relaxation is due primarily to Na(+)-Ca2+ exchange. Additional inhibition of either the sarcolemmal Ca(2+)-ATPase or mitochondrial Ca2+ uptake caused only modest slowing of the relaxation of caffeine-induced contracture in 0 Na+, 0 Ca2+ (t 1/2 increased to approximately 3 s). In rabbit myocytes the relaxation t 1/2 is slowed to 20-30 s by these procedures. Even when the systems responsible for slow relaxation in rabbit ventricular myocytes are inhibited (i.e. sarcolemmal Ca(2+)-ATPase and mitochondrial Ca2+ uptake) along with the SR Ca(2+)-ATPase and Na(+)-Ca2+ exchange, relaxation and [Ca2+]i decline in ferret myocytes remain rapid compared with rabbit myocytes. Ca2+ taken up by mitochondria in rabbit myocytes during a caffeine contracture in 0 Na+, 0 Ca2+ solution gradually returns to the SR after caffeine removal, but this component appears to be much smaller in ferret

  14. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slowing of relaxation compared with control myocytes (delta 144 +/- 28 vs. 55 +/- 15% of baseline diastolic position, P < 0.02). Exposure to 2-deoxyglucose increased end-diastolic [Ca2+]i in both groups (P < 0.001 vs. baseline), but there was no difference between hypertrophied and control myocytes (218 +/- 38 vs. 183 +/- 29 nM, respectively). The effects of 2-deoxyglucose were corroborated in isolated oxygenated perfused hearts in which glycolytic inhibition which caused severe elevation of isovolumic diastolic pressure and prolongation of relaxation in the hypertrophied hearts compared with controls. In summary, the inhibition of the glycolytic pathway impairs diastolic relaxation to a greater extent in hypertrophied myocytes than in control myocytes even in well-oxygenated conditions. The severe impairment of diastolic relaxation induced by 2

  15. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes?

    PubMed

    Orchard, C H; Bryant, S M; James, A F

    2013-09-01

    The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart. PMID:23652596

  16. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    PubMed Central

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  17. An Experimental Model Using Cultured Cardiac Myocytes for a Study of the Generation of Premature Ventricular Contractions Under Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Kudo, Nobuki; Yamamoto, Masaya

    2011-09-01

    It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.

  18. Myocyte morphology of free wall trabeculae in right ventricular pressure overload hypertrophy in rabbits.

    PubMed

    Hamrell, B B; Roberts, E T; Carkin, J L; Delaney, C L

    1986-02-01

    Right ventricular (RV) hypertrophy and changes in mechanical properties develop in response to sustained pulmonary artery construction in rabbits. We use basilar RV free wall trabeculae from rabbits for measurements of force, shortening and sarcomere length (diffraction and/or photomicrography). With enzymes we dispersed calcium tolerant myocytes from trabeculae similar to those used for the above mechanical studies. The average weight of the normal (N) rabbits (n = 16) was 2.21 +/- 0.16(1) kg and was 2.11 +/- 0.10 kg for the rabbits with RV hypertrophy (H; n = 16). The ratio of RV free wall to total ventricular weight was 0.17 +/- 0.01 in the N and 0.31 +/- 0.02 in H hearts (P less than 0.01). Average length and width were determined from digitized measures of the projected image of 42 +/- 3 Ca2+ tolerant myocytes from each N heart and 41 +/- 3 from each H heart. Average myocyte length increased from 102.9 +/- 0.9 in N to 109.8 +/- 1.0 micron in H (6.7% above N; P less than 0.05) and average width from 15.4 +/- 0.2 to 20.0 +/- 0.2 micron (29.9% above N; P less than 0.01). Sarcomere length in these quiescent myocytes was 1.92 +/- 0.003 micron in the N and 1.90 +/- 0.004 in H (P greater than 0.05); consequently, the restoring forces in the myocytes were the same as N in H. The greater addition of parallel myofibrils than of series sarcomeres in H is important for tension generation in the presence of the increased pressure load of pulmonary artery constriction. The addition of sarcomeres in series may be important to sustain muscle shortening in H and is consistent with our measures of sarcomere shortening in N and H trabeculae. PMID:2937924

  19. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    PubMed

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. PMID:24412535

  20. A Localized Meshless Approach for Modeling Spatial-temporal Calcium Dynamics in Ventricular Myocytes

    PubMed Central

    Yao, Guangming; Yu, Zeyun

    2011-01-01

    SUMMARY Spatial-temporal calcium dynamics due to calcium release, buffering and re-uptaking plays a central role in studying excitation-contraction (E-C) coupling in both normal and diseased cardiac myocytes. In this paper, we employ a meshless method, namely, the local radial basis function collocation method (LRBFCM) to model such calcium behaviors by solving a nonlinear system of reaction-diffusion partial differential equations. In particular, a simplified structural unit containing a single transverse-tubule (or t-tubule) and its surrounding half sarcomeres is investigated using the meshless method. Numerical results are compared to those generated by finite element methods, showing the capability and efficiency of the LRBFCM in modeling calcium dynamics in ventricular myocytes. The single t-tubule model is also extended to the whole-cell scale with t-tubules excluded to demonstrate the scalability of the proposed meshless method in handling very large domains. The experiments have shown that the LRBFCM is suitable to multi-scale modeling of calcium dynamics in ventricular myocytes with high accuracy and efficiency. PMID:22408720

  1. Cyclic GMP reduces ventricular myocyte stunning after simulated ischemia-reperfusion.

    PubMed

    Gandhi, A; Yan, L; Scholz, P M; Huang, M W; Weiss, H R

    1999-12-01

    We tested the hypothesis that the second messenger activated by nitric oxide, cyclic GMP, would reduce the effects of myocyte stunning following simulated ischemia-reperfusion and that this was related to cyclic GMP protein kinase. Ventricular cardiac myocytes were isolated from New Zealand White rabbits (n = 8). Cell shortening was measured by a video edge detector and protein phosphorylation was determined autoradiographically after SDS gel electrophoresis. Cell shortening data were acquired at: (i) baseline followed by 8-Bromo-cGMP 10(-6) M (8-Br-cGMP) and then KT 5823 10(-6) M (cyclic GMP protein kinase inhibitor) and (ii) simulated ischemia (20 min of 95% N(2)-5% CO(2) at 37 degrees C) followed by simulated reperfusion (reoxygenation) with addition of 8-Br-cGMP 10(-6) M followed by KT 5823 10(-6) M, (iii) addition of 8-Br-cGMP prior to ischemia followed by the addition of KT 5823 10(-6) M after 30 min of reoxygenation. In the control group, 8-Br-cGMP 10(-6) M decreased percentage shortening (%short) (5.0 +/- 0.6 vs 3.8 +/- 0. 4) and the maximum velocity (V(max), microm/s) (48.6 +/- 6.9 vs 40.2 +/- 6.4). KT 5823 10(-6) M added after 8-Br-cGMP partially restored %short (4.6 +/- 0.5) and V(max) (46.6 +/- 8.0). After stunning, baseline myocytes had decreased %short (3.4 +/- 0.2) and V(max) (36. 0 +/- 4.2). After the addition of 8-Br-cGMP, the %short (2.7 +/- 0. 2) and V(max) (27.6 +/- 2.5) decreased further. The addition of KT 5823 did not change either the %short or the V(max). The myocytes with 8-Br-cGMP during ischemia had increased %short (4.2 +/- 0.2) and V(max) (37.2 +/- 3.4) when compared to the stunned group. The addition of KT 5823 did not significantly alter %short (3.3 +/- 0.4) or V(max) (29.2 +/- 5.0) in the myocytes pretreated with 8-Br-cGMP. Protein phosphorylation was increased by 8-Br-cGMP in control and stunned myocytes. KT 5823 blocked this effect in control but not stunned myocytes, suggesting some change in the cyclic GMP protein kinase

  2. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  3. Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    PubMed Central

    Oka, Masahiko; Ochi, Rikuo; Jong, Chian Ju; Gebb, Sarah; Benjamin, John; Schaffer, Stephen; Hobart, Holly H.; Downey, James; McMurtry, Ivan; Gupte, Rakhee

    2012-01-01

    Background Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. Methods We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. Results RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. Conclusion Our novel findings

  4. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport

    NASA Technical Reports Server (NTRS)

    Puglisi, J. L.; Bers, D. M.

    2001-01-01

    An interactive computer program, LabHEART, was developed to simulate the action potential (AP), ionic currents, and Ca handling mechanisms in a rabbit ventricular myocyte. User-oriented, its design allows switching between voltage and current clamp and easy on-line manipulation of key parameters to change the original formulation. The model reproduces normal rabbit ventricular myocyte currents, Ca transients, and APs. We also changed parameters to simulate data from heart failure (HF) myocytes, including reduced transient outward (I(to)) and inward rectifying K currents (I(K1)), enhanced Na/Ca exchange expression, and reduced sarcoplasmic reticulum Ca-ATPase function, but unaltered Ca current density. These changes caused reduced Ca transient amplitude and increased AP duration (especially at lower frequency) as observed experimentally. The model shows that the increased Na/Ca exchange current (I(NaCa)) in HF lowers the intracellular [Ca] threshold for a triggered AP from 800 to 540 nM. Similarly, the decrease in I(K1) reduces the threshold to 600 nM. Changes in I(to) have no effect. Combining enhanced Na/Ca exchange with reduced I(K1) (as in HF) lowers the threshold to trigger an AP to 380 nM. These changes reproduce experimental results in HF, where the contributions of different factors are not readily distinguishable. We conclude that the triggered APs that contribute to nonreentrant ventricular tachycardia in HF are due approximately equally (and nearly additively) to alterations in I(NaCa) and I(K1). A free copy of this software can be obtained at http://www.meddean.luc.edu/lumen/DeptWebs/physio/bers.html.

  5. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-01-01

    BACKGROUND AND PURPOSE The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes. PMID:20718730

  6. Caveolae in Ventricular Myocytes are Required for Stretch-Dependent Conduction Slowing

    PubMed Central

    Pfeiffer, E.R.; Wright, A.T.; Edwards, A.G.; Stowe, J.C.; McNall, K.; Tan, J.; Niesman, I.; Patel, H.H.; Roth, D.M.; Omens, J.H.; McCulloch, A.D.

    2014-01-01

    Mechanical stretch of cardiac muscle modulates action potential propagation velocity, causing potentially arrhythmogenic conduction slowing. The mechanisms by which stretch alters cardiac conduction remain unknown, but previous studies suggest that stretch can affect the conformation of caveolae in myocytes and other cell types. We tested the hypothesis that slowing of action potential conduction due to cardiac myocyte stretch is dependent on caveolae. Cardiac action potential propagation velocities, measured by optical mapping in isolated mouse hearts and in micropatterned mouse cardiomyocyte cultures, decreased reversibly with volume loading or stretch, respectively (by 19±5% and 26±4%). Stretch-dependent conduction slowing was not altered by stretch-activated channel blockade with gadolinium or by GsMTx-4 peptide, but was inhibited when caveolae were disrupted via genetic deletion of caveolin-3 (Cav3 KO) or membrane cholesterol depletion by methyl-β-cyclodextrin. In wild-type mouse hearts, stretch coincided with recruitment of caveolae to the sarcolemma, as observed by electron microscopy. In myocytes from wild-type but not Cav3 KO mice, stretch significantly increased cell membrane capacitance (by 98±64%), electrical time constant (by 285±149%), and lipid recruitment to the bilayer (by 84±39%). Recruitment of caveolae to the sarcolemma during physiologic cardiomyocyte stretch slows ventricular action potential propagation by increasing cell membrane capacitance. PMID:25257915

  7. Two functionally different Na/K pumps in cardiac ventricular myocytes

    PubMed Central

    1995-01-01

    current in canine ventricular myocytes also occurred with two affinities, which are very similar to those from guinea pig myocytes or rat ventricular myocytes. In contrast, isolated canine Purkinje myocytes have predominantly the type-h pumps, insofar as DHO-blockade and extracellular K+ activation are much closer to our type-h results than type-1. These observations suggest for mammalian ventricular myocytes: (a) the presence of two types of Na/K pumps may be a general property. (b) Normal physiological variations in extracellular pH and K+ are important determinants of Na/K pump current. (c) Normal physiological variations in the intracellular environment affect Na/K pump current primarily via the Na+ concentration. Lastly, Na/K pump current appears to be specifically tailored for a tissue by expression of a mix of functionally different types of pumps. PMID:8648301

  8. Activation of chloride current by P2-purinoceptors in rat ventricular myocytes.

    PubMed Central

    Kaneda, M.; Fukui, K.; Doi, K.

    1994-01-01

    1. Rat ventricular myocytes were dissociated and their responses to extracellularly applied ATP were recorded using patch pipettes under the whole cell configuration. 2. ATP initially induced an inward current followed by an outward current at -50 mV. With a Cs-rich pipette solution the late outward current was blocked, leaving a sustained inward current (IATPs) suggesting that a K+ conductance underlies the late response. 3. When the extracellular Cl- concentration was changed, the reversal potential of IATPs corresponded well to the shift of the Cl- equilibrium potential. IATPs was reversibly blocked by the chloride channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). 4. The concentration-response curve of IATPs had a Hill coefficient of 0.98 and an EC50 value of 5.2 x 10(-6) M. 5. ATP was more potent than ADP, while AMP and adenosine were ineffective, suggesting that P2-purinoceptor activation induced IATPs. 6. The activation of IATPs was depressed by depleting the extracellular Mg2+ and increased by adding Mg2+. 7. Our results strongly suggest that P2-purinoceptor activation by ATP induces both a Cl(-)-conductance (IATPs) and a K(+)-conductance in rat ventricular myocytes. PMID:8032621

  9. Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2.

    PubMed

    Oshita, Kensuke; Itoh, Masayuki; Hirashima, Shingo; Kuwabara, Yoshihiro; Ishihara, Keiko; Kuwahara, Koichiro; Nakao, Kazuwa; Kimura, Takeshi; Nakamura, Kei-Ichiro; Ushijima, Kazuo; Takano, Makoto

    2015-03-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are expressed in the ventricles of fetal hearts but are normally down-regulated as development progresses. In the hypertrophied heart, however, these channels are re-expressed and generate a hyperpolarization-activated, nonselective cation current (Ih), which evidence suggests may increase susceptibility to arrhythmia. To test this hypothesis, we generated and analyzed transgenic mice overexpressing HCN2 specifically in their hearts (HCN2-Tg). Under physiological conditions, HCN2-Tg mice exhibited no discernible abnormalities. After the application of isoproterenol (ISO), however, ECG recordings from HCN2-Tg mice showed intermittent atrioventricular dissociation followed by idioventricular rhythm. Consistent with this observation, 0.3 μmol/L ISO-induced spontaneous action potentials (SAPs) in 76% of HCN2-Tg ventricular myocytes. In the remaining 24%, ISO significantly depolarized the resting membrane potential (RMP), and the late repolarization phase of evoked action potentials (APs) was significantly longer than in WT myocytes. Analysis of membrane currents revealed that these differences are attributable to the Ih tail current. These findings suggest HCN2 channel activity reduces the repolarization reserve of the ventricular action potential and increases ectopic automaticity under pathological conditions such as excessive β-adrenergic stimulation. PMID:25562801

  10. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  11. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes

    PubMed Central

    Agarwal, Shailesh R.; MacDougall, David A.; Tyser, Richard; Pugh, Sara D.; Calaghan, Sarah C.; Harvey, Robert D.

    2011-01-01

    β1-Adrenergic receptors (β1ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β1ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, β1AR activation enhanced the L-type Ca2+ current, intracellular Ca2+ transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-β-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by β1ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. β1AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected β1AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between β1AR and EPR responses. They also suggest that β1AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts. PMID:21115018

  12. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  13. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    PubMed

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  14. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts

    PubMed Central

    Bryant, Simon M.; Kong, Cherrie H.T.; Watson, Judy; Cannell, Mark B.; James, Andrew F.; Orchard, Clive H.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. PMID:26103619

  15. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts.

    PubMed

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy; Cannell, Mark B; James, Andrew F; Orchard, Clive H

    2015-09-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation-contraction coupling observed in heart failure. PMID:26103619

  16. Validation of an in vitro contractility assay using canine ventricular myocytes

    SciTech Connect

    Harmer, A.R. Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  17. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  18. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

    PubMed Central

    Greenstein, Joseph L; Winslow, Raimond L

    2002-01-01

    The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments. PMID:12496068

  19. A Mathematical Treatment of Integrated Ca Dynamics within the Ventricular Myocyte

    PubMed Central

    Shannon, Thomas R.; Wang, Fei; Puglisi, José; Weber, Christopher; Bers, Donald M.

    2004-01-01

    We have developed a detailed mathematical model for Ca2+ handling and ionic currents in the rabbit ventricular myocyte. The objective was to develop a model that: 1), accurately reflects Ca-dependent Ca release; 2), uses realistic parameters, particularly those that concern Ca transport from the cytosol; 3), comes to steady state; 4), simulates basic excitation-contraction coupling phenomena; and 5), runs on a normal desktop computer. The model includes the following novel features: 1), the addition of a subsarcolemmal compartment to the other two commonly formulated cytosolic compartments (junctional and bulk) because ion channels in the membrane sense ion concentrations that differ from bulk; 2), the use of realistic cytosolic Ca buffering parameters; 3), a reversible sarcoplasmic reticulum (SR) Ca pump; 4), a scheme for Na-Ca exchange transport that is [Na]i dependent and allosterically regulated by [Ca]i; and 5), a practical model of SR Ca release including both inactivation/adaptation and SR Ca load dependence. The data describe normal electrical activity and Ca handling characteristics of the cardiac myocyte and the SR Ca load dependence of these processes. The model includes a realistic balance of Ca removal mechanisms (e.g., SR Ca pump versus Na-Ca exchange), and the phenomena of rest decay and frequency-dependent inotropy. A particular emphasis is placed upon reproducing the nonlinear dependence of gain and fractional SR Ca release upon SR Ca load. We conclude that this model is more robust than many previously existing models and reproduces many experimental results using parameters based largely on experimental measurements in myocytes. PMID:15347581

  20. Ultraviolet photoalteration of late Na+ current in guinea-pig ventricular myocytes.

    PubMed

    La, C; You, Y; Zhabyeyev, P; Pelzer, D J; McDonald, T F

    2006-03-01

    UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca(2+) imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at -80 mV, dialyzed with K(+)-, Na(+)-free pipette solution, and bathed with K(+)-free Tyrode's solution at 22 degrees C. During experiments that lasted for approximately 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from -80 to -40 mV, but had little effect on background current or on L-type Ca(2+) current. Trials with depolarized holding potential, Ca(2+) channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na(+) current (I(Na)). The amplitude of the late inward current sensitive to 100 microM: TTX was increased by 3.5-fold after 20-30 min of irradiation. UVA modulation of late I(Na) may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac I(Na). PMID:16783617

  1. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  2. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes.

    PubMed

    Yan, Xinhua; Schuldt, Adam J T; Price, Robert L; Amende, Ivo; Liu, Fen-Fen; Okoshi, Katashi; Ho, Kalon K L; Pope, Adèle J; Borg, Thomas K; Lorell, Beverly H; Morgan, James P

    2008-03-01

    The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice. PMID:18178728

  3. Characterization and agonist regulation of muscarinic ([3H]N-methyl scopolamine) receptors in isolated ventricular myocytes from rat.

    PubMed

    Horackova, M; Robinson, B; Wilkinson, M

    1990-11-01

    Cell surface muscarinic cholinergic receptors have been characterized and quantified for the first time, in intact, isolated adult rat cardiomyocytes. The cells were previously established as functionally fully compatible with cellular responses in intact cardiac tissue. The specific binding of the hydrophilic radioligand, [3H]-NMS, (N-methyl-[3H]-scopolamine methylchloride) was found to be stereo-specific, saturable, reversible and of high affinity. Binding of [3H]-NMS demonstrated appropriate drug specificity and was positively correlated with increasing cell concentrations. Bmax for [3H]-NMS binding to ventricular myocytes, enzymatically dissociated from adult male rats, was 15.8 +/- 1.03 fmol/25 x 10(3) cells (at 4 degrees C) and KD was 0.27 +/- 0.05 nM (n = 14). Binding assays performed at a higher incubation temperature (30 degrees C) yielded a higher Bmax value (22.1 +/- 1.6 fmol/25 x 10(3) cells; n = 11; P less than 0.005 vs. Bmax at 4 degrees C) but an unchanged KD (0.23 +/- 0.06 nM). Pretreatment of myocytes with the muscarinic agonist carbachol (1 mM) at 37 degrees C resulted in a reduction (down-regulation) in specific binding of the hydrophilic ligand [3H]-NMS. The magnitude of this reduction and its rate of recovery were dependent on the time of the exposure to carbachol. Exposures of 30-60 min elicited down-regulated by 35% (Bmax = 14.29 +/- 1.66 changed to 9.5 +/- 1.79 fmol/25 x 10(3) cells, without change in KD P less than 0.01, n = 4). The down-regulation of the muscarinic receptors by carbachol was insensitive to application of bacitracin - an inhibitor of endocytosis. On the other hand preincubation with 10(-9)M atropine, a muscarinic antagonist, hindered the agonist-induced receptor "loss" from the cell surface confirming the muscarinic nature of these receptors. We conclude that our preparation of intact, isolated ventricular cardiomyocytes is ideally suited for the study of cell surface muscarinic receptor regulation under physiological and

  4. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  5. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  6. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  7. Hyperpolarization and lysophosphatidylcholine induce inward currents and ethidium fluorescence in rabbit ventricular myocytes.

    PubMed

    Song, Y-M; Ochi, R

    2002-12-01

    Strong electric pulses produce reversible or irreversible membrane breakdown (electroporation). We analysed the permeation properties of minute pores caused by hyperpolarization or lysophosphatidylcholine (LPC) by comparing the amount of charge carried by irregular inward currents (I(hi)) with changes in ethidium bromide (EB) fluorescence in isolated rabbit ventricular myocytes. Forty-second negative pulses from a holding potential of -20 mV induced I(hi) whose conductance increased with hyperpolarization; the mean conductance (G(hi)) was 63.6 +/- 9.9 pS pF(-1) (mean +/- S.E.M., n = 9) at -160 mV. EB fluorescence increased during voltage pulses in parallel with the time integral of I(hi) (Q(hi)), with the magnitude of the increases in nuclear EB fluorescence being 5.3 times greater than in the cytoplasm at -160 mV. Similar hyperpolarization-induced parallel increases in I(hi) and EB fluorescence were also obtained in Na(+)-free, N-methyl-D-glucamine (NMDG) solution. LPC (10 microM) induced large (101.2 +/- 21.2 pS pF(-1), n = 16), rapid (rise times, 1-10 ms) I(hi) with slow relaxation rates at -80 mV that reflected increases in G(hi) to 94.3 +/- 24.8 pS pF(-1) (n = 8) at 6 min. Plots of EB fluorescence vs. Q(hi) were well fitted by a common Hill's equation with a Hill coefficient of 0.97. Taken together, our findings indicate that hyperpolarization and LPC produced pores having the same filter properties for the permeation of small ions, including ethidium(+), and that I(hi) (carried in part by Ca(2+)) generated by membrane breakdown are capable of supplying sufficient ions to evoke abnormal excitation and contraction in cardiac myocytes. PMID:12456826

  8. Effects of Mg2+ on Ca2+ waves and Ca2+ transients of rat ventricular myocytes.

    PubMed

    Terada, H; Hayashi, H; Noda, N; Satoh, H; Katoh, H; Yamazaki, N

    1996-03-01

    It has been shown that the occurrence of the transient inward current, which is responsible for triggered activity, was often associated with propagating regions of increased intracellular Ca2+ concentration ([Ca2+]i), i.e., the "Ca2+ wave." To investigate the mechanism of antiarrhythmic action of Mg2+, we have studied effects of high concentrations of Mg2+ on Ca2+ waves in isolated rat ventricular myocytes. [Ca2+]i was estimated using the Ca(2+)-indicating probe indo 1. Ca2+ waves in myocytes, stimulated at 0.2 Hz, were induced by perfusion of isoproterenol (10(-7) M). High Mg2+ concentration suppressed Ca2+ waves in a concentration-dependent manner (36% at 4 mM, 70% at 8 mM, and 82% at 12 mM). The Ca2+ channel blocker verapamil also suppressed Ca2+ waves in a similar way. In contrast with marked depression of Ca2+ transients by verapamil, Ca2+ transients were not affected by high Mg2+ concentration (8 mM). High Mg2+ concentration also reduced frequencies of Ca2+ waves in the absence of electrical stimulation, whereas verapamil failed to reduce frequencies of Ca2+ waves. Reduction in frequency of Ca2+ waves by high Mg2+ concentration was associated with slowing of propagation velocity of Ca2+ waves. To examine whether suppressive effects of high Mg2+ concentration on Ca2+ waves were related to an increase in intracellular Mg2+ concentration ([Mg2+]i), the effect of high-Mg2+ solution on [Mg2+]i was examined in myocytes loaded with mag-fura 2. An increase in extracellular Mg2+ concentration from 1 to 12 mM increased [Mg2+]i from 1.06 +/- 0.16 to 1.87 +/- 0.22 mM (P < 0.01) in 30 min. To examine the effect of high Mg2+ concentration on amount of releasable Ca2+ in the sarcoplasmic reticulum, the effect of high Mg2+ concentration on the Ca2+ transient induced by a rapid application of caffeine was examined. High-Mg2+ solution increased the peak of the caffeine-induced Ca2+ transient. These results suggest that the inhibitory effect of Mg2+ on Ca2+ waves was not due

  9. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes.

    PubMed Central

    Xiao, Y F; Kang, J X; Morgan, J P; Leaf, A

    1995-01-01

    Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo. PMID:7479925

  10. A human ventricular myocyte model with a refined representation of excitation-contraction coupling.

    PubMed

    Himeno, Yukiko; Asakura, Keiichi; Cha, Chae Young; Memida, Hiraku; Powell, Trevor; Amano, Akira; Noma, Akinori

    2015-07-21

    Cardiac Ca(2+)-induced Ca(2+) release (CICR) occurs by a regenerative activation of ryanodine receptors (RyRs) within each Ca(2+)-releasing unit, triggered by the activation of L-type Ca(2+) channels (LCCs). CICR is then terminated, most probably by depletion of Ca(2+) in the junctional sarcoplasmic reticulum (SR). Hinch et al. previously developed a tightly coupled LCC-RyR mathematical model, known as the Hinch model, that enables simulations to deal with a variety of functional states of whole-cell populations of a Ca(2+)-releasing unit using a personal computer. In this study, we developed a membrane excitation-contraction model of the human ventricular myocyte, which we call the human ventricular cell (HuVEC) model. This model is a hybrid of the most recent HuVEC models and the Hinch model. We modified the Hinch model to reproduce the regenerative activation and termination of CICR. In particular, we removed the inactivated RyR state and separated the single step of RyR activation by LCCs into triggering and regenerative steps. More importantly, we included the experimental measurement of a transient rise in Ca(2+) concentrations ([Ca(2+)], 10-15 μM) during CICR in the vicinity of Ca(2+)-releasing sites, and thereby calculated the effects of the local Ca(2+) gradient on CICR as well as membrane excitation. This HuVEC model successfully reconstructed both membrane excitation and key properties of CICR. The time course of CICR evoked by an action potential was accounted for by autonomous changes in an instantaneous equilibrium open probability of couplons. This autonomous time course was driven by a core feedback loop including the pivotal local [Ca(2+)], influenced by a time-dependent decay in the SR Ca(2+) content during CICR. PMID:26200878

  11. Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study.

    PubMed Central

    Cerbai, E.; Guerra, L.; Varani, K.; Barbieri, M.; Borea, P. A.; Mugelli, A.

    1995-01-01

    1. We used electrophysiological and binding techniques to assess the presence of beta 1- and beta 2-adrenoceptors (beta 1AR and beta 2AR) in rat cardiac myocytes and to determine their ratio during aging. Experiments were performed in left ventricular myocytes enzymatically dissociated from the heart of 3-(young) or 22-month-old (old) Wistar Kyoto rats. 2. In patch-clamp experiments, myocytes from old rats showed a prolonged action potential duration (at -20 mV: 41.7 +/- 3.6 vs 26.2 +/- 3.1 ms; at -60 mV: 154.4 +/- 17.7 vs 87.1 +/- 6.9 ms, P < 0.05) and an augmented membrane capacitance (an index of cell size) (271.7 +/- 20.2 vs 164.3 +/- 14.6 pF, P < 0.05) compared to young rats. beta 2AR stimulation, achieved by superfusing myocytes with the selective beta 2AR agonist, zinterol (10 microM) or with (-)-isoprenaline (1 microM) in the presence of the selective beta 1AR antagonist, CGP 20712A (0.1 microM), significantly increased L-type calcium current (ICa,L) in rat ventricular myocytes. The percentage increase was similar in both young and old rats, either with zinterol (26.9 +/- 3.6% and 24.2 +/- 2.8%, respectively) or isoprenaline plus CGP 20712A (30.4 +/- 3.7% and 22.4 +/- 4.1%, respectively). Isoprenaline alone (beta 1AR and beta 2AR stimulation) caused a much smaller increase in ICa,L in old rats (58.4 +/- 12.1%) than in younger ones (95.3 +/- 8.1%) (P = 0.067).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528568

  12. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes.

