Sample records for advance heat management

  1. Brayton advanced heat receiver development program

    NASA Technical Reports Server (NTRS)

    Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.

    1989-01-01

    NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.

  2. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  3. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  4. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  5. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  6. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  7. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  8. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  9. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  10. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  11. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  12. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGES

    Bartel, N.; Chen, M.; Utgikar, V. P.; ...

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  13. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, N.; Chen, M.; Utgikar, V. P.

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  14. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  15. Advanced Distribution Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Advanced Distribution Management Systems Advanced Distribution Management Systems Electric utilities are investing in updated grid technologies such as advanced distribution management systems to management testbed for cyber security in power systems. The "advanced" elements of advanced

  16. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat

    USDA-ARS?s Scientific Manuscript database

    Eco-friendly approaches to postharvest disease management in harvested commodities, such as heat treatments and biological control utilizing antagonistic yeasts, is an active research field. The current review focuses on the physiological and molecular aspects of heat treatment on all the major par...

  17. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  18. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  19. Advanced dementia pain management protocols.

    PubMed

    Montoro-Lorite, Mercedes; Canalias-Reverter, Montserrat

    Pain management in advanced dementia is complex because of neurological deficits present in these patients, and nurses are directly responsible for providing interventions for the evaluation, management and relief of pain for people suffering from this health problem. In order to facilitate and help decision-makers, pain experts recommend the use of standardized protocols to guide pain management, but in Spain, comprehensive pain management protocols have not yet been developed for advanced dementia. This article reflects the need for an integrated management of pain in advanced dementia. From the review and analysis of the most current and relevant studies in the literature, we performed an approximation of the scales for the determination of pain in these patients, with the observational scale PAINAD being the most recommended for the hospital setting. In addition, we provide an overview for comprehensive management of pain in advanced dementia through the conceptual framework «a hierarchy of pain assessment techniques by McCaffery and Pasero» for the development and implementation of standardized protocols, including a four-phase cyclical process (evaluation, planning/performance, revaluation and recording), which can facilitate the correct management of pain in these patients. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  20. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  1. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  2. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  3. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  4. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  5. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  6. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raade, Justin; Roark, Thomas; Vaughn, John

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less

  7. SSME Advanced Health Management: Project Overview

    NASA Technical Reports Server (NTRS)

    Plowden, John

    2000-01-01

    This document is the viewgraphs from a presentation concerning the development of the Health Management system for the Space Shuttle Main Engine (SSME). It reviews the historical background of the SSME Advanced Health Management effort through the present final Health management configuration. The document includes reviews of three subsystems to the Advanced Health Management System: (1) the Real-Time Vibration Monitor System, (2) the Linear Engine Model, and (3) the Optical Plume Anomaly Detection system.

  8. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  9. Advanced heat pump for the recovery of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total U.S. VOC emissions. The 'Toxic-Release Inventory' of the U.S. Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing, refrigerant production, and wood products production. The U.S. Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase 1 report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. The Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient, and economically priced.

  10. Advanced Devices for Cryogenic Thermal Management

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.

    2006-04-01

    This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.

  11. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  12. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  13. Development of an Advanced Flameless Combustion Heat Source Utilizing Methanol

    DTIC Science & Technology

    2010-07-01

    effect until the fuel can receive energy from the flameless combustion elements, either by radiant or exhaust heat. Figure 22 and Figure 23 show one...fragments of dirt and debris reducing its effectiveness . This first prototype allowed useful engineering data to be generated but lacked some of the...DEVELOPMENT OF AN ADVANCED FLAMELESS COMBUSTION HEAT SOURCE UTILIZING METHANOL by Clifford G. Welles Catalytic Devices International, LLC

  14. Cryogenic Thermal Management Advances during the CRYOTOOL Program

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.; Roberts, T.; Davis, T.

    2006-04-01

    This paper describes the cryogenic thermal management advances made during the AFRL-sponsored CRYOTOOL program. Advances occurred as a result of conducting four technology development tasks: (1) development of a differential thermal expansion cryogenic thermal switch (DTE-CTSW) made with high purity Al end-pieces and an Ultem support rod; (2) carrying out of a dual DTE-CTSW/dual cryocooler performance test to quantify CTSW benefits in a redundant cryocooler system; (3) development of a miniaturized cryogenic loop heat pipe (mini-CLHP) that combines flex link, conduction bar, and CTSW functionalities; and (4) development of an across-gimbal cryogenic thermal transport system (GCTTS) with large diameter transport line coils for optics cooling. The results are as follows. The DTE-CTSW achieved an ON conductance of 2-3.6 W/K (from 35-90 K) and an OFF resistance of 1100-2300 K/W (300-230 K warm end). The redundant cryocooler test showed modest parasitic heat leak savings when dual DTE-CTSWs were used versus when they were not used. The mini-CLHP, using neon as the working fluid, transported 2.5 W at 35 K, achieved an OFF resistance of 1555 K/W, and had cross/axial flexibilities of 100-450 N/m. Lastly, GCTTS, using nitrogen as the working fluid, transported 20 W at 100 K in a flat configuration. Additional work is needed to verify GCTTS operation in an elevated orientation.

  15. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  16. Advanced control for ground source heat pump systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less

  17. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  18. Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao

    Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.

  19. Advanced Interval Management: A Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Timer, Sebastian; Peters, Mark

    2016-01-01

    This document is the final report for the NASA Langley Research Center (LaRC)- sponsored task order 'Possible Benefits for Advanced Interval Management Operations.' Under this research project, Architecture Technology Corporation performed an analysis to determine the maximum potential benefit to be gained if specific Advanced Interval Management (AIM) operations were implemented in the National Airspace System (NAS). The motivation for this research is to guide NASA decision-making on which Interval Management (IM) applications offer the most potential benefit and warrant further research.

  20. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution ofmore » single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.« less

  1. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  2. Advances in refrigeration and heat transfer engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  3. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  4. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  5. A Review of Recent Advances in Research on Extreme Heat Events

    NASA Technical Reports Server (NTRS)

    Horton, Radley M.; Mankin, Justin S.; Lesk, Corey; Coffel, Ethan; Raymond, Colin

    2016-01-01

    Reviewing recent literature, we report that changes in extreme heat event characteristics such as magnitude, frequency, and duration are highly sensitive to changes in mean global-scale warming. Numerous studies have detected significant changes in the observed occurrence of extreme heat events, irrespective of how such events are defined. Further, a number of these studies have attributed present-day changes in the risk of individual heat events and the documented global-scale increase in such events to anthropogenic-driven warming. Advances in process-based studies of heat events have focused on the proximate land-atmosphere interactions through soil moisture anomalies, and changes in occurrence of the underlying atmospheric circulation associated with heat events in the mid-latitudes. While evidence for a number of hypotheses remains limited, climate change nevertheless points to tail risks of possible changes in heat extremes that could exceed estimates generated from model outputs of mean temperature. We also explore risks associated with compound extreme events and nonlinear impacts associated with extreme heat.

  6. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  7. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  8. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  9. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  10. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  11. Wound management in patients with advanced illness.

    PubMed

    Maida, Vincent

    2013-03-01

    To emphasize that the management of wounds represents a significant component within the overall supportive and palliative care of patients with advanced illness. It is also intended to clarify the linguistics that are commonly used around patients with wounds. New paradigms for wound management, wound outcomes, and goal setting have been defined and graphically depicted. Recent studies show that wounds may be used as prognostic factors for patients with advanced illness. Data from recent studies also demonstrate that marginal levels of wound healing are possible for all wound classes affecting patients with advanced illness. When indicated, time-limited trials of wound healing strategies should be facilitated by the Wound Bed Preparation Paradigm. Wound palliation may be guided through the use of the Toronto Symptom Assessment System for Wounds (TSAS-W). Wound management must continue to evolve as a tenet within the overall supportive and palliative care of patients with advanced illness.

  12. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  13. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2017-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device that can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  14. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2016-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device which can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration/jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  15. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  16. Heat switch technology for cryogenic thermal management

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  17. [Qualitative research of self-management behavior in patients with advanced schistosomiasis].

    PubMed

    Wang, Jian-ping; Wang, Xing-ju; Bao, Hui-hong; Zhang, Hong; Xu, Zheng-rong

    2013-10-01

    To explore the self-management behavior of patients with advanced schistosomiasis, so as to provide the evidence for improving clinical nursing. A total of 18 patients with advanced schistosomiasis were interviewed in depth by using a semi structured interview method. The results were analyzed with Miles and Huberman content analysis method. Most of the patients with advanced schistosomiasis had self-management control behavior and were cooperated with medical assistance because of their seriously illness. Based on data analysis, the symptom management, follow-up management, a healthy lifestyle, medication awareness, and emotional management were obtained. The patients with advanced schistosomiasis have self management control behavior. Health care workers should promote the patients, their families and social people to participate in the self-management behavior of advanced schistosomiasis patients.

  18. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less

  19. Opportunities for improving management of advanced chronic kidney disease.

    PubMed

    Patwardhan, Meenal B; Matchar, David B; Samsa, Gregory P; Haley, William E

    2008-01-01

    Evidence suggests that management of advanced chronic kidney disease affects patient outcomes. To identify clinical areas that demand attention from a quality improvement perspective, we sought to examine the extent of conformance to an advanced chronic kidney disease guideline in a range of practices. A total of 237 patient medical records were abstracted from 4 primary care providers and 4 nephrology private practices across the country. In the practices studied, management of advanced chronic kidney disease patients was suboptimal for patients managed by primary care providers as well as those managed by nephrologists (overall conformance 27% and 42%, respectively), specifically for anemia, bone disease, and timing for renal replacement therapy. The current exercise (in conjunction with a literature search and focused and individual interviews with providers and patients) offered valuable information that was used to develop a toolkit for optimizing management of advanced chronic kidney disease.

  20. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  1. Current management of advanced and castration resistant prostate cancer.

    PubMed

    Gomella, Leonard G; Petrylak, Daniel P; Shayegan, Bobby

    2014-04-01

    Newer approaches to the management of advanced prostate cancer have rapidly evolved. While basic androgen deprivation remains as the first line in newly diagnosed hormone naïve metastatic prostate cancer, the agents used and strategies followed have undergone significant changes. Numerous new agents such as sipuleucel-T, abiraterone, enzalutamide, cabazitaxel and radium 223 have all been approved since 2010 to treat metastatic castration resistant prostate cancer (CRPC). New imaging techniques to detect advanced disease such as F-18 PET, 11 C-choline PET and other modalities are becoming available. The concepts of "bone health" and the management of side effects related to androgen deprivation therapy are also gaining attention as men are being treated with longer courses of androgen deprivation. Understanding the theory behind these new agents and management approaches while focusing on the practical clinical considerations are essential to improve outcomes in advanced prostate cancer. A review of the current state of the art in the management of advanced and castration resistant prostate cancer presented in this Canadian Journal of Urology International supplement was performed. Key findings are summarized and presented along with critical updates based on recent publications and meeting presentations. Key concepts identified in the management of advanced prostate cancer included the new understanding of prostate cancer based on translational discoveries, applications of various hormonally based strategies in advanced disease including traditional and recently approved agents. The use of new imaging modalities to identify metastatic disease, immunotherapy approaches and discussions of sequencing and which new agents are likely to be available in the future in the management of CRPC were identified. Bone targeted strategies are also addressed in the setting of androgen deprivation and metastatic disease. The management of men with advanced prostate cancer has

  2. Heat balance and thermal management of the TMT Observatory

    NASA Astrophysics Data System (ADS)

    Thompson, Hugh; Vogiatzis, Konstantinos

    2014-08-01

    An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.

  3. Exertional heat stroke management strategies in United States high school football.

    PubMed

    Kerr, Zachary Y; Marshall, Stephen W; Comstock, R Dawn; Casa, Douglas J

    2014-01-01

    The 5-year period of 2005-2009 saw more exertional heat stroke-related deaths in organized sports than any other 5-year period in the past 35 years. The risk of exertional heat stroke appears highest in football, particularly during the preseason. To estimate the incidence of exertional heat stroke events and assess the utilization of exertional heat stroke management strategies during the 2011 preseason in United States high school football programs. Cross-sectional study; Level of evidence, 3. A self-administered online questionnaire addressing the incidence of exertional heat stroke events and utilization of exertional heat stroke management strategies (eg, removing athlete's football equipment, calling Emergency Medical Services [EMS]) was completed in May to June 2012 by 1142 (18.0%) athletic trainers providing care to high school football athletes during the 2011 preseason. Among all respondents, 20.3% reported treating at least 1 exertional heat stroke event. An average of 0.50 ± 1.37 preseason exertional heat stroke events were treated per program. Athletic trainers responding to exertional heat stroke reported using an average of 6.6 ± 1.8 management strategies. The most common management strategies were low-level therapeutic interventions such as removing the athlete's football equipment (98.2%) and clothing (77.8%) and moving the athlete to a shaded area (91.6%). Few athletic trainers reported active management strategies such as calling EMS (29.3%) or using a rectal thermometer to check core body temperature (0.9%). Athletic trainers in states with mandated preseason heat acclimatization guidelines reported a higher utilization of management strategies such as cooling the athlete through air conditioning (90.1% vs 65.0%, respectively; P < .001), immersion in ice water (63.0% vs 45.4%, respectively; P = .01), or fans (54.3% vs 42.0%, respectively; P = .06) and monitoring the athlete's temperature (60.5% vs 46.2%, respectively; P = .04). Preseason

  4. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  5. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in a high-altitude advanced research platform

    NASA Technical Reports Server (NTRS)

    Johnston, Richard P.

    1992-01-01

    Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.

  6. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  7. An Advanced Battery Management System for Lithium Ion Batteries

    DTIC Science & Technology

    2011-08-01

    MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN AN ADVANCED BATTERY MANAGEMENT SYSTEM FOR LITHIUM ION BATTERIES Bruce Pilvelait, Ph.D...COVERED - 4. TITLE AND SUBTITLE An Advanced Battery Management System for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Management System for Lithium Ion Batteries Page 2 of 7 Figure 1: BMS architecture for a 24 VDC lithium-ion Silent Watch battery pack

  8. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  9. Advances in chemical pharmacotherapy to manage advanced breast cancer.