    PubMed

    Egom, Emmanuel Eroume-A; Bae, James S H; Capel, Rebecca; Richards, Mark; Ke, Yunbo; Pharithi, Rebabonye B; Maher, Vincent; Kruzliak, Peter; Lei, Ming

    2016-08-01

    Modulation of Ca(2+) homoeostasis in cardiac myocytes plays a major role in beat-to-beat regulation of heart function. Previous studies suggest that sphingosine-1-phosphate (S1P), a biologically active sphingomyelin metabolite, regulates Ca(2+) handling in cardiac myocytes, but the underlying mechanism is unclear. In the present study, we tested the hypothesis that S1P-induced functional alteration of intracellular Ca(2+) handling includes the L-type calcium channel current (ICa,L) via a signalling pathway involving P21-activated kinase 1 (Pak1). Our results show that, in rat ventricular myocytes, S1P (100 nM) does not affect the basal activity of ICa,L but is able to partially reverse the effect of the β-adrenergic agonist Isoproterenol (ISO, 100 nM) on ICa,L. S1P (25 nM) also significantly prevents ISO (5 nM)-induced Ca(2+) waves and diastolic Ca(2+) release in these cells. Our further molecular characterisation demonstrates that Pak1 activity is increased in myocytes treated with S1P (25 nM) compared with those myocytes without treatment of S1P. By immunoprecipitation we demonstrate that Pak1 and protein phosphatase 2A (PP2A) are associated in ventricular tissue indicating their functional interaction. Thus the results indicate that S1P attenuates β-adrenergic stress-induced alteration of intracellular Ca(2+) release and L-type Ca(2+) channel current at least in part via Pak1-PP2A-mediated signalling. PMID:27372350

  13. R-CEPIA1er as a new tool to directly measure sarcoplasmic reticulum [Ca] in ventricular myocytes.

    PubMed

    Bovo, Elisa; Martin, Jody L; Tyryfter, Jollyn; de Tombe, Pieter P; Zima, Aleksey V

    2016-07-01

    In cardiomyocytes, [Ca] within the sarcoplasmic reticulum (SR; [Ca]SR) partially determines the amplitude of cytosolic Ca transient that, in turn, governs myocardial contraction. Therefore, it is critical to understand the molecular mechanisms that regulate [Ca]SR handling. Until recently, the best approach available to directly measure [Ca]SR was to use low-affinity Ca indicators (e.g., Fluo-5N). However, this approach presents several limitations, including nonspecific cellular localization, dye extrusion, and species limitation. Recently a new genetically encoded family of Ca indicators has been generated, named Ca-measuring organelle-entrapped protein indicators (CEPIA). Here, we tested the red fluorescence SR-targeted Ca sensor (R-CEPIA1er) as a tool to directly measure [Ca]SR dynamics in ventricular myocytes. Infection of rabbit and rat ventricular myocytes with an adenovirus expressing the R-CEPIA1er gene displayed prominent localization in the SR and nuclear envelope. Calibration of R-CEPIA1er in myocytes resulted in a Kd of 609 μM, suggesting that this sensor is sensitive in the whole physiological range of [Ca]SR [Ca]SR dynamics measured with R-CEPIA1er were compared with [Ca]SR measured with Fluo5-N. We found that both the time course of the [Ca]SR depletion and fractional SR Ca release induced by an action potential were similar between these two Ca sensors. R-CEPIA1er fluorescence did not decline during experiments, indicating lack of dye extrusion or photobleaching. Furthermore, measurement of [Ca]SR with R-CEPIA1er can be combined with cytosolic [Ca] measurements (with Fluo-4) to obtain more detailed information regarding Ca handling in cardiac myocytes. In conclusion, R-CEPIA1er is a promising tool that can be used to measure [Ca]SR dynamics in myocytes from different animal species. PMID:27233762

  14. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes.

    PubMed

    Brette, F; Calaghan, S C; Lappin, S; White, E; Colyer, J; Le Guennec, J Y

    2000-10-01

    The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude. PMID:11009486

  15. Electrotonic suppression of early afterdepolarizations in the neonatal rat ventricular myocyte monolayer

    PubMed Central

    Himel, Herman D; Garny, Alan; Noble, Penelope J; Wadgoankar, Raj; Savarese, Joseph; Liu, Nian; Bub, Gil; El-Sherif, Nabil

    2013-01-01

    Pathologies that result in early afterdepolarizations (EADs) are a known trigger for tachyarrhythmias, but the conditions that cause surrounding tissue to conduct or suppress EADs are poorly understood. Here we introduce a cell culture model of EAD propagation consisting of monolayers of cultured neonatal rat ventricular myocytes treated with anthopleurin-A (AP-A). AP-A-treated monolayers display a cycle length dependent prolongation of action potential duration (245 ms untreated, vs. 610 ms at 1 Hz and 1200 ms at 0.5 Hz for AP-A-treated monolayers). In contrast, isolated single cells treated with AP-A develop prominent irregular oscillations with a frequency of 2.5 Hz, and a variable prolongation of the action potential duration of up to several seconds. To investigate whether electrotonic interactions between coupled cells modulates EAD formation, cell connectivity was reduced by RNA silencing gap junction Cx43. In contrast to well-connected monolayers, gap junction silenced monolayers display bradycardia-dependent plateau oscillations consistent with EADs. Further, simulations of a cell displaying EADs electrically connected to a cell with normal action potentials show a coupling strength-dependent suppression of EADs consistent with the experimental results. These results suggest that electrotonic effects may play a critical role in EAD-mediated arrhythmogenesis. PMID:24018945

  16. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism.

    PubMed

    Obis, Èlia; Irazusta, Verónica; Sanchís, Daniel; Ros, Joaquim; Tamarit, Jordi

    2014-08-01

    Friedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death. The specific effects of frataxin depletion on cardiomyocytes are poorly understood because no appropriate cardiac cellular model is available to researchers. To address this research need, we present a model based on primary cultures of neonatal rat ventricular myocytes (NRVMs) and short-hairpin RNA interference. Using this approach, frataxin was reduced down to 5 to 30% of control protein levels after 7 days of transduction. At this stage the activity and amount of the iron-sulfur protein aconitase, in vitro activities of several OXPHOS components, levels of iron-regulated mRNAs, and the ATP/ADP ratio were comparable to controls. However, NRVMs exhibited markers of oxidative stress and a disorganized mitochondrial network with enlarged mitochondria. Lipids, the main energy source of heart cells, also underwent a clear metabolic change, indicated by the increased presence of lipid droplets and induction of medium-chain acyl-CoA dehydrogenase. These results indicate that mitochondria and lipid metabolism are primary targets of frataxin deficiency in NRVMs. Therefore, they contribute to the understanding of cardiac-specific mechanisms occurring in FRDA and give clues for the design of cardiac-specific treatment strategies for FRDA. PMID:24751525

  17. Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

    PubMed Central

    Suzuki, Gen; Weil, Brian R.; Leiker, Merced M.; Ribbeck, Amanda E.; Young, Rebeccah F.; Cimato, Thomas R.; Canty, John M.

    2014-01-01

    Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair. PMID:25402428

  18. Intracellular Ca2+ transients during rapid cooling contractures in guinea-pig ventricular myocytes.

    PubMed Central

    Bers, D M; Bridge, J H; Spitzer, K W

    1989-01-01

    1. We measured intracellular Ca2+ transients during rapid cooling contractures (RCCs) in guinea-pig ventricular myocytes using the fluorescent Ca2+ indicator, Indo-1. 2. Rapid cooling of myocytes from 22 to 0-1 degrees C induced a rapid increase in [Ca2+]i which preceded the peak of the contraction and was sometimes large enough to saturate Indo-1. This indicates that [Ca2+]i may reach greater than 10 microM during an RCC. 3. The [Ca2+]i during the RCC slowly declined from its peak value and most of this decline in [Ca2+]i can be attributed to slow reaccumulation of Ca2+ by the sarcoplasmic reticulum (SR) in the cold. RCCs induced in the absence of Cao2+, were not different from control, supporting previous conclusions that RCCs depend exclusively on intracellular Ca2+ stores. 4. RCCs are depressed by long rest periods (rest decay) or by exposure to ryanodine or caffeine, which supports conclusions that RCCs are due to Ca2+ release from the SR. The rest decay of RCCs can be almost completely prevented by applying Nao(+)-free solution during the rest period. This implies that the loss of SR Ca2+ during rest depends on the sarcolemmal Na(+)-Ca2+ exchange (and not the sarcolemmal Ca2(+)-ATPase pump). 5. Rapid rewarming during an RCC normally leads to an additional transient contraction (or rewarming spike), without any increase in [Ca2+]i. Thus, the rewarming spike might be attributable to an increase in myofilament Ca2+ sensitivity induced by rewarming. 6. A second RCC is used to assess the fraction of Ca2+ which is re-sequestered by the SR during relaxation from the first RCC. In control solution progressive RCCs decline in amplitude, but in Na(+)-free, Ca2(+)-free solution they are of constant amplitude. We conclude that the SR Ca2+ pump and Na(+)-Ca2+ exchange are responsible for relaxation and that the latter may account for 20-50% of relaxation. 7. These results support the use of RCCs as a useful means of assessing SR Ca2+ content in intact cardiac muscle cells

  19. NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes.

    PubMed

    Villmow, Marten; Klöckner, Udo; Heymes, Christophe; Gekle, Michael; Rueckschloss, Uwe

    2015-09-01

    Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes. PMID:26173391

  20. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes.

    PubMed Central

    Donoso, P; Mill, J G; O'Neill, S C; Eisner, D A

    1992-01-01

    1. The fluorescent Na+ indicator SBFI was incorporated into isolated ventricular myocytes using the acetoxymethyl (AM) ester. 2. The excitation spectrum was found to be shifted about 20 nm in the cell compared to in vitro. In the cell, an increase of [Na+] decreased fluorescence at 380 nm (F380) and had no effect at 340 nm (F340). The ratio (R = F340/F380) was used as a measure of [Na+]i. 3. In vivo calibration of SBFI for [Na+]i was obtained by equilibrating [Na+] across the plasma membrane with a divalent-free solution in the presence of gramicidin D. 4. Selective removal of the surface membrane with saponin or digitonin released only about 50% of the indicator. Following saponin treatment, cyanide or carbonylcyanide m-chlorphenylhydrazone (CCCP) increased the apparent [Na+] measured by the remaining (presumably mitochondrial) SBFI. It is suggested that mitochondrial [Na+] is normally less than cytoplasmic. 5. Attempts to examine the effects of metabolic inhibition on [Na+]i were hampered by changes of autofluorescence due to changes of [NADH]. It is shown that this effect can be corrected for using the isosbestic signal (excited at 340 nm). 6. Inhibition of both aerobic metabolism (with CN-) and glycolysis (glucose removal or iodoacetate) produced a gradual increase of [Na+]i. This began before the resting contracture developed and may (via Na(+)-Ca2+ exchange) account for some of the rise of diastolic [Ca2+]i seen in previous work. The rise of [Na+]i began at about the same time as the decrease of systolic contraction and therefore at a time when [ATP]i had begun to fall. PMID:1593474

  1. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.

    PubMed

    Negroni, Jorge A; Morotti, Stefano; Lascano, Elena C; Gomes, Aldrin V; Grandi, Eleonora; Puglisi, José L; Bers, Donald M

    2015-04-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy

  2. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model

    PubMed Central

    Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.

    2015-01-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric

  3. Effects of trimebutine maleate on delayed rectifier K+ currents in guinea-pig ventricular myocytes.

    PubMed

    Morisawa, T; Hasegawa, J; Tanabe, K; Watanabe, A; Kitano, M; Kishimoto, Y

    2000-04-01

    The effects of trimebutine maleate, a drug commonly used to regulate motility in the gastrointestinal tract, on the delayed rectifier K+ current (I(K)) were evaluated in guinea-pig ventricular myocytes to determine whether the drug has a proarrhythmic effect through blockade of I(K). Trimebutine decreased I(K) in a concentration-dependent manner. To investigate the effects of trimebutine on two components of I(K) (I(Kr) and I(Ks); rapidly activated and slowly activated components, respectively), we performed the envelope-of-tails test. Trimebutine-sensitive I(K) was determined by digital subtraction of I(K) during exposure to trimebutine from control I(K) for each duration of the test pulse over the range 50 ms-2 s. The ratio of deltaI(K,tail)/deltaI(K) plotted against pulse duration for trimebutine-sensitive I(K) gradually decreased to a steady-state value as the duration of the test pulse was lengthened. This finding suggested a weak inhibitory effect of trimebutine on both I(Kr) and I(Ks). The effects of trimebutine on the inward rectifier K+ current (I(K1)) responsible for the resting potential and final repolarization phase of the action potential were investigated by applying voltage clamp ramps over a broad range of potentials. No significant effects were observed at 10 or 100 microM. We next investigated the effects of the drug on the L-type Ca2+ current (I(Ca)). Significant inhibition of I(Ca) was observed at trimebutine concentrations greater than 10 microM. These results suggested that trimebutine maleate has weak inhibitory effects on I(Kr), I(Ks) and I(Ca) at concentrations much higher than those in clinical use. PMID:10813550

  4. Multiphysics model of a rat ventricular myocyte: A voltage-clamp study

    PubMed Central

    2012-01-01

    Background The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. Methods Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. Results We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. Conclusions Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades. PMID:23171697

  5. Trimetazidine effect on phospholipid synthesis in ventricular myocytes: consequences in alpha-adrenergic signaling.

    PubMed

    Tabbi-Anneni, Iméne; Lucien, Arnaud; Grynberg, Alain

    2003-02-01

    The anti-anginal drug trimetazidine (TMZ) has been shown to increase the synthesis of phospholipids in ventricular myocytes, including phosphatidyl-inositol (PI). This study focused on the consequences of increasing PI metabolism on alpha-adrenergic signaling pathway in cultured rat cardiomyocytes. In the cells treated with TMZ, the synthesis of PI from inositol was largely increased as compared with the control (+55% in 60 min). The stimulation of alpha-adrenergic receptors by phenylephrine (PE) induced a dose-dependent production of inositide phosphates (IPs) by phospholipase C (PLC) activation. However, the amount of available IPs was significantly lower in TMZ-treated cells, in a dose-dependent manner. This effect was observed in the presence and absence of the IP1-phosphatase inhibitor LiCl. The in vitro determination of PLC activity revealed that this effect could not be attributed to the direct inhibition of the enzyme by TMZ. The TMZ-induced reduction of IPs in the PE-stimulated cardiomyocytes should be attributed to the increase of inositol recycling and incorporation in membrane structures, elicited by increased phospholipid synthesis. The consequences of this reduction in IPs availability were investigated on the cardiomyocyte hypertrophy induced by alpha-adrenergic chronic stimulation. Acute stimulation with PE increased protein synthesis (+50%), but this increase was largely prevented by TMZ. In conclusion, TMZ reduces cell available IPs, by accelerating their recycling in membranes as PI. This effect results in a cytoprotection in the pathological process of hypertrophy elicited by chronic alpha-adrenergic stimulation. PMID:12588630

  6. Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.

    PubMed Central

    Hiraoka, M; Kawano, S

    1989-01-01

    1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and

  7. Reduction in the amplitude of shortening and Ca(2+) transient by phlorizin and quercetin-3-O-glucoside in ventricular myocytes from streptozotocin-induced diabetic rats.

    PubMed

    Hamouda, N N; Qureshi, M A; Alkaabi, J M; Oz, M; Howarth, F C

    2016-06-20

    Diabetes mellitus is the leading cause of cardiovascular morbidity and mortality. Phlorizin (PHLOR) and quercetin-3-O-glucoside (QUER-3-G) are two natural compounds reported to have antidiabetic properties by inhibiting sodium/glucose transporters. Their effects on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin (STZ)-induced diabetic rats were investigated. Video edge detection and fluorescence photometry were used to measure ventricular myocyte shortening and intracellular Ca(2+), respectively. Blood glucose in STZ rats was 4-fold higher (469.64+/-22.23 mg/dl, n=14) than in Controls (104.06+/-3.36 mg/dl, n=16). The amplitude of shortening was reduced by PHLOR in STZ (84.76+/-2.91 %, n=20) and Control (83.72+/-2.65 %, n=23) myocytes, and by QUER-3-G in STZ (79.12+/-2.28 %, n=20) and Control (76.69+/-1.92 %, n=30) myocytes. The amplitude of intracellular Ca(2+) was also reduced by PHLOR in STZ (82.37+/-3.16 %, n=16) and Control (73.94+/-5.22 %, n=21) myocytes, and by QUER-3-G in STZ (73.62+/-5.83 %, n=18) and Control (78.32+/-3.54 %, n=41) myocytes. Myofilament sensitivity to Ca(2+) was not significantly altered by PHLOR; however, it was reduced by QUER-3-G modestly in STZ myocytes and significantly in Controls. PHLOR and QUER-3-G did not significantly alter sarcoplasmic reticulum Ca(2+) in STZ or Control myocytes. Altered mechanisms of Ca(2+) transport partly underlie PHLOR and QUER-3-G negative inotropic effects in ventricular myocytes from STZ and Control rats. PMID:26447513

  8. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  9. The cytosolic calcium transient modulates the action potential of rat ventricular myocytes.

    PubMed Central

    duBell, W H; Boyett, M R; Spurgeon, H A; Talo, A; Stern, M D; Lakatta, E G

    1991-01-01

    1. The modulation of the action potential by the cytosolic Ca2+ (Cai2+) transient was studied in single isolated rat ventricular myocytes loaded with the acetoxymethyl ester form of the Ca(2+)-sensitive fluorescent dye Indo-1. Stimulation following rest and exposure to ryanodine were used to change the amount of Ca2+ released from the sarcoplasmic reticulum and thus the size of the Cai2+ transient. The Cai2+ transient was measured as the change, upon stimulation, in the ratio of Indo-1 fluorescence at 410 nm to that at 490 nm (410/490) and action potentials or membrane currents were recorded using patch-type microelectrodes. 2. When stimulation was initiated following rest, the magnitude of the Cai2+ transient decreased in a beat-dependent manner until a steady state was reached. The negative staircase in the Cai2+ transient was accompanied by a similar beat-dependent decrease in the duration of the action potential, manifested primarily as a gradual loss of the action potential plateau (approximately -45 mV). A slow terminal phase of repolarization of a few millivolts in amplitude was found to parallel the terminal decay of the Cai2+ transient. 3. The terminal portion of phase-plane loops of membrane potential (Vm) vs. Indo-1 ratio from all of the beats of a stimulus train followed a common linear trajectory even though the individual beats differed markedly in the duration and amplitude of the action potential and Cai2+ transient. 4. When the stimulation dependence of the Cai2+ transient was titrated away with submaximal exposure to ryanodine, the stimulation-dependent changes in the action potential plateau and terminal phase of repolarization were also eliminated. The same effect was noted in cells which, fortuitously, did not show a staircase in the Cai2+ transient following a period of rest. 5. When action potentials were triggered immediately following spontaneous release of Ca2+ from the sarcoplasmic reticulum, which results in a small depolarization at the

  10. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats

    PubMed Central

    Campbell, Stuart G.; Haynes, Premi; Kelsey Snapp, W.; Nava, Kristofer E.

    2013-01-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca2+ transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca2+ transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca2+ dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion. PMID:23792678

  11. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.

    PubMed Central

    Bouchard, R A; Clark, R B; Giles, W R

    1993-01-01

    1. Regulation of unloaded cell shortening and relaxation by sarcolemmal Na(+)-Ca2+ exchange was investigated in rat ventricular myocytes. Contraction of single cells at 22 +/- 1 degrees C was measured simultaneously with membrane current and voltage using the whole-cell voltage clamp technique in combination with a video edge-detection device. 2. The extent of mechanical activation (cell shortening amplitude) was strongly dependent on diastolic membrane potential over the voltage range -140 to -50 mV. This voltage sensitivity of contraction was abolished completely when a recently described inhibitory peptide of the cardiac Na(+)-Ca2+ exchanger (XIP, 2 x 10(-5) M) was present in the recording pipette, demonstrating that in rat ventricular cells Na(+)-Ca2+ exchange is modulated by diastolic membrane potential. 3. Possible influences of Na(+)-Ca2+ exchange on contraction were studied from a holding potential of -80 mV. Depolarizations (-50 to +60 mV) resulted in a bell-shaped shortening-voltage (S-V) relationship. These contractions were suppressed completely by either Cd2+ (10(-4) M) or verapamil (10(-5) M), but remained unchanged during superfusion with tetrodotoxin (TTX, 1.5 x 10(-5) M), when [NA+]o was reduced from 140 to 10 mM by substitution with either Li+ or Cs+ ions or when pipette Na+ was varied between 8 and 13 mM. XIP (2 x 10(-5) M) increased the magnitude and duration of twitch contractions, but had no effect on the shape of the S-V relationship. Thus, the Ca2+ current but not the Na+ current or Ca2+ influx due to reversed Na(+)-Ca2+ exchange can release Ca2+ from the sarcoplasmic reticulum (SR) under these experimental conditions. 4. The effect of the rate of repolarization on cell shortening was studied under voltage clamp by applying ramp waveforms immediately following the depolarizations which activated contraction. Although slowing of the rate of repolarization had no effect on the first contraction following a train of conditioning depolarizations

  12. Chlorthalidone inhibits the KvLQT1 potassium current in guinea-pig ventricular myocytes and oocytes from Xenopus laevis

    PubMed Central

    Mancilla-Simbro, C; López, A; Martinez-Morales, E; Soto-Perez-de-Celis, E; Millan-PerezPeña, L; Tsushima, R; Salinas-Stefanon, E M

    2007-01-01

    Background and purpose: Chlorthalidone is used for the treatment of hypertension as it produces a lengthening of the cardiac action potential. However, there is no experimental evidence that chlorthalidone has electrophysiological effects on the potassium currents involved in cardiac repolarization. Experimental approach: Ventricular myocytes and oocytes, transfected with human ionic channels that produce IK current, were exposed to different concentrations of chlorthalidone. Action potentials and potassium currents were recorded using a patch clamp technique. To determine which component of the current was affected by chlorthalidone, human channel proteins (hERG, minK and KvLQT1) were used. Key results: Chlorthalidone prolonged the ventricular action potential at 50 and 90% by 13 and 14%, respectively. The cardiac potassium currents I to and IK1 were not affected by chlorthalidone at any concentration, whereas the delayed rectifier potassium current, IK, was blocked in a dose-response, voltage-independent fashion. In our preparation, 100 μM chlorthalidone blocked the two components of the delayed rectifier potassium current with the same potency (50.1±5% for IKr and 54.6±6% for IKs) (n=7, P<0.05). The chlorthalidone-sensitive current was slow and saturated at potentials greater than +30 mV. In our conditions only the KvLQT1 potassium current was affected by the drug, by 14%. Conclusions and implications: Chlorthalidone was demonstrated to have a direct effect on cardiac ventricular myocytes; it blocked the delayed rectifier potassium current (IK), specifically the KvLQT1 component of the potassium current. These results indicate that it has potential for use as an antiarrhythmic but further studies are needed. PMID:18037918

  13. Rapid Estrogen Receptor-Mediated Mechanisms Determine the Sexually Dimorphic Sensitivity of Ventricular Myocytes to 17β-Estradiol and the Environmental Endocrine Disruptor Bisphenol A

    PubMed Central

    Belcher, Scott M.; Chen, Yamei; Yan, Sujuan

    2012-01-01

    Previously we showed that 17β-estradiol (E2) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca2+ handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E2 or BPA on Ca2+ handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E2 on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10−12 m, and the most efficacious concentrations for each were at 10−9 m. Sensitivity to E2 and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E2 suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E2 and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E2 responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling. PMID:22166976

  14. Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes.

    PubMed

    Danziger, R S; Raffaeli, S; Moreno-Sanchez, R; Sakai, M; Capogrossi, M C; Spurgeon, H A; Hansford, R G; Lakatta, E G

    1988-08-01

    The effect of extracellular ATP on the contraction of single rat cardiac myocytes was investigated, together with the effect on the transient change in cytosolic Ca2+ (Cai) elicited by excitation and on the relationship between these two parameters. In unstimulated single myocytes, ATP caused a small increase in Cai (measured as the ratio of fluorescence of Indo-1 at 410 to that at 490 nm. In myocytes bathed in a medium containing 1.0 mM [Ca2+] at 23 degrees C and stimulated at 1 Hz, ATP (1 microM) resulted in a two-threefold increase in amplitude of contraction, as measured by video cinemicrographic techniques. The duration of the Cai-transient was not altered but its amplitude was markedly enhanced, as was the amplitude of contraction. The relation between Cai and contraction-amplitude was not altered by ATP, when measured over a range of extracellular [Ca2+], suggesting that ATP does not affect the myofilament-Ca2+ interaction. The primary site of action of ATP in increasing Cai is at the sarcolemma since the addition to suspensions of myocytes of caffeine (10 mM), which depletes the sarcoplasmic reticulum Ca2+ load, does not prevent the subsequent increase of Cai due to ATP. Further, lowering of the extracellular [Ca2+] to less than 1 microM with EGTA abolishes the response of Cai to ATP, though not the response to caffeine. Thus in rat cardiac myocytes ATP stimulates trans-sarcolemmal influx of Ca2+: ADP, AMP and adenosine are ineffective. ATP markedly augments the amplitude of the Cai transient elicited by electrical stimulation thus rendering it a potent inotropic agent. PMID:3191528

  15. Abnormal Ca2+ Cycling in Failing Ventricular Myocytes: Role of NOS1-Mediated Nitroso-Redox Balance

    PubMed Central

    Houser, Steven R.

    2014-01-01

    Abstract Significance: Heart failure (HF) results from poor heart function and is the leading cause of death in Western society. Abnormalities of Ca2+ handling at the level of the ventricular myocyte are largely responsible for much of the poor heart function. Recent Advances: Although studies have unraveled numerous mechanisms for the abnormal Ca2+ handling, investigations over the past decade have indicated that much of the contractile dysfunction and adverse remodeling that occurs in HF involves oxidative stress. Critical Issues: Regrettably, antioxidant therapy has been an immense disappointment in clinical trials. Thus, redox signaling is being reassessed to elucidate why antioxidants failed to treat HF. Future Directions: A recently identified aspect of redox signaling (specifically the superoxide anion radical) is its interaction with nitric oxide, known as the nitroso-redox balance. There is a large nitroso-redox imbalance with HF, and we suggest that correcting this imbalance may be able to restore myocyte contraction and improve heart function. Antioxid. Redox Signal. 21, 2044–2059. PMID:24801117

  16. Selective block of swelling-activated Cl- channels over cAMP-dependent Cl- channels in ventricular myocytes.

    PubMed

    Shuba, Lesya M; Missan, Sergey; Zhabyeyev, Pavel; Linsdell, Paul; McDonald, Terence F

    2004-05-01

    The objective of this study on guinea-pig and rabbit ventricular myocytes was to evaluate the sensitivities of swelling-activated Cl- current (ICl(swell)) and cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl- current (ICl(CFTR)) to block by dideoxyforskolin and verapamil. The currents were recorded from whole-cell configured myocytes that were dialysed with a Cs+-rich pipette solution and superfused with either isosmotic Na+-, K+-, Ca2+-free solution that contained 140 mM sucrose or hyposmotic sucrose-free solution. Forskolin-activated ICl(CFTR) was inhibited by reference blocker anthracene-9-carboxylic acid but unaffected by < or = 200 microM dideoxyforskolin and verapamil. However, dideoxyforskolin and verapamil had strong inhibitory effects on outwardly-rectifying, inactivating, distilbene-sensitive ICl(swell); IC50 values were approximately 30 microM, and blocks were voltage-independent and reversible. The results establish that dideoxyforskolin and verapamil can be used to distinguish between ICl(CFTR) and ICl(swell) in heart cells, and expand the pharmacological characterization of cardiac ICl(swell). PMID:15140627

  17. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  18. Membrane currents underlying the modified electrical activity of guinea-pig ventricular myocytes exposed to hyperosmotic solution.

    PubMed Central

    Ogura, T; You, Y; McDonald, T F

    1997-01-01

    1. Guinea-pig ventricular myocytes were superfused with hyperosmotic (sucrose) Tyrode solution (1.2-2.8 times (T) normal osmolality) for up to 40 min. Action potentials were recorded with microelectrodes, and membrane currents with the perforated- or ruptured-patch technique. 2. Hyperosmotic treatment for 20 min shrunk cell volume and hyperpolarized the membrane. Moderate (1.2-1.5 T) treatment caused biphasic changes in action potential configuration (rapid minor shortening quickly followed by lengthening to a stable 110% control duration). Severe (2.2-2.8 T) treatment caused triphasic changes (marked early shortening, strong rebound lengthening and subsequent pronounced shortening). At peak lengthening (6-10 min) action potentials (165% control duration) had a hump near -30 mV and slowed terminal repolarization. 3. In accordance with previous studies, hyperosmotic solution inhibited the delayed rectifier K+ current, and enhanced the outward Na(+)-Ca2+ exchange current (INaCa) at plateau potentials. A novel finding was that hyperosmolality reduced the amplitude of L-type Ca2+ current (ICa,L) and slowed its rate of inactivation. Experiments on myocytes loaded with indo-1 suggest that the reduction in ICa,L is due to a rapid elevation of [Ca2+]i. 4. When impaled myocytes were preloaded with EGTA, severe hyperosmotic treatment induced a rapid monotonic shortening of the action potential to a stable 20% of control duration. Addition of external K+ quickly nulled the hyperpolarization and slowly lengthened the action potential. 5. The results suggest that modified electrical activity in osmotically shrunken myocytes is primarily caused by increases in [K+]i, [Na+]i and [Ca2+]i: (i) elevated [K+]i hyperpolarizes the membrane (which may contribute to increased [Na+]i); (ii) elevated [Na+.]i shortens all phases of the action potential (increased outward-directed INaCa); and (iii) elevated [Ca2+]i has antagonistic plateau shortening (inhibition of inward ICa,L) and plateau

  19. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin.