    PubMed

    Gombos, Andrea; Awada, Ahmad

    2017-01-01

    Advanced breast cancer is still incurable. However, patients diagnosed with this fatal disease live longer. The selection of systemic therapy is mainly based on molecular subtype. The aim of management in these patients is to not only improve outcome, but also to maintain quality of life. Areas covered: In this paper we focus on available treatments and drugs under late development in the three main subtypes of breast cancer: luminal (hormone receptor positive), HER2 positive and triple negative disease. Main advances during the last years have been made in the treatment of HER2 positive breast cancer with the approval of several new targeted agents. Luminal breast cancer is also a field of active clinical research. So far triple negative breast cancer remains the subtype with the worse prognosis, even though new discoveries have been made to better understand the huge heterogeneity of this type of breast cancer. Expert opinion: Several new treatment options have recently been established in metastatic breast cancer. Side effects are sometimes cumbersome for the patient and are difficult to manage easily. Thus, identification of patients who derive the most benefit is needed. In addition, collaborative efforts should integrate the genotypic fragmentation in the management and future clinical research strategies of metastatic breast cancer patients.

  10. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  11. Performance demonstration of hydrogen advanced loop heat pipe for 20-30K cryocooling of far infrared sensors

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2005-08-01

    The James Webb Space Telescope (JWST) program have identified the need for cryogenic cooling transport devices that (i) provide robust/reliable thermal management for Infrared (IR) sensors/detectors in the temperature range of 20-30K, (ii) minimize vibration effects of mechanical cryocoolers on the instruments, (iii) reduce spatial temperature gradients in cryogenic components, and (iv) afford long continuous service life of the telescope. Passive two-phase capillary cooling technologies such as heat pipes, Loop Heat Pipes (LHPs), and Capillary pumped Loops (CPLs) have proven themselves capable of performing necessary thermal control functions for room temperature applications. They have no mechanical moving part to wear out or to introduce unwanted vibration to the instruments and, hence, are reliable and maintenancefree. However, utilizing these capillary devices for cryogenic cooling still remains a challenge because of difficulties involving the system start-up and operation in a warm environment. An advanced concept of LHP using Hydrogen as the working fluid was recently developed to demonstrate the cryocooling transport capabilities in the temperature range of 20-30K. A full-size demonstration test loop - appropriately called H2-ALHP_2 - was constructed and performance tested extensively in a thermal vacuum chamber. It was designed specifically to manage "heat parasitics" from a warm surrounding, enabling it to start up from an initially supercritical state and operate without requiring a rigid heat shield. Like room temperature LHPs, the H2-ALHP transport lines were made of small-diameter stainless steel tubing that are flexible enough to isolate the cryocooler-induced vibration from the IR instruments. In addition, focus of the H2-ALHP research and development effort was also placed on the system weight saving for space-based applications.

  12. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  13. Sustainable Management of Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Rumohr, S.; Balke, K.-D.; Bayer, P.; Blum, P.

    2009-04-01

    In recent years, geothermal energy has become increasingly popular, because it offers a number of advantages over traditional energy sources based on fossil fuels. It is a renewable energy source, it is clean and safe for the surrounding environment, and it also contributes to reduction of CO2 emissions. Geothermal energy systems are recognized as one of the most efficient heating and cooling systems on the market. Therefore, there is great chance for future growth of geothermal energy use, particularly in densely populated urban regions. But there are also drawbacks: In many large cities, groundwater is heated up by several degrees (~ 5˚ C) compared to the surrounding areas. Causes might be microclimatic changes in the urban environment and the heating effect of sewage effluents. In fact, a major role plays overutilization of the ground as a cooling medium during the hot seasons for the air conditioning of large office buildings. The focus of this project is set on sustainable geothermal use in such large and densely populated areas, which are also called "urban heat islands". Previous studies focus on spatial temperature trends in the subsurface, and only a few have been able to reveal temporal trends, for which long-term measurement records are needed. This study is dedicated to two German locations: the city of Frankfurt/Main and the city of Cologne. The purpose of the study in Frankfurt is a comprehensive field investigation of the spatial temperature variations in the underlying aquifers, while in Cologne the attention is also on the temporal trends of urban groundwater temperatures. Of particular interest is not only to develop a sustainable management concept, but also a quantitative geophysical and hydrogeological assessment. For the city of Frankfurt/Main, the Hessian Agency for the Environment and Geology (HLUG) provides access to ongoing, highly spatially resolved field measurement locations. For Cologne, about 40 years old intensive temperature

  14. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat

  15. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  16. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  17. Conceptual design study for heat exhaust management in the ARC fusion pilot plant

    NASA Astrophysics Data System (ADS)

    Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.

    2017-10-01

    The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''

  18. Surgical management of advanced ocular adnexal amyloidosis.

    PubMed

    Patrinely, J R; Koch, D D

    1992-06-01

    Ocular adnexal amyloidosis is characterized by amyloid deposition within the deep connective tissue layers of the eyelids, conjunctiva, and anterior orbit. Management of advanced cases has traditionally been unsatisfactory, with either no surgery offered because of fear of hemorrhage or an en bloc resection performed of the entire involved area. We present two cases of advanced periorbital amyloidosis successfully managed by preserving the anatomic planes of the eyelids and meticulously debulking the deposits with a spooned curette. Lax eyelid tendons and aponeuroses were simultaneously repaired, and no sacrifice of eyelid tissues was necessary. One patient remained asymptomatic for 2 years after surgery before developing early reaccumulation in the lower eyelids. The other patient required additional eyelid debulking and ptosis revision 8 months after surgery, but was in stable condition at follow-up 2 years after surgery. This technique offers safe, easily repeatable, nondestructive treatment for advanced periocular amyloidosis.

  19. Advanced transportation management technologies : participant notebook

    DOT National Transportation Integrated Search

    1997-04-01

    The participant notebook was developed to proved a document that contains the visual aids for the participants as covered in the workshop of DP 105, Advanced Transportation Management Technologies. It contains the relevent information of the metropol...

  20. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  1. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    NASA Technical Reports Server (NTRS)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  2. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  3. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    NASA Astrophysics Data System (ADS)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  4. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Thornton, M.

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less

  5. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  6. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  7. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  8. Controlling solar light and heat in a forest by managing shadow sources

    Treesearch

    Howard G. Halverson; James L. Smith

    1974-01-01

    Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...

  9. Recent advances in managing idiopathic pulmonary fibrosis

    PubMed Central

    Scelfo, Chiara; Caminati, Antonella; Harari, Sergio

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a rare pulmonary disease with a poor prognosis and severe impact on quality of life. Early diagnosis is still challenging and important delays are registered before final diagnosis can be reached. Available tools fail to predict the variable course of the disease and to evaluate response to antifibrotic drugs. Despite the recent approval of pirfenidone and nintedanib, significant challenges remain to improve prognosis and quality of life. It is hoped that the new insights gained in pathobiology in the last few years will lead to further advances in the diagnosis and management of IPF. Currently, early diagnosis and prompt initiation of treatments reducing lung function loss offer the best hope for improved outcomes. This article aims at providing an overview of recent advances in managing patients with IPF and has a particular focus on how to reach a diagnosis, manage comorbidities and lung transplantation, care for the non-pharmacological needs of patients, and address palliative care. PMID:29225786

  10. Advanced Management Communication: An Elective Course in Corporate Communication.

    ERIC Educational Resources Information Center

    Argenti, Paul A.

    1986-01-01

    Proposes a college-level elective course in advanced management communication that would teach future managers how to communicate with shareholders, the media, financial analysts, and the labor force. (SRT)

  11. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  12. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  13. Thermoelectric Devices Advance Thermal Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Thermoelectric (TE) devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. In cooperation with NASA, Chico, California-based United States Thermoelectric Consortium Inc. (USTC) built a gas emissions analyzer (GEA) for combustion research. The GEA precipitated hydrocarbon particles, preventing contamination that would hinder precise rocket fuel analysis. The USTC research and design team uses patent-pending dimple, pin-fin, microchannel and microjet structures to develop and design heat dissipation devices on the mini-scale level, which not only guarantee high performance of products, but also scale device size from 1 centimeter to 10 centimeters. USTC continues to integrate the benefits of TE devices in its current line of thermal management solutions and has found the accessibility of NASA technical research to be a valuable, sustainable resource that has continued to positively influence its product design and manufacturing

  14. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Transformation thermodynamics and heat cloaking: a review

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Liu, Yichao; Lee, El Hang; Ma, Yungui

    2016-04-01

    This article is a review of the advances and progresses in the field of heat cloaking which is being realized using metamaterials. Heat cloaking has been a particularly important subject of study due to its potential multidimensional applications. The process which manipulates the heat flux in such a way that it can neither enter into the cloaked region nor be distorted outside is called thermal cloaking. Transformation optics has made the hitherto inconceivable advancements in the field of thermodynamics possible with the remarkable assistance of metamaterials. In this article we present a review of the work done in the field of heat cloaking, its progress and outlook. We discuss the theoretical and experimental studies, models, design managements, implementations and behaviors of thermal invisibility cloaking and related devices. This review is intended to help further develop practical and applicable concepts, examine fabrication techniques for a variety of different invisibility cloaking devices and systems, and to pave a way for the new avenues leading to new future technologies.

  16. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  17. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  18. Microscale Convective Heat Transfer for Thermal Management of Compact Systems

    DTIC Science & Technology

    2012-03-12

    pages 641–645, 1997. [9] S.V. Garimella and C.B. Sobhan. Transport in microchannels -a critical review. Annual Review of Heat Transfer , 13, 2003. [10] A... heat transfer for thermal management of compact systems Sb. GRANT NUMBER F A9550-08-l-0057 Sc. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Sd...improve the performance of many components. The e ects of digitized heat transfer using electrowetting on a dielectric were investigated in this paper

  19. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  20. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  1. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    PubMed

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  2. Second law analysis of advanced power generation systems using variable temperature heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  3. Managing occupations in everyday life for people with advanced cancer living at home.

    PubMed

    Peoples, Hanne; Brandt, Åse; Wæhrens, Eva E; la Cour, Karen

    2017-01-01

    People with advanced cancer are able to live for extended periods of time. Advanced cancer can cause functional limitations influencing the ability to manage occupations. Although studies have shown that people with advanced cancer experience occupational difficulties, there is only limited research that specifically explores how these occupational difficulties are managed. To describe and explore how people with advanced cancer manage occupations when living at home. A sub-sample of 73 participants from a larger occupational therapy project took part in the study. The participants were consecutively recruited from a Danish university hospital. Qualitative interviews were performed at the homes of the participants. Content analysis was applied to the data. Managing occupations were manifested in two main categories; (1) Conditions influencing occupations in everyday life and (2) Self-developed strategies to manage occupations. The findings suggest that people with advanced cancer should be supported to a greater extent in finding ways to manage familiar as well as new and more personally meaningful occupations to enhance quality of life.

  4. Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovland, V.

    2004-12-01

    Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less

  5. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  6. Management of cancer-associated thrombosis in people with advanced disease.

    PubMed

    Noble, Simon; Johnson, Miriam J

    2012-06-01

    The management of venous thromboembolism in the cancer population is clearly established. Low molecular weight heparin has a greater efficacy than warfarin in the treatment of cancer-associated thrombosis and is recommended as the preferred therapy. However, the evidence informing these recommendations excluded patients with poor prognosis or performance status, thrombocytopenia, bleeding or brain metastases. Furthermore, there is limited data on the management of venous thromboembolism resistant to anticoagulation, a phenomenon frequently encountered in the advanced cancer population. This paper will review the management of cancer-associated thrombosis with a particular focus on challenging clinical situations faced by palliative care teams looking after patients with advanced disease.

  7. The study of heat flux for disruption on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  8. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    PubMed

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Microprocessor controlled advanced battery management systems

    NASA Technical Reports Server (NTRS)

    Payne, W. T.

    1978-01-01

    The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.

  10. Advanced heat exchanger development for molten salts

    DOE PAGES

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; ...

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  11. Advances in the Diagnosis and Management of Inflammatory Bowel Disease: Challenges and Uncertainties

    PubMed Central

    Mosli, Mahmoud; Al Beshir, Mohammad; Al-Judaibi, Bandar; Al-Ameel, Turki; Saleem, Abdulaziz; Bessissow, Talat; Ghosh, Subrata; Almadi, Majid

    2014-01-01

    Over the past two decades, several advances have been made in the management of patients with inflammatory bowel disease (IBD) from both evaluative and therapeutic perspectives. This review discusses the medical advancements that have recently been made as the standard of care for managing patients with ulcerative colitis (UC) and Crohn's Disease (CD) and to identify the challenges associated with implementing their use in clinical practice. A comprehensive literature search of the major databases (PubMed and Embase) was conducted for all recent scientific papers (1990–2013) giving the recent updates on the management of IBD and the data were extracted. The reported advancements in managing IBD range from diagnostic and evaluative tools, such as genetic tests, biochemical surrogate markers of activity, endoscopic techniques, and radiological modalities, to therapeutic advances, which encompass medical, endoscopic, and surgical interventions. There are limited studies addressing the cost-effectiveness and the impact that these advances have had on medical practice. The majority of the advances developed for managing IBD, while considered instrumental by some IBD experts in improving patient care, have questionable applications due to constraints of cost, lack of availability, and most importantly, insufficient evidence that supports their role in improving important long-term health-related outcomes. PMID:24705146

  12. Design and Implementation of an Educational Program in Advanced Airway Management for Anesthesiology Residents

    PubMed Central

    Borovcanin, Zana; Shapiro, Janine R.