    PubMed

    Kornyeyev, Dmytro; El-Bizri, Nesrine; Hirakawa, Ryoko; Nguyen, Steven; Viatchenko-Karpinski, Serge; Yao, Lina; Rajamani, Sridharan; Belardinelli, Luiz

    2016-02-01

    Pathological enhancement of late Na(+) current (INa) can potentially modify intracellular ion homeostasis and contribute to cardiac dysfunction. We tested the hypothesis that modulation of late INa can be a source of intracellular Na(+) ([Na(+)]i) overload. Late INa was enhanced by exposing rabbit ventricular myocytes to Anemonia sulcata toxin II (ATX-II) and measured using whole cell patch-clamp technique. [Na(+)]i was determined with fluorescent dye Asante NaTRIUM Green-2 AM. Pacing-induced changes in the dye fluorescence measured at 37°C were more pronounced in ATX-II-treated cells than in control (dye washout prevented calibration). At 22-24°C, resting [Na(+)]i was 6.6 ± 0.8 mM. Treatment with 5 nM ATX-II increased late INa 8.7-fold. [Na(+)]i measured after 2 min of electrical stimulation (1 Hz) was 10.8 ± 1.5 mM and 22.1 ± 1.6 mM (P < 0.001) in the absence and presence of 5 nM ATX-II, respectively. Inhibition of late INa with GS-967 (1 μM) prevented Na(+) i accumulation. A strong positive correlation was observed between the late INa and the pacing-induced increase of [Na(+)]i (R(2) = 0.88) and between the rise in [Na(+)]i and the increases in cytosolic Ca(2+) (R(2) = 0.96). ATX-II, tetrodotoxin, or GS-967 did not affect [Na(+)]i in quiescent myocytes suggesting that late INa was solely responsible for triggering the ATX-II effect on [Na(+)]i. Experiments with pinacidil and E4031 indicate that prolongation of the action potential contributes to as much as 50% of the [Na(+)]i overload associated with the increase in late INa caused by ATX-II. Enhancement of late INa can cause intracellular Na(+) overload in ventricular myocytes. PMID:26637557

  20. The effect of oxygen free radicals on calcium current and dihydropyridine binding sites in guinea-pig ventricular myocytes.

    PubMed Central

    Guerra, L.; Cerbai, E.; Gessi, S.; Borea, P. A.; Mugelli, A.

    1996-01-01

    1. We used electrophysiological and binding techniques to determine the effects of oxygen free radicals (OFRs) generated by dihydroxyfumaric acid (DHF, 5 mM) on calcium current and dihydropyridine binding sites in guinea-pig isolated ventricular myocytes. 2. Binding of [3H]-PN200-110 to isolated ventricular myocytes revealed one population of binding sites with a KD of 0.11 +/- 0.01 nM and Bmax of 139.1 +/- 6.9 fmol mg-1 protein (n = 24). After 15 min of exposure to DHF, the density, but not the affinity of [3H]-PN200-110 binding sites was significantly (P < 0.01) reduced to 35% of the control value (Bmax = 49.4 +/- 3.7 fmol mg-1 protein, KD = 0.11 +/- 0.01 nM, n = 15). In the presence of superoxide dismutase (SOD) and catalase (CAT) the reduction in [3H]-PN200-110 binding sites was almost completely prevented (Bmax = 120.5 +/- 7.4 in control, n = 4 and 98.8 +/- 7.4 fmol mg-1 protein in DHF plus SOD and CAT, n = 4). KD values were not modified (0.08 +/- 0.01 in control and 0.09 +/- 0.01 nM in DHF plus SOD and CAT). 3. The time-course of the reduction of [3H]-PN200-110 binding sites by OFRs was paralleled by the decrease in L-type calcium current (Ica,L) measured in patch-clamped guinea-pig ventricular myocytes either in the absence or in the presence of EGTA in the patch pipette. In the former conditions OFRs induced the appearance of calcium-dependent alterations, i.e. the transient inward current, within 10 min. After 30 min of incubation with DHF, [3H]-PN200-110 binding sites were reduced to 25% of the control value. 4. In myocytes incubated with the antilipoperoxidant agent, butylated hydroxytoluene (BHT, 50 microM), the decrease in [3H]-PN200-110 binding sites caused by DHF was partially prevented (Bmax values after 30 min exposure to DHF were 55.5 +/- 1.9 and 23.7 +/- 5.9 fmol mg-1 protein in the presence and in the absence of BHT respectively, P < 0.05). BHT did not affect the decrease in [3H]-PN200-110 binding sites during the first 15 min of exposure to

  1. Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Kistamas, K; Szentandrassy, N; Hegyi, B; Vaczi, K; Ruzsnavszky, F; Horvath, B; Banyasz, T; Nanasi, P P; Magyar, J

    2015-02-01

    The aim of the present work was to study the influence of changes in intracellular calcium concentration ([Ca(2+)]i) on beat-to-beat variability (short term variability, SV) of action potential duration (APD) in isolated canine ventricular cardiomyocytes. Series of action potentials were recorded from enzymatically isolated canine ventricular cells using conventional microelectrode technique. Drug effects on SV were evaluated as relative SV changes determined by plotting the drug-induced changes in SV against corresponding changes in APD and comparing these data to the exponential SV-APD function obtained with inward and outward current injections. Exposure of myocytes to the Ca(2+) chelator BAPTA-AM (5 μM) decreased, while Ca(2+) ionophore A23187 (1 μM) increased the magnitude of relative SV. Both effects were primarily due to the concomitant changes in APD. Relative SV was reduced by BAPTA-AM under various experimental conditions including pretreatment with veratridine, BAY K8644, dofetilide or E-4031. Contribution of transient changes of [Ca(2+)]i due to Ca(2+) released from the sarcoplasmic reticulum (SR) was studied using 10 μM ryanodine and 1 μM cyclopiazonic acid: relative SV was reduced by both agents. Inhibition of the Na(+)-Ca(2+) exchanger by 1 μM SEA0400 increased relative SV. It is concluded that elevation of [Ca(2+)]i increases relative SV significantly. More importantly, Ca(2+) released from the SR is an important component of this effect. PMID:25716967

  2. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    PubMed Central

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-01-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action. PMID:7834204

  3. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes.

    PubMed

    Salazar-Cantú, Ayleen; Pérez-Treviño, Perla; Montalvo-Parra, Dolores; Balderas-Villalobos, Jaime; Gómez-Víquez, Norma L; García, Noemí; Altamirano, Julio

    2016-08-15

    In Ca(2+)-overloaded ventricular myocytes, SERCA is crucial to steadily achieve the critical sarcoplasmic reticulum (SR) Ca(2+) level to trigger and sustain Ca(2+) waves, that propagate at constant rate (ʋwave). High luminal Ca(2+) sensitizes RyR2, thereby increasing Ca(2+) sparks frequency, and the larger RyR2-mediated SR Ca(2+) flux (dF/dt) sequentially activates adjacent RyR2 clusters. Recently, it was proposed that rapid SERCA Ca(2+) reuptake, ahead of the wave front, further sensitizes RyR2, increasing ʋwave. Nevertheless, this is controversial because rapid cytosolic Ca(2+) removal could instead impair RyR2 activation. We assessed whether rapid SR Ca(2+) uptake enhances ʋwave by changing SERCA activity (ҡDecay) over a large range (∼175%). We used normal (Ctrl) and hyperthyroid rat (HT; reduced phospholamban by ∼80%) myocytes treated with thapsigargin or isoproterenol (ISO). We found that ʋwave and dF/dt had a non-linear dependency with ҡDecay, while Ca(2+) waves amplitude was largely unaffected. Furthermore, SR Ca(2+) also showed a non-linear dependency with ҡDecay, however, the relationships ʋwave vs. SR Ca(2+) and ʋwave vs. dF/dt were linear, suggesting that high steady state SR Ca(2+) determines ʋwave, while rapid SERCA Ca(2+) uptake does not. Finally, ISO did not increase ʋwave in HT cells, therefore, ISO-enhanced ʋwave in Ctrl depended on high SR Ca(2+). PMID:27242324

  4. Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.

    PubMed

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2011-12-01

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway. PMID:22115037

  5. Enhancement of contraction and L-type Ca(2+) current by murrayafoline-A via protein kinase C in rat ventricular myocytes.

    PubMed

    Chidipi, Bojjibabu; Son, Min-Jeong; Kim, Joon-Chul; Lee, Jeong Hyun; Toan, Tran Quoc; Cuong, Nguyen Manh; Lee, Byung Ho; Woo, Sun-Hee

    2016-08-01

    We previously reported that murrayafoline-A (1-methoxy-3-methyl-9H-carbazole, Mu-A) increases the contractility of ventricular myocytes, in part, via enhancing Ca(2+) influx through L-type Ca(2+) channels, and that it increases the Ca(2+) transients by activation of protein kinase C (PKC). In the present study, we further examined the cellular mechanisms for the enhancement of contractility and L-type Ca(2+) current (ICa,L) by Mu-A. Cell shortening and ICa,L were measured in rat ventricular myocytes using a video edge detection method and perforated patch-clamp technique, respectively. We found that the positive inotropic effect of Mu-A was not affected by pre-exposure to the β-adrenoceptor antagonist propranolol, the protein kinase A (PKA) inhibitors KT5720 or H-89, or the phospholipase C inhibitor U73122. Interestingly, the Mu-A-mediated increases in cell shortening and in the rate of contraction were completely suppressed by pre-treatment with the PKC inhibitor GF109203X. The stimulatory effect of Mu-A on ICa,L was not altered by inhibition of PKA (KT5720), G-protein coupled receptors (suramin), or α1-adrenoceptor (prazosin). However, pre-exposure to the PKC inhibitor, GF109203X or chelerythrine, abolished the Mu-A-induced increase in ICa,L. Pre-exposure to the Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 slightly reduced the stimulatory effects on contraction and ICa,L by Mu-A. Phosphorylation of PKC was enhanced by Mu-A in ventricular myocytes. These data suggest that Mu-A increases contraction and ICa,L via PKC in rat ventricular myocytes, and that the PKC-mediated responses in the presence of Mu-A may be partly mediated by CaMKII. PMID:27158118

  6. Functional diversity of electrogenic Na+–HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig

    PubMed Central

    Yamamoto, Taku; Swietach, Pawel; Rossini, Alessandra; Loh, Shih-Hurng; Vaughan-Jones, Richard D; Spitzer, Kenneth W

    2005-01-01

    The Na+–HCO3− cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO3− : 1Na+; coupling coefficient n = 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO3− : 1Na+; n = 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pHi while hyperpolarization decreased it, effects seen only in CO2/HCO3−-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pHi changes were rat > guinea pig ≈ rabbit. Tonic depolarization (−140 mV to −0 mV) accelerated NBC-mediated pHi recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pHi was +0.52 ± 0.05 pA pF−1 (rat, n = 5), +0.26 ± 0.05 pA pF−1 (guinea pig, n = 5) and +0.10 ± 0.03 pA pF−1 (rabbit, n = 9), with reversal potentials near −100 mV, consistent with n = 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pHi-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pHi recovery was associated with a rise of [Na+]i at a rate ∼25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between n = 1 and n = 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity. PMID:15550467

  7. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents. PMID:26724383

  8. Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes

    PubMed Central

    Bénitah, Jean-Pierre; Perrier, Emeline; Gómez, Ana María; Vassort, Guy

    2001-01-01

    Aldosterone, a major ionic homeostasis regulator, might also regulate cardiac ion currents. Using the whole-cell patch-clamp technique, we investigated whether aldosterone affects the 4-aminopyridine-sensitive transient outward K+ current (Ito1). Exposure to 100 nm aldosterone for 48 h at 37 °C produced a 1.6-fold decrease in the Ito1 density compared to control myocytes incubated without aldosterone. Neither the time- nor voltage-dependent properties of the current were significantly altered after aldosterone treatment. RU28318 (1 μm), a specific mineralocorticoid receptor antagonist, prevented the aldosterone-induced decrease in Ito1 density. When myocytes were incubated for 24 h with aldosterone, concentrations up to 1 μm did not change Ito1 density, whereas L-type Ca2+ current (ICa,L) density increased. After 48 h, aldosterone caused a further increase in ICa,L. The delay in the Ito1 response to aldosterone might indicate that it occurs secondary to an increase in ICa,L. After 24 h of aldosterone pretreatment, further co-incubation for 24 h either with an ICa,L antagonist (100 nm nifedipine) or with a permeant Ca2+ chelator (10 μm BAPTA-AM) prevented a decrease in Ito1 density. After 48 h of aldosterone treatment, we observed a 2.5-fold increase in the occurrence of spontaneous Ca2+ sparks, which was blunted by co-treatment with nifedipine. We conclude that aldosterone decreases Ito1 density. We suggest that this decrease is secondary to the modulation of intracellular Ca2+ signalling, which probably arises from the aldosterone-induced increase in ICa,L. These results provide new insights into how cardiac ionic currents are modulated by hormones. PMID:11711569

  9. Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Willis, B. Cicero; Pandit, Sandeep V.; Ponce-Balbuena, Daniela; Zarzoso, Manuel; Guerrero-Serna, Guadalupe; Limbu, Bijay; Deo, Makarand; Camors, Emmanuel; Ramirez, Rafael J.; Mironov, Sergey; Herron, Todd J.; Valdivia, Héctor H.

    2016-01-01

    Background— In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca2+ dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2R4496C+/Cx40eGFP), we tested whether PC intracellular Ca2+ ([Ca2+]i) dysregulation results from a constitutive [Na+]i surplus relative to VMs. Methods and Results— Simultaneous optical mapping of voltage and [Ca2+]i in CPVT hearts showed that spontaneous Ca2+ release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca2+ imaging, early and delayed afterdepolarizations trailed spontaneous Ca2+ release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca2+ load, measured by caffeine-induced Ca2+ transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na+]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na+/Ca2+ exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na+]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca2+ release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na+]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca2+ spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na+]i played a central role. Conclusions— In CPVT mice, the constitutive [Na+]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs. PMID:27169737

  10. alpha-Adrenergic inhibition of the beta-adrenoceptor-dependent chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Iyadomi, I; Hirahara, K; Ehara, T

    1995-01-01

    1. alpha 1-Adrenoceptor-mediated inhibition of the beta-adrenoceptor-dependent Cl- current was investigated in guinea-pig ventricular myocytes using the patch clamp technique. The Cl- conductance activated by noradrenaline (0.1-10 microM) with an alpha 1-blocker (prazosin, 5 microM) was significantly greater than that activated by noradrenaline alone. Phenylephrine and methoxamine, alpha 1-agonists, exerted an inhibitory effect on the Cl- conductance activated by isoprenaline. The dose-response relationship for isoprenaline and the Cl- current activation was shifted to higher doses in the presence of phenylephrine (30 microM). 2. The interaction of alpha 1- and beta-agonists on Cl- current was also observed on the single channel level; in some of the outside-out membrane patches, phenylephrine (50 microM) depressed the activity of the single Cl- channel which was induced by 5 microM adrenaline. 3. Phenylephrine had no effect on the Cl- conductance induced by forskolin (0.5-5 microM), an activator of adenylate cyclase. The Cl- conductance activated persistently by isoprenaline in GTP gamma S-loaded cells was also insensitive to phenylephrine. The results suggest that the observed alpha 1-adrenergic attenuation of the beta-adrenergic response is not primarily due to inhibition of adenylate cyclase activity. The alpha 1-adrenergic action may interfere with the processes leading to enzyme activation in the beta-adrenergic pathway. PMID:8583419

  11. A new class III antiarrhythmic drug, MS-551, blocks the inward rectifier potassium channel in isolated guinea pig ventricular myocytes.

    PubMed

    Sato, R; Koumi, S; Hisatome, I; Takai, H; Aida, Y; Oyaizu, M; Karasaki, S; Mashiba, H; Katori, R

    1995-07-01

    We have studied the effects of MS-551 on the inward rectifier potassium channel (IK1) in isolated guinea-pig ventricular myocytes by use of whole-cell and single-channel recording techniques. MS-551 (5 microM) blocked the IK1 current. The percent blockade of the peak and steady-state IK1 current by MS-551 was constant at each test potential. In contrast 50 microM MS-551 failed to block either the sodium or the calcium current. Under cell-attached patch conditions, MS-551 reduced the open probability of IK1 channel activity by prolonging the interburst interval without changing either the unitary amplitude or the equilibrium potential. The blockade of IK1 was concentration-dependent. MS-551 did not change either the mean open time or mean closed time within a burst. Extracellular acidification (pH 6.4) strongly attenuated the effect of MS-551 on the open probability of IK1 channel activity when compared with its effect at pH 7.4. In summary, our results demonstrated that MS-551 blocked the IK1 channel. The neutral form of this drug molecules may penetrate the cardiac cell membrane via a hydrophobic pathway to block the steady-state IK1 current by reduction of open probability. PMID:7616432

  12. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    PubMed Central

    Wu, Delin; Jiang, Linqing; Wu, Hongjin; Wang, Shengqi; Zheng, Sidao; Yang, Jiyuan; Liu, Yuna; Ren, Jianxun; Chen, Xianbing

    2013-01-01

    Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (IK), the rapidly activating (IKr) and slowly activating (IKs) components of IK, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record IK (IKr, IKs) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited IK (IKr, IKs) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of IK (IKr, IKs) and HERG K+ channel. PMID:24069049

  13. Glucose-Insulin-Potassium Solution Protects Ventricular Myocytes of Neonatal Rat in an In Vitro Coverslip Ischemia/Reperfusion Model

    PubMed Central

    Chun, Woo-Jung; Bae, Jun-Ho; Chung, Jin-Wook; Lee, HyunSook; Moon, Il Soo

    2015-01-01

    Background and Objectives The benefit of high glucose-insulin-potassium (GIK) solution in clinical applications is controversial. We established a neonatal rat ventricular myocyte (NRVM) in vitro coverslip ischemia/reperfusion (I/R) model and investigated the effects of GIK solution on suppressing reactive oxygen species (ROS) and upregulating O-GlcNacylation, which protects cells from ischemic injury. Materials and Methods NRVMs were isolated from postnatal day 3-4 Sprague-Dawley rat pups and grown in Dulbecco's modified Eagle's medium containing high glucose (4.5 g/L), fetal bovine serum, and penicillin/streptomycin. The effects of the GIK solution on ROS production, apoptosis, and expression of O-GlcNAc and O-GlcNAc transferase (OGT) were investigated in the coverslip I/R model. Results Covering the 24-well culture plates for 3 hr with 12 mm diameter coverslips resulted in the appropriate ischemic shock. Glucose and insulin synergistically reduced ROS production, protected NRVM dose-dependently from apoptosis, and altered O-GlcNAc and OGT expression. Conclusion The high GIK solution protected NRVM from I/R injury in vitro by reducing ROS and altering O-GlcNacylation. PMID:26023312

  14. A novel, voltage-dependent nonselective cation current activated by insulin in guinea pig isolated ventricular myocytes.

    PubMed

    Zhang, Yin Hua; Hancox, Jules C

    2003-04-18

    Insulin regulates cardiac metabolism and function by targeting metabolic proteins or voltage-gated ion channels. This study provides evidence for a novel, voltage-dependent, nonselective cation channel (NSCC) in the heart. Under voltage clamp at 37 degrees C and with major known conductances blocked, insulin (1 nmol/L to 1 micromol/L) activated an outwardly rectifying current (Iinsulin) in guinea pig ventricular myocytes. Iinsulin could be carried by Cs+, K+, Li+, and Na+ ions but not by NMDG+. It was inhibited by the NSCC blockers gadolinium and SKF96365 but not flufenamic acid. Iinsulin was largely blocked by the insulin receptor tyrosine kinase inhibitor HNMPA-(AM)3 and by the phospholipase C inhibitor U73122 but not by its inactive analogue U73433. Staurosporine, a potent blocker of protein kinase C, did not prevent the activation of Iinsulin. Application of an analogue of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol, mimicked the effect of insulin. This activated an outwardly rectifying NSCC that could be carried by Cs+, K+, Li+, or Na+ and that was blocked by gadolinium but not by flufenamic acid or staurosporine. We conclude that the intracellular pathway leading to activation of this novel cardiac NSCC involves phospholipase C, is protein kinase C-independent, and may depend on direct channel activation by diacylglycerol. PMID:12637365

  15. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.

    PubMed Central

    Janczewski, A M; Lakatta, E G

    1993-01-01

    1. Intracellular [Ca2+] ([Ca2+]i) transients, monitored by the fluorescent Ca2+ indicator, indo-1, and twitch contractions elicited by action potentials, by voltage clamp pulses or by rapid, brief pulses of caffeine, were measured in guinea-pig single ventricular myocytes. Experiments were designed to determine whether and to what extent the trans-sarcolemmal Ca2+ influx is immediately sequestered by the sarcoplasmic reticulum (SR). 2. Rapid, brief (100-200 ms) pulses of caffeine onto a rested myocyte elicited a [Ca2+]i transient and a contraction. Following exposure to specific SR inhibitors, ryanodine (100 nM) or thapsigargin (200 nM), the rapid application of caffeine onto a rested myocyte failed to elicit changes in [Ca2+]i or in cell length, indicating that caffeine increases [Ca2+]i by specifically discharging Ca2+ from the SR. In the absence of these inhibitors, a second pulse of caffeine, within 3 min following a prior pulse, failed to elicit a [Ca2+]i transient or contraction, indicating that a caffeine pulse depletes the SR releasable Ca2+ pool. 3. Following Ca2+ depletion of the SR by double caffeine pulses at rest, an electrical stimulation elicited a slow increase in [Ca2+]i, and, after a delay, a small, slow twitch contraction. The simultaneous application of caffeine and electrical stimulation of cells in which the SR was Ca2+ depleted elicited [Ca2+]i transients with an increased rate of rise and a larger amplitude (53 +/- 8 and 63 +/- 9% respectively; mean +/- S.E.M., n = 21) than those elicited by electrical stimulation alone. 4. Whether caffeine affected the L-type calcium current (ICa) elicited by electrical stimulation was determined under whole-cell voltage clamp. A caffeine pulse delivered at the onset of a depolarizing voltage clamp step also increased the rates of rise and the amplitudes of the [Ca2+]i transients and twitch contractions in cells in which the SR was depleted of Ca2+. However, Ca2+ influx via ICa decreased when caffeine was

  16. Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes.

    PubMed Central

    Wendt-Gallitelli, M F; Isenberg, G

    1991-01-01

    1. At 36 degrees C and 2 mM [Ca2+]o single guinea-pig ventricular myocytes were voltage clamped with patch electrodes. With a paired-pulse protocol applied at 1 Hz, a first pulse to +5 mV was followed by a second pulse to +50 mV. When paired pulsing had potentiated the contraction to the maximum, the cells were shock-frozen for electron-probe microanalysis (EPMA). Shock-freezing was timed at the end of diastole (-80 mV) or at different times during systole (+5 mV). 2. The same paired-pulse protocol was applied to another group of myocytes from which contraction and [Ca2+]i was estimated by microfluospectroscopy (50 microM-Na5-Indo-1). Potentiation moderately reduced diastolic sarcomere length from 1.85 to 1.82 microns and increased diastolic [Ca2+]i from about 95 to 180 nM. In potentiated cells, during the first pulse, contraction peaked within 128 +/- 25 ms after start of depolarization. [Ca2+]i peaked within 25 ms to 890 +/- 220 nM (mean +/- S.E.M.) and fell within 100 ms to about 450 nM. 3. Sigma Camyo, the total calcium concentration in the overlapping myofilaments (A-band), was measured by EPMA in seventeen potentiated myocytes. During diastole, sigma Camyo was 2.6 +/- 0.4 mmol (kg dry weight (DW]-1 which can be converted to 0.65 mM (mmoles per litre myofibrillar space). Since [Ca2+]i was 180 nM, we estimate that 99.97% of total calcium is bound. 4. A time course for systolic sigma Camyo was determined by shock-freezing thirteen cells at different times after start of depolarization to +5 mV. Sigma Camyo was 5.5 +/- 0.3 mmol (kg DW)-1 (1.4 mM) after 15-25 ms, 4.6 +/- 0.5 mmol (kg DW)-1 (1.1 mM) after 30-45 ms, and 3.1 mmol (kg DW)-1 (0.8 mM) after 60-120 ms. The fast time course of sigma Camyo suggests that calcium binds to and unbinds from troponin C at a fast rate. Hence, it is the slow kinetics of the cross-bridges that determines the 130 ms time-to-peak shortening. 5. Mitochondria of potentiated cells contained during diastole a total calcium concentration

  17. Computational analysis of the regulation of Ca2+ dynamics in rat ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Bugenhagen, Scott M.; Beard, Daniel A.

    2015-10-01

    Force-frequency relationships of isolated cardiac myocytes show complex behaviors that are thought to be specific to both the species and the conditions associated with the experimental preparation. Ca2+ signaling plays an important role in shaping the force-frequency relationship, and understanding the properties of the force-frequency relationship in vivo requires an understanding of Ca2+ dynamics under physiologically relevant conditions. Ca2+ signaling is itself a complicated process that is best understood on a quantitative level via biophysically based computational simulation. Although a large number of models are available in the literature, the models are often a conglomeration of components parameterized to data of incompatible species and/or experimental conditions. In addition, few models account for modulation of Ca2+ dynamics via β-adrenergic and calmodulin-dependent protein kinase II (CaMKII) signaling pathways even though they are hypothesized to play an important regulatory role in vivo. Both protein-kinase-A and CaMKII are known to phosphorylate a variety of targets known to be involved in Ca2+ signaling, but the effects of these pathways on the frequency- and inotrope-dependence of Ca2+ dynamics are not currently well understood. In order to better understand Ca2+ dynamics under physiological conditions relevant to rat, a previous computational model is adapted and re-parameterized to a self-consistent dataset obtained under physiological temperature and pacing frequency and updated to include β-adrenergic and CaMKII regulatory pathways. The necessity of specific effector mechanisms of these pathways in capturing inotrope- and frequency-dependence of the data is tested by attempting to fit the data while including and/or excluding those effector components. We find that: (1) β-adrenergic-mediated phosphorylation of the L-type calcium channel (LCC) (and not of phospholamban (PLB)) is sufficient to explain the inotrope-dependence; and (2) that

  18. Influence of a Constitutive Increase in Myofilament Ca2+-sensitivity on Ca2+-fluxes and Contraction of Mouse Heart Ventricular Myocytes

    PubMed Central

    Puglisi, Jose L.; Goldspink, Paul H.; Gomes, Aldrin V.; Utter, Megan S.; Bers, Donald M.; Solaro, R. John

    2014-01-01

    Chronic increases in myofilament Ca2+-sensitivity in the heart are known to alter gene expression potentially modifying Ca2+-homeostasis and inducing arrhythmias. We tested age-dependent effects of a chronic increase in myofilament Ca2+-sensitivity on induction of altered alter gene expression and activity of Ca2+ transport systems in cardiac myocytes. Our approach was to determine the relative contributions of the major mechanisms responsible for restoring Ca2+ to basal levels in field stimulated ventricular myocytes. Comparisons were made from ventricular myocytes isolated from non-transgenic (NTG) controls and transgenic mice expressing the fetal, slow skeletal troponin I (TG-ssTnI) in place of cardiac TnI (cTnI). Replacement of cTnI by ssTnI induces an increase in myofilament Ca2+-sensitivity. Comparisons included myocytes from relatively young (5–7 months) and older mice (11–13 months). Employing application of caffeine in normal Tyrode and in 0Na+ 0Ca2+ solution, we were able to dissect the contribution of the sarcoplasmic reticulum Ca2+ pump (SR Ca2+-ATPase), the Na+/Ca2+ exchanger (NCX), and “slow mechanisms” representing the activity of the sarcolemmal Ca2+ pump and the mitochondrial Ca2+ uniporter. The relative contribution of the SR Ca2+-ATPase to restoration of basal Ca2+levels in younger TG-ssTnI myocytes was lower than in NTG (81.12 ± 2.8% vs 92.70 ± 1.02%), but the same in the older myocytes. Younger and older NTG myocytes demonstrated similar contributions from the SR Ca2+-ATPase and NCX to restoration of basal Ca2+. However, the slow mechanisms for Ca2+ removal were increased in the older NTG (3.4 ± 0.3%) vs the younger NTG myocytes (1.4 ± 0.1%). Compared to NTG, younger TG-ssTnI myocytes demonstrated a significantly bigger contribution of the NCX (16 ± 2.7% in TG vs 6.9 ± 0.9% in NTG) and slow mechanisms (3.3 ± 0.4% in TG vs 1.4 ± 0.1% in NTG). In older TG-ssTnI myocytes the contributions were not significantly different from NTG

  19. Effects of acidosis and NO on nicorandil-activated KATP channels in guinea-pig ventricular myocytes

    PubMed Central

    Moncada, Gustavo A; Kishi, Yukio; Numano, Fujio; Hiraoka, Masayasu; Sawanobori, Tohru

    2000-01-01

    Nicorandil is a hybrid compound of K+ channel opener and nitrate. We investigated a possible interaction of acidosis and nitric oxide (NO)-donors on the nicorandil-activated ATP-sensitive K+ channel (KATP) in guinea-pig ventricular myocytes using the patch-clamp technique.In whole-cell recordings, external application of 300 μM nicorandil activated KATP in the presence of 2 mM intracellular ATP concentration ([ATP]i) at external pH (pHo) 7.4, but the activated current was decreased by reducing pHo to 6.5–6.0.Single-channel recordings of inside-out patches revealed decreased open-state probability (Po) of KATP activated by nicorandil with reducing internal pH (pHi) from 7.2 to 6.0, whilst the channel activity increased at low pHi in the absence of nicorandil.Application of NO donors, 1 mM-sodium nitroprusside (SNP) or -NOR-3 to the membrane cytoplasmic side at pHi 7.2 increased the channel activity but decreased it at pHi 6.5–6.0. Neither removal of the drugs nor application of NO-scavengers reversed depression of channel activity induced by NO-donors.We conclude that an increase in pHo and pHi depresses rather than stimulates the nicorandil-activated KATP. Since NO-donors at low pHi exhibited a similar trend, involvement of H+ and NO interaction can be considered as a mechanism of decreased KATP activated by nicorandil. PMID:11082116

  20. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes

    PubMed Central

    Lukyanenko, Valeriy; Subramanian, Saisunder; Györke, Inna; Wiesner, Theodore F; Györke, Sandor

    1999-01-01

    We used confocal Ca2+ imaging and fluo-3 to investigate the transition of localized Ca2+ releases induced by focal caffeine stimulation into propagating Ca2+ waves in isolated rat ventricular myocytes. Self-sustaining Ca2+ waves could be initiated when the cellular Ca2+ load was increased by elevating the extracellular [Ca2+] ([Ca2+]o) and they could also be initiated at normal Ca2+ loads when the sensitivity of the release sites to cytosolic Ca2+ was enhanced by low doses of caffeine. When we prevented the accumulation of extra Ca2+ in the luminal compartment of the sarcoplasmic reticulum (SR) with thapsigargin, focal caffeine pulses failed to trigger self-sustaining Ca2+ waves on elevation of [Ca2+]o. Inhibition of SR Ca2+ uptake by thapsigargin in cells already preloaded with Ca2+ above normal levels did not prevent local Ca2+ elevations from triggering propagating waves. Moreover, wave velocity increased by 20 %. Tetracaine (0·75 mM) caused transient complete inhibition of both local and propagating Ca2+ signals, followed by full recovery of the responses due to increased SR Ca2+ accumulation. Computer simulations using a numerical model with spatially distinct Ca2+ release sites suggested that increased amounts of releasable Ca2+ might not be sufficient to generate self-sustaining Ca2+ waves under conditions of Ca2+ overload unless the threshold of release site Ca2+ activation was set at relatively low levels (< 1·5 μM). We conclude that the potentiation of SR Ca2+ release channels by luminal Ca2+ is an important factor in Ca2+ wave generation. Wave propagation does not require the translocation of Ca2+ from the spreading wave front into the SR. Instead, it relies on luminal Ca2+ sensitizing Ca2+ release channels to cytosolic Ca2+. PMID:10373699

  1. p21-activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R. John; Banach, Kathrin

    2014-01-01

    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca2+ handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1-/-) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca2+ transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1-/- VMs during 15 min of simulated ischemia. However, Pak1-/- VMs exhibited an exaggerated increase in [Ca2+]i, which resulted in spontaneous Ca2+ release events and waves. The Ca2+ overload in Pak1-/- VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1-/- VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47phox-/-) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1-/- VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca2+ overload in Pak1-/- VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca2+ overload under conditions where no significant changes in excitation-contraction coupling are yet evident. PMID:24380729

  2. Role of inositol-1,4,5-trisphosphate receptor in the regulation of calcium transients in neonatal rat ventricular myocytes.

    PubMed

    Zeng, Zheng; Zhang, Heping; Lin, Na; Kang, Man; Zheng, Yuanyuan; Li, Chen; Xu, Pingxiang; Wu, Yongquan; Luo, Dali

    2014-01-01

    This study determined the regulatory effect of inositol 1,4,5-trisphosphate receptors (IP3Rs) on the basal Ca(2+) transients in cardiomyocytes. In cultured neonatal rat ventricular myocytes (NRVMs) at different densities, we used confocal microscopy to assess the effect of IP3Rs on the endogenous spontaneous Ca(2+) oscillations through specific activation of IP3Rs with myo-IP3 hexakis (butyryloxymethyl) ester (IP3BM), a membrane permeable IP3, and interference of IP3R expression with shRNA. We found that NRVMs at the monolayer state displayed coordinated Ca(2+) transients with less rate, shorter duration, and higher amplitude compared to single NRVMs. In addition, monolayer NRVMs exhibited 4 or 10 times more increased Ca(2+) transients in response to phenylephrine, an α-adrenergic receptor agonist, or IP3BM than single NRVMs did, while the transient pattern remained unaltered, suggesting that the sensitivity of intracellular Ca(2+) response to IP3R activation is different between single and monolayer NRVMs. However, interference of IP3R expression with shRNA reduced the frequency and amplitude of the spontaneous Ca(2+) fluctuates similarly in both densities of NRVMs, resembling the effects of ryanodine receptor inhibition by ryanodine or tetracaine. Our findings suggest that IP3Rs are involved, in part, in the regulation of native Ca(2+) transients, in profiles of their initiation and Ca(2+) release extent, in developing cardiomyocytes. In addition, caution should be paid in evaluating the behavior of Ca(2+) signaling in primary cultured cardiomyocytes at different densities. PMID:25242084

  3. Cardiotoxicity of emetine dihydrochloride by calcium channel blockade in isolated preparations and ventricular myocytes of guinea-pig hearts.

    PubMed Central

    Lemmens-Gruber, R.; Karkhaneh, A.; Studenik, C.; Heistracher, P.

    1996-01-01

    1. The cardiotoxic effects of emetine dihydrochloride on mechanical and electrical activity were studied in isolated preparations (papillary muscles, sinoatrial and atrioventricular nodes, ventricular myocytes) of the guinea-pig heart. 2. Force of contraction was measured isometrically, action potentials and maximum rate of rise of the action potential were recorded by means of the intracellular microelectrode technique. Single channel L-type calcium current (Ba2+ ions as charge carrier) was studied with the patch-clamp technique in the cell-attached mode. 3. Emetine dihydrochloride (8-256 microM) reduced force of contraction in papillary muscles and spontaneous activity of sinoatrial and atrioventricular nodes concentration-dependently; the negative inotropic effect was abolished when the extracellular Ca2+ concentration was increased. 4. Maximum diastolic potential, action potential amplitude, maximum rate of rise of the action potential and the slope of the slow diastolic depolarization were decreased by emetine in sinoatrial as well as atrioventricular noes, while action potential duration was prolonged in both preparations (1-64 microM). 5. The amplitude of the L-type calcium single channel current was not altered by emetine dihydrochloride, while average open state probability was decreased concentration-dependently (10, 30 and 60 microM). 6. The most prominent effect of emetine dihydrochloride on single channel current was an increase of sweeps without activity. 7. At 60 microM, emetine dihydrochloride caused a decrease of the mean open time an increase of the mean closed time. The number of openings per record and number of bursts per record were reduced. 8. It is concluded that emetine dihydrochloride produces an L-type calcium channel block which might contribute to its cardiac side effects. PMID:8789394

  4. Effect of the immunosupressant FK506 on excitation-contraction coupling and outward K+ currents in rat ventricular myocytes.

    PubMed

    duBell, W H; Wright, P A; Lederer, W J; Rogers, T B

    1997-06-15

    1. We examined the effects of the immunosupressant drug FK506 on excitation-contraction coupling in isolated rat ventricular myocytes. [Ca2+]i transients were recorded using the intracellular Ca2+ indicators fluo-3 and indo-1 while action potentials (APs) or membrane currents were recorded using patch-type microelectrodes in the whole cell mode. 2. FK506 (25 microM) rapidly and reversibly increased the magnitude of the [Ca2+]i transient in intact cells without changing resting [Ca2+]i or the kinetics of the [Ca2+]i transient, a finding consistent with previous reports that investigated the actions of FK506 on the sarcoplasmic reticulum Ca2+ release channel. 3. The 36% increase in the [Ca2+]i transient produced by FK506 was accompanied by a 293% increase in AP duration (by 293%). Importantly, the addition of FK506 had no effect on the [Ca2+]i transient when the depolarizing duration was controlled in voltage clamp experiments. The increased AP duration could be explained by a marked inward shift in the net membrane current that was observed in these experiments. 4. The net inward current change was not directly responsible for a change in Ca2+ influx, since no change in L-type Ca2+ current (ICa) was observed. Instead, FK506 inhibited both the transient outward K+ current (Ito) and the delayed rectifier K+ current (IK). 5. We conclude that FK506 increases the [Ca2+]i transient during normal contractions by an indirect action: it prolongs the action potential. This action does not appear to depend on the established action of FK506 on the ryanodine receptor. Instead, the inhibition of outward K+ currents prolongs the AP which secondarily increases Ca2+ influx and/or decreases Ca2+ efflux. PMID:9218211

  5. Chronic treatment with Carvedilol improves ventricular function and reduces myocyte apoptosis in an animal model of heart failure

    PubMed Central

    Okafor, Chukwuka C; Perreault-Micale, Cynthia; Hajjar, Roger J; Lebeche, Djamel; Skiroman, Klara; Jabbour, George; Doye, Angelia A; Lee, Michael X; Laste, Nancy; Gwathmey, Judith K

    2003-01-01

    Background β-blocker treatment has emerged as an effective treatment modality for heart failure. Interestingly, β-blockers can activate both pro-apoptotic and anti-apoptotic pathways. Nevertheless, the mechanism for improved cardiac function seen with β-blocker treatment remains largely unknown. Carvedilol is a non-selective β-blocker with α-receptor blockade and antioxidant properties. We therefore studied the impact of the effects of carvedilol in an animal model of end-stage heart failure. Results To test whether chronic treatment with β-blockade decreases apoptosis, we treated myopathic turkeys with two dosages of carvedilol, 1 mg/kg (DCM1) and 20 mg/kg (DCM20), for four weeks and compared them to non-treated DCM animals (DCM0) and to control turkeys (CON). Echocardiographic measurements showed that non-treated DCM animals had a significantly lower fractional shortening (FS) when compared to CON (68.73 ± 1.37 vs. 18.76 ± 0.59%, p < 0.001). Both doses of carvedilol significantly improved FS (33.83 ± 10.11 and 27.73 ± 6.18% vs. 18.76 ± 0.59 % for untreated DCM, p < 0.001). DCM left ventricles were characterized by a higher percentage of apoptotic nuclei when compared to CON (5.64 ± 0.49 vs. 1.72 ± 0.12%, respectively p < 0.001). Both doses of carvedilol significantly reduced the number of apoptotic nuclei (2.32 ± 0.23% and 2.36 ± 0.26% 1 mg and 20 mg/kg respectively). Conclusions Carvedilol improves ventricular function. Furthermore, treatment with carvedilol decreased the incidence of apoptosis in cardiac myocytes from failing hearts at both doses. These data suggest that the inhibition of apoptosis with carvedilol may lead to improvement in ventricular function and may underlie a beneficial effect of β-blockade independent of heart rate lowering effects. PMID:12873352

  6. Ventricular myocyte injury by high-intensity electric field: Effect of pulse duration.

    PubMed

    Prado, Luiza Ns; Goulart, Jair T; Zoccoler, Marcelo; Oliveira, Pedro X

    2016-04-01

    Although high-intensity electric fields (HEF) application is currently the only effective therapy available to terminate ventricular fibrillation, it may cause injury to cardiac cells. In this study we determined the relation between HEF pulse length and cardiomyocyte lethal injury. We obtained lethality curves by survival analysis, which were used to determine the value of HEF necessary to kill 50% of cells (E50) and plotted a strength-duration (SxD) curve for lethality with 10 different durations: 0.1, 0.2, 0.5, 1, 3, 5, 10, 20, 35 and 70 ms. For the same durations we also obtained an SxD curve for excitation and established an indicator for stimulatory safeness (stimulation safety factor - SSF) as the ratio between the SxD curve for lethality and one for excitation. We found that the lower the pulse duration, the higher the HEF intensity required to cell death. Contrary to expectations, the highest SSF value does not correspond to the lowest pulse duration but to the one of 0.5 ms. As defibrillation threshold has been described as duration-dependent, our results imply that the use of shorter stimulus duration - instead of the one typically used in the clinic (10 ms) - might increase defibrillation safeness. PMID:26830130

  7. Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes.

    PubMed

    Horváth, Balázs; Hegyi, Bence; Kistamás, Kornél; Váczi, Krisztina; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    This study was designed to investigate the influence of cytosolic Ca(2+) levels ([Ca(2+)]i) on action potential duration (APD) and on the incidence of early afterdepolarizations (EADs) in canine ventricular cardiomyocytes. Action potentials (AP) of isolated cells were recorded using conventional sharp microelectrodes, and the concomitant [Ca(2+)]i was monitored with the fluorescent dye Fura-2. EADs were evoked at a 0.2 Hz pacing rate by inhibiting the rapid delayed rectifier K(+) current with dofetilide, by activating the late sodium current with veratridine, or by activating the L-type calcium current with BAY K8644. These interventions progressively prolonged the AP and resulted in initiation of EADs. Reducing [Ca(2+)]i by application of the cell-permeant Ca(2+) chelator BAPTA-AM lengthened the AP at 1.0 Hz if it was applied alone, in the presence of veratridine, or in the presence of BAY K8644. However, BAPTA-AM shortened the AP if the cells were pretreated with dofetilide. The incidence of the evoked EADs was strongly reduced by BAPTA-AM in dofetilide, moderately reduced in veratridine, whereas EAD incidence was increased by BAPTA-AM in the presence of BAY K8644. Based on these experimental data, changes in [Ca(2+)]i have marked effects on APD as well as on the incidence of EADs; however, the underlying mechanisms may be different, depending on the mechanism of EAD generation. As a consequence, reduction of [Ca(2+)]i may eliminate EADs under some, but not all, experimental conditions. PMID:25928391

  8. [Proliferation of adult mammalian ventricular cardiomyocytes: a sporadic but feasible phenomenon].

    PubMed

    Vargas-González, Alvaro

    2014-01-01

    Proliferation of adult mammalian ventricular cardiomyocytes has been ruled out by some researchers, who have argued that these cells are terminally differentiated; however, this dogma has been rejected because other researchers have reported that these cells can present the processes necessary to proliferate, that is, DNA synthesis, mitosis and cytokinesis when the heart is damaged experimentally through pharmacological and surgical strategies or due to pathological conditions concerning the cardiovascular system. This review integrates some of the available works in the literature evaluating the DNA synthesis, mitosis and cytokinesis in these myocytes, when the myocardium is damaged, with the purpose of knowing if their proliferation can be considered as a feasible phenomenon. The review is concluded with a reflection about the perspectives of the knowledge generated in this area. PMID:24792902

  9. Mechanism of extracellular ATP-induced increase of cytosolic Ca2+ concentration in isolated rat ventricular myocytes.

    PubMed Central

    Christie, A; Sharma, V K; Sheu, S S

    1992-01-01

    1. Changes in the cytosolic Ca2+ concentration ([Ca2+]i) of isolated rat ventricular myocytes in suspension were measured in response to extracellular ATP using the fluorescent Ca2+ indicators Quin-2 and Fura-2. 2. ATP produced a concentration-, time- and Mg(2+)-dependent, biphasic increase of [Ca2+]i whereas slowly hydrolysable ATP analogues produced a slow, monophasic increase of [Ca2+]i and the non-hydrolysable ATP analogues were without effect. 3. Extracellular Ca2+ was required for the ATP-induced increase of [Ca2+]i and pre-treatment of the cells with caffeine, ryanodine, verapamil or nimodipine partially inhibited the [Ca2+]i increase. 4. Whole-cell patch-clamp experiments revealed that ATP activated an ionic current that had a linear current-voltage relationship with a reversal potential near O mV. Quinidine, a putative P2 purinergic receptor blocker, abolished the ATP-activated current. The ATP-activated current was Mg2+ dependent. 5. Associated with the ATP-activated current was cellular depolarization. In a physiological solution, ATP depolarized cells to the threshold for the firing of action potentials. In the presence of the voltage-activated ion channel blockers tetrodotoxin, 4-aminopyridine, caesium and nitrendipine, ATP depolarized cells to -44 +/- 6 mV from a resting potential of -66 +/- 4 mV (n = 11). 6. Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis and autoradiography demonstrated that extracellular ATP stimulated the phosphorylation of several extracellular membrane-bound proteins. The phosphorylation of these proteins was concentration, time and Mg2+ dependent. Pre-treatment of cells with the slowly hydrolysable ATP analogues inhibited the ATP-induced phosphorylation. Adenosine 5'-O-3-thiotriphosphate (ATP gamma S) thiophosphorylated proteins with the same apparent molecular weight as the proteins phosphorylated by ATP. 7. These results suggest that the ATP-induced increase of [Ca2+]i is a result of the activation, possibly

  10. Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes.

    PubMed Central

    Qu, Y; Campbell, D L; Strauss, H C

    1993-01-01

    1. The effects of extracellular adenosine triphosphate (ATP) on the basal L-type Ca2+ current (ICa) were investigated in ferret isolated right ventricular myocytes using the gigaohm seal voltage clamp in the whole-cell and cell-attached configurations. 2. Micromolar levels of extracellular ATP reversibly inhibited ICa in a concentration-dependent manner, without any significant changes in the voltage dependence of either the peak ICa I-V relationship or steady-state activation curve. 3. In contrast, micromolar levels of extracellular ATP did significantly alter the inactivation characteristics of ICa. Ten micromolar ATP: (i) increased the degree of steady-state inactivation of ICa; (ii) altered the time constants of ICa inactivation at 0 mV; and (iii) decreased the time constant of ICa recovery from inactivation at -70 mV. 4. The inhibitory effect of ATP on ICa was not blocked by atropine, a muscarinic cholinergic receptor antagonist, or CPDPX (8-cyclopentyl-3,4-dipropylxanthine), an A1 adenosine receptor antagonist. In contrast, the inhibitory effect of 10 microM ATP could be nearly completely antagonized by 100 microM suramin, a purinergic P2 receptor antagonist. 5. The potency order of ATP analogues in inhibiting ICa was 2-methyl-thio-ATP > ATP > alpha,beta-methylene-ATP, indicating involvement of a P2Y-type ATP receptor. 6. Pretreatment of cells with pertussis toxin (PTX) did not prevent the ATP-induced decrease in ICa. However, (i) ATP produced an irreversible decrease of ICa in the presence of intracellular GTP gamma S, and (ii) the inhibitory effect was significantly attenuated in the presence of intracellular GDP beta S, indicating the involvement of a PTX-insensitive G protein in the P2Y receptor-coupling process. 7. Neither (i) replacing extracellular Ca2+ with 1 mM Ba2+, nor (ii) intracellular perfusion of 10 mM BAPTA for at least 30 min attenuated the inhibitory effect of ATP on the current through Ca2+ channels, suggesting that the inhibitory effect

  11. Ketamine attenuates the Na+-dependent Ca2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L-type Ca2+ currents

    PubMed Central

    Luo, An-tao; Cao, Zhen-zhen; Xiang, Yu; Zhang, Shuo; Qian, Chun-ping; Fu, Chen; Zhang, Pei-hua; Ma, Ji-hua

    2015-01-01

    Aim: Intracellular Ca2+ ([Ca2+]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na+ overload and subsequently [Ca2+]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca2+]i overload. The aim of this study was to investigate the effects of ketamine on Na+-dependent Ca2+ overload in ventricular myocytes in vitro. Methods: Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca2+ current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca2+]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system. Results: Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca2+]i, and the rate and amplitude of [Ca2+]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L). Conclusion: Ketamine protects isolated rabbit ventricular myocytes against [Ca2+]i overload by inhibiting INaL and ICaL. PMID:26456586

  12. Resveratrol Attenuates the Na+-Dependent Intracellular Ca2+ Overload by Inhibiting H2O2-Induced Increase in Late Sodium Current in Ventricular Myocytes

    PubMed Central

    Qian, Chunping; Ma, Jihua; Zhang, Peihua; Luo, Antao; Wang, Chao; Ren, Zhiqiang; Kong, Linghao; Zhang, Shuo; Wang, Xiaojing; Wu, Ying

    2012-01-01

    Background/Aims Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H2O2)-induced increase in late sodium current (INa.L) which augmented the reverse Na+-Ca2+ exchanger current (INCX), and the diastolic intracellular Ca2+ concentration in ventricular myocytes. Methods INa.L, INCX, L-type Ca2+ current (ICa.L) and intracellular Ca2+ properties were determined using whole-cell patch-clamp techniques and dual-excitation fluorescence photomultiplier system (IonOptix), respectively, in rabbit ventricular myocytes. Results Resveratrol (10, 20, 40 and 80 µM) decreased INa.L in myocytes both in the absence and presence of H2O2 (300 µM) in a concentration dependent manner. Ranolazine (3–9 µM) and tetrodotoxin (TTX, 4 µM), INa.L inhibitors, decreased INa.L in cardiomyocytes in the presence of 300 µM H2O2. H2O2 (300 µM) increased the reverse INCX and this increase was significantly attenuated by either 20 µM resveratrol or 4 µM ranolazine or 4 µM TTX. In addition, 10 µM resveratrol and 2 µM TTX significantly depressed the increase by 150 µM H2O2 of the diastolic intracellular Ca2+ fura-2 fluorescence intensity (FFI), fura-fluorescence intensity change (△FFI), maximal velocity of intracellular Ca2+ transient rise and decay. As expected, 2 µM TTX had no effect on ICa.L. Conclusion Resveratrol protects the cardiomyocytes by inhibiting the H2O2-induced augmentation of INa.L.and may contribute to the reduction of ischemia-induced lethal arrhythmias. PMID:23272101

  13. cAMP- and Ca2+/calmodulin-dependent protein kinases mediate inotropic, lusitropic and arrhythmogenic effects of urocortin 2 in mouse ventricular myocytes

    PubMed Central

    Yang, Li-Zhen; Kockskämper, Jens; Khan, Shelina; Suarez, Jorge; Walther, Stefanie; Doleschal, Bernhard; Unterer, Gregor; Khafaga, Mounir; Mächler, Heinrich; Heinzel, Frank R; Dillmann, Wolfgang H; Pieske, Burkert; Spiess, Joachim

    2011-01-01

    BACKGROUND AND PURPOSE Urocortin 2 is beneficial in heart failure, but the underlying cellular mechanisms are not completely understood. Here we have characterized the functional effects of urocortin 2 on mouse cardiomyocytes and elucidated the underlying signalling pathways and mechanisms. EXPERIMENTAL APPROACH Mouse ventricular myocytes were field-stimulated at 0.5 Hz at room temperature. Fractional shortening and [Ca2+]i transients were measured by an edge detection and epifluorescence system respectively. Western blots were carried out on myocyte extracts with antibodies against total phospholamban (PLN) and PLN phosphorylated at serine-16. KEY RESULTS Urocortin 2 elicited time- and concentration-dependent positive inotropic and lusitropic effects (EC50: 19 nM) that were abolished by antisauvagine-30 (10 nM, n = 6), a specific antagonist of corticotrophin releasing factor (CRF) CRF2 receptors. Urocortin 2 (100 nM) increased the amplitude and decreased the time constant of decay of the underlying [Ca2+]i transients. Urocortin 2 also increased PLN phosphorylation at serine-16. H89 (2 µM) or KT5720 (1 µM), two inhibitors of protein kinase A (PKA), as well as KN93 (1 µM), an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), suppressed the urocortin 2 effects on shortening and [Ca2+]i transients. In addition, urocortin 2 also elicited arrhythmogenic events consisting of extra cell shortenings and extra [Ca2+]i increases in diastole. Urocortin 2-induced arrhythmogenic events were significantly reduced in cells pretreated with KT5720 or KN93. CONCLUSIONS AND IMPLICATIONS Urocortin 2 enhanced contractility in mouse ventricular myocytes via activation of CRF2 receptors in a cAMP/PKA- and Ca2+/CaMKII-dependent manner. This enhancement was accompanied by Ca2+-dependent arrhythmogenic effects mediated by PKA and CaMKII. PMID:20942811

  14. Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes.

    PubMed

    Viatchenko-Karpinski, Serge; Kornyeyev, Dmytro; El-Bizri, Nesrine; Budas, Grant; Fan, Peidong; Jiang, Zhan; Yang, Jin; Anderson, Mark E; Shryock, John C; Chang, Ching-Pin; Belardinelli, Luiz; Yao, Lina

    2014-11-01

    An increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes. PMID:25252177

  15. Effects of cytosolic ATP on spontaneous and triggered Ca2+-induced Ca2+ release in permeabilised rat ventricular myocytes.

    PubMed

    Yang, Z; Steele, D S

    2000-02-15

    1. The effects of cytosolic ATP on sarcoplasmic reticulum (SR) Ca2+ regulation were investigated in saponin-permeabilised rat ventricular myocytes. [Ca2+] within the cells was monitored using Fura-2 or Fluo-3 fluorescence. Spontaneous cyclic Ca2+ release from the SR was induced by increasing the bathing [Ca2+] to 200-300 nM, in solutions weakly Ca2+ buffered with 0.05 mM EGTA. Alternatively, Ca2+-induced Ca2+ release (CICR) was triggered by a rapid increase in [Ca2+] induced by flash photolysis of Nitr-5 (0.08 mM), replacing EGTA in the solution. 2. Stepwise reductions in [ATP] were associated with corresponding decreases in the frequency and increases in the amplitude of spontaneous Ca2+ transients. A decrease from 5 mM to 0. 1 mM ATP, reduced the release frequency by 48.6 +/- 7 % (n = 7) and almost doubled the amplitude of the Ca2+ transient. Marked prolongation of the spontaneous Ca2+ transient occurred when [ATP] was further reduced to 10 microM, consistent with inhibition of the SR Ca2+ pump. 3. These effects of ATP were compared with other interventions that inhibit Ca2+ uptake or reduce the sensitivity of the SR Ca2+ release mechanism. Inhibition of the SR Ca2+ pump with cyclopiazonic acid (CPA) markedly reduced the spontaneous Ca2+ release frequency, without changing the amplitude. The descending phase of the Ca2+ transient was prolonged in the presence of CPA, while the rising phase was unaffected. In contrast, desensitisation of the SR Ca2+ release mechanism with tetracaine decreased the frequency of spontaneous release, but markedly increased the amplitude. 4. CICR triggered by flash photolysis of Nitr-5 appeared to be more sensitive to cytosolic [ATP] than spontaneous release and was generally delayed by a decrease to 2.5 mM ATP. In the presence of 0.1-0.2 mM ATP, release often failed completely or was not consistently triggered. Some preparations exhibited Ca2+ release 'alternans', whereby every alternate trigger induced a response. 5. These results

  16. Shortening and intracellular Ca2+ in ventricular myocytes and expression of genes encoding cardiac muscle proteins in early onset type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Salem, K A; Adrian, T E; Qureshi, M A; Parekh, K; Oz, M; Howarth, F C

    2012-12-01

    There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart. The aim of this study was to investigate the pattern of cardiac muscle genes that are involved in the process of excitation-contraction coupling in the hearts of early onset (8-10 weeks of age) type 2 diabetic Goto-Kakizaki (GK) rats. Gene expression was assessed in ventricular muscle with real-time RT-PCR; shortening and intracellular Ca(2+) were measured in ventricular myocytes with video edge detection and fluorescence photometry, respectively. The general characteristics of the GK rats included elevated fasting and non-fasting blood glucose and blood glucose at 120 min following a glucose challenge. Expression of genes encoding cardiac muscle proteins (Myh6/7, Mybpc3, Myl1/3, Actc1, Tnni3, Tnn2, Tpm1/2/4 and Dbi) and intercellular proteins (Gja1/4/5/7, Dsp and Cav1/3) were unaltered in GK ventricle compared with control ventricle. The expression of genes encoding some membrane pumps and exchange proteins was unaltered (Atp1a1/2, Atp1b1 and Slc8a1), whilst others were either upregulated (Atp1a3, relative expression 2.61 ± 0.69 versus 0.84 ± 0.23) or downregulated (Slc9a1, 0.62 ± 0.07 versus 1.08 ± 0.08) in GK ventricle compared with control ventricle. The expression of genes encoding some calcium (Cacna1c/1g, Cacna2d1/2d2 and Cacnb1/b2), sodium (Scn5a) and potassium channels (Kcna3/5, Kcnj3/5/8/11/12, Kchip2, Kcnab1, Kcnb1, Kcnd1/2/3, Kcne1/4, Kcnq1, Kcng2, Kcnh2, Kcnk3 and Kcnn2) were unaltered, whilst others were either upregulated (Cacna1h, 0.95 ± 0.16 versus 0.47 ± 0.09; Scn1b, 1.84 ± 0.16 versus 1.11 ± 0.11; and Hcn2, 1.55 ± 0.15 versus 1.03 ± 0.08) or downregulated (Hcn4, 0.16 ± 0.03 versus 0.37 ± 0.08; Kcna2, 0.35 ± 0

  17. Tissue-specific expression of the human brain natriuretic peptide gene in cardiac myocytes.

    PubMed

    LaPointe, M C; Wu, G; Garami, M; Yang, X P; Gardner, D G

    1996-03-01

    Brain natriuretic peptide (BNP) is a cardiac hormone constitutively expressed in the adult heart. To identify the cis-acting elements involved in regulation of the human BNP gene, we subcloned the full-length promoter (-1818 to +100) and deletions thereof upstream from a luciferase reporter gene and transiently transfected them into primary cultures of neonatal rat atrial and ventricular myocytes and myocardial fibroblasts. Luciferase activity of the full-length construct was higher in ventricular (39064 +/- 8488 relative light units, N=11) and atrial (11225 +/- 1907, N=17) myocytes than myocardial fibroblasts (329 +/- 113, n=5). Maximal promoter activity in ventricular and atrial myocytes was maintained by sequences positioned between -1818 and -1283 relative to the transcription start site. Deletion to -1175 resulted in a decrease, whereas further deletion to -500 effected an increase in reporter activity in both cell types. In ventricular and atrial myocytes, deletion from -500 to -40 reduced luciferase activity 20-fold and 2-fold, respectively, whereas in myocardial fibroblasts, deletion to -40 upregulated the BNP promoter 2-fold. Of note, deleting 16 bp between -127 and -111 reduced luciferase activity 7-fold and 4-fold in ventricular and atrial myocytes, respectively, but had essentially no effect on luciferase activity in fibroblasts. Placement of sequences lying between -127 and -40 upstream from a heterologous thymidine kinase promoter resulted in reporter expression that was 7.4-fold greater than the vector alone in ventricular myocytes, approximately 2-fold greater in atrial myocytes, and equivalent to the vector alone in fibroblasts. For study of activity of the human BNP promoter in adult myocytes, either 408 or 97 bp of 5' flanking sequence coupled to the luciferase reporter gene was injected into the apex of adult male Sprague-Dawley rat hearts. After 7 days, luciferase activity in the injected myocardium was 9.8-fold higher for the longer construct

  18. Ultrastructural features of left ventricular myocytes in active and torpid hamsters compared with rats: a morphometric study.

    PubMed Central

    Skepper, J N; Navaratnam, V

    1995-01-01

    Myocytes from the midmyocardium of the left ventricle of rats and hamsters were examined by transmission electron microscopy. The volume fraction of lipid droplets in such myocytes was about 6 times greater in the active hamster than in the rat, but it became progressively reduced during cold exposure and entry into hibernation to values similar to those of the rat. The volume fraction of the T-system as well as the surface density of its membranes were each found to be twice as large in hamster myocytes as in the rat but there was no difference in these parameters between control, cold-exposed and torpid hamsters. The surface density of the junctional sarcoplasmic reticulum coupled with elements of the T-system was greater in active hamsters when compared with those of the rat, and greater still in torpid hamsters. There was no significant difference in the surface density of free sarcoplasmic reticulum between control hamsters, cold-exposed hamsters and rats but it was almost doubled in torpid hamsters. It is proposed that these features represent inherent differences in the ultrastructure of the left ventricle between the rat and hamster that may facilitate entry into hibernation. Additionally, further structural modifications during entry into hibernation may be related to alterations in lipid metabolism and modifications of calcium handling. Images Fig. 1 Fig. 2 PMID:7559131

  19. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.