    2012-01-01

    Education and training in advanced airway management as part of an anesthesiology residency program is necessary to help residents attain the status of expert in difficult airway management. The Accreditation Council for Graduate Medical Education (ACGME) emphasizes that residents in anesthesiology must obtain significant experience with a broad spectrum of airway management techniques. However, there is no specific number required as a minimum clinical experience that should be obtained in order to ensure competency. We have developed a curriculum for a new Advanced Airway Techniques rotation. This rotation is supplemented with a hands-on Difficult Airway Workshop. We describe here this comprehensive advanced airway management educational program at our institution. Future studies will focus on determining if education in advanced airway management results in a decrease in airway related morbidity and mortality and overall better patients' outcome during difficult airway management. PMID:22505885

  13. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  14. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  15. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  16. Recent advances in coronal heating

    NASA Astrophysics Data System (ADS)

    De Moortel, Ineke; Browning, Philippa

    2015-04-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  17. Recent advances in coronal heating

    PubMed Central

    De Moortel, Ineke; Browning, Philippa

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095

  18. Advanced building energy management system demonstration for Department of Defense buildings.

    PubMed

    O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong

    2013-08-01

    This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.

  19. Assessing Advanced Airway Management Performance in a National Cohort of Emergency Medical Services Agencies.

    PubMed

    Wang, Henry E; Donnelly, John P; Barton, Dustin; Jarvis, Jeffrey L

    2018-05-01

    Although often the focus of quality improvement efforts, emergency medical services (EMS) advanced airway management performance has few national comparisons, nor are there many assessments with benchmarks accounting for differences in agency volume or patient mix. We seek to assess variations in advanced airway management and conventional intubation performance in a national cohort of EMS agencies. We used EMS data from ESO Solutions, a national EMS electronic health record system. We identified EMS emergency responses with attempted advanced airway management (conventional intubation, rapid sequence intubation, sedation-assisted intubation, supraglottic airway insertion, and cricothyroidotomy). We also separately examined cases with initial conventional intubation. We determined EMS agency risk-standardized advanced airway management and initial conventional intubation success rates by using mixed-effects regression models, fitting agency as a random intercept, adjusting for patient age, sex, race, cardiac arrest, or trauma status, and use of rapid sequence or sedation-assisted intubation, and accounting for reliability variations from EMS agency airway volume. We assessed changes in agency advanced airway management and initial conventional intubation performance rank after risk and reliability adjustment. We also identified high and low performers (reliability-adjusted and risk-standardized success confidence intervals falling outside the mean). During 2011 to 2015, 550 EMS agencies performed 57,209 advanced airway management procedures. Among 401 EMS agencies with greater than or equal to 10 advanced airway management procedures, there were a total of 56,636 procedures. Median reliability-adjusted and risk-standardized EMS agency advanced airway management success was 92.9% (interquartile range 90.1% to 94.8%; minimum 58.2%; maximum 99.0%). There were 56 advanced airway management low-performing and 38 high-performing EMS agencies. Among 342 agencies with

  20. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    NASA Astrophysics Data System (ADS)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  1. Nanoporous membrane device for ultra high heat flux thermal management

    NASA Astrophysics Data System (ADS)

    Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.

    2018-02-01

    High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

  2. Advances in the management of dyslipidemia.

    PubMed

    Kampangkaew, June; Pickett, Stephen; Nambi, Vijay

    2017-07-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the United States and therapies aimed at lipid modification are important for the reduction of cardiovascular risk. There have been many exciting advances in lipid management over the recent years. This review discusses these recent advances as well as the direction of future studies. Several recent clinical trials support low-density lipoprotein cholesterol (LDL-c) reduction beyond maximal statin therapy for improved cardiovascular outcomes. Ezetimibe reduced LDL-c beyond maximal statin therapy and was associated with improved cardiovascular outcomes for high-risk populations. Further LDL-c reduction may also be achieved with proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibition and a recent trial, Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER), was the first to show reduction in cardiovascular events for evolocumab. Additional outcome studies of monoclonal antibody and RNA-targeted PCSK9 inhibitors are underway. Quantitative high-density lipoprotein cholesterol (HDL-c) improvements have failed to have clinical impact to date; most recently, cholesteryl ester transfer protein inhibitors and apolipoprotein infusions have demonstrated disappointing results. There are still ongoing trials in both of these areas, but some newer therapies are focusing on HDL functionality and not just the absolute HDL-c levels. There are several ongoing studies in triglyceride reduction including fatty acid therapy, inhibition of apolipoprotein C-3 or ANGTPL3 and peroxisome proliferator-activated receptor-α agonists. Lipid management continues to evolve and these advances have the potential to change clinical practice in the coming years.

  3. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  4. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodiummore » heat pipe to the penetration of water.« less

  5. City of Fort Collins advanced traffic management system : final report

    DOT National Transportation Integrated Search

    2009-01-01

    The Fort Collins Advance Traffic Management System (ATMS) was a FY01 earmarked project. The objective of the overall project was to rebuild the Citys entire traffic management system to utilize and provide Intelligent Transportation System (ITS) c...

  6. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  7. The management of advanced practitioner preparation: a work-based challenge.

    PubMed

    Livesley, Joan; Waters, Karen; Tarbuck, Paul

    2009-07-01

    This paper explores the collaborative development of a Master's level advanced practice programme in the context of the radical reform and remodelling of the UK's National Health Service. Some of the educational, managerial and practice challenges are discussed. Changes to education and training in response to key strategic reviews undertaken by the Greater Manchester Strategic Health Authority (North West of England) established a need to develop nurses and allied health care practitioners to advanced practitioner level. This paper considers how employers, commissioners and educationalists worked together to produce a Master's level programme to prepare nurses and other health care practitioners for sustainable advanced practice roles. Developing innovative and effective curricula to meet the needs of post graduate students from varied backgrounds preparing to practice in different contexts with different client groups is challenging. However, the development of individual learning pathways and work-based learning ensures that the student's work and intended advanced practice role remains at the centre of their learning. Analysis of each student's knowledge and skill deficits alongside an analysis of the organization's readiness to support them as qualified advanced practitioners (APs) is instrumental in ensuring that organizations are ready to support practitioners in new roles. Work-based learning and collaboration between students, employers and higher education institutions can be used to enable managers and students to unravel the network of factors which affect advanced practice in health and social care. Additionally, collaborative working can help to create opportunities to develop strategies that will facilitate change. Implications for nursing management Sustainable change concerned with the introduction of advanced practitioner roles present a real challenge for managers at a strategic and operational level. Commissioning flexible, collaborative and

  8. Heated Discharge Control and Management Alternatives: Small Water Bodies and Rivers.

    ERIC Educational Resources Information Center

    MacLaren, James F.

    Basic concepts of waste heat management on shallow and deep small water bodies and rivers are reviewed and examples are given. This study defines a small water body as a body in which the far field hydrothermal effects of a heated discharge can be detected in a major portion or practically all of the water body. Environmental effects due to…

  9. Integrated corridor management and advanced technologies for Florida.

    DOT National Transportation Integrated Search

    2012-11-01

    Integrated Corridor Management (ICM) strategies have been proposed to address needs and provide solutions beyond those that can be provided when applying advanced strategies and technologies to one transportation subsystem at a time. The goal of this...

  10. The study of heat flux for disruption on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhendong, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Fang, Jianan, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptionsmore » have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR{sub sep} = −2 cm, while it changes to upper single null (dR{sub sep} = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m{sup 2}.« less

  11. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

    NASA Astrophysics Data System (ADS)

    Avishan, Behzad

    2017-09-01

    The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

  12. Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, Ph.; Yan, T.

    2010-04-01

    Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.

  13. Comprehensive nursing case management. An advanced practice model.

    PubMed

    Taylor, P

    1999-01-01

    Under managed care and capitated reimbursement systems, case management is a core strategy for providing high-quality, cost-effective care by decreasing fragmentation, enhancing quality, ensuring efficient use of resources, and containing costs. Although case management is used in various areas of the healthcare arena, it suffers from a lack of consensus regarding its definition, essential components, and appropriate application. The purpose of this paper is to examine the components and limitations of existing case management models, outline the competencies of an effective case manager, and present a model of advanced practice nursing case management that focuses on a continuum of care that integrates medical and psychosocial resources to promote optimal clinical fiscal outcomes and enables patients to work as partners with the healthcare team in facilitating and maintaining their physical and emotional well-being.

  14. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  15. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less

  16. [Development of performance evaluation and management system on advanced schistosomiasis medical treatment].

    PubMed

    Zhou, Xiao-Rong; Huang, Shui-Sheng; Gong, Xin-Guo; Cen, Li-Ping; Zhang, Cong; Zhu, Hong; Yang, Jun-Jing; Chen, Li

    2012-04-01

    To construct a performance evaluation and management system on advanced schistosomiasis medical treatment, and analyze and evaluate the work of the advanced schistosomiasis medical treatment over the years. By applying the database management technique and C++ programming technique, we inputted the information of the advanced schistosomiasis cases into the system, and comprehensively evaluated the work of the advanced schistosomiasis medical treatment through the cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. We made a set of software formula about cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. This system had many features such as clear building, easy to operate, friendly surface, convenient information input and information search. It could benefit the performance evaluation of the province's advanced schistosomiasis medical treatment work. This system can satisfy the current needs of advanced schistosomiasis medical treatment work and can be easy to be widely used.

  17. An advanced model of heat and mass transfer in the protective clothing - verification

    NASA Astrophysics Data System (ADS)

    Łapka, P.; Furmański, P.

    2016-09-01

    The paper presents an advanced mathematical and numerical models of heat and mass transfer in the multi-layers protective clothing and in elements of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. The thermal radiation was treated in the rigorous way e.g.: semi-transparent absorbing, emitting and scattering fabrics were assumed a non-grey and all optical phenomena at internal or external walls were modelled. The air was assumed transparent. Complex energy and mass balance as well as optical conditions at internal or external interfaces were formulated in order to find exact values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equation was solve by the in-house iterative algorithm which was based on the Finite Volume Method. The model was then successfully partially verified against the results obtained from commercial software for simplified cases.

  18. Advances in urban-drainage management and flood protection.

    PubMed

    Verworn, Hans-Reinhard

    2002-07-15

    Since the beginning of modern urban drainage in the 19th century, the sole objective has been to get rid of sewage and storm water in the best possible way and design the systems according to accepted standards. In recent decades, advanced methods have been developed not only to refine the design but also especially to enable the assessment of hydraulic performance and pollutant emissions. Consequently, urban drainage has become part of an integrated approach concerning flood protection as well as ecological aspects for whole watersheds. Another major change concerns the management of urban systems: simple structural maintenance has been replaced by interactive operational management and control of the systems in order to make better use of the facilities. Rehabilitation has become a multi-objective task. This paper looks at today's basic principles of urban drainage and tomorrow's potential advances, and deals with their relevance to flood protection.

  19. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  20. Utility of the advanced chronic kidney disease patient management tools: case studies.

    PubMed

    Patwardhan, Meenal B; Matchar, David B; Samsa, Gregory P; Haley, William E

    2008-01-01

    Appropriate management of advanced chronic kidney disease (CKD) delays or limits its progression. The Advanced CKD Patient Management Toolkit was developed using a process-improvement technique to assist patient management and address CKD-specific management issues. We pilot tested the toolkit in 2 community nephrology practices, assessed the utility of individual tools, and evaluated the impact on conformance to an advanced CKD guideline through patient chart abstraction. Tool use was distinct in the 2 sites and depended on the site champion's involvement, the extent of process reconfiguration demanded by a tool, and its perceived value. Baseline conformance varied across guideline recommendations (averaged 54%). Posttrial conformance increased in all clinical areas (averaged 59%). Valuable features of the toolkit in real-world settings were its ability to: facilitate tool selection, direct implementation efforts in response to a baseline performance audit, and allow selection of tool versions and customizing them. Our results suggest that systematically created, multifaceted, and customizable tools can promote guideline conformance.

  1. Advances in aortic disease management: a year in review.

    PubMed

    Garg, Vinay; Ouzounian, Maral; Peterson, Mark D

    2016-03-01

    The medical and surgical management of aortic disease is continually changing in search for improved outcomes. Our objective is to highlight recent advances in a few select areas pertaining to aortic disease and aortic surgery: the genetics of aortopathy, medical therapy of aortic aneurysms, advances in cardiac imaging, and operative strategies for the aortic arch. As our understanding of the genetic basis for aortopathy continues to improve, routine genetic testing may be of value in assessing patients with genetically triggered forms of aortic disease. With regard to medical advances, treating patients with Marfan syndrome with either losartan or atenolol at an earlier stage in their disease course improves outcomes. In addition, novel imaging indices such as wall shear stress and aortic stiffness assessed by MRI may become useful markers of aortopathy and warrant further study. With regard to the optimal technique for cerebral perfusion in aortic arch surgery, high-quality data are still lacking. Finally, in patients with complex, multilevel aortic disease, the frozen elephant trunk is a viable single-stage option compared with the conventional elephant trunk, although with an increased risk for spinal cord injury. Based on recent advances, continued studies in genetics, cardiac imaging, and surgical trials will further elucidate the etiology of aortopathy and ultimately guide management, both medically and surgically.

  2. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  3. Advanced radioisotope heat source for Stirling Engines

    NASA Astrophysics Data System (ADS)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  4. Tree crops: Advances in insects and disease management

    USDA-ARS?s Scientific Manuscript database

    Advances in next-generation sequencing have enabled genome sequencing to be fast and affordable. Thus today researchers and industries can address new methods in pest and pathogen management. Biological control of insect pests that occur in large areas, such as forests and farming systems of fruit t...

  5. North Seattle advanced traffic management system (NSATMS) project evaluation

    DOT National Transportation Integrated Search

    2002-12-01

    This report documents the findings of the evaluation of the North Seattle Advanced Traffic Management System (NSATMS) Project. The evaluation was originally designed to analyze the potential transportation benefits and costs of a regional arterial tr...

  6. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  7. Advanced data management for optimising the operation of a full-scale WWTP.

    PubMed

    Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo

    2012-01-01

    The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.

  8. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  9. Iterative management of heat early warning systems in a changing climate.