    PubMed Central

    Di Lisa, F; Blank, P S; Colonna, R; Gambassi, G; Silverman, H S; Stern, M D; Hansford, R G

    1995-01-01

    1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two emission peaks (539 and 597 nm with excitation at 490 nm) corresponding to monomer and aggregate forms of the dye. 2. De-energizing conditions applied to mitochondria, cell suspensions or single cells decreased the aggregate emission and increased the monomer emission. This latter result cannot be explained by changes of JC-1 concentration in the aqueous mitochondrial matrix phase indicating that hydrophobic interaction of the probe with membranes has to be taken into account to explain JC-1 fluorescence properties in isolated mitochondria or intact cells. 3. A different sensitivity of the two JC-1 forms to delta psi m changes was shown in isolated mitochondria by the effects of ADP and FCCP and the calibration with K+ diffusion potentials. The monomer emission was responsive to values of delta psi m below 140 mV, which hardly modified the aggregate emission. Thus JC-1 represents a unique double sensor which can provide semi-quantitative information in both low and high potential ranges. 4. At the onset of glucose-free anoxia the epifluorescence of individual myocytes studied in the single excitation (490 nm)-double emission (530 and 590 nm) mode showed a gradual decline of the aggregate emission, which reached a plateau while electrically stimulated (0.2 Hz) contraction was still retained. The subsequent failure of contraction was followed by the rise of the emission at 530 nm, corresponding to the monomer form of the dye, concomitantly with the development of rigor contracture. 5. The onset of the rigor was preceded by the increase in intracellular Mg2+ concentration ([Mg2+]i) monitored by mag-indo-1 epifluorescence

  20. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.

    PubMed

    Wang, Xiao; Weinberg, Seth H; Hao, Yan; Sobie, Eric A; Smith, Gregory D

    2015-03-01

    Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks. PMID:25485896

  1. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

    PubMed

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens

    2014-09-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  2. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes

    PubMed Central

    Verde, Ignacio; Vandecasteele, Grégoire; Lezoualc'h, Frank; Fischmeister, Rodolphe

    1999-01-01

    The effects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (ICa) and intracellular cyclic AMP concentration ([cAMP]i) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the different cardiac PDE subtypes was confirmed by RT–PCR.IBMX (100 μM), a broad-spectrum PDE inhibitor, increased basal ICa by 120% and [cAMP]i by 70%, similarly to a saturating concentration of the β-adrenoceptor agonist isoprenaline (1 μM). However, MIMX (1 μM), a PDE1 inhibitor, EHNA (10 μM), a PDE2 inhibitor, cilostamide (0.1 μM), a PDE3 inhibitor, or Ro 20-1724 (0.1 μM), a PDE4 inhibitor, had no effect on basal ICa and little stimulatory effects on [cAMP]i (20–30%).Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any effect on ICa or [cAMP]i. While all combinations tested significantly increased [cAMP]i (40–50%), only cilostamide (0.1 μM)+Ro20-1724 (0.1 μM) produced a significant stimulation of ICa (50%). Addition of EHNA (10 μM) to this mix increased ICa to 110% and [cAMP]i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 μM) or isoprenaline (1 μM).When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased ICa by (≈40% and had negligible effect on [cAMP]i, each selective PDE inhibitor induced a clear stimulation of [cAMP]i and an additional increase in ICa. Maximal effects on ICa were ≈8% for MIMX (3 μM), ≈20% for EHNA (1–3 μM), ≈30% for cilostamide (0.3–1 μM) and ≈50% for Ro20-1724 (0.1 μM).Our results demonstrate that PDE1-4 subtypes regulate ICa in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal ICa, all four PDE subtypes determine the response of ICa to a stimulus activating cyclic AMP production, with the rank order of potency PDE4>PDE3

  3. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.

    PubMed

    Verde, I; Vandecasteele, G; Lezoualc'h, F; Fischmeister, R

    1999-05-01

    The effects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (I(Ca)) and intracellular cyclic AMP concentration ([cAMP]i) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the different cardiac PDE subtypes was confirmed by RT-PCR. IBMX (100 microM), a broad-spectrum PDE inhibitor, increased basal I(Ca) by 120% and [cAMP]i by 70%, similarly to a saturating concentration of the beta-adrenoceptor agonist isoprenaline (1 microM). However, MIMX (1 microM), a PDE1 inhibitor, EHNA (10 microM), a PDE2 inhibitor, cilostamide (0.1 microM), a PDE3 inhibitor, or Ro20-1724 (0.1 microM), a PDE4 inhibitor, had no effect on basal I(Ca) and little stimulatory effects on [cAMP]i (20-30%). Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any effect on I(Ca) or [cAMP]i. While all combinations tested significantly increased [cAMP]i (40-50%), only cilostamide (0.1 microM)+ Ro20-1724 (0.1 microM) produced a significant stimulation of I(Ca) (50%). Addition of EHNA (10 microM) to this mix increased I(Ca) to 110% and [cAMP]i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 microM) or isoprenaline (1 microM). When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased I(Ca) by (approximately 40% and had negligible effect on [cAMP]i, each selective PDE inhibitor induced a clear stimulation of [cAMP]i and an additional increase in I(Ca). Maximal effects on I(Ca) were approximately 8% for MIMX (3 microM), approximately 20% for EHNA (1-3 microM), approximately 30% for cilostamide (0.3-1 microM) and approximately 50% for Ro20-1724 (0.1 microM). Our results demonstrate that PDE1-4 subtypes regulate I(Ca) in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal I(Ca), all four PDE subtypes determine the response of I

  4. Autocrine A2 in the T-system of ventricular myocytes creates transmural gradients in ion transport: a mechanism to match contraction with load?

    PubMed

    Gao, Junyuan; Sun, Xiurong; Potapova, Irina A; Cohen, Ira S; Mathias, Richard T; Kim, Jeremy H

    2014-06-01

    Transmural heterogeneities in Na/K pump current (IP), transient outward K(+)-current (Ito), and Ca(2+)-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33-50% of IP, 57-65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load. PMID:24896115

  5. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177

    PubMed Central

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T.; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N.; Wakula, Paulina; Groschner, Klaus; Maier, Lars S.; Spiess, Joachim; Blatter, Lothar A.; Pieske, Burkert

    2014-01-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca2+-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  6. Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following β2-adrenergic stimulation of ICa,L in frog ventricular myocytes

    PubMed Central

    Jurevičius, Jonas; Skeberdis, V Arvydas; Fischmeister, Rodolphe

    2003-01-01

    The role of cyclic nucleotide phosphodiesterase (PDE) isoforms in the β2-adrenergic stimulation of the L-type Ca2+ current (ICa,L) was investigated in frog ventricular myocytes using double patch-clamp and double-barrelled microperfusion techniques. Isoprenaline (ISO, 1 nM to 10 μM) was applied on one half of the cell, either alone or in the presence of PDE inhibitors, and the local and distant responses of ICa,L were used to determine the gradient of local vs. distant cAMP concentration (α). IBMX (100 μM), a non-selective PDE inhibitor, reduced α from 40 to 4.4 indicating a 9-fold reduction in intracellular cAMP compartmentation when all PDE activity was blocked. While PDE1 and PDE2 inhibition had no effect, PDE3 inhibition by milrinone (3 μM) or PDE4 inhibition by Ro 20-1724 (3 μM) reduced α by 6- and 4-fold, respectively. A simultaneous application of milrinone and Ro 20-1724 produced a similar effect to IBMX, showing that PDE3 and PDE4 were the major PDEs accounting for cAMP compartmentation. Okadaic acid (3 μM), a non-selective phosphatase inhibitor, or H89 (1 μM), an inhibitor of cAMP-dependent protein kinase (PKA), had no effect on the distant response of ICa,L to ISO indicating that PDE activation by PKA played a minor role in cAMP compartmentation. Our results demonstrate that PDE activity determines the degree of cAMP compartmentation in frog ventricular cells upon β2-adrenergic stimulation. PDE3 and PDE4 subtypes play a major role in this process, and contribute equally to ensure a functional coupling of β2-adrenergic receptors with nearby Ca2+ channels via local elevations of cAMP. PMID:12815180

  7. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  8. Fendiline inhibits L-type calcium channels in guinea-pig ventricular myocytes: a whole-cell patch-clamp study.

    PubMed Central

    Tripathi, O.; Schreibmayer, W.; Tritthart, H. A.

    1993-01-01

    1. Fendiline, a diphenylalkylamine type of antianginal drug, was examined for its effects on L-type calcium channels in guinea-pig ventricular myocytes by the whole-cell patch-clamp technique. 2. Fendiline (0.3-100 microM) applied extracellularly inhibited the calcium channel current (ICa) in a concentration- and time-dependent manner. The IC50 of fendiline was 17.0 +/- 2.43 microM and the Hill slope was 1.39 +/- 0.23. 3. Inhibition of ICa by fendiline appeared with an onset of less than 3 s. 4. Fendiline inhibited ICa at all the membrane potentials tested and shifted the current-voltage curve upwards. The overall calcium channel conductance (gCa) of the cell was reduced and conductance-voltage curve was shifted to the left in the presence of fendiline. 5. Isoprenaline (0.5-1 microM), a beta-adrenoceptor agonist, partially reversed the inhibitory effect of fendiline on ICa. 6. It is suggested that fendiline applied extracellularly blocks L-type calcium channels and reduces calcium channel conductance of the cell. The calcium channels thus inhibited are, nevertheless, still available for beta-adrenoceptor stimulation. PMID:8485628

  9. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  10. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  11. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations

    SciTech Connect

    Yamada, Shigeyuki; Zhang Xiuquan; Kadono, Toshie; Matsuoka, Nobuhiro; Rollins, Douglas; Badger, Troy; Rodesch, Christopher K.; Barry, William H.

    2009-04-01

    Aims: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. Methods: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca{sup 2+}]{sub i} was measured by flow cytometry using fluo-3. Mitochondrial [Ca{sup 2+}] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. Results: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca{sup 2+} uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca{sup 2+}]{sub i} in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca{sup 2+}]{sub i} during P-MI was also prevented by ranolazine. Conclusions: CSE in clinically relevant concentrations increases myocyte [Ca{sup 2+}]{sub i} during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold.

  12. Implementation of Contraction to Electrophysiological Ventricular Myocyte Models, and Their Quantitative Characterization via Post-Extrasystolic Potentiation

    PubMed Central

    Ji, Yanyan Claire; Gray, Richard A.; Fenton, Flavio H.

    2015-01-01

    Heart failure (HF) affects over 5 million Americans and is characterized by impairment of cellular cardiac contractile function resulting in reduced ejection fraction in patients. Electrical stimulation such as cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM) have shown some success in treating patients with HF. Computer simulations have the potential to help improve such therapy (e.g. suggest optimal lead placement) as well as provide insight into the underlying mechanisms which could be beneficial. However, these myocyte models require a quantitatively accurate excitation-contraction coupling such that the electrical and contraction predictions are correct. While currently there are close to a hundred models describing the detailed electrophysiology of cardiac cells, the majority of cell models do not include the equations to reproduce contractile force or they have been added ad hoc. Here we present a systematic methodology to couple first generation contraction models into electrophysiological models via intracellular calcium and then compare the resulting model predictions to experimental data. This is done by using a post-extrasystolic pacing protocol, which captures essential dynamics of contractile forces. We found that modeling the dynamic intracellular calcium buffers is necessary in order to reproduce the experimental data. Furthermore, we demonstrate that in models the mechanism of the post-extrasystolic potentiation is highly dependent on the calcium released from the Sarcoplasmic Reticulum. Overall this study provides new insights into both specific and general determinants of cellular contractile force and provides a framework for incorporating contraction into electrophysiological models, both of which will be necessary to develop reliable simulations to optimize electrical therapies for HF. PMID:26317204

  13. Influence of pH on Ca2+ current and its control of electrical and Ca2+ signaling in ventricular myocytes

    PubMed Central

    Saegusa, Noriko; Moorhouse, Emma; Vaughan-Jones, Richard D.

    2011-01-01

    Modulation of L-type Ca2+ current (ICa,L) by H+ ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of ICa,L was investigated (whole cell voltage clamp) while measuring intracellular Ca2+ (Ca2+i) or pHi (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pHo 6.5 and pHi 6.7) had opposite effects on ICa,L gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pHo, this decreased ICa,L, whereas at low pHi, it increased ICa,L at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca2+i was buffered with BAPTA, the stimulatory effect of low pHi was even more marked, with essentially no inhibition. We conclude that extracellular H+ ions inhibit whereas intracellular H+ ions can stimulate ICa,L. Low pHi and pHo effects on ICa,L were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H+ ion screening of fixed negative charge at the sarcolemma, with additional channel block by H+o and Ca2+i. Action potential duration (APD) was also strongly H+ sensitive, being shortened by low pHo, but lengthened by low pHi, caused mainly by H+-induced changes in late Ca2+ entry through the L-type Ca2+ channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca2+ signaling. We conclude that the pHi-versus-pHo control of ICa,L will exert a major influence on electrical and Ca2+-dependent signaling during acid–base disturbances in the heart. PMID:22042988

  14. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts.

    PubMed

    Mishra, Sudhish; Reznikov, Vitaliy; Maltsev, Victor A; Undrovinas, Nidas A; Sabbah, Hani N; Undrovinas, Albertas

    2014-10-17

    Late Na(+) current (INaL) contributes to action potential (AP) duration and Ca(2+) handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca(2+) handling in heart failure (HF). We tested if Na(+) channel (Nav) neuronal isoforms contribute to INaL and Ca(2+) cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na(+) current (INaT) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca(2+) dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF(-1) (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At -10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca(2+) accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant

  15. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    SciTech Connect

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  16. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts

    PubMed Central

    Mishra, Sudhish; Reznikov, Vitaliy; Maltsev, Victor A; Undrovinas, Nidas A; Sabbah, Hani N; Undrovinas, Albertas

    2015-01-01

    Late Na+ current (INaL) contributes to action potential (AP) duration and Ca2+ handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca2+ handling in heart failure (HF). We tested if Na+ channel (Nav) neuronal isoforms contribute to INaL and Ca2+ cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na+ current (INaT) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca2+ dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF–1 (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At –10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca2+ accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant to

  17. Left ventricular diastolic function in young adults: the Coronary Artery Risk Development in Young Adults Study.

    PubMed

    Xie, X; Gidding, S S; Gardin, J M; Bild, D E; Wong, N D; Liu, K

    1995-01-01

    Doppler transmitral flow velocities have been used to assess left ventricular diastolic function. Associations of transmitral velocities with specific physiologic variables and cardiovascular risk factors have not been reported previously in a large population-based study of young adults. We performed Doppler analysis of left ventricular inflow in 3492 black and white men and women (aged 23 to 35 years) in the year-5 examination of the Coronary Artery Risk Development in Young Adults (CARDIA) Study. First third filling fraction, peak flow velocity in early diastole (PFVE), peak flow velocity in late diastole (PFVA), and the PFVA/PFVE ratio were measured. Women had higher PFVE and PFVA than had men (PFVE: 0.81 +/- 0.13 m/sec versus 0.76 +/- 0.13 m/sec; PFVA: 0.47 +/- 0.11 m/sec versus 0.43 +/- 0.10 m/sec; both p < 0.001). Gender-specific multiple regression analyses showed that age, heart rate, systolic blood pressure, left ventricular percent fractional shortening, and body weight were independently and positively related to PFVA (all p < 0.001) in men and women. Age, heart rate, and forced expiratory lung capacity in 1 second were inversely related to PFVE and first third filling fraction (both p < 0.01). Left ventricular percent fractional shortening was positively related to PFVE and first third filling fraction (p < 0.001). Age, heart rate, and body weight were positively correlated with the PFVA/PFVE ratio (all p < 0.001). Height had weak negative associations with PFVA and PFVE in women only. These results suggest that, in young adults, Doppler measures of left ventricular diastolic filling are related to age, sex, body weight, blood pressure, heart rate, left ventricular systolic function, and lung function. PMID:8611277

  18. Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes.

    PubMed

    Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Horváth, Balázs; Ruzsnavszky, Ferenc; Váczi, Krisztina; Magyar, János; Bányász, Tamás; Varró, András; Nánási, Péter P

    2015-07-01

    Although beat-to-beat variability (short-term variability, SV) of action potential duration (APD) is considered as a predictor of imminent cardiac arrhythmias, the underlying mechanisms are still not clear. In the present study, therefore, we aimed to determine the role of the major cardiac ion currents, APD, stimulation frequency, and changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) on the magnitude of SV. Action potentials were recorded from isolated canine ventricular cardiomyocytes using conventional microelectrode techniques. SV was an exponential function of APD, when APD was modified by current injections. Drug effects were characterized as relative SV changes by comparing the drug-induced changes in SV to those in APD according to the exponential function obtained with current pulses. Relative SV was increased by dofetilide, HMR 1556, nisoldipine, and veratridine, while it was reduced by BAY K8644, tetrodotoxin, lidocaine, and isoproterenol. Relative SV was also increased by increasing the stimulation frequency and [Ca(2+)]i. In summary, relative SV is decreased by ion currents involved in the negative feedback regulation of APD (I Ca, I Ks, and I Kr), while it is increased by I Na and I to. We conclude that drug-induced effects on SV should be evaluated in relation with the concomitant changes in APD. Since relative SV was decreased by ion currents playing critical role in the negative feedback regulation of APD, blockade of these currents, or the beta-adrenergic pathway, may carry also some additional proarrhythmic risk in addition to their well-known antiarrhythmic action. PMID:25081243

  19. Chronic Heart Failure Slows Late Sodium Current in Human and Canine Ventricular Myocytes: Implications for Repolarization Variability

    PubMed Central

    Maltsev, Victor A.; Silverman, Norman; Sabbah, Hani N.; Undrovinas., Albertas I.

    2006-01-01

    Background Late Na+ current (INaL) in human and dog hearts has been implicated in abnormal repolarization associated with heart failure (HF). HF slows inactivation gating of late Na+ channels, which could contribute to these abnormalities. Aims To test how altered gating affects INaL time course, Na+ influx, and action potential (AP) repolarization. Methods INaL and AP were measured by patch clamp in left ventricular cardiomyocytes from normal and failing hearts of humans and dogs. Canine HF was induced by coronary microembolization. Results INaL decay was slower and INaL density was greater in failing hearts than in normal hearts at 24°C (human hearts: τ=659±16 vs. 529±21 ms; n=16 and 4 hearts, respectively; mean±SEM; p<0.002; dog hearts: 561±13 vs. 420±17 ms; and 0.307±0.014 vs. 0.235±0.019 pA/pF; n=25 and 14 hearts, respectively; p<0.005) and at 37°C this difference tended to increase. These INaL changes resulted in much greater (53.6%) total Na+ influx in failing cardiomyocytes. INaL was sensitive to cadmium but not to cyanide and exhibited low sensitivity to saxitoxin (IC50=62nM) or tetrodotoxin (IC50=1.2μM) tested in dogs. A 50% INaL inhibition by toxins or passing current opposite to INaL, decreased beat-to-beat AP variability and eliminated early afterdepolarizations in failing cardiomyocytes. Conclusions Chronic HF leads to larger and slower INaL generated mainly by the cardiac-type Na+ channel isoform, contributing to larger Na+ influx and AP duration variability. Interventions designed to reduce/normalize INaL represent a potential cardioprotective mechanism in HF via reduction of related Na+ and Ca2+ overload and improvement of repolarization. PMID:17067855

  20. Regulation of the frequency-dependent facilitation of L-type Ca2+ currents in rat ventricular myocytes.

    PubMed Central

    Tiaho, F; Piot, C; Nargeot, J; Richard, S

    1994-01-01

    1. An increase in the rate of stimulation induces an augmentation of L-type Ca2+ currents (ICa) and concomitant slowing of current decay in rat ventricular cells. This facilitation is quasi immediate (1-3 s), graded with the rate of stimulation, and occurs only from negative holding potentials. We investigated this effect using trains of stimulation at 1 Hz and the whole-cell patch-clamp technique (18-22 degrees C). 2. The decay of ICa is normally bi-exponential and comprises fast and slow current components (ICa,fc and ICa,sc, respectively). Facilitation of ICa was observed only when ICa,fc was predominant. 3. Facilitation developed during the run-up of ICa with the interconversion of ICa,sc into ICa,fc, and vanished during the run-down of ICa with the loss of ICa,fc.Ni2+ (300 microM) and nifedipine (1 microM) suppressed facilitation owing to the preferential inhibition of ICa,fc. 4. Facilitation of ICa was not altered (when present) or favoured (when absent) by the cAMP-dependent phosphorylation of Ca2+ channels promoted by isoprenaline or by intracellular application of cAMP or of the catalytic subunit of protein kinase A (C-sub). A similar effect was observed when the dihydropyridine agonist Bay K 8644 was applied. In both cases, facilitation was linked to a preferential increase of ICa,fc. 5. Following intracellular application of inhibitors of protein kinase A in combination with a non-hydrolysable ATP analogue, ICa consisted predominantly of ICa,sc and no facilitation was observed. The calmodulin antagonist naphthalenesulphonamide had no effect on facilitation. 6. When Bay K 8644 was applied in combination with isoprenaline, cAMP or C-sub, the decay of ICa was slowed with the predominant development of ICa,sc, and facilitation of ICa was nearly abolished. Facilitation also depended on extracellular Ca2+, and was suppressed when Ba2+ replaced Ca2+ as the permeating ion. 7. When no EGTA was included in the patch pipette, facilitation was not further enhanced

  1. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents.

    PubMed Central

    Ferrier, G R; Howlett, S E

    1995-01-01

    1. Unloaded cell shortening and membrane currents were examined in isolated guinea-pig ventricular myocytes at 37 degrees C using video edge detection and single-electrode voltage clamp. 2. Inward Na+ currents were eliminated by lidocaine, tetrodotoxin, replacement of extracellular Na+ with choline chloride or sucrose, or by voltage inactivation of Na+ channels. In the absence of Na+ current, the threshold for contraction was approximately -50 or -55 mV. 3. Verapamil (5 microM) and nifedipine (2 microM) failed to inhibit contractions at negative membrane potentials when positive conditioning pulses were used to maintain intracellular Ca2+ stores via Na(+)-Ca2+ exchange. In contrast, 200 microM Ni2+ inhibited these contractions. 4. Contractions were abolished when the extracellular solution was nominally Ca2+ free. However, contractions were restored by as little as 50 microM extracellular Ca2+. 5. Ryanodine (30 nM) completely abolished contractions initiated by depolarizing steps from -65 to -40 mV, but had minimal effects on contractions initiated by depolarizing steps from -40 to +5 mV. Subtraction of contraction-voltage relations determined in the presence of ryanodine from control relations revealed a ryanodine-sensitive component of contraction. This component activated at -55 mV and reached a plateau near -25 mV. 6. The amplitudes of contractions initiated by depolarizing steps from -40 mV were directly proportional to the magnitude of Ca2+ current (ICa). In contrast, contractions initiated by steps from either -55 or -65 mV were not proportional to ICa. These contractions appeared at potentials negative to the threshold for L-type Ca2+ current, increased to a plateau at more positive potentials and did not decrease at potentials at which ICa decreased. 7. Subtraction of the contraction-voltage relationship determined from a membrane potential of -40 mV from that at -55 mV revealed a component of contraction with a negative activation threshold whose

  2. Rest and exercise ventricular function in adults with congenital ventricular septal defects

    SciTech Connect

    Jablonsky, G.; Hilton, J.D.; Liu, P.P.; Morch, J.E.; Druck, M.N.; Bar-Shlomo, B.Z.; McLaughlin, P.R.

    1983-01-15

    Rest and exercise right and left ventricular function were compared using equilibrium gated radionuclide angiography in 19 normal sedentary control subjects and 34 patients with hemodynamically documented congenital ventricular septal defect (VSD). Gated radionuclide angiography was performed at rest and during each level of graded supine bicycle exercise to fatigue. Heart rate, blood pressure, maximal work load achieved, and right and left ventricular ejection fractions were assessed. The control subjects demonstrated an increase in both the left and right ventricular ejection fractions with exercise. All study groups failed to demonstrate an increase in ejection fraction in either ventricle with exercise. Furthermore, resting left ventricular ejection fraction in Groups 2 and 3 was lower than that in the control subjects and resting right ventricular ejection fraction was lower in Group 3 versus control subjects. Thus left and right ventricular function on exercise were abnormal in patients with residual VSD as compared with control subjects; rest and exercise left ventricular ejection fractions remained abnormal despite surgical closure of VSD in the remote past; resting left and right ventricular function was abnormal in patients with Eisenmenger's complex; lifelong volume overload may be detrimental to myocardial function.

  3. Left ventricular function in adults with mild pulmonary insufficiency late after Fallot repair

    PubMed Central

    Niezen, R; Helbing, W; van der Wall, E E; van der Geest, R J; Vliegen, H; de Roos, A

    1999-01-01

    OBJECTIVE—To assess left ventricular function in adult Fallot patients with residual pulmonary regurgitation.
SETTING—The radiology department of a tertiary referral centre.
PATIENTS—14 patients with chronic pulmonary regurgitation and right ventricular volume overload after repair of tetralogy of Fallot and 10 healthy subjects were studied using magnetic resonance imaging.
MAIN OUTCOME MEASURES—Biventricular volumes, global biventricular function, and regional left ventricular function were assessed in all subjects.
RESULTS—The amount of pulmonary regurgitation in patients (mean (SD)) was 25 (18)% of forward flow and correlated significantly with right ventricular enlargement (p < 0.05). Left ventricular end diastolic volume was decreased in patients (78 (11) v 88 (10) ml/m2; p < 0.05), ejection fraction was not significantly altered (59 (5)% v 55 (7)%; NS). No significant correlation was found between pulmonary regurgitation and left ventricular function. Overall left ventricular end diastolic wall thickness was significantly lower in patients (5.06 (0.72) v 6.06 (1.06) mm; p < 0.05), predominantly in the free wall. At the apical level, left ventricular systolic wall thickening was 20% higher in Fallot patients (p < 0.05). Left ventricular shape was normal.
CONCLUSIONS—Adult Fallot patients with mild chronic pulmonary regurgitation and subsequent right ventricular enlargement showed a normal left ventricular shape and global function. Although the left ventricular free wall had reduced wall thickness, compensatory hypercontractility of the apex may contribute to preserved global function.


Keywords: left ventricular function; pulmonary insufficiency; tetralogy of Fallot; magnetic resonance imaging PMID:10573497

  4. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    SciTech Connect

    Icli, Basak; Bharti, Ajit; Pentassuglia, Laura; Peng, Xuyang; Sawyer, Douglas B.

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. Black-Right-Pointing-Pointer Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. Black-Right-Pointing-Pointer Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or {gamma}-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  5. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  6. High-fat diet-dependent modulation of the delayed rectifier K(+) current in adult guinea pig atrial myocytes.

    PubMed

    Aromolaran, Ademuyiwa S; Colecraft, Henry M; Boutjdir, Mohamed

    2016-06-01

    Obesity is associated with hyperlipidemia, electrical remodeling of the heart, and increased risk of supraventricular arrhythmias in both male and female patients. The delayed rectifier K(+) current (IK), is an important regulator of atrial repolarization. There is a paucity of studies on the functional role of IK in response to obesity. Here, we assessed the obesity-mediated functional modulation of IK in low-fat diet (LFD), and high-fat diet (HFD) fed adult guinea pigs. Guinea pigs were randomly divided into control and obese groups fed, ad libitum, with a LFD (10 kcal% fat) or a HFD (45 kcal% fat) respectively. Action potential duration (APD), and IK were studied in atrial myocytes and IKr and IKs in HEK293 cells using whole-cell patch clamp electrophysiology. HFD guinea pigs displayed a significant increase in body weight, total cholesterol and total triglycerides within 50 days. Atrial APD at 30% (APD30) and 90% (APD90) repolarization were shorter, while atrial IK density was significantly increased in HFD guinea pigs. Exposure to palmitic acid (PA) increased heterologously expressed IKr and IKs densities, while oleic acid (OA), severely reduced IKr and had no effect on IKs. The data are first to show that in obese guinea pigs abbreviated APD is due to increased IK density likely through elevations of PA. Our findings may have crucial implications for targeted treatment options for obesity-related arrhythmias. PMID:27130822

  7. Mapping ventricular expansion onto cortical gray matter in older adults.

    PubMed

    Madsen, Sarah K; Gutman, Boris A; Joshi, Shantanu H; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Dynamic changes in the brain's lateral ventricles on magnetic resonance imaging are powerful biomarkers of disease progression in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Ventricular measures can represent accumulation of diffuse brain atrophy with very high effect sizes. Despite having no direct role in cognition, ventricular expansion co-occurs with volumetric loss in gray and white matter structures. To better understand relationships between ventricular and cortical changes over time, we related ventricular expansion to atrophy in cognitively relevant cortical gray matter surfaces, which are more challenging to segment. In ADNI participants, percent change in ventricular volumes at 1-year (N = 677) and 2-year (N = 536) intervals was significantly associated with baseline cortical thickness and volume in the full sample controlling for age, sex, and diagnosis, and in MCI separately. Ventricular expansion in MCI was associated with thinner gray matter in frontal, temporal, and parietal regions affected by AD. Ventricular expansion reflects cortical atrophy in early AD, offering a useful biomarker for clinical trials of interventions to slow AD progression. PMID:25311280

  8. A Cyclin D2-Rb Pathway Regulates Cardiac Myocyte Size and RNA Polymerase III After Biomechanical Stress in Adult Myocardium

    PubMed Central

    Angelis, Ekaterini; Garcia, Alejandro; Chan, Shing S.; Schenke-Layland, Katja; Ren, Shuxen; Goodfellow, Sarah J.; Jordan, Maria C.; Roos, Kenneth P.; White, Robert J.; MacLellan, W. Robb

    2008-01-01

    Normally, cell cycle progression is tightly coupled to the accumulation of cell mass; however, the mechanisms whereby proliferation and cell growth are linked are poorly understood. We have identified Cyclin D2 (CycD2), a G1 cyclin implicated in mediating S phase entry, as a potential regulator of hypertrophic growth in adult post mitotic myocardium. To examine the role of CycD2 and its downstream targets, we subjected CycD2-null mice to mechanical stress. Hypertrophic growth in response to transverse aortic constriction (TAC) was attenuated in CycD2 null compared to wildtype mice. Blocking the increase in CycD2 in response to hypertrophic agonists prevented phosphorylation of CycD2-target Rb in vitro and mice deficient for Rb had potentiated hypertrophic growth. Hypertrophic growth requires new protein synthesis and transcription of tRNA genes by RNA pol III, which increases with hypertrophic signals. This load-induced increase in RNA pol III activity is augmented in Rb-deficient hearts. Rb binds and represses Brf-1 and TBP, subunits of RNA pol III-specific transcription factor B, in adult myocardium under basal conditions. However this association is disrupted in response to TAC. RNA pol III activity is unchanged in CycD2-/- myocardium after TAC, and there is no dissociation of TBP from Rb. These investigations identify an essential role for the CycD2-Rb pathway as a governor of cardiac myocyte enlargement in response to biomechanical stress and, more fundamentally, as a regulator of the load-induced activation of RNA pol III. PMID:18420946

  9. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(2+) current, Ca(2+) transient, and contractility in rat ventricular myocytes.