    PubMed

    Hess, Jeremy J; Ebi, Kristie L

    2016-10-01

    Extreme heat is a leading weather-related cause of morbidity and mortality, with heat exposure becoming more widespread, frequent, and intense as climates change. The use of heat early warning and response systems (HEWSs) that integrate weather forecasts with risk assessment, communication, and reduction activities is increasingly widespread. HEWSs are frequently touted as an adaptation to climate change, but little attention has been paid to the question of how best to ensure effectiveness of HEWSs as climates change further. In this paper, we discuss findings showing that HEWSs satisfy the tenets of an intervention that facilitates adaptation, but climate change poses challenges infrequently addressed in heat action plans, particularly changes in the onset, duration, and intensity of dangerously warm temperatures, and changes over time in the relationships between temperature and health outcomes. Iterative management should be central to a HEWS, and iteration cycles should be of 5 years or less. Climate change adaptation and implementation science research frameworks can be used to identify HEWS modifications to improve their effectiveness as temperature continues to rise, incorporating scientific insights and new understanding of effective interventions. We conclude that, at a minimum, iterative management activities should involve planned reassessment at least every 5 years of hazard distribution, population-level vulnerability, and HEWS effectiveness. © 2016 New York Academy of Sciences.

  10. Academy for the Advancement of Teaching and Management.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    In response to the national impetus for improvement in education, New Jersey officials have proposed the creation of the Academy for the Advancement of Teaching and Management, an organization designed to raise the standards of professional skills for teachers and principals. The organization will train teachers and administrators for 2 years in…

  11. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less

  12. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  13. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, Therese K.; Tomlinson, John J.

    1996-01-01

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  14. Method of energy load management using PCM for heating and cooling of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less

  15. Advanced Gradient Heating Facility (AGHF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.

  16. Recent advances in managing differentiated thyroid cancer.

    PubMed

    Lamartina, Livia; Grani, Giorgio; Durante, Cosimo; Filetti, Sebastiano

    2018-01-01

    The main clinical challenge in the management of thyroid cancer is to avoid over-treatment and over-diagnosis in patients with lower-risk disease while promptly identifying those patients with more advanced or high-risk disease requiring aggressive treatment. In recent years, novel clinical and molecular data have emerged, allowing the development of new staging systems, predictive and prognostic tools, and treatment approaches. There has been a notable shift toward more conservative management of low- and intermediate-risk patients, characterized by less extensive surgery, more selective use of radioisotopes (for both diagnostic and therapeutic purposes), and less intensive follow-up. Furthermore, the histologic classification; tumor, node, and metastasis (TNM) staging; and American Thyroid Association risk stratification systems have been refined, and this has increased the number of patients in the low- and intermediate-risk categories. There is now a need for new, prospective data to clarify how these changing practices will impact long-term outcomes of patients with thyroid cancer, and new follow-up strategies and biomarkers are still under investigation. On the other hand, patients with more advanced or high-risk disease have a broader portfolio of options in terms of treatments and therapeutic agents, including multitarget tyrosine kinase inhibitors, more selective BRAF or MEK inhibitors, combination therapies, and immunotherapy.

  17. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  18. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  19. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  20. Advanced textile materials and biopolymers in wound management.

    PubMed

    Petrulyte, Salvinija

    2008-02-01

    New generation medical textiles are an important growing field with great expansion in wound management products. Virtually new products are coming but also well known materials with significantly improved properties using advanced technologies and new methods are in the centre of research which are highly technical, technological, functional, and effective oriented. The key qualities of fibres and dressings as wound care products include that they are bacteriostatic, anti-viral, fungistatic, non-toxic, high absorbent, non-allergic, breathable, haemostatic, biocompatible, and manipulatable to incorporate medications, also provide reasonable mechanical properties. Many advantages over traditional materials have products modified or blended with also based on alginate, chitin/chitosan, collagen, branan ferulate, carbon fibres. Textile structures used for modern wound dressings are of large variety: sliver, yarn, woven, non-woven, knitted, crochet, braided, embroidered, composite materials. Wound care also applies to materials like hydrogels, matrix (tissue engineering), films, hydrocolloids, foams. Specialized additives with special functions can be introduced in advanced wound dressings with the aim to absorb odours, provide strong antibacterial properties, smooth pain and relieve irritation. Because of unique properties as high surface area to volume ratio, film thinness, nano scale fibre diameter, porosity, light weight, nanofibres are used in wound care. The aim of this study is to outline and review the latest developments and advance in medical textiles and biopolymers for wound management providing the overview with generalized scope about novelties in products and properties.

  1. Increased Heat Generation in Postcardiac Arrest Patients During Targeted Temperature Management Is Associated With Better Outcomes.

    PubMed

    Uber, Amy J; Perman, Sarah M; Cocchi, Michael N; Patel, Parth V; Ganley, Sarah E; Portmann, Jocelyn M; Donnino, Michael W; Grossestreuer, Anne V

    2018-04-03

    Assess if amount of heat generated by postcardiac arrest patients to reach target temperature (Ttarget) during targeted temperature management is associated with outcomes by serving as a proxy for thermoregulatory ability, and whether it modifies the relationship between time to Ttarget and outcomes. Retrospective cohort study. Urban tertiary-care hospital. Successfully resuscitated targeted temperature management-treated adult postarrest patients between 2008 and 2015 with serial temperature data and Ttarget less than or equal to 34°C. None. Time to Ttarget was defined as time from targeted temperature management initiation to first recorded patient temperature less than or equal to 34°C. Patient heat generation ("heat units") was calculated as inverse of average water temperature × hours between initiation and Ttarget × 100. Primary outcome was neurologic status measured by Cerebral Performance Category score; secondary outcome was survival, both at hospital discharge. Univariate analyses were performed using Wilcoxon rank-sum tests; multivariate analyses used logistic regression. Of 203 patients included, those with Cerebral Performance Category score 3-5 generated less heat before reaching Ttarget (median, 8.1 heat units [interquartile range, 3.6-21.6 heat units] vs median, 20.0 heat units [interquartile range, 9.0-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.3 hr [interquartile range, 1.5-4.0 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01) than patients with Cerebral Performance Category score 1-2. Nonsurvivors generated less heat than survivors (median, 8.1 heat units [interquartile range, 3.6-20.8 heat units] vs median, 19.0 heat units [interquartile range, 6.5-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.2 hr [interquartile range, 1.5-3.8 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01). Controlling for average water temperature between initiation and Ttarget, the

  2. Advances in management of low-risk febrile neutropenia.

    PubMed

    Teuffel, Oliver; Sung, Lillian

    2012-02-01

    To describe and discuss the most recent advances in the management of low-risk febrile neutropenia in children with cancer. Several risk stratification tools for children with febrile neutropenia have been developed, although none of these tools have been directly compared and few have been validated in independent populations. However, there is good evidence that, for pediatric patients with febrile neutropenia at low risk for severe infection, outpatient management is a well tolerated and efficacious alternative to inpatient care. Moreover, major progress has been made in obtaining and understanding perceived quality of life and preferences for outpatient management in pediatric cancer patients. Many parents prefer inpatient management although child quality of life is, in general, anticipated to be higher with outpatient intravenous therapy. Finally, outpatient strategies are more cost-effective as compared with traditional management in hospital. Outpatient management is a well tolerated and cost-effective strategy for low-risk febrile neutropenia in children with cancer, although parental preferences are highly variable for outpatient versus inpatient management. Future research should examine the effectiveness of outpatient strategies through conduct of large cohort studies. Other future work could focus on development of decision aids and other tools to facilitate ambulatory approaches.

  3. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  4. Advances in the management of venous thromboembolism.

    PubMed

    Schulman, Sam

    2012-09-01

    The past decade has witnessed important advances in the diagnosis and treatment of venous thromboembolism with excellent opportunities to apply evidence-based medicine for many of the steps in the management of the disease. This review discusses the clinical prediction rules that should be used to reduce utilization of imaging diagnosis for deep vein thrombosis or pulmonary embolism and the risk stratification for thrombolytic therapy or outpatient management of pulmonary embolism. The treatment options have increased and include low-molecular-weight heparin (LMWH), intravenous or subcutaneous unfractionated heparin - the latter either monitored or not monitored, fondaparinux and rivaroxaban for the initial phase. Thereafter, vitamin K antagonists (VKAs), LMWH, oral factor Xa or thrombin inhibitors are or will soon become available. The VKAs have been subjected to many randomised trial addressing the initiation, intensity, monitoring and self-management. Extended anticoagulation and the selection for that is finally reviewed. Copyright © 2012. Published by Elsevier Ltd.

  5. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  6. Singapore Armed Forces Medical Corps-Ministry of Health clinical practice guidelines: management of heat injury.

    PubMed

    Lee, L; Fock, K M; Lim, C L F; Ong, E H M; Poon, B H; Pwee, K H; O'Muircheartaigh, C R; Seet, B; Tan, C L B; Teoh, C S

    2010-10-01

    The Singapore Armed Forces (SAF) Medical Corps and the Ministry of Health (MOH) have published clinical practice guidelines on Management of Heat Injury to provide doctors and patients in Singapore with evidence-based guidance on the prevention and clinical management of exertional heat injuries. This article reproduces the introduction and executive summary (with recommendations from the guidelines) from the SAF Medical Corps-MOH clinical practice guidelines on Management of Heat Injury, for the information of readers of the Singapore Medical Journal. Chapters and page numbers mentioned in the reproduced extract refer to the full text of the guidelines, which are available from the Ministry of Health website: http://www.moh.gov.sg/mohcorp/publications.aspx?id=25178. The recommendations should be used with reference to the full text of the guidelines. Following this article are multiple choice questions based on the full text of the guidelines.

  7. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  8. Advanced two-phase heat transfer systems

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Future large spacecraft, such as the Earth Observing System (EOS) platforms, will require a significantly more capable thermal control system than is possible with current 'passive' technology. Temperatures must be controlled much more tightly over a larger surface area. Numerous heat load sources will often be located inside the body of the spacecraft without a good view to space. Power levels and flux densities may be higher than can be accommodated with traditional technology. Integration and ground testing will almost certainly be much more difficult with such larger, more complex spacecraft. For these and similar reasons, the Goddard Space Flight Center (GSFC) has been developing a new, more capable thermal control technology called capillary pumped loops (CPL's). CPL's represent an evolutionary improvement over heat pipes; they can transport much greater quantities of heat over much longer distances and can serve numerous heat load sources. In addition, CPL's can be fabricated into large cold plates that can be held to tight thermal gradients. Development of this technology began in the early 1980's and is now reaching maturity. CPL's have recently been baselined for the EOS-AM platform (1997 launch) and the COMET spacecraft (1992 launch). This presentation describes this new technology and its applications. Most of the viewgraphs are self descriptive. For those that are less clear additional comments are provided.

  9. Study of thermal management for space platform applications

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1980-01-01

    Techniques for the management of the thermal energy of large space platforms using many hundreds of kilowatts over a 10 year life span were evaluated. Concepts for heat rejection, heat transport within the vehicle, and interfacing were analyzed and compared. The heat rejection systems were parametrically weight optimized over conditions for heat pipe and pumped fluid approaches. Two approaches to achieve reliability were compared for: performance, weight, volume, projected area, reliability, cost, and operational characteristics. Technology needs are assessed and technology advancement recommendations are made.

  10. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  11. Practical management of everolimus-related toxicities in patients with advanced solid tumors.

    PubMed

    Grünwald, Viktor; Weikert, Steffen; Pavel, Marianne E; Hörsch, Dieter; Lüftner, Diana; Janni, Wolfgang; Geberth, Matthias; Weber, Matthias M

    2013-01-01

    Everolimus is an orally administered inhibitor of the mammalian target of rapamycin (mTOR), an intracellular protein kinase downstream of the phosphatidylinositol 3-kinase/AKT pathway involved in key components of tumorigenesis, including cell growth, proliferation, and angiogenesis. In the advanced cancer setting, based on favorable results from phase III trials, everolimus is indicated for the treatment of advanced renal cell carcinoma, advanced neuroendocrine tumors of pancreatic origin, and advanced hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. Additional oncology indications for everolimus include renal angiomyolipoma with tuberous sclerosis complex and subependymal giant-cell astrocytoma. Although it is generally well tolerated, with most adverse events of mild to moderate severity and manageable, everolimus exhibits a distinct adverse event profile that warrants guidance for proper diagnostic and medical management. This guidance is particularly important given the potential for widespread long-term use of everolimus. This review will focus on the most relevant toxicities associated with mTOR inhibitors and on their management. Practical treatment recommendations are presented for stomatitis, noninfectious pneumonitis, rash, selected metabolic abnormalities, and infections. Provided these events are rapidly identified and treated, the vast majority should resolve with minimal effect on treatment outcomes and patients' quality of life. Copyright © 2013 S. Karger AG, Basel.

  12. Aging management guideline for commercial nuclear power plants - heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, S.; Lehnert, D.; Daavettila, N.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activitiesmore » to the more generic results and recommendations presented herein.« less

  13. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  14. Advanced Technologies and Data Management Practices in Environmental Science: Lessons from Academia

    ERIC Educational Resources Information Center

    Hernandez, Rebecca R.; Mayernik, Matthew S.; Murphy-Mariscal, Michelle L.; Allen, Michael F.

    2012-01-01

    Environmental scientists are increasing their capitalization on advancements in technology, computation, and data management. However, the extent of that capitalization is unknown. We analyzed the survey responses of 434 graduate students to evaluate the understanding and use of such advances in the environmental sciences. Two-thirds of the…

  15. Management accounting for advanced technological environments.

    PubMed

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.