    PubMed

    Liu, Tao; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Guo, Hui; Liu, Zhenyi; Dong, Yongsheng; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Crocin, a carotenoid component of Crocus sativus L. belonging to the Iridaceae family, has demonstrated cardioprotective effects. To investigate the cellular mechanisms of these cardioprotective effects, here we studied the influence of crocin on L-type Ca(2+)current (I(Ca-L)), intracellular Ca(2+) ([Ca(2+)]i), and contraction of isolated rat cardiomyocytes by using the whole-cell patch-clamp technique and video-based edge detection and dual excitation fluorescence photomultiplier systems. Crocin inhibited I(Ca-L) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) of 45 μmol/L and the maximal inhibitory effect of 72.195% ± 1.54%. Neither current-voltage relationship of I(Ca-L), reversal potential of I(Ca-L), nor the activation/inactivation of I(Ca-L) was significantly changed. Crocin at 1 μmol/L reduced cell shortening by 44.64% ± 2.12% and the peak value of the Ca(2+) transient by 23.66% ± 4.52%. Crocin significantly reduced amplitudes of myocyte shortening and [Ca(2+)]i with an increase in the time to reach 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of crocin may be attributed to the attenuation of [Ca(2+)]i through the inhibition of I(Ca-L) in rat cardiomyocytes and negative inotropic effects on myocardial contractility. PMID:26674933

  10. Milrinone enhances cytosolic calcium transient and contraction in rat cardiac myocytes during beta-adrenergic stimulation.

    PubMed

    Raffaeli, S; Ferroni, C; Spurgeon, H A; Capogrossi, M C

    1989-01-01

    We have investigated the mechanism that underlies the absence of a positive inotropic effect of milrinone on rat myocardium. The twitch characteristics of enzymatically dissociated left ventricular myocytes from the adult rat and guinea pig were assessed by edge tracking during field stimulation. In some rat myocytes loaded with the ester derivative of the Ca2+ probe Indo-1 we simultaneously measured changes in cell length and in the associated cytosolic Ca2+ (Cai) transient. Our results show that in guinea pig myocytes bathed in 0.5 mM [Ca2+] and field stimulated at 1 Hz, milrinone (10 microM) had a positive inotropic effect. In contrast milrinone had no effect on the contractile properties of rat myocytes studied under similar conditions and field stimulated at 0.2 Hz. In rat myocytes bathed in 0.5 mM [Ca2+] and stimulated at 0.2 Hz isoproterenol (1 nM) increased the amplitude and shortened the duration of the contraction and of the associated Cai transient; these effects of beta-adrenergic stimulation were further enhanced by the addition of milrinone (10 microM) in the presence of isoproterenol. Under conditions of higher cell Ca2+ loading achieved by raising bathing [Ca2+] to 1 mM and isoproterenol to 3 nM the positive inotropic effect of milrinone (10 microM) in rat myocytes saturated when spontaneous oscillatory Ca2+ release appeared in the diastolic intervals between electrically stimulated twitches. Our results suggest that an enhancement in the baseline beta-adrenergic stimulation is required for milrinone to exercise a positive inotropic action on rat myocardial tissue. PMID:2576017

  11. PI3Ks Maintain the Structural Integrity of T-Tubules in Cardiac Myocytes

    PubMed Central

    Wu, Chia-Yen C.; Jia, Zhiheng; Wang, Wei; Ballou, Lisa M.; Jiang, Ya-Ping; Chen, Biyi; Mathias, Richard T.; Cohen, Ira S.; Song, Long-Sheng; Entcheva, Emilia; Lin, Richard Z.

    2011-01-01

    Background Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently. Methods and Results Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca2+ channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca2+ transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level. Conclusions PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca2+-induced Ca2+ release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials. PMID:21912691

  12. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  13. Macrolide antibiotics and the risk of ventricular arrhythmia in older adults

    PubMed Central

    Trac, Mai H.; McArthur, Eric; Jandoc, Racquel; Dixon, Stephanie N.; Nash, Danielle M.; Hackam, Daniel G.; Garg, Amit X.

    2016-01-01

    Background: Many respiratory tract infections are treated with macrolide antibiotics. Regulatory agencies warn that these antibiotics increase the risk of ventricular arrhythmia. We examined the 30-day risk of ventricular arrhythmia and all-cause mortality associated with macrolide antibiotics relative to nonmacrolide antibiotics. Methods: We conducted a population-based retrospective cohort study involving older adults (age > 65 yr) with a new prescription for an oral macrolide antibiotic (azithromycin, clarithromycin or erythromycin) in Ontario from 2002 to 2013. Our primary outcome was a hospital encounter with ventricular arrhythmia within 30 days after a new prescription. Our secondary outcome was 30-day all-cause mortality. We matched patients 1:1 using propensity scores to patients prescribed nonmacrolide antibiotics (amoxicillin, cefuroxime or levofloxacin). We used conditional logistic regression to measure the association between macrolide exposure and outcomes, and repeated the analysis in 4 subgroups defined by the presence or absence of chronic kidney disease, congestive heart failure, coronary artery disease and concurrent use of a drug known to prolong the QT interval. Results: Compared with nonmacrolide antibiotics, macrolide antibiotics were not associated with a higher risk of ventricular arrhythmia (0.03% v. 0.03%; relative risk [RR] 1.06, 95% confidence interval [CI] 0.83–1.36) and were associated with a lower risk of all-cause mortality (0.62% v. 0.76%; RR 0.82, 95% CI 0.78–0.86). These associations were similar in all subgroups. Interpretation: Among older adults, macrolide antibiotics were not associated with a higher 30-day risk of ventricular arrhythmia than nonmacrolide antibiotics. These findings suggest that current warnings from the US Food and Drug Administration may be overstated. PMID:26903359

  14. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes.

    PubMed

    Vila Petroff, M G; Egan, J M; Wang, X; Sollott, S J

    2001-08-31

    The gut hormone, glucagon-like peptide-1 (GLP-1), which is secreted in nanomolar amounts in response to nutrients in the intestinal lumen, exerts cAMP/protein kinase A-mediated insulinotropic actions in target endocrine tissues, but its actions in heart cells are unknown. GLP-1 (10 nmol/L) increased intracellular cAMP (from 5.7+/-0.5 to 13.1+/-0.12 pmol/mg protein) in rat cardiac myocytes. The effects of cAMP-doubling concentrations of both GLP-1 and isoproterenol (ISO, 10 nmol/L) on contraction amplitude, intracellular Ca(2+) transient (CaT), and pH(i) in indo-1 and seminaphthorhodafluor (SNARF)-1 loaded myocytes were compared. Whereas ISO caused a characteristic increase (above baseline) in contraction amplitude (160+/-34%) and CaT (70+/-5%), GLP-1 induced a significant decrease in contraction amplitude (-27+/-5%) with no change in the CaT after 20 minutes. Neither pertussis toxin treatment nor exposure to the cGMP-stimulated phosphodiesterase (PDE2) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine or the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine nor the phosphatase inhibitors okadaic acid or calyculin A unmasked an ISO-mimicking response of GLP-1. In SNARF-1-loaded myocytes, however, both ISO and GLP-1 caused an intracellular acidosis (DeltapH(i) -0.09+/-0.02 and -0.08+/-0.03, respectively). The specific GLP-1 antagonist exendin 9-39 and the cAMP inhibitory analog Rp-8CPT-cAMPS inhibited both the GLP-1-induced intracellular acidosis and the negative contractile effect. We conclude that in contrast to beta-adrenergic signaling, GLP-1 increases cAMP but fails to augment contraction, suggesting the existence of functionally distinct adenylyl cyclase/cAMP/protein kinase A compartments, possibly determined by unique receptor signaling microdomains that are not controlled by pertussis toxin-sensitive G proteins or by enhanced local PDE or phosphatase activation. Furthermore, GLP-1 elicits a cAMP-dependent modest negative inotropic effect produced by a

  15. A Review of Ethical Considerations for Ventricular Assist Device Placement in Older Adults

    PubMed Central

    Bruce, Courtenay R.

    2013-01-01

    This article reviews some of the complex ethical issues that accompany the diffusion of ventricular assist devices (VADs) for heart failure patients, with a particular emphasis on issues unique to older adults. In doing so, the ethical issues are centered on three decision points: (a) patient selection; (b) informed consent (i.e., initiation of the device); and (c) end of life (i.e., deactivation of the device.) It is contended that, with the technological improvements in heart failure treatments and new indications, the decision making process for VAD placement and deactivation has become more clinically and ethically challenging, particularly for older adults. Areas for potential future research are identified. PMID:23696952

  16. Stem Cell Stimulation of Endogenous Myocyte Regeneration

    PubMed Central

    Weil, Brian R.; Canty, John M.

    2015-01-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodeling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted during the past decade have shown that a variety of autologous bone marrow- and peripheral blood-derived stem and progenitor cell populations can be safely administered to patients with ischemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the preclinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair, and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischemic heart disease patients. PMID:23577634

  17. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  18. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis.

    PubMed

    Jiang, Jianming; Burgon, Patrick G; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M; O'Meara, Caitlin C; Fomovsky, Gregory; McConnell, Bradley K; Lee, Richard T; Seidman, J G; Seidman, Christine E

    2015-07-21

    Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia. PMID:26153423

  19. Impact of prehypertension on left ventricular mass and QT dispersion in adult black Nigerians

    PubMed Central

    Ale, OK; Ajuluchukwu, JN; Oke, DA; Mbakwem, AC

    2014-01-01

    Summary Background Prehypertension has been associated with target-organ damage. This study sought to determine the impact of prehypertension (PHT) on QT dispersion and left ventricular hypertrophy (LVH) in adult black Nigerians. Methods One hundred and one subjects with office blood pressure (BP) < 140/90 mmHg were categorised according to their office BP into normotensive (BP < 120/80 mmHg, n = 57) and prehypertensive (BP 120–139/80–89 mmHg, n = 44) groups. Echocardiography and electrocardiography (ECG) were performed on the subjects. Results Thirty-four males aged 53.65 ± 16.33 years and 67 females aged 52.42 ± 12.00 years were studied. The mean QT interval dispersion (QTd) of the normotensive (38.96 ± 11.06 ms) and prehypertensive (38.41 ± 11.81 ms) groups were similar (p = 0.81). Prehypertensive subjects had higher left ventricular mass (LVM) (165.75 ± 33.21 vs 144.54 ± 35.55 g, p = 0.024), left ventricular mass index 1 (LVMI-1) (91.65 ± 16.84 vs 80.45 ± 18.65 g/m2, p = 0.021) and left ventricular mass index 2 (LVMI-2) (54.96 ± 10.84 vs 47.51 ± 12.00 g/m2.7, p = 0.017). QTd was independent of echocardiographic and electrocardiographic LVH (p > 0.05). Conclusion Compared with normotension, prehypertension is associated with higher LVM but similar QTd. This suggests that structural remodelling precedes electrical remodelling in prehypertension. PMID:24844553

  20. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores.

    PubMed Central

    Trollinger, D R; Cascio, W E; Lemasters, J J

    2000-01-01

    A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence. PMID:10866936

  1. Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular-Subventricular Zone.

    PubMed

    Hirota, Yuki; Sawada, Masato; Huang, Shih-Hui; Ogino, Takashi; Ohata, Shinya; Kubo, Akiharu; Sawamoto, Kazunobu

    2016-02-01

    In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular-subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/β-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions. PMID:26572545

  2. Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes

    PubMed Central

    Fontana, M; Olschewski, H; Olschewski, A; Schlüter, K-D

    2007-01-01

    Background and purpose: Prostanoids have been shown to improve exercise tolerance, hemodynamics and quality of life in patients with pulmonary arterial hypertension (PAH). We investigated whether treprostinil exerts direct contractile effects on cardiomyocytes that may explain partly the beneficial effects of these drugs. Experimental approach: Ventricular cardiomyocytes from adult rats were paced at a constant frequency of 0.5 to 2.0 Hz and cell shortening was monitored via a cell edge detection system. Twitch amplitudes, expressed as percent cell shortening of the diastolic cell length, and maximal contraction velocity, relaxation velocity, time to peak of contraction and time to reach 50% of relaxation were analyzed. Key results: Treprostinil (0.15 – 15 ng ml−1) slightly increased contractile dynamics of cardiomyocytes at clinically relevant concentrations. However, the drug significantly improved cell shortening of cardiomyocytes in the presence of isoprenaline, a β-adrenoceptor agonist. Treprostinil exerted this effect at all beating frequencies under investigation. Treprostinil mimicked this potentiating effect in a Langendorff preparation as well. The potentiating effect of treprostinil on isoprenaline-dependent cell shortening was no longer seen after phosphodiesterase inhibition. Long-term cultivation of cardiomyocytes with treprostinil did not modify load free cell shortening of these cells, but reduces the duration of contraction. Conclusions and implications: We conclude that the clinically used prostanoid treprostinil potentiates the positive inotropic effects of catecholamines in adult ventricular cardiomyocytes. This newly described effect may contribute to the beneficial clinical effects of prostanoids in patients with PAH. PMID:17533419

  3. Right Ventricular Mass is Associated with Exercise Capacity in Adults with Repaired Tetralogy of Fallot.

    PubMed

    O'Meagher, Shamus; Seneviratne, Martin; Skilton, Michael R; Munoz, Phillip A; Robinson, Peter J; Malitz, Nathan; Tanous, David J; Celermajer, David S; Puranik, Rajesh

    2015-08-01

    The relationship between exercise capacity and right ventricular (RV) structure and function in adult repaired tetralogy of Fallot (TOF) is poorly understood. We therefore aimed to examine the relationships between cardiac MRI and cardiopulmonary exercise test variables in adult repaired TOF patients. In particular, we sought to determine the role of RV mass in determining exercise capacity. Eighty-two adult repaired TOF patients (age at evaluation 26 ± 10 years; mean age at repair 2.5 ± 2.8 years; 23.3 ± 7.9 years since repair; 53 males) (including nine patients with tetralogy-type pulmonary atresia with ventricular septal defect) were prospectively recruited to undergo cardiac MRI and cardiopulmonary exercise testing. As expected, these repaired TOF patients had RV dilatation (indexed RV end-diastolic volume: 153 ± 43.9 mL/m(2)), moderate-severe pulmonary regurgitation (pulmonary regurgitant fraction: 33 ± 14 %) and preserved left (LV ejection fraction: 59 ± 8 %) and RV systolic function (RV ejection fraction: 51 ± 7 %). Exercise capacity was near-normal (peak work: 88 ± 17 % predicted; peak oxygen consumption: 84 ± 17 % predicted). Peak work exhibited a significant positive correlation with RV mass in univariate analysis (r = 0.45, p < 0.001) and (independent of other cardiac MRI variables) in multivariate analyses. For each 10 g higher RV mass, peak work was 8 W higher. Peak work exhibits a significant positive correlation with RV mass, independent of other cardiac MRI variables. RV mass measured on cardiac MRI may provide a novel marker of clinical progress in adult patients with repaired TOF. PMID:25795311

  4. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion

    PubMed Central

    Brunetti, Tonya M.; Fremin, Brayon J.; Cripps, Richard M.

    2015-01-01

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles. PMID:25797154

  5. Inhibition of Thromboxane A2-Induced Arrhythmias and Intracellular Calcium Changes in Cardiac Myocytes by Blockade of the Inositol Trisphosphate Pathway

    PubMed Central

    Kosloski, L. M.; Gilbert, W. J. R.; Touchberry, C. D.; Moore, D. S.; Kelly, J. K.; Brotto, M.; Orr, J. A.

    2009-01-01

    We have recently reported that left atrial injections of the thromboxane A2 (TXA2) mimetic, (5Z)-7-[(1R,4S,5S,6R)-6-[(1E,3S)-3-hydroxy-1-octenyl]-2 -oxabicyclo[2.2.1]hept-5-yl]-5-heptenoic acid (U46619), induced ventricular arrhythmias in the anesthetized rabbit. Data from this study led us to hypothesize that TXA2 may be inducing direct actions on the myocardium to induce these arrhythmias. The aim of this study was to further elucidate the mechanism responsible for these arrhythmias. We report that TXA2R is expressed at both the gene and protein levels in atrial and ventricular samples of adult rabbits. In addition, TXA2R mRNA was identified in single, isolated ventricular cardiac myocytes. Furthermore, treatment of isolated cardiac myocytes with U46619 increased intracellular calcium in a dose-dependent manner and these increases were blocked by the specific TXA2R antagonist, 7-(3-((2-((phenylamino)carbonyl)hydrazino)methyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid (SQ29548). Pretreatment of myocytes with an inhibitor of inositol trisphosphate (IP3) formation, gentamicin, or with an inhibitor of IP3 receptors, 2-aminoethoxydiphenylborate (2-APB), blocked the increase in intracellular calcium. In vivo pretreatment of anesthetized rabbits with either gentamicin or 2-APB subsequently inhibited the formation of ventricular arrhythmias elicited by U46619. These data support the hypothesis that TXA2 can induce arrhythmias via a direct action on cardiac myocytes. Furthermore, these arrhythmogenic actions were blocked by inhibitors of the IP3 pathway. In summary, this study provides novel evidence for direct TXA2-induced cardiac arrhythmias and provides a rationale for IP3 as a potential target for the treatment of TXA2-mediated arrhythmias. PMID:19741149

  6. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias.

    PubMed

    Boukens, Bastiaan J D; Christoffels, Vincent M; Coronel, Ruben; Moorman, Antoon F M

    2009-01-01

    Reentry is the main mechanism of life-threatening ventricular arrhythmias, including ventricular fibrillation and tachycardia. Its occurrence depends on the simultaneous presence of an arrhythmogenic substrate (a preexisting condition) and a "trigger," and is favored by electrophysiological heterogeneities. In the adult heart, electrophysiological heterogeneities of the ventricle exist along the apicobasal, left-right, and transmural axes. Also, conduction is preferentially slowed in the right ventricular outflow tract, especially during pharmacological sodium channel blockade. We propose that the origin of electrophysiological heterogeneities of the adult heart lies in early heart development. The heart is formed from several progenitor regions: the first heart field predominantly forms the left ventricle, whereas the second heart field forms the right ventricle and outflow tract. Furthermore, the embryonic outflow tract consists of slowly conducting tissue until it is incorporated into the ventricles and develops rapidly conducting properties. The subepicardial myocytes and subendocardial myocytes run distinctive gene programs from their formation onwards. This review discusses the hypothesis that electrophysiological heterogeneities in the adult heart result from persisting patterns in gene expression and function along the craniocaudal and epicardial-endocardial axes of the developing heart. Understanding the developmental origins of electrophysiological heterogeneity contributing to ventricular arrhythmias may give rise to new therapies. PMID:19118284

  7. Effectiveness and Safety of Transcatheter Closure of Perimembranous Ventricular Septal Defects in Adults.

    PubMed

    Wang, Jianming; Zuo, Jian; Yu, Shiqiang; Yi, Dinghua; Yang, Xiuling; Zhu, Xianyang; Li, Jun; Yang, Lifang; Xiong, Lize; Ge, Shuping; Ren, Jun; Yang, Jian

    2016-03-15

    This study was designed to determine the long-term safety and efficacy of using modified double-disk occluders for perimembranous ventricular septal defect (pmVSD) closure in adults. From January 2004 to December 2014, 337 adults with pmVSDs were treated through transcatheter intervention using 2 types of double-disk occluders; 302 patients received a symmetrical concentric pmVSD occluder, and 35 patients received an asymmetrical concentric pmVSD occluder. All patients were followed up through electrocardiography and transthoracic echocardiography until June 2015. The success rate was 100% for both procedures. During the median 71-month follow-up period, no cases of infective endocarditis, cerebrovascular accidents, heart failure, or death occurred. Two major adverse events (0.6%) were recorded: complete atrioventricular block requiring surgical treatment in one patient and severe tricuspid valvular regurgitation requiring surgical repair in another patient. Cardiac conduction block was the most common minor adverse event. The mean left ventricular (LV) end-diastolic volume decreased from 96.6 ± 23.2 ml before intervention to 86.0 ± 22.0 ml (p <0.05) at the 6-month follow-up visit. Previously enlarged LV chambers decreased to normal sizes during the follow-up period. In conclusion, transcatheter closure of pmVSDs using modified double-disk occluders was both safe and effective and yielded excellent long-term results in adults. The potential benefits of this intervention included remodeling of the heart, a reduced incidence of infective endocarditis and prevention of LV volume overload. PMID:26796197

  8. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans

    PubMed Central

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions. PMID:27504470

  9. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  10. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure.

    PubMed

    Goss, Kara N; Cucci, Anthony R; Fisher, Amanda J; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S; Ahlfeld, Shawn K; Lahm, Tim

    2015-04-15

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  11. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload.

    PubMed

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J B; Walsh, Kenneth

    2011-10-25

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial hypertrophy and heart failure. The aim of this study was to investigate the role of cardiac Fstl1 in the remodeling response to pressure overload. Cardiac myocyte-specific Fstl1-KO mice were constructed and subjected to pressure overload induced by transverse aortic constriction (TAC). Although Fstl1-KO mice displayed no detectable baseline phenotype, TAC led to enhanced cardiac hypertrophic growth and a pronounced loss in ventricular performance by 4 wk compared with control mice. Conversely, mice that acutely or chronically overexpressed Fstl1 were resistant to pressure overload-induced hypertrophy and cardiac failure. Fstl1-deficient mice displayed a reduction in TAC-induced AMP-activated protein kinase (AMPK) activation in heart, whereas Fstl1 overexpression led to increased myocardial AMPK activation under these conditions. In cultured neonatal cardiomyocytes, administration of Fstl1 promoted AMPK activation and antagonized phenylephrine-induced hypertrophy. Inhibition of AMPK attenuated the antihypertrophic effect of Fstl1 treatment. These results document that cardiac Fstl1 functions as an autocrine/paracrine regulatory factor that antagonizes myocyte hypertrophic growth and the loss of ventricular performance in response to pressure overload, possibly through a mechanism involving the activation of the AMPK signaling axis. PMID:21987816

  12. Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes.

    PubMed Central

    Pepe, S; Bogdanov, K; Hallaq, H; Spurgeon, H; Leaf, A; Lakatta, E

    1994-01-01

    The effect of docosahexaenoic acid (DHA; C22:6) on dihydropyridine (DHP) interaction with L-type Ca2+ channel current (ICa), cytosolic Ca2+ (Cai), and cell contraction in isolated adult rat cardiac myocytes was studied. The DHP L-type Ca(2+)-channel blocker nitrendipine (10 nM) reduced peak ICa (measured by whole-cell voltage clamp from -45 to 0 mV) and reduced the amplitude of the Ca2+ transient (measured as the transient in indo-1 fluorescence, 410/490 nm) and the twitch amplitude (measured via photodiode array) during steady-state electrical stimulation (0.5 Hz). The DHP L-type Ca2+ channel agonist BAY K 8644 (10 nM) significantly increased ICa, the amplitude of the Cai transient, and contraction. When cells were exposed to DHA (5 microM) simultaneously with either BAY K 8644 or nitrendipine, the drug effects were abolished. Arachidonic acid (C20:4) at 5 microM did not block the inhibitory effects of nitrendipine nor did it prevent the potentiating effects of BAY K 8644. DHA modulation of DHP action could be reversed by cell perfusion with fatty acid-free bovine serum albumin at 1 mg/ml. Neither DHA nor arachidonic acid alone (5 microM) had any apparent effect on the parameters measured. DHA (5 microM) had no influence over beta-adrenergic receptor stimulation (isoproterenol, 0.01-1 microM)-induced increases in ICa, Cai, or contraction. The findings that DHA inhibits the effect of DHP agonists and antagonists on Ca(2+)-channel current but has no effect alone or on beta-adrenergic-induced increases in ICa suggests that DHA specifically binds to Ca2+ channels at or near DHP binding sites and interferes with ICa modulation. Images PMID:7522322

  13. Rare Case of Unilateral Hypoplasia of Lung with Associated Ventricular Mass in an Adult

    PubMed Central

    Alam, Azad; Iyer, Aparna; Kutty, Jayalakshmi Thelapurath

    2016-01-01

    Hypoplasia of the lung is a rare congenital condition which can be: a) primary i.e. no apparent cause is found; or b) secondary i.e. associated with other congenital anomalies that are implicated in its pathogenesis. These anomalies may involve the diaphragm, cardiovascular, central nervous, urogenital and musculoskeletal system. Patients usually present in neonatal, infancy or childhood period and very rarely in adulthood. Our patient was an adult having a unilateral hypoplastic lung associated with a ventricular mass and to our knowledge this rare combination has never been reported in the English literature; though there are reports of prenatal or newborns with hypoplastic lung and rhabdomyoma of ventricle who did not survive.

  14. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  15. Effects of angiotensin II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1.

    PubMed Central

    Ikenouchi, H; Barry, W H; Bridge, J H; Weinberg, E O; Apstein, C S; Lorell, B H

    1994-01-01

    1. Angiotensin II increases myocardial contractility in several species, including the rabbit and man. However, it is controversial whether the predominant mechanism is an increase in free cytosolic [Ca2+]i or a change in myofilament Ca2+ sensitivity. To address this question, we infused angiotensin II in isolated perfused rabbit hearts loaded with the Ca2+ indicator indo-1 AM and measured changes in beat-to-beat surface transients of the Ca2+i-sensitive 400:500 nm ratio and left ventricular contractility. The effects of angiotensin II were compared with the response to a Ca(2+)-dependent increase in the inotropic state produced by a change in the perfusate [Ca2+] from 0.9 to 3.6 nM. 2. In the isolated beating heart, an increase in perfusate [Ca2+] caused an increase in left ventricular pressure +dP/dt in association with an increase in peak systolic [Ca2+]i. Angiotensin II perfusion caused a similar increase in left ventricular +dP/dt in the absence of any increase in peak systolic [Ca2+]i. 3. To exclude any contribution of non-myocyte sources of Ca(2+)-sensitive fluorescence which may be present in the intact heart, we also compared the effects of angiotensin II and a change in superfusate [Ca2+] in collagenase-dissociated paced adult rabbit ventricular myocytes loaded with indo-1 AM. In the isolated rabbit myocytes a change in perfusate [Ca2+] from 0.9 to 3.6 mM caused an increase in peak systolic cell shortening coincident with an increase in peak systolic [Ca2+]i. In contrast, angiotensin II caused a similar increase in peak systolic cell shortening whereas there was no increase in peak systolic [Ca2+]i. There was also no change in inward Ca2+ current (ICa) in response to angiotensin II. 4. To investigate further the mechanism of the positive inotropic action of angiotensin II, its effects on intracellular pH were studied in isolated rabbit myocytes loaded with the fluorescent H+ probe SNARF 1. These experiments demonstrated that angiotensin II induced a 0.2 p

  16. Osteopontin-stimulated apoptosis in cardiac myocytes involves oxidative stress and mitochondrial death pathway: role of a pro-apoptotic protein BIK.

    PubMed

    Dalal, Suman; Zha, Qinqin; Singh, Mahipal; Singh, Krishna

    2016-07-01

    Increased osteopontin (OPN) expression in the heart, specifically in myocytes, associates with increased myocyte apoptosis and myocardial dysfunction. Recently, we provided evidence that OPN interacts with CD44 receptor, and induces myocyte apoptosis via the involvement of endoplasmic reticulum stress and mitochondrial death pathways. Here we tested the hypothesis that OPN induces oxidative stress in myocytes and the heart via the involvement of mitochondria and NADPH oxidase-4 (NOX-4). Treatment of adult rat ventricular myocytes (ARVMs) with OPN (20 nM) increased oxidative stress as analyzed by protein carbonylation, and intracellular reactive oxygen species (ROS) levels as analyzed by ROS detection kit and dichlorohydrofluorescein diacetate staining. Pretreatment with NAC (antioxidant), apocynin (NOX inhibitor), MnTBAP (superoxide dismutase mimetic), and mitochondrial KATP channel blockers (glibenclamide and 5-hydroxydecanoate) decreased OPN-stimulated ROS production, cytosolic cytochrome c levels, and apoptosis. OPN increased NOX-4 expression, while decreasing SOD-2 expression. OPN decreased mitochondrial membrane potential as measured by JC-1 staining, and induced mitochondrial abnormalities including swelling and reorganization of cristae as observed using transmission electron microscopy. OPN increased expression of BIK, a pro-apoptotic protein involved in reorganization of mitochondrial cristae. Expression of dominant-negative BIK decreased OPN-stimulated apoptosis. In vivo, OPN expression in cardiac myocyte-specific manner associated with increased protein carbonylation, and expression of NOX-4 and BIK. Thus, OPN induces oxidative stress via the involvement of mitochondria and NOX-4. It may affect mitochondrial morphology and integrity, at least in part, via the involvement of BIK. PMID:27262843

  17. Effects of cerivastatin on adrenergic pathways, hypertrophic growth and TGFbeta expression in adult ventricular cardiomyocytes.

    PubMed

    Maxeiner, Hagen; Abdallah, Yaser; Kuhlmann, Christoph Rüdiger Wolfram; Schlüter, Klaus-Dieter; Wenzel, Sibylle

    2012-05-01

    The effects of statin treatment in the setting of heart failure have already been shown. Nevertheless, there is little knowledge about its influence on adrenergic pathways in cardiomyocytes. Therefore, this study investigated the impact of cerivastatin on adrenoceptor-mediated signalling pathways in isolated adult ventricular cardiomyocytes. It focused on two endpoints: hypertrophic growth and TGFbeta expression. Cultured cardiomyocytes were used to study rac activation (analysed by its translocation into the membrane fraction), ROS formation (H(2)DCF fluorescence) and hypertrophic growth ((14)C-phenylalanine incorporation). Alpha- and beta-adrenoceptor stimulation showed significant differences regarding rac activation, ROS formation, and p38 MAP kinase activation. Both alpha- and beta-adrenoceptor stimulation induced TGFbeta expression. Upon activation of alpha-adrenergic signalling - although ROS formation was not influenced by cerivastatin - TGFbeta expression decreased. Following beta stimulation, TGFbeta expression as well as rac and p38 MAP kinase activation were reduced after pre-treatment with cerivastatin. Statin treatment did not show any influence on hypertrophic growth. In summary, this study clearly demonstrates the ability of adrenoceptor stimulation to increase TGFbeta expression. One component of the beneficial effects of statin therapy on heart failure might therefore be due to a dominant reduction and inhibition of TGFbeta, which is involved in many pathophysiological processes in cardiomyocytes. PMID:22365145

  18. Physiological changes induced in cardiac myocytes by cytotoxic T lymphocytes

    SciTech Connect

    Hassin, D.; Fixler, R.; Shimoni, Y.; Rubinstein, E.; Raz, S.; Gotsman, M.S.; Hasin, Y.

    1987-01-01

    The lethal hit induced by viral specific, sensitized, cytotoxic T lymphocytes (CTL) attacking virus-infected heart cells is important in the pathogenesis of viral myocarditis and reflects the key role of CTL in this immune response. The mechanisms involved are incompletely understood. Studies of the physiological changes induced in mengovirus-infected, cultured, neonatal, rat heart cells by CTL that had been previously sensitized by the same virus are presented. The CTL were obtained from spleens of mengovirus-infected, major histocompatibility complex (MHC) matched adult rats. Cell wall motion was measured by an optical method, action potentials with intracellular microelectrodes, and total exchangeable calcium content by /sup 45/Ca tracer measurements after loading the myocytes with /sup 45/Ca and then exposing them to CTL. After 50 min (mean time) of exposing mengovirus-infected myocytes to the CTL, the mechanical relaxation of the myocyte was slowed, with a subsequent slowing of beating rate and a reduced amplitude of contraction. Impaired relaxation progressed, and prolonged oscillatory contractions lasting up to several seconds appeared, with accompanying oscillations in the prolonged plateau phase of the action potentials. Arrest of the myocyte contractions appeared 98 min (mean time) after exposure to CTL. It is concluded that infection of cultured myocytes with mengovirus predisposes them to attack by mengovirus specific CTL, and that persistent dysfunction of the myocyte is preceded by reversible changes in membrane potential and contraction. This is suggestive of an altered calcium handling by the myocytes possibly resulting in the cytotoxic effect.

  19. Modeling the Effects of β1-Adrenergic Receptor Blockers and Polymorphisms on Cardiac Myocyte Ca2+ Handling

    PubMed Central

    Amanfu, Robert K.

    2014-01-01

    β-Adrenergic receptor blockers (β-blockers) are commonly used to treat heart failure, but the biologic mechanisms governing their efficacy are still poorly understood. The complexity of β-adrenergic signaling coupled with the influence of receptor polymorphisms makes it difficult to intuit the effect of β-blockers on cardiac physiology. While some studies indicate that β-blockers are efficacious by inhibiting β-adrenergic signaling, other studies suggest that they work by maintaining β-adrenergic responsiveness. Here, we use a systems pharmacology approach to test the hypothesis that in ventricular myocytes, these two apparently conflicting mechanisms for β-blocker efficacy can occur concurrently. We extended a computational model of the β1-adrenergic pathway and excitation-contraction coupling to include detailed receptor interactions for 19 ligands. Model predictions, validated with Ca2+ and Förster resonance energy transfer imaging of adult rat ventricular myocytes, surprisingly suggest that β-blockers can both inhibit and maintain signaling depending on the magnitude of receptor stimulation. The balance of inhibition and maintenance of β1-adrenergic signaling is predicted to depend on the specific β-blocker (with greater responsiveness for metoprolol than carvedilol) and β1-adrenergic receptor Arg389Gly polymorphisms. PMID:24867460

  20. Reversibility of electrophysiological changes induced by chronic high-altitude hypoxia in adult rat heart.

    PubMed

    Chouabe, C; Amsellem, J; Espinosa, L; Ribaux, P; Blaineau, S; Mégas, P; Bonvallet, R

    2002-04-01

    Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities. PMID:11893582

  1. Nuclear Morphology and Deformation in Engineered Cardiac Myocytes and Tissues

    PubMed Central

    Bray, Mark-Anthony; Adams, William J.; Geisse, Nicholas A.; Feinberg, Adam W.; Sheehy, Sean P.; Parker, Kevin Kit

    2010-01-01

    Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single-myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease. PMID:20382423

  2. Right ventricular and pulmonary arterial dimensions in adults with osteogenesis imperfecta.

    PubMed

    Radunovic, Zoran; Wekre, Lena L; Steine, Kjetil

    2012-06-15

    We examined right ventricular (RV) and ascending pulmonary artery (PA1) dimensions in adults with osteogenesis imperfecta (OI). The survey included 99 adults with OI divided in 3 clinical types (I, III, and IV) and 52 controls. RV and PA1 dimensions were measured by echocardiography and indexed for body surface area. Scoliosis was registered, and spirometry was performed in 75 patients with OI. All RV dimensions indexed by body surface area were significantly larger in the OI group compared to controls (RV basal dimension 1.9 ± 0.5 vs 1.7 ± 0.3 cm/m(2), p <0.05; RV midcavity dimension 1.7 ± 0.5 vs 1.5 ± 0.3 cm/m(2), p <0.05; RV longitudinal dimension 4.3 ± 1.1 vs 4.0 ± 0.9 cm/m(2), p <0.05). RV outflow tract (RVOT) proximal diameter (1.8 ± 0.4 vs 1.5 ± 0.2 cm/m(2), p <0.05), RVOT distal diameter (1.2 ± 0.2 vs 1.0 ± 0.1 cm/m(2), p <0.05), and PA1 (1.2 ± 0.3 vs 1.0 ± 0.2 cm/m(2), p <0.05) were also significantly larger in the OI group. Furthermore, all RV dimensions and PA1 were significantly larger in patients with OI type III compared to patients with OI types I and IV and controls. There were no differences in RV, RVOT, or PA1 dimensions between patients presenting a restrictive ventilatory pattern (n = 11) and patients a normal ventilatory pattern. Scoliosis was registered in 42 patients. Patients with OI type III had greater RV and PA1 dimensions compared to controls and patients with OI types I and IV. Impaired ventilatory patterns and scoliosis did not have any impact on RV dimensions in these patients. In conclusion, patients with OI had increased RV and PA1 dimensions compared to the control group. PMID:22459302

  3. Predictors of Left Ventricular Dilatation in Young Adults (from the Bogalusa Heart Study)

    PubMed Central

    Haji, Showkat A.; Ulusoy, Rifat Eralp; Patel, Dharmendrakumar A.; Srinivasan, Sathanur R.; Chen, Wei; Delafontaine, Patrice; Berenson, Gerald S.

    2011-01-01

    Left ventricular (LV) dilatation may be an early sign of cardiac decompensation progressing to LV dysfunction. Determinants of LV dilatation in young asymptomatic adults are unknown. Five hundred six asymptomatic subjects (mean age 32 ± 3 years) enrolled in the Bogalusa Heart Study underwent echocardiographic examination. LV dilatation (LV end-diastolic diameter >5.5 cm) as measured by M-mode echocardiography was found in 31 subjects (6%). Subjects with LV dilatation had greater body mass indexes (32 ± 9 vs 27 ± 6 kg/m2, p <0.0001), systolic (119 ± 15 vs 112 ± 12 mm Hg, p = 0.007) and diastolic (79 ± 12 vs 75 ± 9 mm Hg, p = 0.04) blood pressures, and LV mass (230 ± 50 vs 123 ± 39 g, p <0.0001). Age, gender, race, and metabolic parameters (glucose, insulin, and lipoprotein levels) did not differ significantly between the subjects with and without LV dilatation. After correction for age, gender, and race differences, adulthood obesity (body mass index >30 kg/m2) was associated with a threefold odds ratio (2.9, 95% confidence interval 1.4 to 6.1), and hypertension (defined as per the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure) was also associated with a threefold odds ratio (3.0, 95% confidence interval 1.2 to 7.1) for an increased incidence of LV dilatation. There was an incremental increase in LV end-diastolic dimension depending on the presence of hypertension or obesity, and subjects with obesity and hypertension in adulthood had the greatest degree of LV end-diastolic dimensions. In multiple regression analyses, body mass index in childhood was the only significant predictor of LV dilatation in adulthood (odds ratio 1.47, 95% confidence interval 1.03 to 2.09). In conclusion, obesity beginning in childhood and obesity and hypertension in young adulthood are predictors of LV dilatation in an otherwise healthy young adult population. PMID:17056336

  4. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure.

    PubMed

    Farooqi, Kanwal M; Saeed, Omar; Zaidi, Ali; Sanz, Javier; Nielsen, James C; Hsu, Daphne T; Jorde, Ulrich P

    2016-04-01

    As the population of adults with congenital heart disease continues to grow, so does the number of these patients with heart failure. Ventricular assist devices are underutilized in adults with congenital heart disease due to their complex anatomic arrangements and physiology. Advanced imaging techniques that may increase the utilization of mechanical circulatory support in this population must be explored. Three-dimensional printing offers individualized structural models that would enable pre-surgical planning of cannula and device placement in adults with congenital cardiac disease and heart failure who are candidates for such therapies. We present a review of relevant cardiac anomalies, cases in which such models could be utilized, and some background on the cost and procedure associated with this process. PMID:27033018

  5. A modular instrument for exploring the mechanics of cardiac myocytes.

    PubMed

    Garcia-Webb, M G; Taberner, A J; Hogan, N C; Hunter, I W

    2007-07-01

    The cardiac ventricular myocyte is a key experimental system for exploring the mechanical properties of the diseased and healthy heart. Millions of primary myocytes, which remain viable for 4-6 h, can be readily isolated from animal models. However, currently available instrumentation allows the mechanical properties of only a few physically loaded myocytes to be explored within 4-6 h. Here we describe a modular and inexpensive prototype instrument that could form the basis of an array of devices for probing the mechanical properties of single mammalian myocytes in parallel. This device would greatly increase the throughput of scientific experimentation and could be applied as a high-content screening instrument in the pharmaceutical industry. The instrument module consists of two independently controlled Lorentz force actuators-force transducers in the form of 0.025 x 1 x 5 mm stainless steel cantilevers with 0.5 m/N compliance and 360-Hz resonant frequency. Optical position sensors focused on each cantilever provide position and force resolution of <1 nm/ radicalHz and <2 nN/ radicalHz, respectively. The motor structure can produce peak displacements and forces of +/-200 mum and +/-400 microN, respectively. Custom Visual Basic.Net software provides data acquisition, signal processing, and digital control of cantilever position. The functionality of the instrument was demonstrated by implementation of novel methodologies for loading and attaching healthy mammalian ventricular myocytes to the force sensor and actuator and use of stochastic system identification techniques to measure their passive dynamic stiffness at various sarcomere lengths. PMID:17308002

  6. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307

  7. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  8. Fetal-Adult Cardiac Transcriptome Analysis in Rats with Contrasting Left Ventricular Mass Reveals New Candidates for Cardiac Hypertrophy

    PubMed Central

    Grabowski, Katja; Riemenschneider, Mona; Schulte, Leonard; Witten, Anika; Schulz, Angela; Stoll, Monika; Kreutz, Reinhold

    2015-01-01

    Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns. PMID:25646840

  9. Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine

    NASA Technical Reports Server (NTRS)

    Koide, M.; Nagatsu, M.; Zile, M. R.; Hamawaki, M.; Swindle, M. M.; Keech, G.; DeFreyte, G.; Tagawa, H.; Cooper, G. 4th; Carabello, B. A.

    1997-01-01

    BACKGROUND: When a pressure overload is placed on the left ventricle, some patients develop relatively modest hypertrophy whereas others develop extensive hypertrophy. Likewise, the occurrence of contractile dysfunction also is variable. The cause of this heterogeneity is not well understood. METHODS AND RESULTS: We recently developed a model of gradual proximal aortic constriction in the adult canine that mimicked the heterogeneity of the hypertrophic response seen in humans. We hypothesized that differences in outcome were related to differences present before banding. Fifteen animals were studied initially. Ten developed left ventricular dysfunction (dys group). Five dogs maintained normal function (nl group). At baseline, the nl group had a lower mean systolic wall stress (96 +/- 9 kdyne/cm2; dys group, 156 +/- 7 kdyne/cm2; P < .0002) and greater relative left ventricular mass (left ventricular weight [g]/body wt [kg], 5.1 +/- 0.36; dys group, 3.9 +/- 0.26; P < .02). On the basis of differences in mean systolic wall stress at baseline, we predicted outcome in the next 28 dogs by using a cutoff of 115 kdyne/cm2. Eighteen of 20 dogs with baseline mean systolic stress > 115 kdyne/cm2 developed dysfunction whereas 6 of 8 dogs with resting stress < or = 115 kdyne/cm2 maintained normal function. CONCLUSIONS: We conclude that this canine model mimicked the heterogeneous hypertrophic response seen in humans. In the group that eventually developed dysfunction there was less cardiac mass despite 60% higher wall stress at baseline, suggesting a different set point for regulating myocardial growth in the two groups.

  10. Left ventricular function in adult patients with atrial septal defect: implication for development of heart failure after transcatheter closure.

    PubMed

    Masutani, Satoshi; Senzaki, Hideaki

    2011-11-01

    Despite advances in device closure for atrial septal defect (ASD), post-closure heart failure observed in adult patients remains a clinical problem. Although right heart volume overload is the fundamental pathophysiology in ASD, the post-closure heart failure characterized by acute pulmonary congestion is likely because of age-related left ventricular diastolic dysfunction, which is manifested by acute volume loading with ASD closure. Aging also appears to play important roles in the pathophysiology of heart failure through several mechanisms other than diastolic dysfunction, including ventricular systolic and vascular stiffening and increased incidence of comorbidities that significantly affect cardiovascular function. Recent studies suggested that accurate assessment of preclosure diastolic function, such as test ASD occlusion, may help identify high-risk patients for post-closure heart failure. Anti-heart failure therapy before device closure or the use of fenestrated device appears to be effective in preventing post-closure heart failure in the high-risk patients. However, the long-term outcome of such patients remains to be elucidated. Future studies are warranted to construct an algorithm to identify and treat patients at high risk for heart failure after device closure of ASD. PMID:22041334

  11. Potential antiarrhythmic effect of methyl 3,4,5-trimethoxycinnamate, a bioactive substance from roots of polygalae radix: suppression of triggered activities in rabbit myocytes.

    PubMed

    Zhao, Zhenghang; Fang, Minfeng; Xiao, Dandan; Liu, Mei; Fefelova, Nadezhda; Huang, Chen; Zang, Wei-Jin; Xie, Lai-Hua

    2013-01-01

    3,4,5-Trimethoxycinnamic acid (TMCA), methyl 3,4,5-trimethoxycinnamate (M-TMCA) and p-methoxycinnamic acid (PMCA) have been identified as the major bioactive components in the serum collected from rats treated with oral administration of Polygalae Radix ("YuanZhi," the roots of Polygala tenuifolia WILLD.), a traditional Chinese medicine used to relieve insomnia, anxiety and heart palpitation. The present study was designed to investigate its direct electrophysiological effects on isolated ventricular myocytes from rabbits. Whole-cell configuration of the patch-clamp technique was used to measure action potential (AP) and membrane currents in single ventricular myocytes enzymatically isolated from adult rabbit hearts. Ca(2+) transients were recorded in myocytes loaded with the Ca(2+) indicator Fluo-4AM. Among three bioactive substances of Polygala metabolites, only M-TMCA (15-30 µM) significantly shortened action potential duration at 50% and 90% repolarization (APD(50) and APD(90)) in cardiomyocytes in a concentration-dependent and a reversible manner. M-TMCA also inhibited L-type calcium current (I(Ca,L)), but showed effect on neither transient outward potassium current (I(to)) nor steady-state potassium current (I(K,SS)). Furthermore, M-TMCA abolished isoprenaline plus BayK8644-induced early afterdepolarizations (EADs) and suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs). This potential anti-arrhythmic effects were likely attributed by the inhibition of I(Ca,L) and the suppression of intracellular Ca(2+) transients, which consequently suppress the generation of transient inward current (I(ti)). These findings suggest that M-TMCA may protect the heart from arrhythmias via its inhibitory effect on calcium channel. PMID:23196428

  12. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    SciTech Connect

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  13. Two-Dimensional Speckle Tracking Echocardiography Detects Subclinical Left Ventricular Systolic Dysfunction among Adult Survivors of Childhood, Adolescent, and Young Adult Cancer

    PubMed Central

    Yu, Anthony F.; Raikhelkar, Jayant; Zabor, Emily C.; Tonorezos, Emily S.; Moskowitz, Chaya S.; Adsuar, Roberto; Mara, Elton; Huie, Kevin; Oeffinger, Kevin C.; Steingart, Richard M.; Liu, Jennifer E.

    2016-01-01

    Two-dimensional speckle tracking echocardiography (2DSTE) provides a sensitive measure of left ventricular (LV) systolic function and may aid in the diagnosis of cardiotoxicity. 2DSTE was performed in a cross-sectional study of 134 patients (mean age: 31.4 ± 8.8 years; 55% male; mean time since diagnosis: 15.4 ± 9.4 years) previously treated with anthracyclines (mean cumulative dose: 320 ± 124 mg/m2), with (n = 52) or without (n = 82) mediastinal radiotherapy. The prevalence of LV systolic dysfunction, defined as fractional shortening < 27%, LV ejection fraction (LVEF) < 55%, and global longitudinal strain (GLS) ≤ 16%, was 5.2%, 6.0%, and 23.1%, respectively. Abnormal GLS was observed in 24 (18%) patients despite a normal LVEF. Indices of LV systolic function were similar regardless of anthracycline dose. However, GLS was worse (18.0 versus 19.0, p = 0.003) and prevalence of abnormal GLS was higher (36.5% versus 14.6%, p = 0.004) in patients treated with mediastinal radiotherapy. Mediastinal radiotherapy was associated with reduced GLS (p = 0.040) after adjusting for sex, age, and cumulative anthracycline dose. In adult survivors of childhood, adolescent, and young adult cancer, 2DSTE frequently detects LV systolic dysfunction despite a normal LVEF and may be useful for the long-term cardiac surveillance of adult cancer survivors. PMID:26942202

  14. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats

    PubMed Central

    Wang, Li-li; Miller, Dori; Wanders, Desiree; Nanayakkara, Gayani; Amin, Rajesh; Judd, Robert; Morrison, Edward E; Zhong, Ju-ming

    2016-01-01

    Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca2+ transient. Results: A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca2+ transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. Conclusion: These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure. PMID:26616727

  15. Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo- and epicardial origin

    PubMed Central

    Volk, Tilmann; Nguyen, Thi Hong-Diep; Schultz, Jobst-Hendrik; Ehmke, Heimo

    1999-01-01

    The transient outward K+ current (Ito) is a major repolarizing ionic current in ventricular myocytes of several mammals. Recently it has been found that its magnitude depends on the origin of the myocyte and is regulated by a number of physiological and pathophysiological signals. The relationship between the magnitude of Ito, action potential duration (APD) and Ca2+ influx (QCa) was studied in rat left ventricular myocytes of endo- and epicardial origin using whole-cell recordings and the action potential voltage-clamp method. Under control conditions, in response to a depolarizing voltage step to +40 mV, Ito averaged 12.1 ± 2.6 pA pF−1 in endocardial (n = 11) and 24.0 ± 2.6 pA pF−1 in epicardial myocytes (n = 12; P < 0.01). APD90 (90 % repolarization) was twice as long in endocardial myocytes, whereas QCa inversely depended on the magnitude of Ito. L-type Ca2+ current density was similar in myocytes from both regions. To determine the effects of controlled reductions of Ito on QCa, recordings were repeated in the presence of increasing concentrations of the Ito inhibitor 4-aminopyridine. Inhibition of Ito by as little as 20 % more than doubled QCa in epicardial myocytes, whereas it had only a minor effect on QCa in myocytes of endocardial origin. Further inhibition of Ito led to a progressive increase in QCa in epicardial myocytes; at 90 % inhibition of Ito, QCa was four times larger than the control value. We conclude that moderate changes in the magnitude of Ito strongly affect QCa primarily in epicardial regions. An alteration of Ito might therefore allow for a regional regulation of contractility during physiological and pathophysiological adaptations. PMID:10457095

  16. The stimulus interval-tension relation in enzymatically isolated single myocytes of the frog heart.

    PubMed Central

    Cecchi, G; Colomo, F; Poggesi, C; Tesi, C

    1992-01-01

    1. Apparatus for recording the small tensions developed by electrically stimulated single intact myocytes of frog heart is described. A laser-light optoelectronic transducer was used. The compliance of the force probes was 10-20 nm/nN, with a frequency response of 600-900 Hz in Ringer solution. The myocyte shortening during an ordinary twitch contraction was no greater than 1% of the slack length. The overall sensitivity of the transducer system was 5-10 mV/nN, with a total noise of 0.5-1 nN peak to peak. The experiments were performed at 20-23 degrees C on either atrial or ventricular myocytes at 2.15-2.2 microns sarcomere length, in 1 mM-Ca2+ Ringer solution. 2. Isoprenaline (5 microM), increases in external Ca2+ concentration ([Ca2+]o), and shortening of stimulus interval potentiated the myocyte twitch tension. The dependence of twitch characteristics on these inotropic interventions for all the atrial and ventricular myocytes tested was comparable to that of multicellular preparations under similar experimental conditions. This implies that the enzymatic isolation procedure had not altered the physiological properties of the myocytes. 3. The stimulus interval-tension relation for premature twitches of atrial and ventricular myocytes showed (i) a very steep rising phase in the region of intervals just longer than 0.52 and 0.66 s (the duration of the mechanical refractoriness in atrial or ventricular cells), (ii) a peak, at intervals of 0.7-0.8 s, where the twitch tension was strongly potentiated compared to that of the controls, and (iii) as the stimulus interval was further increased, a progressive return to the control level. The stimulus interval-tension relation for steady-state conditions exhibited similar characteristics. 4. The degree of tension potentiation by isoprenaline was greater in the controls than in the earliest test twitches. The result was that the stimulus interval-tension relations for isoprenaline-treated myocytes showed a gentler rise and

  17. Identification, localization and interaction of SNARE proteins in atrial cardiac myocytes.

    PubMed

    Peters, Christian G; Miller, Daniel F; Giovannucci, David R

    2006-03-01

    Atrial cardiac myocytes secrete the vasoactive hormone atrial natriuretic peptide (ANP) by both constitutive and regulated exocytotic fusion of ANP-containing large dense core vesicles (LDCV) with the sarcolemma. Detailed information, however, regarding the identity and function of specific membrane fusion proteins (SNARE proteins) involved in exocytosis in the endocrine heart is lacking. In the current study, we identified SNARE proteins and determined their association with ANP-containing secretory granules using primary cultures of neonatal and adult rat atrial cardiac myocytes. Using RT-PCR, cardiac myocytes were screened for SNARE and SNARE-associated transcripts. Identified SNARE proteins that have been implicated in exocytosis in neuroendocrine cells were further characterized by Western blot analysis. Functional interaction between SNARE proteins was demonstrated using immunoprecipitation. Using cell fractionation and immunocytochemical methods, it was revealed that VAMP-1, VAMP-2 and synaptotagmin-1 (the putative Ca(2+) sensor) localized to subpopulations of ANP-containing secretory granules in atrial myocytes. Currently, there is conflicting data regarding the role of Ca(2+) in ANP exocytosis. To judge whether secretory activity could be evoked by intracellular Ca(2+) elevation, time-resolved membrane capacitance measurements were used in combination with the flash photolysis of caged compounds to follow the exocytotic activity of single neonatal atrial myocytes. These studies demonstrated that multiple SNARE proteins are present in neonatal and adult cardiac myocytes and suggest the importance of Ca(2+) in exocytosis of ANP from neonatal atrial cardiac myocytes. PMID:16458920

  18. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis.

    PubMed

    Lim, Daniel A; Alvarez-Buylla, Arturo

    2016-01-01

    A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors. PMID:27048191

  19. Quantitative assessment of systolic left ventricular function with speckle-tracking echocardiography in adult patients with repaired aortic coarctation.

    PubMed

    Menting, Myrthe E; van Grootel, Roderick W J; van den Bosch, Annemien E; Eindhoven, Jannet A; McGhie, Jackie S; Cuypers, Judith A A E; Witsenburg, Maarten; Helbing, Willem A; Roos-Hesselink, Jolien W

    2016-05-01

    Despite successful aortic coarctation (CoA) repair, systemic hypertension often recurs which may influence left ventricular (LV) function. We aimed to detect early LV dysfunction using LV global longitudinal strain (GLS) in adults with repaired CoA, and to identify associations with patient and echocardiographic characteristics. In this cross-sectional study, patients with repaired CoA and healthy controls were recruited prospectively. All subjects underwent echocardiography, ECG and blood sampling within 1 day. With speckle-tracking echocardiography, we assessed LV GLS on the apical four-, three- and two-chamber views. We included 150 subjects: 75 patients (57 % male, age 33.4 ± 12.8 years, age at repair 2.5 [IQR: 0.1-11.1] years) and 75 healthy controls of similar sex and age. LV GLS was lower in patients than in controls (-17.1 ± 2.3 vs. -20.2 ± 1.6 %, P < 0.001). Eighty percent of the patients had a normal LV ejection fraction, but GLS was still lower than in controls (P < 0.001). In patients, GLS correlated with systolic and diastolic blood pressure (r = 0.32, P = 0.009; r = 0.31, P = 0.009), QRS duration (r = 0.34, P = 0.005), left atrial dimension (r = 0.27, P = 0.029), LV mass (r = 0.30, P = 0.014) and LV ejection fraction (r = -0.48, P < 0.001). Patients with either associated cardiac lesions, multiple cardiac interventions or aortic valve replacement had lower GLS than patients without. Although the majority of adults with repaired CoA seem to have a normal systolic LV function, LV GLS was decreased. Higher blood pressure, associated cardiac lesions, and larger left atrial dimension are related with lower GLS. Therefore, LV GLS may be used as objective criterion for early detection of ventricular dysfunction. PMID:26780661

  20. Electrochemical properties and myocyte interaction of carbon nanotube microelectrodes.

    PubMed

    Fung, Andrew O; Tsiokos, Christos; Paydar, Omeed; Chen, Li Han; Jin, Sungho; Wang, Yibin; Judy, Jack W

    2010-11-10

    Arrays of carbon nanotube (CNT) microelectrodes (nominal geometric surface areas 20-200 μm(2)) were fabricated by photolithography with chemical vapor deposition of randomly oriented CNTs. Raman spectroscopy showed strong peak intensities in both G and D bands (G/D = 0.86), indicative of significant disorder in the graphitic layers of the randomly oriented CNTs. The impedance spectra of gold and CNT microelectrodes were compared using equivalent circuit models. Compared to planar gold surfaces, pristine nanotubes lowered the overall electrode impedance at 1 kHz by 75%, while nanotubes treated in O(2) plasma reduced the impedance by 95%. Cyclic voltammetry in potassium ferricyanide showed potential peak separations of 133 and 198 mV for gold and carbon nanotube electrodes, respectively. The interaction of cultured cardiac myocytes with randomly oriented and vertically aligned CNTs was investigated by the sectioning of myocytes using focused-ion-beam milling. Vertically aligned nanotubes deposited by plasma-enhanced chemical vapor deposition (PECVD) were observed to penetrate the membrane of neonatal-rat ventricular myocytes, while randomly oriented CNTs remained external to the cells. These results demonstrated that CNT electrodes can be leveraged to reduce impedance and enhance biological interfaces for microelectrodes of subcellular size. PMID:20954739

  1. Sufficient myocardial protection of del Nido cardioplegia regardless of ventricular mass and myocardial ischemic time in adult cardiac surgical patients

    PubMed Central

    Kim, Ji Seong; Jeong, Jin Hee; Moon, Sin Ju; Ahn, Hyuk

    2016-01-01

    Background Del Nido (DN) cardioplegic solution (CPS) has been widely used during pediatric cardiac surgery. However, its use in the field of adult cardiac surgery is not popular yet. We evaluated efficacy of DN cardioplegia in adult cardiac surgical patients. Methods Fifty-three adult patients (mean age, 54±16 years) who underwent cardiovascular surgery using DN cardioplegia were enrolled. Myocardial troponin I (TnI) level up to three days after surgery and early clinical outcomes were evaluated. Propensity score matching was performed to compare these results with those after surgery using blood cardioplegia (BC). Results DN cardioplegia was infused with an initial dose of 1,126±221 mL, and an additional 500 mL was reinfused in 15 patients 91 minutes after initial infusion. After release of aortic cross clamp (ACC), spontaneous defibrillation was achieved in 94.3% (50/53). The peak TnI level after surgery was 9.8 ng/mL (range, 2.0–90.2 ng/mL). Linear regression models demonstrated that neither left ventricular mass (LVM) nor ACC time was associated with increased level of peak TnI (P=0.928 and 0.595, respectively). Early mortality occurred in one patient (1.9%). Postoperative complications included atrial fibrillation (n=18, 34.0%), acute kidney injury (n=4, 7.5%), low cardiac output syndrome (n=1, 1.9%), and respiratory complications (n=1, 1.9%). Propensity score matching extracted 39 pairs. Spontaneous defibrillation was achieved more frequently in the DN than BC groups (37/39 vs. 12/39, P<0.001). Peak level and serial changes of TnI were not statistically different between the two groups (P=0.085 and 0.959, respectively). There were also no significant differences in early mortality and postoperative complication rates between the two groups. Conclusions DN cardioplegia is as effective as BC for adult patients in terms of myocardial protection and early clinical outcomes.