  16. Building leadership capacity in advanced nurse practitioners - the role of organisational management.

    PubMed

    Elliott, Naomi

    2017-01-01

    To highlight the organisation-level management's role in building leadership capacity in advanced nurse practitioners and the need for appropriate supports to increase their becoming leaders. Little is published about the role of organisation-level management in building leadership capacity and in developing the next generation of nurse leaders. In times of economic constraint, organisations need to focus their efforts on targeted leadership initiatives. Advanced nurse practitioners are ideally positioned to act as leaders both within and beyond the health care organisation. From the available research evidence, several support structures and mechanisms are identified as enablers for advanced nurse practitioners to enact their leadership role. Health care organisations need to include building leadership capacity as a priority in their strategic plan and take action to build-up the level of advanced nurse practitioner leadership. Nurse executives have a vital role in influencing the organisation's strategic plan and making a business case for prioritising leadership capacity building within advanced nurse practitioners. A challenge for nurse executives faced with competing service and leadership development demands, involves strategic decision-making regarding whether the advanced nurse practitioner's role is limited to service delivery or its potential in leading health care reforms is realised. © 2016 John Wiley & Sons Ltd.

  17. Management of pain in advanced disease.

    PubMed

    Harris, Dylan G

    2014-06-01

    Pain is common in advanced malignancy but also prevalent in other non-malignant life-limiting diseases such as advanced heart disease; end stage renal failure and multiple sclerosis. Patients with renal or liver impairment need specific consideration, as most analgesics rely on either or both for their metabolism and excretion. Recent evidence-based guidelines and the systematic reviews that have informed their recommendations. The principles of the WHO (World Health Organisation) analgesic ladder are commonly endorsed as a structured approach to the management of pain. For neuropathic pain, the efficacy of different agents is similar and choice of drug more guided by side effects, drug interactions and cost. Evidence supporting the WHO analgesic ladder is disputed and alternatives suggested, but no overwhelming evidence for an alternative approach exists to date. Alternative approaches to the WHO analgesic ladder, new analgesic agents, e.g. rapid onset oral/intranasal fentanyl. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Advanced glaucoma: management pearls.

    PubMed

    Gessesse, Girum W; Damji, Karim F

    2013-01-01

    A significant proportion of glaucoma patients present late, particularly in the developing world, and unfortunately, in an advanced stage of the disease. They are at imminent danger of losing remaining vision, and may also be afflicted with various socioeconomic and health challenges. The encounter with such a patient is typically characterized by anxiety/fear and sometimes hopelessness from the patient's perspective. The physician may also feel that they are in a difficult position managing the patient's disease. When dealing with such cases, we suggest a holistic, individualized approach taking into account the 'biopsychosociospiritual' (BPSS) profile of each patient. The BPSS model takes into account relevant ocular as well as systemic biology (factors such as the mechanism of glaucoma, level of intraocular pressure [IOP], rate of progression, life expectancy, general health), psychological considerations (e.g., fear, depression), socio-economic factors and spiritual/cultural values and beliefs before being able to decide with the patient and their care partner(s) what treatment goals should be and how they can best be approached. Treatment for advanced glaucoma can be highly effective, and patients and their care partners should be informed that aggressive IOP lowering to the low teens or even single digits offers the best chance of protecting remaining vision. This can be achieved safely and effectively in most cases with trabeculectomy (including an antimetabolite), and in some cases with medical and/or laser therapy. Vision rehabilitation and psychosocial support should also be considered in order to optimize remaining vision, replace fear with hope as appropriate, and thus improve the overall quality of life.

  19. Advanced data management system architectures testbed

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1990-01-01

    The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.

  20. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 8. Operational Logic Flow Diagrams for a Generic Advanced Air Traffic Management system

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...

  1. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  2. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  3. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  4. Interventions Associated With the Management of Suspected Infections in Advanced Dementia.

    PubMed

    Yates, Elizabeth; Mitchell, Susan L; Habtemariam, Daniel; Dufour, Alyssa B; Givens, Jane L

    2015-12-01

    Nursing home (NH) residents with advanced dementia are commonly suspected of having infections. Most episodes are treated with antimicrobials, although evidence supporting bacterial infections is often lacking. The extent to which other interventions are used in managing suspected infections is unknown. To describe interventions used to manage suspected infections in advanced dementia and identify factors associated with greater intervention use. Residents with advanced dementia who experienced suspected infections in 35 Boston NHs were followed for 12 months. Data describing interventions used in managing each episode were ascertained, including blood draws, chest radiographs, procurement of urine samples, and hospital transfers. Resident and episode characteristics associated with greater intervention use were identified using mixed model regression. A total of 240 residents experienced 496 suspected infections involving the following interventions: any, n = 360 (72.6%); hospital transfer, n = 51 (10.3%); blood draw, n = 215 (43.3%); chest radiograph, n = 120 (24.2%); and urine sample, n = 222 (44.8%). Factors associated with greater intervention use included black race (adjusted odds ratio [AOR] 3.19; 95% CI, 1.37-7.44); no do not hospitalize order (AOR, 1.83; 95% CI, 1.16-2.90); not on hospice (AOR, 5.41; 95% CI, 2.14-13.70); and suspected source being respiratory (AOR, 10.67; 95% CI, 4.99-22.80), urine (AOR, 15.79; 95% CI, 7.41-33.66) or fever of unknown source (AOR, 20.26; 95% CI, 8.42-48.73) vs. skin/soft tissue. NH residents with advanced dementia frequently experience potentially burdensome interventions when suspected of having an infection. Advance directives to limit such interventions may be appropriate for residents whose goal of care is comfort. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  5. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1974-02-01

    The report contains the results of studies and analyses directed toward the definition of a Satellite-Based Advanced Air Traffic Management System (SAATMS). This system is an advanced, integrated air traffic control system which is based on the use o...

  6. Multifunction Data Link for an Advanced Air-Traffic Management System

    DOT National Transportation Integrated Search

    1972-11-01

    This report evaluates the requirements relating to a multi-function data link for an advanced Air Traffic Management System. A two-way time ordered data link is postulated to accomplish the communication and control function. Several candidate modula...

  7. Adaptive heat pump and battery storage demand side energy management

    NASA Astrophysics Data System (ADS)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  8. Studies, Summary Tables, and Data Related to the Advancing Sustainable Materials Management Report

    EPA Pesticide Factsheets

    This webpage provides further information about how EPA measures data for the annual Advancing Materials Management Report. Researchers can use the tables and studies to better understand how waste in managed in America

  9. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    PubMed

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  10. Thermal management of advanced fuel cell power systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J.

    1990-01-01

    It is shown that fuel cell devices are particularly attractive for the high-efficiency, high-reliability space hardware necessary to support upcoming space missions. These low-temperature hydrogen-oxygen systems necessarily operate with two-phase water. In either PEMFCs (proton exchange membrane fuel cells) or AFCs (alkaline fuel cells), engineering design must be critically focused on both stack temperature control and on the relative humidity control necessary to sustain appropriate conductivity within the ionic conductor. Water must also be removed promptly from the hardware. Present designs for AFC space hardware accomplish thermal management through two coupled cooling loops, both driven by a heat transfer fluid, and involve a recirculation fan to remove water and heat from the stack. There appears to be a certain advantage in using product water for these purposes within PEM hardware, because in that case a single fluid can serve both to control stack temperature, operating simultaneously as a heat transfer medium and through evaporation, and to provide the gas-phase moisture levels necessary to set the ionic conductor at appropriate performance levels. Moreover, the humidification cooling process automatically follows current loads. This design may remove the necessity for recirculation gas fans, thus demonstrating the long-term reliability essential for future space power hardware.

  11. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  12. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes

    NASA Astrophysics Data System (ADS)

    Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong

    2014-07-01

    A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.

  13. Managing One's Symptoms: A Qualitative Study of Low-Income African Americans With Advanced Cancer.

    PubMed

    Yeager, Katherine A; Sterk, Claire E; Quest, Tammie E; DiIorio, Colleen; Vena, Catherine; Bauer-Wu, Susan

    2016-01-01

    African Americans endure disproportionately high advanced cancer rates and also are disproportionately represented in the lower socioeconomic strata. These individuals work to manage symptoms in order to function and have a satisfactory quality of life. The purpose of this study was to discover what low-income African American adults with advanced cancer do on a day-to-day basis to relieve and manage symptoms. This study viewed the individuals as experts and asked them not what they are told to do, but rather what they actually do. A purposive sample of 27 individuals participated in semistructured interviews conducted by 2 research interviewers. This qualitative descriptive approach used content analysis to develop themes to describe symptom self-management. Participants described 2 approaches: making continual adjustments and finding stability through spirituality. In seeking comfort from the distress of their symptoms, they were constantly altering their activities and fine-tuning strategies. They adjusted medical regimens and changed the speed and selection of daily activities, including comfort measures and diet modifications. In contrast, their spirituality was a consistent presence in their lives that provided balance to their unstable symptom experience. This study illustrates that people with advanced cancer actively engage in multiple complex self-management strategies in response to symptoms. As providers assess how individuals manage their symptoms, they must find ways to support those efforts. Providers then will recognize the challenges faced by advanced cancer patients in obtaining the best quality of life while managing multiple symptoms, activities, and family responsibilities.

  14. Managing toxicities and optimal dosing of targeted drugs in advanced kidney cancer

    PubMed Central

    Seruga, B.; Gan, H.K.; Knox, J.J.

    2009-01-01

    The toxicities of new, targeted drugs may diminish their effectiveness in advanced kidney cancer if those toxicities are not recognized and properly addressed early in patient treatment. Most of the drug-related toxicities in advanced kidney cancer are manageable with supportive care, obviating a need for long interruptions, dose reductions, or permanent discontinuation of the treatment. PMID:19478903

  15. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  16. Advances in pleural disease management including updated procedural coding.

    PubMed

    Haas, Andrew R; Sterman, Daniel H

    2014-08-01

    Over 1.5 million pleural effusions occur in the United States every year as a consequence of a variety of inflammatory, infectious, and malignant conditions. Although rarely fatal in isolation, pleural effusions are often a marker of a serious underlying medical condition and contribute to significant patient morbidity, quality-of-life reduction, and mortality. Pleural effusion management centers on pleural fluid drainage to relieve symptoms and to investigate pleural fluid accumulation etiology. Many recent studies have demonstrated important advances in pleural disease management approaches for a variety of pleural fluid etiologies, including malignant pleural effusion, complicated parapneumonic effusion and empyema, and chest tube size. The last decade has seen greater implementation of real-time imaging assistance for pleural effusion management and increasing use of smaller bore percutaneous chest tubes. This article will briefly review recent pleural effusion management literature and update the latest changes in common procedural terminology billing codes as reflected in the changing landscape of imaging use and percutaneous approaches to pleural disease management.

  17. Management of advanced NK/T-cell lymphoma.

    PubMed

    Tse, Eric; Kwong, Yok-Lam

    2014-09-01

    NK/T-cell lymphomas are aggressive malignancies, and the outlook is poor when conventional anthracycline-containing regimens designed for B-cell lymphomas are used. With the advent of L-asparaginase-containing regimens, treatment outcome has significantly improved. L-asparaginase-containing regimens are now considered the standard in the management of NK/T-cell lymphomas. In advanced diseases, however, outcome remains unsatisfactory, with durable remission achieved in only about 50% of cases. Stratification of patients with advanced NK/T-cell lymphomas is needed, so that poor-risk patients can be given additional therapy to improve outcome. Conventional presentation parameters are untested and appear inadequate for prognostication when L-asparaginase-containing regimens are used. Recent evidence suggests that dynamic factors during treatment and interim assessment, including Epstein-Barr virus (EBV) DNA quantification and positron emission tomography computed tomography findings, are more useful in patient stratification. The role of high-dose chemotherapy and haematopoietic stem cell transplantation requires evaluation in an overall risk-adapted treatment algorithm.

  18. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  19. Managing Advanced HIV Disease in a Public Health Approach

    PubMed Central

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg; Asero, Patricia; Bologna, Rosa; Chakroun, Mohamed; Chambal, Lucia; Chiller, Tom; Conradie, Francesca; Eholie, Serge; Frigati, Lisa; Gibb, Diana; Goemaere, Eric; Govender, Nelesh; Grant, Alison; Kumarasamy, Nagalingeswaran; Lalloo, David; Le, Thuy; Letang, Emilio; Mbori-Ngacha, Dorothy; Mfinanga, Sayoki; Nacher, Mathieu; Ribakare, Muhayimpundu; Siegfried, Nandi; Sikwese, Kenly; Tun, Nini; Vidal, Jose E

    2018-01-01

    Abstract In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease. PMID:29514232

  20. Managing Advanced HIV Disease in a Public Health Approach.

    PubMed

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg

    2018-03-04

    In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease.

  1. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  2. [Development and application of information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province].

    PubMed

    Mao, Yuan-Hua; Li, Dong; Ning, An; Qiu, Ling; Xiong, Ji-Jie

    2011-04-01

    To develop the information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province. Based on Access 2003, the system was programmed by Visual Basic 6.0 and packaged by Setup Factory 8.0. In the system, advanced schistosomiasis data were able to be input, printed, indexed, and statistically analyzed. The system could be operated and maintained easily and timely. The information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province is successfully developed.

  3. Advanced space power PEM fuel cell systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.

    1989-01-01

    A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.

  4. Challenged but not threatened: Managing health in advanced age.

    PubMed

    Wiles, Janine; Miskelly, Philippa; Stewart, Oneroa; Kerse, Ngaire; Rolleston, Anna; Gott, Merryn

    2018-06-20

    In this paper we reflect on discussions with people of advanced age in Āotearoa New Zealand, and draw on theoretical frameworks of resilience and place in old age, to explore insights about the ways older people maintain quality of life and health. Twenty community-dwelling people of advanced age (85+) were recruited in 2015-16 from a large multidisciplinary longitudinal study of advanced age. These twenty participated in interviews about health in advanced age, impact of illnesses, interactions with clinicians, access to information, support for managing health, and perceptions of primary care, medications, and other forms of assistance. We use a positioning theory framework drawing on thematic and narrative analysis to understand the dynamic ways people in advanced age position themselves and the ways they age well through speech acts and storylines. People in advanced age saw themselves as challenged, rather than threatened, by adversities, and positioned themselves as able to draw on a lifetime of experience and resourcefulness and collaborations with supporters to deal with challenges. Key strategies include downplaying illness and resisting biomedical discourses of complexity, positioning embodied selves as having agency, and creative adaptation in the face of loss. People in advanced age exhibit resilience, maintaining wellbeing, autonomy and good physical and mental quality of life even while living with challenges such as functional decline and multi-morbidities. These findings have significance for supporters of older people, emphasising the need to move away from a narrow focus on problems to working together WITH people in advanced age to offer a more holistic approach that encourages and enhances adaptation and flexibility, rather than rigid and counterproductive coping patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  6. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  7. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    NASA Astrophysics Data System (ADS)

    Ma, Kun-Quan; Liu, Jing

    2007-08-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  8. Advancing Cost-Effective Readiness by Improving the Supply Chain Management of Sparse, Intermittently-Demanded Parts

    DTIC Science & Technology

    2015-03-26

    DEMANDED PARTS DISSERTATION Gregory H. Gehret AFIT-ENS-DS-15-M- 256 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE...protection in the United States. AFIT-ENS-DS-15-M- 256 ADVANCING COST-EFFECTIVE READINESS BY IMPROVING THE SUPPLY CHAIN MANAGEMENT OF SPARSE...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-DS-15-M- 256 ADVANCING COST-EFFECTIVE READINESS BY IMPROVING THE SUPPLY CHAIN MANAGEMENT OF SPARSE

  9. Advances in Plant Health Management in the Twentieth Century.

    PubMed

    Cook, R James

    2000-09-01

    ▪ Abstract  Plant health management is the science and practice of understanding and overcoming the succession of biotic and abiotic factors that limit plants from achieving their full genetic potential as crops, ornamentals, timber trees, or other uses. Although practiced as long as agriculture itself, as a science-based concept, plant heath management is even younger than integrated pest management (IPM), and includes and builds upon but is not a replacement for IPM. Probably the greatest collection of success stories for plant health management is the number of diseases managed by cleaning up the planting material. The record for root health management is more mixed, with the loss or phase-out of soil fumigants, and practices such as crop rotation and clean tillage being replaced with more intensive cropping and less or no tillage. Perhaps the greatest scientific and technical advances for plant health management have come from the work aimed at management of the pathogens, pests, and other hazards that arrive by air. Flor's work on flax rust, which produced the gene-for-gene model, is possibly the most significant contribution of plant pathology to the life sciences in the twentieth century. Research aimed at the management of foliar pathogens is also the basis for modern theory on epidemiology, population biology, aerobiology, and disease prediction and decision-support systems. Even IPM arose mainly in response to the need to protect crops from pests that arrive by air. If the definition of biological control includes the plant induced or genetically modified to defend itself, as it should, then biological control has been the most significant approach to plant health management during the twentieth century and promises through modern biotechnology to be even more significant in the twenty-first century. Rather than "reducing losses," the advances are discussed here within the simple framework of achieving the attainable yield by increasing the actual and

  10. Palliative management of pressure ulcers and malignant wounds in patients with advanced illness.

    PubMed

    McDonald, Amy; Lesage, Pauline

    2006-04-01

    Pressure ulcers and malignant wounds are prevalent in populations with advanced illness. In these populations, the goals of care may shift from a primary focus on healing to a focus on wound management, palliation and comfort. Many complications associated with these wounds must be palliated. This review explores the palliative approach to managing pressure ulcers and malignant wounds in patients with advanced illness. A comprehensive search of MEDLINE, CINAHL, and Cochrane Databases for articles addressing wound management and palliation was performed. We also reviewed online wound care resources and textbooks related to the field. The key to good wound care is prevention if possible, ongoing wound assessment, correct choice of dressing and use of available adjuvant therapies. The ultimate goals of palliative wound care are to control pain, to manage infection, odor, bleeding, and exudate, and to maintain a good quality of life for the patient and caregiver.

  11. Power Electronics Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less

  12. IPAD 2: Advances in Distributed Data Base Management for CAD/CAM

    NASA Technical Reports Server (NTRS)

    Bostic, S. W. (Compiler)

    1984-01-01

    The Integrated Programs for Aerospace-Vehicle Design (IPAD) Project objective is to improve engineering productivity through better use of computer-aided design and manufacturing (CAD/CAM) technology. The focus is on development of technology and associated software for integrated company-wide management of engineering information. The objectives of this conference are as follows: to provide a greater awareness of the critical need by U.S. industry for advancements in distributed CAD/CAM data management capability; to present industry experiences and current and planned research in distributed data base management; and to summarize IPAD data management contributions and their impact on U.S. industry and computer hardware and software vendors.

  13. Comprehensive Approaches to Managing Delirium in Patients with Advanced Cancer

    PubMed Central

    Kang, Jung Hun; Shin, Seong Hoon; Bruera, Eduardo

    2013-01-01

    Delirium is a frequently under-recognized complication in patients with advanced cancer. Uncontrolled delirium eventually leads to significant distress to patients and their families. However, delirium episodes can be reversed in half of these patients by eliminating precipitating factors and using appropriate interventions. The purpose of this narrative review is to discuss the most recent updates in the literature on the management of delirium in patients with advanced cancer. This article addresses the epidemiology, cause, pathophysiology, clinical characteristics, and assessment of delirium as well as various treatment options, including nonpharmacologic intervention and palliative sedation. PMID:22959227

  14. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must bemore » researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  15. Recent advances in understanding and managing chordomas.

    PubMed

    Youssef, Carl; Aoun, Salah G; Moreno, Jessica R; Bagley, Carlos A

    2016-01-01

    Chordomas are rare primary bone tumors arising from embryonic remnants of the notochord. They are slow-growing, locally aggressive, and destructive and typically involve the axial skeleton. Genetic studies have identified several mutations implicated in the pathogenesis of these tumors. Treatment poses a challenge given their insidious progression, degree of local invasion at presentation, and high recurrence rate. They tend to respond poorly to conventional chemotherapy and radiation. This makes radical resection the mainstay of their treatment. Recent advances in targeted chemotherapy and focused particle beam radiation, however, have improved the management and prognosis of these tumors.

  16. Advancing Student Achievement through Labor-Management Collaboration (Denver, Colorado, February 15-16, 2011)

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This paper presents the highlights of a conference entitled "Advancing Student Achievement through Labor-Management Collaboration" held in Denver, Colorado last February 15-16, 2011. This first-of-its-kind conference on labor-management collaboration is a historic effort to transform the relationships among local superintendents, school…

  17. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  18. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  19. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  20. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    PubMed

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  1. Pre-hospital advanced airway management by anaesthesiologists: is there still room for improvement?

    PubMed

    Sollid, Stephen J M; Heltne, Jon Kenneth; Søreide, Eldar; Lossius, Hans Morten

    2008-07-21

    Endotracheal intubation is an important part of pre-hospital advanced life support that requires training and experience, and should only be performed by specially trained personnel. In Norway, anaesthesiologists serve as Helicopter Emergency Medical Service HEMS physicians. However, little is known about how they themselves evaluate the quality and safety of pre-hospital advanced airway management. Using a semi-structured questionnaire, we interviewed anaesthesiologists working in the three HEMS programs covering Western Norway. We compared answers from specialists and non-specialists as well as full- and part-time HEMS physicians. Of the 17 available respondents, most (88%) felt that their continuous exposure to intubations was not sufficient. Additional training was mainly acquired through other clinical practice and mannequin- or cadaver-based skills training. Of the respondents, 77% and 35% reported having experienced difficult and failed intubations, respectively. Further, 59% reported knowledge of airway management-related deaths in their HEMS program. Significantly more full- than part-time HEMS physicians had experienced these problems. All respondents had airway back-up equipment in their service, but 29% were not familiar with all the equipment. The majority of anaesthesiologists working as HEMS physicians view pre-hospital advanced airway management as a high-risk procedure. Relevant airway management competencies for HEMS physicians in Norway seem to be insufficiently trained and maintained. A better-defined level of competence with better training methods and systems seems warranted.

  2. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  3. Masters Study in Advanced Energy and Fuels Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both

  4. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  5. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  6. Advances in asthma in 2016: Designing individualized approaches to management.

    PubMed

    Anderson, William C; Apter, Andrea J; Dutmer, Cullen M; Searing, Daniel A; Szefler, Stanley J

    2017-09-01

    In this year's Advances in Asthma review, we discuss viral infections in asthmatic patients and potential therapeutic agents, the microbiome, novel genetic associations with asthma, air quality and climate effects on asthma, exposures during development and long-term sequelae of childhood asthma, patient-centered outcomes research, and precision medicine. In addition, we discuss application of biomarkers to precision medicine and new information on asthma medications. New evidence indicates that rhinovirus-triggered asthma exacerbations become more severe as the degree of sensitization to dust mite and mouse increase. The 2 biggest drivers of asthma severity are an allergy pathway starting with allergic sensitization and an environmental tobacco smoke pathway. In addition, allergic sensitization and blood eosinophils can be used to select medications for management of early asthma in young children. These current findings, among others covered in this review, represent significant steps toward addressing rapidly advancing areas of knowledge that have implications for asthma management. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Advanced Inverter Functions and Communication Protocols for Distribution Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Palmintier, Bryan; Baggu, Murali

    2016-05-05

    This paper aims at identifying the advanced features required by distribution management systems (DMS) service providers to bring inverter-connected distributed energy resources into use as an intelligent grid resource. This work explores the standard functions needed in the future DMS for enterprise integration of distributed energy resources (DER). The important DMS functionalities such as DER management in aggregate groups, including the discovery of capabilities, status monitoring, and dispatch of real and reactive power are addressed in this paper. It is intended to provide the industry with a point of reference for DER integration with other utility applications and to providemore » guidance to research and standards development organizations.« less

  8. Verification and validation of an advanced model of heat and mass transfer in the protective clothing

    NASA Astrophysics Data System (ADS)

    Łapka, Piotr; Furmański, Piotr

    2018-04-01

    The paper presents verification and validation of an advanced numerical model of heat and moisture transfer in the multi-layer protective clothing and in components of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The developed model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. All optical phenomena at internal or external walls were modelled and the thermal radiation was treated in the rigorous way, i.e., semi-transparent absorbing, emitting and scattering fabrics with the non-grey properties were assumed. The air was treated as transparent. Complex energy and mass balances as well as optical conditions at internal or external interfaces were formulated in order to find values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equations was solved by the Finite Volume based in-house iterative algorithm. The developed model passed discretisation convergence tests and was successfully verified against the results obtained applying commercial software for simplified cases. Then validation was carried out using experimental measurements collected during exposure of the protective clothing to high radiative heat flux emitted by the IR lamp. Satisfactory agreement of simulated and measured temporal variation of temperature at external and internal surfaces of the multi-layer clothing was attained.

  9. Cost-utility analysis of an advanced pressure ulcer management protocol followed by trained wound, ostomy, and continence nurses.

    PubMed

    Kaitani, Toshiko; Nakagami, Gojiro; Iizaka, Shinji; Fukuda, Takashi; Oe, Makoto; Igarashi, Ataru; Mori, Taketoshi; Takemura, Yukie; Mizokami, Yuko; Sugama, Junko; Sanada, Hiromi

    2015-01-01

    The high prevalence of severe pressure ulcers (PUs) is an important issue that requires to be highlighted in Japan. In a previous study, we devised an advanced PU management protocol to enable early detection of and intervention for deep tissue injury and critical colonization. This protocol was effective for preventing more severe PUs. The present study aimed to compare the cost-effectiveness of the care provided using an advanced PU management protocol, from a medical provider's perspective, implemented by trained wound, ostomy, and continence nurses (WOCNs), with that of conventional care provided by a control group of WOCNs. A Markov model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness ratio of advanced PU management compared with conventional care. The number of quality-adjusted life-years gained, and the cost in Japanese yen (¥) ($US1 = ¥120; 2015) was used as the outcome. Model inputs for clinical probabilities and related costs were based on our previous clinical trial results. Univariate sensitivity analyses were performed. Furthermore, a Bayesian multivariate probability sensitivity analysis was performed using Monte Carlo simulations with advanced PU management. Two different models were created for initial cohort distribution. For both models, the expected effectiveness for the intervention group using advanced PU management techniques was high, with a low expected cost value. The sensitivity analyses suggested that the results were robust. Intervention by WOCNs using advanced PU management techniques was more effective and cost-effective than conventional care. © 2015 by the Wound Healing Society.

  10. Advanced k-epsilon modeling of heat transfer

    NASA Technical Reports Server (NTRS)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  11. Prototype solar heating and combined heating cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  12. The Managing Epilepsy Well Network:: Advancing Epilepsy Self-Management.

    PubMed

    Sajatovic, Martha; Jobst, Barbara C; Shegog, Ross; Bamps, Yvan A; Begley, Charles E; Fraser, Robert T; Johnson, Erica K; Pandey, Dilip K; Quarells, Rakale C; Scal, Peter; Spruill, Tanya M; Thompson, Nancy J; Kobau, Rosemarie

    2017-03-01

    Epilepsy, a complex spectrum of disorders, affects about 2.9 million people in the U.S. Similar to other chronic disorders, people with epilepsy face challenges related to management of the disorder, its treatment, co-occurring depression, disability, social disadvantages, and stigma. Two national conferences on public health and epilepsy (1997, 2003) and a 2012 IOM report on the public health dimensions of epilepsy highlighted important knowledge gaps and emphasized the need for evidence-based, scalable epilepsy self-management programs. The Centers for Disease Control and Prevention translated recommendations on self-management research and dissemination into an applied research program through the Prevention Research Centers Managing Epilepsy Well (MEW) Network. MEW Network objectives are to advance epilepsy self-management research by developing effective interventions that can be broadly disseminated for use in people's homes, healthcare providers' offices, or in community settings. The aim of this report is to provide an update on the MEW Network research pipeline, which spans efficacy, effectiveness, and dissemination. Many of the interventions use e-health strategies to eliminate barriers to care (e.g., lack of transportation, functional limitations, and stigma). Strengths of this mature research network are the culture of collaboration, community-based partnerships, e-health methods, and its portfolio of prevention activities, which range from efficacy studies engaging hard-to-reach groups, to initiatives focused on provider training and knowledge translation. The MEW Network works with organizations across the country to expand its capacity, help leverage funding and other resources, and enhance the development, dissemination, and sustainability of MEW Network programs and tools. Guided by national initiatives targeting chronic disease or epilepsy burden since 2007, the MEW Network has been responsible for more than 43 scientific journal articles, two

  13. A gender perspective on Person-Manager fit and managerial advancement.

    PubMed

    Marongiu, S; Ekehammar, B

    2000-06-01

    This article presents two studies examining (1) the relationship between Person-Manager (P-M) fit and managerial advancement of women and men with, and without managerial aspirations and (2) the P-M fit as related to managerial and non-managerial women. The P-M fit was assessed by computing the congruence between participants' self-rated personality profile and the perceived personality profile of a manager. Sex (men show a higher P-M fit than women), gender (the higher the individual's masculine gender-role, the higher the P-M fit) and group (managers and managerial aspirants show a higher P-M fit than non-managerial aspirants and non-managers) hypotheses were tested. There was no support for the sex difference hypothesis. However, the group and gender hypotheses were confirmed showing that managers and managerial aspirants had a higher P-M fit than non-managers and non-aspirants. Further, analyses revealed that the higher the participants' masculinity scores, the higher the P-M fit. Implications of these findings are discussed in relation to the gendered image of the managerial role and adaptation theory.