  2. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review

    PubMed Central

    2010-01-01

    Introduction Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care. Methods A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method. Results Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators

  3. Automated microscopy of cardiac myocyte hypertrophy: a case study on the role of intracellular α-adrenergic receptors.

    PubMed

    Ryall, Karen A; Saucerman, Jeffrey J

    2015-01-01

    Traditional approaches for measuring cardiac myocyte hypertrophy have been of low throughput and subjective, limiting the scope of experimental studies designed to understand it. Here, we describe an automated image acquisition and analysis platform for studying the dynamics of cardiac myocyte hypertrophy in vitro. Image acquisition scripts record 5 × 5 mosaic images of fluorescent protein-labeled neonatal rat ventricular myocytes from each well of a 96-well plate using the microscope's automated stage and focus. Image analysis algorithms automatically segment myocyte boundaries, track myocytes, and quantify changes in shape. We describe each step of the image acquisition and analysis algorithms and provide specific examples of how to implement them using Metamorph and CellProfiler software. With this system, shape dynamics of thousands of individual cardiac myocytes can be tracked for up to a week. This imaging platform was recently applied to study reversal of cardiac myocyte hypertrophy following withdrawal of the α-adrenergic agonist phenylephrine. Hypertrophy readily reversed at low but not high levels of α-adrenergic signaling, leading to identification of an intracellular population of α-adrenergic receptors responsible for this reversibility delay. PMID:25304353

  4. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. PMID:26492830

  5. Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes.

    PubMed

    Yan, Lin; Zhang, Qihang; Scholz, Peter M; Weiss, Harvey R

    2003-12-01

    1. We tested the hypothesis that the cGMP-dependent protein kinase has major negative functional effects in cardiac myocytes and that the importance of this pathway is reduced in thyroxine (T4; 0.5 mg/kg per day for 16 days) hypertrophic myocytes. 2. Using isolated ventricular myocytes from control (n = 7) and T4-treated (n = 9) rabbit hypertrophic hearts, myocyte shortening was studied with a video edge detector. Oxygen consumption was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically. 3. Data were collected following treatment with: (i) 8-(4-chlorophenylthio)guanosine-3',5'-monophosphate (PCPT; 10-7 or 10-5 mol/L); (ii) 8-bromo-cAMP (10-5 mol/L) followed by PCPT; (iii) beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, SP-isomer (SP; 10-7 or 10-5 mol/L); or (iv) 8-bromo-cAMP (10-5 mol/L) followed by SP. 4. There were no significant differences between groups in baseline percentage shortening (Pcs; 4.9 +/- 0.2 vs 5.6 +/- 0.4% for control and T4 groups, respectively) and maximal rate of shortening (Rs; 64.8 +/- 5.9 vs 79.9 +/- 7.1 micro m/ s for control and T4 groups, respectively). Both SP and PCPT decreased Pcs (-43 vs-21% for control and T4 groups, respectively) and Rs (-36 vs-22% for control and T4 groups, respectively), but the effect was significantly reduced in T4 myocytes. 8-Bromo-cAMP similarly increased Pcs (28 vs 23% for control and T4 groups, respectively) and Rs (20 vs 19% for control and T4 groups, respectively). After 8-bromo-cAMP, SP and PCPT decreased Pcs (-34%) and Rs (-29%) less in the control group. However, the effects of these drugs were not altered in T4 myocytes (Pcs -24%; Rs -22%). Both PCPT and cAMP phosphorylated the same five protein bands. In T4 myocytes, these five bands were enhanced less. 5. We conclude that, in control ventricular myocytes, the cGMP-dependent protein kinase exerted major negative functional effects but, in T4-induced hypertrophic myocytes, the importance of

  6. Stereological estimates of nuclear number in human ventricular cardiomyocytes before and after birth obtained using physical disectors.

    PubMed

    Mayhew, T M; Pharaoh, A; Austin, A; Fagan, D G

    1997-07-01

    Design-based stereology is employed to estimate total numbers of myocyte nuclei and mean myocyte volume per nucleus in ventricles of fetal and early postnatal human hearts. Organs were collected postmortem from subjects varying in age from 16 gestational wk to 40 postnatal wk. Numbers of myocyte nuclei per unit volume of ventricle were estimated using physical disectors (parallel pairs of sections). Absolute numbers were calculated by multiplying nuclear packing densities by ventricular volumes estimated from ventricular mass and tissue density. Volumes per nucleus were obtained via estimates of the combined volumes of all myocytes (or of the myocardium as a whole) and the numbers of myocyte nuclei. The findings showed that numbers of myocyte nuclei increase linearly from 16 wk towards term. They were also consistent with the notion that hyperplasia ceases abruptly at birth or soon afterwards. The net rate of production of myocyte nuclei was about 38 x 10(7)/wk (2.3 million nuclei/h). The total volume of myocytes continued to expand in the same way from 16 wk to at least 35 wk of gestation. Published studies on the incidence of binucleate myocytes during early postnatal growth of the ventricles of rats suggest that the volume of a myocyte doubles prior to nuclear division. Prenatal growth in the human heart is consistent with this mechanism. Myocardial hypertrophy after birth must occur by cellular hypertrophy without karyokinesis. PMID:9279664

  7. PDE5A suppression of acute β-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation

    PubMed Central

    Lee, Dong I.; Vahebi, Susan; Tocchetti, Carlo Gabriele; Barouch, Lili A.; Solaro, R. John; Takimoto, Eiki

    2010-01-01

    Phosphodiesterase type 5A (PDE5A) inhibitors acutely suppress beta-adrenergic receptor (β-AR) stimulation in left ventricular myocytes and hearts. This modulation requires cyclic GMP synthesis via nitric oxide synthase (NOS)-NO stimulation, but upstream and downstream mechanisms remain un-defined. To determine this, adult cardiac myocytes from genetically engineered mice and controls were studied by video microscopy to assess sarcomere shortening (SS) and fura2-AM fluorescence to measure calcium transients (CaT). Enhanced SS from isoproterenol (ISO, 10 nM) was suppressed ≥50% by the PDE5A inhibitor sildenafil (SIL, 1 µM), without altering CaT. This regulation was unaltered despite co-inhibition of either the cGMP-stimulated cAMP-esterase PDE2 (Bay 60-7550), or cGMP-inhibited cAMP-esterase PDE3 (cilostamide). Thus, the SIL response could not be ascribed to cGMP interaction with alternative PDEs. However, genetic deletion (or pharmacologic blockade) of β3-ARs, which couple to NOS signaling, fully prevented SIL modulation of ISO-stimulated SS. Importantly, both PDE5A protein expression and activity were similar in β3-AR knockout (β3-AR−/−) myocytes as in controls. Downstream, cGMP stimulates protein kinase G (PKG), and we found contractile modulation by SIL required PKG activation and enhanced TnI phosphorylation at S23, S24. Myocytes expressing the slow skeletal TnI isoform which lacks these sites displayed no modulation of ISO responses by SIL. Non-equilibrium isoelectric focusing gel electrophoresis showed SIL increased TnI phosphorylation above that from concomitant ISO in control but not β3-AR−/− myocytes. These data support a cascade involving β3-AR stimulation, and subsequent PKG-dependent TnI S23, S24 phosphorylation as primary factors underlying the capacity of acute PDE5A inhibition to blunt myocardial β-adrenergic stimulation. PMID:20107996

  8. Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes.

    PubMed

    Narula, J; Arbustini, E; Chandrashekhar, Y; Schwaiger, M

    2001-02-01

    Although previously it was believed that apoptosis could not occur in the terminally differentiated tissue, such as adult heart muscle cells, recent studies in endomyocardial biopsies from patients with dilated cardiomyopathy and in explanted hearts from patients with end-stage heart failure undergoing cardiac transplantation have demonstrated histologic evidence of apoptosis. Whereas neurohormonal activation during heart failure leads to compensatory hemodynamic alterations, coupled with ventricular dilatation, it induces transcription factors and myocyte hypertrophy. Persistent growth stimulation in terminally differentiated cells may lead paradoxically to apoptotic cell death. The apoptosis in cardiomyopathic hearts is associated with cytochrome c release from mitochondria to cytoplasm and activation of proteolytic caspase-8 and -3. Although the caspases are duly processed, the fragmentation of the nuclear proteins (including DNA) is completed less frequently, and only a variable degree of fragmentation of cytoplasmic proteins (including contractile proteins) is observed. It is hypothesized that release of cytochrome c from mitochondria should interfere with energy production and lead to functional impairment and variable loss of contractile proteins in a living heart muscle cell should contribute to systolic dysfunction. Because a nuclear blueprint is retained, however, the dysfunctional cell may continue to exist and in favorable conditions, such as with LVAD support, the apoptotic process may subside. Potential feasibility of reversal of heart failure should renew efforts to develop more targeted pharmaceutical intervention within the apoptotic cascade and allow newer paradigm for the management of heart failure. PMID:11787805

  9. Sub-micrometer anatomical models of the sarcolemma of cardiac myocytes based on confocal imaging.

    PubMed

    Sachse, Frank B; Savio-Galimberti, Eleonora; Goldhaber, Joshua I; Bridge, John H B

    2008-01-01

    We describe an approach to develop anatomical models of cardiac cells. The approach is based on confocal imaging of living ventricular myocytes with submicrometer resolution, digital image processing of three-dimensional stacks with high data volume, and generation of dense triangular surface meshes representing the sarcolemma including the transverse tubular system. The image processing includes methods for deconvolution, filtering and segmentation. We introduce and visualize models of the sarcolemma of whole ventricular myocytes and single transversal tubules. These models can be applied for computational studies of cell and sub-cellular physical behavior and physiology, in particular cell signaling. Furthermore, the approach is applicable for studying effects of cardiac development, aging and diseases, which are associated with changes of cell anatomy and protein distributions. PMID:18229702

  10. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report

    PubMed Central

    HWANG, HUI-JEONG; YOON, KYUNG LIM; SOHN, IL SUK

    2016-01-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans. PMID:26998021

  11. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  12. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  13. [Application of a Fotonic Sensor for measurement of chronotropy and contractility in cultured rat cardiac myocytes].

    PubMed

    Kawana, S; Kimura, H; Miyamoto, A; Ohshika, H; Namiki, A

    1993-10-01

    We used a Fotonic Sensor, a fiber optic displacement measurement instrument, to measure the chronotropy and the contractility of cultured neonatal rat cardiac myocytes. The principle of the measurement is to detect changes in the distance between the probe and myocytes vertically extruded by the contraction. A fiber optic probe consists of adjacent pairs of light-transmitting and light-receiving fibers. The ratio of reflected light to transmitted light changes proportionally to the distance between the probe and an object at a certain range shown in a calibration curve. The analogue output from the sensor was transferred to a personal computer through an analogue/digital converter and analyzed. The sensor was able to detect the rate of myocyte beating, i.e., chronotropy, with a high correlation to the frequency of electrically stimulated beating and agreed well with the beating rate counted visually under a microscope. The contractility was evaluated by the maximum contraction velocity (Vm) by the first derivatives of the contraction curves obtained by the sensor. Norepinephrine (NE) and isoproterenol (ISO) increased the contractility in cultured myocytes in a dose-dependent fashion. In the preparation of rat ventricular papillary muscle, NE- and ISO-induced increase in the Vm in the radial direction significantly correlated with the increase in tension measured with a force-displacement transducer. These results indicate that the Fotonic Sensor is an appropriate instrument for evaluating the chronotropy and the contractility of cultured myocytes. PMID:8253432

  14. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  15. Reference values for echocardiographic parameters and indexes of left ventricular function in healthy, young adult sheep used in translational research: comparison with standardized values in humans

    PubMed Central

    Locatelli, Paola; Olea, Fernanda D; Lorenzi, Andrea De; Salmo, Fabián; Janavel, Gustavo L Vera; Hnatiuk, Anna P; Guevara, Eduardo; Crottogini, Alberto J

    2011-01-01

    Ovine models of ischemic heart disease and cardiac failure are increasingly used in translational research. However, reliable extrapolation of the results to the clinical setting requires knowing if ovine normal left ventricular (LV) function is comparable to that of humans. We thus assessed for echocardiographic LV dimensions and indexes in a large normal adult sheep population and compared them with standardized values in normal human adults. Bidimensional and tissue Doppler echocardiograms were performed in 69 young adult Corriedale sheep under light sedation. LV dimensions and indexes of systolic and diastolic function were measured. Absolute and body surface areanormalized values were compared to those for normal adult humans and their statistical distribution was assessed. Normalized dimensions (except for end diastolic diameter) as well as ejection fraction and fractional shortening fell within the ranges established by the American Society of Echocardiography and European Association of Echocardiography for normal adult humans. Normalized end diastolic diameter exceeded the upper normal limit but got close to it when correcting for the higher heart mass/body surface area ratio of sheep with respect to humans. Diastolic parameters also fell within normal human ranges except for a slightly lower mitral deceleration time. All values exhibited a Gaussian distribution. We conclude that echocardiographic parameters of systolic and diastolic LV performance in young adult sheep can be reliably extrapolated to the adult human, thus supporting the use of ovine models of human heart disease in translational research. PMID:22140597

  16. Use of triple ultra-high-pressure balloons for obstructed right ventricular outflow conduits in adults can be safe and effective.

    PubMed

    Fujimoto, Kazuto; Sugiyama, Hisashi; Yazaki, Satoshi

    2015-04-01

    To date, no transcatheter valve has been approved for placement in the pulmonary position in Japan. Consequently, percutaneous balloon dilatation may be advised for stenotic right ventricular outflow lesions; however, technical difficulties persist, particularly in adults. We describe the acute haemodynamic changes and outcome of balloon dilatation of right ventricular outflow obstruction using triple ultra-high pressure balloons. This is the first report of such a technical development, which seems to be safe and effective. A total of three adult patients, aged 25, 29, and 37 years, with severe conduit obstruction were referred for balloon dilatation. A triple ultra-high-pressure balloon technique was used in the three patients after unsuccessful double-balloon dilatation, or for highly calcified lesions, which were expected to require ultra-high pressure for effective relief. Following balloon dilatation, the pressure gradient decreased from 24, 30, 65 to 3, 25, 30 mmHg, respectively. There were no procedural complications except slightly increased pulmonary regurgitation. Balloon dilatation using a triple ultra-high pressure balloon technique can be a safe and effective palliative procedure for conduit obstruction in adult patients. PMID:24905445

  17. Relation of components of the metabolic syndrome to left ventricular geometry in hispanic and non-hispanic black adults

    PubMed Central

    Apridonidze, Teimuraz; Shaqra, Hussein; Ktaich, Nessrine; Liu, Jennifer E; Bella, Jonathan N

    2011-01-01

    Background: Left ventricular (LV) hypertrophy is an independent predictor of increased cardiovascular morbidity and mortality. It remains unclear whether components of the metabolic syndrome are associated with LV hypertrophy. Methods and Results: Accordingly, we analyzed echocardiograms in 192 consecutive ambulatory patients referred for echocardiography from October to December 2004. Patients were excluded if they had atrial fibrillation, significant valvular heart disease or failed to cooperate for echocardiogram. Of these, 126 (66%) patients met Adult Treatment Panel (ATP) III diagnostic criteria for the metabolic syndrome. 29% had any 3 metabolic syndrome components, 18% had any 4 metabolic syndrome components and 17% had all 5 metabolic syndrome components. In analyses of variance adjusted for age and sex, LV mass and LV mass adjusted to its allometric relation to height2.7 (LV mass/height2.7) were higher in patients with metabolic syndrome compared to those without metabolic syndrome (237 g [228-239 95%CI] vs. 224 g [206-239 95%CI] p=0.005 and 62 g/m2.7 [59-65 95%CI] vs. 56 g/m2.7 [52-60 95%CI] p=0.014, respectively). The prevalence of LV hypertrophy using prognostically-validated gender-specific partition values for LV mass/height2.7 was significantly higher in metabolic syndrome patients than in those without metabolic syndrome (81 v. 58%, p<0.001). There was a step-wise increase in LV mass/height2.7 in those with no metabolic syndrome components to those with increasing number of metabolic syndrome components (Figure, p<0.001). In this study of high-risk patients, the significant independent predictors of LV hypertrophy were only high blood pressure (OR=3.2, p=0.008) and increased waist circumference (OR=2.8, p=0.006) with no interaction between blood pressure and waist circumference. Conclusion: Metabolic syndrome is associated with higher LV mass and prevalence of LV hypertrophy. Increasing number of metabolic syndrome components is associated with step

  18. Myocyte-Depleted Engineered Cardiac Tissues Support Therapeutic Potential of Mesenchymal Stem Cells

    PubMed Central

    Serrao, Gregory W.; Turnbull, Irene C.; Ancukiewicz, Damian; Kim, Do Eun; Kao, Evan; Cashman, Timothy J.; Hadri, Lahouaria; Hajjar, Roger J.

    2012-01-01

    The therapeutic potential of mesenchymal stem cells (MSCs) for restoring cardiac function after cardiomyocyte loss remains controversial. Engineered cardiac tissues (ECTs) offer a simplified three-dimensional in vitro model system to evaluate stem cell therapies. We hypothesized that contractile properties of dysfunctional ECTs would be enhanced by MSC treatment. ECTs were created from neonatal rat cardiomyocytes with and without bone marrow-derived adult rat MSCs in a type-I collagen and Matrigel scaffold using custom elastomer molds with integrated cantilever force sensors. Three experimental groups included the following: (1) baseline condition ECT consisting only of myocytes, (2) 50% myocyte-depleted ECT, modeling a dysfunctional state, and (3) 50% myocyte-depleted ECT plus 10% MSC, modeling dysfunctional myocardium with intervention. Developed stress (DS) and pacing threshold voltage (VT) were measured using 2-Hz field stimulation at 37°C on culture days 5, 10, 15, and 20. By day 5, DS of myocyte-depleted ECTs was significantly lower than baseline, and VT was elevated. In MSC-supplemented ECTs, DS and VT were significantly better than myocyte-depleted values, approaching baseline ECTs. Findings were similar through culture day 15, but lost significance at day 20. Trends in DS were partly explained by changes in the cell number and alignment with time. Thus, supplementing myocyte-depleted ECTs with MSCs transiently improved contractile function and compensated for a 50% loss of cardiomyocytes, mimicking recent animal studies and clinical trials and supporting the potential of MSCs for myocardial therapy. PMID:22500611

  19. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells.

    PubMed

    Serrao, Gregory W; Turnbull, Irene C; Ancukiewicz, Damian; Kim, Do Eun; Kao, Evan; Cashman, Timothy J; Hadri, Lahouaria; Hajjar, Roger J; Costa, Kevin D

    2012-07-01

    The therapeutic potential of mesenchymal stem cells (MSCs) for restoring cardiac function after cardiomyocyte loss remains controversial. Engineered cardiac tissues (ECTs) offer a simplified three-dimensional in vitro model system to evaluate stem cell therapies. We hypothesized that contractile properties of dysfunctional ECTs would be enhanced by MSC treatment. ECTs were created from neonatal rat cardiomyocytes with and without bone marrow-derived adult rat MSCs in a type-I collagen and Matrigel scaffold using custom elastomer molds with integrated cantilever force sensors. Three experimental groups included the following: (1) baseline condition ECT consisting only of myocytes, (2) 50% myocyte-depleted ECT, modeling a dysfunctional state, and (3) 50% myocyte-depleted ECT plus 10% MSC, modeling dysfunctional myocardium with intervention. Developed stress (DS) and pacing threshold voltage (VT) were measured using 2-Hz field stimulation at 37°C on culture days 5, 10, 15, and 20. By day 5, DS of myocyte-depleted ECTs was significantly lower than baseline, and VT was elevated. In MSC-supplemented ECTs, DS and VT were significantly better than myocyte-depleted values, approaching baseline ECTs. Findings were similar through culture day 15, but lost significance at day 20. Trends in DS were partly explained by changes in the cell number and alignment with time. Thus, supplementing myocyte-depleted ECTs with MSCs transiently improved contractile function and compensated for a 50% loss of cardiomyocytes, mimicking recent animal studies and clinical trials and supporting the potential of MSCs for myocardial therapy. PMID:22500611

  20. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  1. Three-Dimensional Distribution of Ryanodine Receptor Clusters in Cardiac Myocytes

    PubMed Central

    Chen-Izu, Ye; McCulle, Stacey L.; Ward, Chris W.; Soeller, Christian; Allen, Bryan M.; Rabang, Cal; Cannell, Mark B.; Balke, C. William; Izu, Leighton T.

    2006-01-01

    The clustering of ryanodine receptors (RyR2) into functional Ca2+ release units is central to current models for cardiac excitation-contraction (E-C) coupling. Using immunolabeling and confocal microscopy, we have analyzed the distribution of RyR2 clusters in rat and ventricular atrial myocytes. The resolution of the three-dimensional structure was improved by a novel transverse sectioning method as well as digital deconvolution. In contrast to earlier reports, the mean RyR2 cluster transverse spacing was measured 1.05 μm in ventricular myocytes and estimated 0.97 μm in atrial myocytes. Intercalated RyR2 clusters were found interspersed between the Z-disks on the cell periphery but absent in the interior, forming double rows flanking the local Z-disks on the surface. The longitudinal spacing between the adjacent rows of RyR2 clusters on the Z-disks was measured to have a mean value of 1.87 μm in ventricular and 1.69 μm in atrial myocytes. The measured RyR2 cluster distribution is compatible with models of Ca2+ wave generation. The size of the typical RyR2 cluster was close to 250 nm, and this suggests that ∼100 RyR2s might be present in a cluster. The importance of cluster size and three-dimensional spacing for current E-C coupling models is discussed. PMID:16603500

  2. Modeling the isolated cardiac myocyte.

    PubMed

    Puglisi, Jose L; Wang, Fei; Bers, Donald M

    2004-01-01

    Computer modeling of cardiac myocytes has flourished in recent years. Models have evolved from mathematical descriptions of ionic channels alone to more sophisticated formulations that include calcium transport mechanisms, ATP production and metabolic pathways. The increased complexity is fueled by the new data available in the field. The continuous production of experimental data has led to the evolution of increasingly refined descriptions of the phenomena by modelers. Integrating the numerous systems involved in cardiac myocyte homeostasis makes the use of computer models necessary due to the unreliability of intuitive approaches. However the complexity of the model should not imply a cumbersome operation of the program. As with any tool, computer models have to be easy to operate or their strength will be diminished and potential users will not benefit fully from them. The contribution of the computer modeler to their respective biological fields will be more successful and enduring if modelers devote sufficient time to implement their equations into a model with user-friendly characteristics. PMID:15142742

  3. Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction.

    PubMed

    Curtis, Matthew W; Budyn, Elisa; Desai, Tejal A; Samarel, Allen M; Russell, Brenda

    2013-01-01

    Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100-μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions. PMID:22407215

  4. Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles

    PubMed Central

    Kohl, Tobias; Lehnart, Stephan E.

    2014-01-01

    In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied

  5. Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction

    PubMed Central

    Curtis, Matthew W.; Budyn, Elisa; Desai, Tejal A.; Samarel, Allen M.

    2012-01-01

    Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100 – μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions. PMID:22407215

  6. Diesterified Nitrone Rescues Nitroso-Redox Levels and Increases Myocyte Contraction Via Increased SR Ca2+ Handling

    PubMed Central

    Traynham, Christopher J.; Roof, Steve R.; Wang, Honglan; Prosak, Robert A.; Tang, Lifei; Viatchenko-Karpinski, Serge; Ho, Hsiang-Ting; Racoma, Ira O.; Catalano, Dominic J.; Huang, Xin; Han, Yongbin; Kim, Shang-U; Gyorke, Sandor; Billman, George E.

    2012-01-01

    Nitric oxide (NO) and superoxide (O2−) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O2.− must exist at defined levels. Unfortunately, the NO and O2.− levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O2.− while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2–2–3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1−/−) mice, a known model of NO/O2.− imbalance, and incubated with EMEPO. EMEPO significantly reduced O2.− (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1−/− myocytes. Furthermore, EMEPO increased NOS1−/− myocyte basal contraction (Ca2+ transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to β-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca2+ leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1−/− myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O2.− levels may have therapeutic potential in the treatment of various cardiomyopathies. PMID:23300588

  7. Cardiac myocyte exosomes: stability, HSP60, and proteomics

    PubMed Central

    Malik, Z. A.; Kott, K. S.; Poe, A. J.; Kuo, T.; Chen, L.; Ferrara, K. W.

    2013-01-01

    Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at “physiological” concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated. PMID:23376832

  8. Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries

    PubMed Central

    2013-01-01

    Background Data on the use of circulating microRNAs (miRNAs) as biomarkers of cardiovascular diseases are emerging. Little, however, is known on the expression profile of circulating of microRNAs in congenital heart malformations with a systemic right ventricle that is prone to functional impairment. We aimed to test the hypothesis that circulating miRNA profile is altered in patients late after atrial switch operation for complete transposition of the great arteries (TGA) and further explored possible relationships between alteration of circulating miRNAs and systemic ventricular contractility. Methods Circulating miRNA expression profiling of serum samples from 5 patients and 5 healthy controls was performed. The results were validated in 26 patients and 20 controls using real-time quantitative reverse-transcription polymerase chain reaction for candidate miRNAs with fold changes >3 by expression profiling. Systemic ventricular myocardial acceleration during isovolumic contraction (IVA) was determined by colour tissue Doppler echocardiography. Results Compared with controls, patients had significantly lower systemic ventricular IVA (p = 0.002). Of the 23 upregulated miRNAs identified by profiling, 11 were validated to be increased in patients compared with controls: miR-16, miR-106a, miR-144*, miR-18a, miR-25, miR-451, miR-486-3p, miR-486-5p, miR-505*, let-7e and miR-93. Among the validated 11 miRNAs, miR-18a (r = −0.45, p = 0.002) and miR-486-5p (r = −0.35, p = 0.018) correlated negatively with systemic ventricular IVA for the whole cohort. Conclusions A distinct serum miRNA expression signature exists in adults with complete TGA after atrial switch operation, with serum miR-18a and miR-486-5p being associated with systemic ventricular contractility. PMID:24040857

  9. Transplantation of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells Attenuates Left Ventricular Dysfunction and Remodeling After Myocardial Infarction

    PubMed Central

    Dawn, Buddhadeb; Tiwari, Sumit; Kucia, Magdalena J.; Zuba-Surma, Ewa K.; Guo, Yiru; SanganalMath, Santosh K.; Abdel-Latif, Ahmed; Hunt, Greg; Vincent, Robert J.; Taher, Hisham; Reed, Nathan J.; Ratajczak, Mariusz Z.; Bolli, Roberto

    2013-01-01

    Adult bone marrow (BM) contains Sca-1+/Lin−/CD45− very small embryonic-like stem cells (VSELs) that express markers of several lineages, including cardiac markers, and differentiate into cardiomyocytes in vitro. We examined whether BM-derived VSELs promote myocardial repair after a reperfused myocardial infarction (MI). Mice underwent a 30-minute coronary occlusion followed by reperfusion and received intramyocardial injection of vehicle (n = 11), 1 × 105 Sca-1+/Lin−/CD45+ enhanced green fluorescent protein (EGFP)-labeled hematopoietic stem cells (n = 13 [cell control group]), or 1 × 104 Sca-1+/Lin−/CD45− EGFP-labeled cells (n = 14 [VSEL-treated group]) at 48 hours after MI. At 35 days after MI, VSEL-treated mice exhibited improved global and regional left ventricular (LV) systolic function (echocardiography) and attenuated myocyte hypertrophy in surviving tissue (histology and echocardiography) compared with vehicle-treated controls. In contrast, transplantation of Sca-1+/Lin−/CD45+ cells failed to confer any functional or structural benefits. Scattered EGFP+ myocytes and capillaries were present in the infarct region in VSEL-treated mice, but their numbers were very small. These results indicate that transplantation of a relatively small number of CD45− VSELs is sufficient to improve LV function and alleviate myocyte hypertrophy after MI, supporting the potential therapeutic utility of these cells for cardiac repair. PMID:18420834

  10. Intracellular calcium in cardiac myocytes: calcium transients measured using fluorescence imaging.

    PubMed

    Cannell, M B; Berlin, J R; Lederer, W J

    1987-01-01

    We have examined the distribution of Ca2+ in voltage-clamped cardiac myocytes under resting conditions and during the Ca2+ transient. We find that the resting Ca2+ level in a quiescent rat myocyte bathed in 1 mM extracellular Ca is relatively low (between 60 and 100 nM) and uniform. At the peak of the Ca2+ transient, Ca2+ can rise to a level as high as 600 nM to 1.0 microM. Furthermore, the magnitude of the Ca2+ transient is dependent on the size of the membrane depolarization. There is good agreement between measurements made using video imaging and those made using a photomultiplier tube for the value of intracellular Ca2+ at the peak of the Ca2+ transient and for the subsequent slow changes in intracellular Ca2+. On repolarization, intracellular Ca2+ falls with a half-time of approximately 100 ms. The uniform distribution of Ca2+ reported in the Ca2+ images of myocytes at rest and at the peak of the Ca2+ transient under normal conditions is in contrast to what is observed during "Ca2+ overload" when subcellular regions of elevated Ca2+ are observed to propagate along the cell. Thus, the measurement of [Ca2+]i in cardiac myocytes with fura-2 has already yielded important new information that was not available using other techniques to measure [Ca2+]i in cardiac ventricular muscle. PMID:3505361