  14. Making the connection: advancing traffic incident management in transportation planning : a primer.

    DOT National Transportation Integrated Search

    2013-07-01

    "The intent of this primer is to inform and guide traffic incident management (TIM) professionals and transportation planners to initiate and develop collaborative relationships and advance TIM programs through the metropolitan planning process. The ...

  15. Aircraft Thermal Management Using Loop Heat Pipes

    DTIC Science & Technology

    2009-03-01

    flexible copper-water arterial wick heat pipe subjected to transverse acceleration using a centrifuge table. Evaporator heat loads up to Qin = 150 W and...acceleration. Yerkes and Beam (1992) examined the same flexible copper-water arterial wick heat pipe as Ponnappan et al. under transient transverse...examined the same flexible copper-water arterial wick heat pipe as Ponnappan et al. with evaporator heat loads from Qin = 75 to 150 W, condenser

  16. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their helpmore » and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.« less

  17. Advanced practice nursing for enduring health needs management: a global perspective.

    PubMed

    Koskinen, Liisa; Mikkonen, Irma; Graham, Iain; Norman, Linda D; Richardson, Jim; Savage, Eileen; Schorn, Mavis

    2012-07-01

    Advanced practice nursing expertise has been acknowledged worldwide as one response to the challenges arising from changes in society and health care. The roots of advanced practice nursing education are at the University of Colorado where the first known programme started in 1965. In many countries advanced practice nurses (APNs) have taken responsibility for routine patient care formerly carried out by physicians in order to reduce their workload. However, more and more, APNs have taken responsibility for new service areas and quality programmes not previously provided. Chronic disease management is one of these new service areas because long-term diseases are increasingly challenging service systems globally. This article is based on an international APN partnership. The aim of the article is to describe how the partnership will design a 15 ECTS credit course on Enduring Health Need Management as a cross-cultural collaborative endeavour. The adaptation of an inquiry based learning framework will be described drawing on four main principles of the theory: authentic learning communities; student encouragement in analysing gradually more complicated problems; networking in knowledge creation and; student engagement and activity. The cross-cultural online course aims to increase APNs' intercultural competence as well as their global and international work orientation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Application of dynamic traffic assignment to advanced managed lane modeling : [technical summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Transportation agencies realize that, often, adding : lanes is not a feasible or effective solution for : increases in traffic congestion. So, agencies have : applied advanced strategies to better use existing : capacity. One such strategy, managed l...

  19. Exertional heat illness: emerging concepts and advances in prehospital care.

    PubMed

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  20. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    NASA Astrophysics Data System (ADS)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  1. Heat pipes for wing leading edges of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

  2. The Vanderbilt Professional Nursing Practice Program, part 3: managing an advancement process.

    PubMed

    Steaban, Robin; Fudge, Mitzie; Leutgens, Wendy; Wells, Nancy

    2003-11-01

    Consistency of performance standards across multiple clinical settings is an essential component of a credible advancement system. Our advancement process incorporates a central committee, composed of nurses from all clinical settings within the institution, to ensure consistency of performance in inpatient, outpatient, and procedural settings. An analysis of nurses advanced during the first 18 months of the program indicates that performance standards are applicable to nurses in all clinical settings. The first article (September 2003) in this 3-part series described the foundation for and the philosophical background of the Vanderbilt Professional Nursing Practice Program (VPNPP), the career advancement program underway at Vanderbilt University Medical Center. Part 2 described the development of the evaluation tools used in the VPNPP, the implementation and management of this new system, program evaluation, and improvements since the program's inception. The purpose of this article is to review the advancement process, review the roles of those involved in the process, and to describe outcomes and lessons learned.

  3. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  4. Laparoscopic management of a ruptured benign dermoid cyst during advanced pregnancy.

    PubMed

    Roman, Horace; Accoceberry, Marie; Bolandard, Franck; Bourdel, Nicolas; Lenglet, Yann; Canis, Michel

    2005-01-01

    Benign cystic teratomas in pregnant women may be responsible for complications such as torsion, rupture and obstruction of labor. A woman in her 31st week of pregnancy with torsion of a large dermoid cyst and lipogranulomatosis peritonitis due to spilled cyst contents was managed laparoscopically with a favorable outcome. Trocar sites were selected according to the uterine size. Open laparoscopy allowed protection of the gravid uterus from penetrative injuries. Laparoscopic management of a voluminous adnexal mass may be safely performed during advanced pregnancy.

  5. Heat receivers for solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  6. Automation Applications in an Advanced Air Traffic Management System : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1974-08-01

    The Advanced Air Traffic Management System (AATMS) program is a long-range investigation of new concepts and techniques for controlling air traffic and providing services to the growing number of commercial, military, and general aviation users of th...

  7. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  8. Quo vadis radiotherapy? Technological advances and the rising problems in cancer management.

    PubMed

    Allen, Barry J; Bezak, Eva; Marcu, Loredana G

    2013-01-01

    Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.

  9. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  10. Integrated thermal management of a hybrid electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traci, R.M.; Acebal, R.; Mohler, T.

    1999-01-01

    A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less

  11. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe.

    PubMed

    Glatz, Attila; Pilbat, Ana-Maria; Németh, Gergely L; Vince-Kontár, Katalin; Jósvay, Katalin; Hunya, Ákos; Udvardy, Andor; Gombos, Imre; Péter, Mária; Balogh, Gábor; Horváth, Ibolya; Vígh, László; Török, Zsolt

    2016-03-01

    Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.

  12. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    PubMed

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  13. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  14. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  15. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  16. Breeding for plant heat tolerance at vegetative and reproductive stages.

    PubMed

    Driedonks, Nicky; Rieu, Ivo; Vriezen, Wim H

    2016-06-01

    Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

  17. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission

  18. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.

  19. Testing of active heat sink for advanced high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy

    2011-03-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.

  20. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  1. Implementation of transmural disease management in patients admitted with advanced heart failure.

    PubMed

    Duchenne, Jürgen; Verbrugge, Frederik H; Dupont, Matthias; Vercammen, Jan; Jacobs, Linda; Grieten, Lars; Vandervoort, Pieter; Mullens, Wilfried

    2014-04-01

    The objective of this study was to assess the feasibility and impact on readmissions of transmural disease management across the borders of the cardiology department in patients with advanced heart failure (HF). Consecutive patients, readmitted within one year for advanced HF by a dedicated specialist (n = 55), were followed for 22 +/- 10 months after implementation of a hospitalwide transmural disease management strategy. Participants received a tag in their electronic medical record, triggering a HF caregiver contact, with subsequent guideline-recommended, protocol-driven care on each cardiac or non-cardiac hospitalization as well as outpatient evaluation. Upon transition to outpatient follow-up, patients were instructed to call the HF caregiver with any question at low threshold. Readmission rates were prospectively collected. Despite receiving adequate treatment with neurohumoral blockers, patients (71 +/- 11 years; ejection fraction 35 +/- 13%) had spent 4% (27%) of the year preceding study inclusion in hospital, with 73% admitted once, 20% twice, and 7% more than twice for acute decompensated HF (ADHF). During the study, patients were exposed to 6 +/- 4 dedicated HF caregiver contacts. Participation in remote device monitoring increased from 31% to 92%, with 1 (0-3) additional phone contacts per patient-year of follow-up in this subgroup (n = 24). All-cause mortality and readmission rates for ADHF were 10% and 25% after one year, and 19% and 39% after 2 years, respectively. Follow-up time spent in hospital decreased significantly to 2% (16%) (P value = 0.047). Follow-up of advanced HF patients through transmural disease management is feasible and associated with favourable clinical outcome.

  2. Advances in the management of orbital fractures.

    PubMed

    Nguyen, P N; Sullivan, P

    1992-01-01

    Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.

  3. Michigan Department of Transportation statewide advanced traffic management system (ATMS) procurement evaluation - phase I : software procurement.

    DOT National Transportation Integrated Search

    2009-04-01

    This project evaluates the process that was followed by MDOT and other stakeholders for the acquisition : of new Advanced Traffic Management System (ATMS) software aiming to integrate and facilitate the : management of various Intelligent Transportat...

  4. Perceptions of Heat Risk to Health: A Qualitative Study of Professional Bus Drivers and Their Managers in Jinan, China

    PubMed Central

    Zhou, Lin; Xin, Zheng; Bai, Li; Wan, Fangjun; Wang, Yongming; Sang, Shaowei; Liu, Shouqin; Zhang, Ji; Liu, Qiyong

    2014-01-01

    Summer extreme heat threatens the health of individuals, especially persons who are involved in outdoor activities. Ensuring the normal function of a city, bus drivers are among those who participate in outdoor physical activities and are exposed to excessive heat in hot summer weather. This qualitative study was performed to explore professional bus drivers’ in-depth views of extreme heat risks to their health, and ultimately develop targeted advice and policy interventions for city bus drivers. An interview-based study was performed among professional bus drivers in Jinan, China, including four focus groups with professional bus drivers (n = 37) and three interviews with their managers (n = 14). Five central themes or categories from the bus driver interviews were found: concerns about summer heat; health effects related to extreme heat; adaptive measures; barriers in implementing these adaptive measures; and suggested interventions. The beneficial role of cooling facilities (particularly air-conditioning) during extreme heat are addressed. The barriers not only impede the implementation of behavioral adaptive measures but also enhance the negative attitudes of bus drivers towards their effectiveness. The responsibilities of managers in promoting preventive actions are addressed. PMID:24477213

  5. Heat transfer and thermal management of electric vehicle batteries with phase change materials

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.; Naterer, G. F.

    2011-07-01

    This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.

  6. Self-management and transitions in women with advanced breast cancer.

    PubMed

    Schulman-Green, Dena; Bradley, Elizabeth H; Knobf, M Tish; Prigerson, Holly; DiGiovanna, Michael P; McCorkle, Ruth

    2011-10-01

    Self-management involves behaviors that individuals perform to handle health conditions. Self-management may be particularly challenging during transitions-shifts from one life phase or status to another, for example, from cure- to noncure-oriented care-because they can be disruptive and stressful. Little is known about individuals' experiences with self-management, especially during transitions. Our purpose was to describe experiences of self-management in the context of transitions among women with advanced breast cancer. We interviewed a purposive sample of 15 women with metastatic breast cancer about their self-management preferences, practices, and experiences, including how they managed transitions. Interviews were recorded and transcribed. The qualitative method of interpretive description was used to code and analyze the data. Participants' mean age was 52 years (range 37-91 years); most were White (80%), married (80%), and college educated (60%). Self-management practices related to womens' health and to communication with loved ones and providers. Participants expressed a range of preferences for participation in self-management. Self-management included developing skills, becoming empowered, and creating supportive networks. Barriers to self-management included symptom distress, difficulty obtaining information, and lack of knowledge about the cancer trajectory. Women identified transitions as shifts in physical, emotional, and social well-being, as when their cancer progressed and there was a need to change therapy. Transitions often prompted changes in how actively women self-managed and were experienced as positive, negative, and neutral. Self-management preferences can vary. Providers should explore and revisit patients' preferences and ability to self-manage over time, particularly during transitions. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  7. Advancements in the critical care management of status epilepticus.

    PubMed

    Bauerschmidt, Andrew; Martin, Andrew; Claassen, Jan

    2017-04-01

    Status epilepticus has a high morbidity and mortality. There are little definitive data to guide management; however, new recent data continue to improve understanding of management options of status epilepticus. This review examines recent advancements regarding the critical care management of status epilepticus. Recent studies support the initial treatment of status epilepticus with early and aggressive benzodiazepine dosing. There remains a lack of prospective randomized controlled trials comparing different treatment regimens. Recent data support further study of intravenous lacosamide as an urgent-control therapy, and ketamine and clobazam for refractory status epilepticus. Recent data support the use of continuous EEG to help guide treatment for all patients with refractory status epilepticus and to better understand epileptic activity that falls on the ictal-interictal continuum. Recent data also improve our understanding of the relationship between periodic epileptic activity and brain injury. Many treatments are available for status epilepticus and there are much new data guiding the use of specific agents. However, there continues to be a lack of prospective data supporting specific regimens, particularly in cases of refractory status epilepticus.

  8. Fatigue Self-Management Behaviors in Patients With Advanced Cancer: A Prospective Longitudinal Survey.

    PubMed

    Chan, Raymond; Yates, Patsy; McCarthy, Alexandra L

    2016-11-01

    To explore the fatigue self-management behaviors and factors associated with effectiveness of these behaviors in patients with advanced cancer.
. Prospective longitudinal interviewer-administered survey.
. Royal Brisbane and Women's Hospital in Queensland, Australia.
. 152 outpatients with metastatic breast, lung, colorectal, and prostate cancer experiencing fatigue were recruited.
. Patients were surveyed on three occasions. Fatigue self-management behavior (perceived effectiveness, self-efficacy, and frequency), medical and demographic characteristics (sites of primary cancer and metastasis, comorbidity, performance status), social support, depression, anxiety, and other symptoms were assessed.
. The participants reported moderate levels of fatigue at baseline and maintained moderate levels at four and eight weeks. On average, participants consistently used about nine behaviors at each time point. Factors significantly associated with higher levels of perceived effectiveness of fatigue self-management behaviors were higher self-efficacy, higher education level, and lower levels of depressive symptoms. 
. The findings of this study demonstrate that patients with cancer, even those with advanced disease, still want and are able to use a number of behaviors to control their fatigue. Self-management interventions that aim to enhance self-efficacy and address any concurrent depressive symptoms have the potential to reduce fatigue severity.
. Nurses are well positioned to play a key role in supporting patients in their fatigue self-management.

  9. Battlefield anesthesia: advances in patient care and pain management.

    PubMed

    Baker, Bruce C; Buckenmaier, Chester; Narine, Nalan; Compeggie, Michael E; Brand, George J; Mongan, Paul D

    2007-03-01

    Expeditionary maneuver warfare and the asymmetric battlefield have forced changes in the traditional methods with which we deliver anesthesia and surgery to the wounded. Although in many ways similar to how we have operated on the wounded for the past half century, new advances in diagnostic and therapeutic modalities and doctrinal shifts have changed the face of the battlefield hospital. In this article, the authors discuss these changes in regard to anesthetic care for surgical and pain management for wounded airmen, sailors, soldiers, and marines.

  10. Feeling the Heat: The Impact of Rising Energy Costs on Colleges & Universities in the Midwest

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Johnson, Gina

    2006-01-01

    This report is the result of a survey conducted in late 2005 of higher education institution chief financial officers throughout the U.S. Midwest region concerning their plans to manage what was expected to be a substantial increase in the price of energy in advance of the 2005-06 heating season. Although the winter turned out to be one of the…

  11. Retrospective Analysis of Esophageal Heat Transfer for Active Temperature Management in Post-cardiac Arrest, Refractory Fever, and Burn Patients.

    PubMed

    Naiman, Melissa; Markota, Andrej; Hegazy, Ahmed; Dingley, John; Kulstad, Erik

    2018-03-01

    Core temperature management is an important aspect of critical care; preventing unintentional hypothermia, reducing fever, and inducing therapeutic hypothermia when appropriate are each tied to positive health outcomes. The purpose of this study is to evaluate the performance of a new temperature management device that uses the esophageal environment to conduct heat transfer. De-identified patient data were aggregated from three clinical sites where an esophageal heat transfer device (EHTD) was used to provide temperature management. The device was evaluated against temperature management guidelines and best practice recommendations, including performance during induction, maintenance, and cessation of therapy. Across all active cooling protocols, the average time-to-target was 2.37 h and the average maintenance phase was 22.4 h. Patients spent 94.9% of the maintenance phase within ±1.0°C and 67.2% within ±0.5°C (574 and 407 measurements, respectively, out of 605 total). For warming protocols, all of the patient temperature readings remained above 36°C throughout the surgical procedure (average 4.66 h). The esophageal heat transfer device met performance expectations across a range of temperature management applications in intensive care and burn units. Patients met and maintained temperature goals without any reported adverse events.

  12. Advanced consequence management program: challenges and recent real-world implementations

    NASA Astrophysics Data System (ADS)

    Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.

    2002-08-01

    The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.

  13. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma.

    PubMed

    Brose, Marcia S; Smit, Johannes; Capdevila, Jaume; Elisei, Rossella; Nutting, Christopher; Pitoia, Fabian; Robinson, Bruce; Schlumberger, Martin; Shong, Young Kee; Takami, Hiroshi

    2012-09-01

    For patients with advanced, radioactive iodine-refractory differentiated thyroid cancer, current treatment guidelines recommend clinical trial enrollment or small-molecule kinase inhibitor therapy. However, details of patient management vary between countries depending on trial availability and national regulatory policies. Insufficient clinical trial data and variable disease characteristics challenge the creation of universal guidelines, and treatment plans often reflect regional influences. A multidisciplinary, multiregional panel of experts met to discuss regional approaches to managing patients with advanced, radioactive iodine-refractory differentiated thyroid cancer and the potential impact of emerging therapies on current treatment strategies. Despite process-oriented regional differences, the decision-making strategies were similar. Multidisciplinary teams used to manage high-risk patients varied in composition across regions, particularly regarding the responsible physician's specialty. Cytotoxic chemotherapy was viewed as limited in clinical benefit, and targeted agents as attractive, based on promising data. Panel members support clinical trial enrollment as the preferred treatment strategy for managing these patients.

  14. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015

    PubMed Central

    Gillessen, S.; Omlin, A.; Attard, G.; de Bono, J. S.; Efstathiou, E.; Fizazi, K.; Halabi, S.; Nelson, P. S.; Sartor, O.; Smith, M. R.; Soule, H. R.; Akaza, H.; Beer, T. M.; Beltran, H.; Chinnaiyan, A. M.; Daugaard, G.; Davis, I. D.; De Santis, M.; Drake, C. G.; Eeles, R. A.; Fanti, S.; Gleave, M. E.; Heidenreich, A.; Hussain, M.; James, N. D.; Lecouvet, F. E.; Logothetis, C. J.; Mastris, K.; Nilsson, S.; Oh, W. K.; Olmos, D.; Padhani, A. R.; Parker, C.; Rubin, M. A.; Schalken, J. A.; Scher, H. I.; Sella, A.; Shore, N. D.; Small, E. J.; Sternberg, C. N.; Suzuki, H.; Sweeney, C. J.; Tannock, I. F.; Tombal, B.

    2015-01-01

    The first St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) Expert Panel identified and reviewed the available evidence for the ten most important areas of controversy in advanced prostate cancer (APC) management. The successful registration of several drugs for castration-resistant prostate cancer and the recent studies of chemo-hormonal therapy in men with castration-naïve prostate cancer have led to considerable uncertainty as to the best treatment choices, sequence of treatment options and appropriate patient selection. Management recommendations based on expert opinion, and not based on a critical review of the available evidence, are presented. The various recommendations carried differing degrees of support, as reflected in the wording of the article text and in the detailed voting results recorded in supplementary Material, available at Annals of Oncology online. Detailed decisions on treatment as always will involve consideration of disease extent and location, prior treatments, host factors, patient preferences as well as logistical and economic constraints. Inclusion of men with APC in clinical trials should be encouraged. PMID:26041764

  15. Advanced Pulse Oximetry System for Remote Monitoring and Management

    PubMed Central

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841

  16. Advanced pulse oximetry system for remote monitoring and management.

    PubMed

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO(2)) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  17. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  18. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  19. Contemporary management of voice and swallowing disorders in patients with advanced lung cancer.

    PubMed

    Brady, Grainne C; Carding, Paul N; Bhosle, Jaishree; Roe, Justin W G

    2015-06-01

    Advanced lung cancer can cause changes to swallowing and communication function. Direct tumour invasion, dyspnoea and deconditioning can all impact on swallowing function and communication. Cancer treatment, if administered, may cause or compound symptoms. In this study, the nature of swallowing and communication difficulties in patients with advanced lung cancer will be discussed, and management options including medical management, speech and language therapy (SLT) intervention, and surgical interventions will be considered. Advanced lung cancer can result in voice and swallowing difficulties, which can increase symptom burden and significantly impact on quality of life (QOL). There is a growing evidence base to support the use of injection laryngoplasty under local anaesthetic to offer immediate improvement in voice, swallowing and overall QOL. There is limited literature on the nature and extent of voice and swallowing impairment in patients with lung cancer. Well designed studies with robust and sensitive multidimensional dysphagia and dysphonia assessments are required. Outcome studies examining interventions with clearly defined treatment goals are required. These studies should include both functional and patient-reported outcome measures to develop the evidence base and to ensure that interventions are both timely and appropriate.

  20. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  1. Clinicians' Perspectives on Managing Symptom Clusters in Advanced Cancer: A Semistructured Interview Study.

    PubMed

    Dong, Skye T; Butow, Phyllis N; Agar, Meera; Lovell, Melanie R; Boyle, Frances; Stockler, Martin; Forster, Benjamin C; Tong, Allison

    2016-04-01

    Managing symptom clusters or multiple concurrent symptoms in patients with advanced cancer remains a clinical challenge. The optimal processes constituting effective management of symptom clusters remain uncertain. To describe the attitudes and strategies of clinicians in managing multiple co-occurring symptoms in patients with advanced cancer. Semistructured interviews were conducted with 48 clinicians (palliative care physicians [n = 10], oncologists [n = 6], general practitioners [n = 6], nurses [n = 12], and allied health providers [n = 14]), purposively recruited from two acute hospitals, two palliative care centers, and four community general practices in Sydney, Australia. Transcripts were analyzed using thematic analysis and adapted grounded theory. Six themes were identified: uncertainty in decision making (inadequacy of scientific evidence, relying on experiential knowledge, and pressure to optimize care); attunement to patient and family (sensitivity to multiple cues, prioritizing individual preferences, addressing psychosocial and physical interactions, and opening Pandora's box); deciphering cause to guide intervention (disaggregating symptoms and interactions, flexibility in assessment, and curtailing investigative intrusiveness); balancing complexities in medical management (trading off side effects, minimizing mismatched goals, and urgency in resolving severe symptoms); fostering hope and empowerment (allaying fear of the unknown, encouraging meaning making, championing patient empowerment, and truth telling); and depending on multidisciplinary expertise (maximizing knowledge exchange, sharing management responsibility, contending with hierarchical tensions, and isolation and discontinuity of care). Management of symptom clusters, as both an art and a science, is currently fraught with uncertainty in decision making. Strengthening multidisciplinary collaboration, continuity of care, more pragmatic planning of clinical trials to address more than one

  2. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    NASA Astrophysics Data System (ADS)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  3. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  4. Management of advanced pancreatic cancer in daily clinical practice.

    PubMed

    Giuliani, Jacopo; Piacentini, Paolo; Bonetti, Andrea

    2016-01-01

    The aim of this outcome study was to evaluate the management of advanced pancreatic cancer in a real-world clinical practice; few such experiences have been reported in the literature. A retrospective analysis was performed of all consecutive patients with advanced pancreatic ductal adenocarcinoma followed at our medical oncology unit between January 2003 and December 2013. We evaluated 78 patients, mostly with metastatic disease (64.1%). Median follow-up was 10.77 months, by which time 74 patients (94.9%) had died. Median overall survival was 8.29 months. Median age was 67 years. In univariate analysis, pain at onset (p = 0.020), ECOG performance status (p<0.001), stage (p = 0.047), first-line chemotherapy (p<0.001), second-line chemotherapy (p<0.001) and weight loss at diagnosis (p = 0.029) were factors that had an impact on overall survival. In multivariate analysis, the presence of pain at onset (p = 0.043), stage (p = 0.003) and second-line chemotherapy (p = 0.004) were confirmed as independent prognostic factors. Our data, derived from daily clinical practice, confirmed advanced pancreatic cancer as an aggressive malignant disease with a very short expected survival. Second-line treatment seems to provide an advantage in terms of overall survival in patients who showed a partial response as their best response to first-line treatment.

  5. Automation Applications in an Advanced Air Traffic Management System : Volume 4A. Automation Requirements.

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure ef...

  6. Advanced parking management systems : a cross-cutting study : taking the stress out of parking

    DOT National Transportation Integrated Search

    2007-01-01

    This study examines advanced parking management systems (APMSs) in three venues: airports, central business districts, and transit park-and-ride locations. Specifically, the systems examined in this study provide directional and space availability in...

  7. Advanced Computational Methods for Thermal Radiative Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weaponmore » resp onse in fire environments.« less

  8. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  9. What Can We Learn about Workplace Heat Stress Management from a Safety Regulator Complaints Database?

    PubMed

    Hansen, Alana; Pisaniello, Dino; Varghese, Blesson; Rowett, Shelley; Hanson-Easey, Scott; Bi, Peng; Nitschke, Monika

    2018-03-06

    Heat exposure can be a health hazard for many Australian workers in both outdoor and indoor situations. With many heat-related incidents left unreported, it is often difficult to determine the underlying causal factors. This study aims to provide insights into perceptions of potentially unsafe or uncomfortably hot working conditions that can affect occupational health and safety using information provided by the public and workers to the safety regulator in South Australia (SafeWork SA). Details of complaints regarding heat exposure to the regulator's "Help Centre" were assembled in a dataset and the textual data analysed thematically. The findings showed that the majority of calls relate to indoor work environments such as kitchens, factories, and warehouses. The main themes identified were work environment, health effects, and organisational issues. Impacts of hot working conditions ranged from discomfort to serious heat-related illnesses. Poor management practices and inflexibility of supervisors featured strongly amongst callers' concerns. With temperatures predicted to increase and energy prices escalating, this timely study, using naturalistic data, highlights accounts of hot working conditions that can compromise workers' health and safety and the need for suitable measures to prevent heat stress. These could include risk assessments to assess the likelihood of heat stress in workplaces where excessively hot conditions prevail.

  10. What Can We Learn about Workplace Heat Stress Management from a Safety Regulator Complaints Database?

    PubMed Central

    Hansen, Alana; Pisaniello, Dino; Varghese, Blesson; Rowett, Shelley; Hanson-Easey, Scott; Bi, Peng; Nitschke, Monika

    2018-01-01

    Heat exposure can be a health hazard for many Australian workers in both outdoor and indoor situations. With many heat-related incidents left unreported, it is often difficult to determine the underlying causal factors. This study aims to provide insights into perceptions of potentially unsafe or uncomfortably hot working conditions that can affect occupational health and safety using information provided by the public and workers to the safety regulator in South Australia (SafeWork SA). Details of complaints regarding heat exposure to the regulator’s “Help Centre” were assembled in a dataset and the textual data analysed thematically. The findings showed that the majority of calls relate to indoor work environments such as kitchens, factories, and warehouses. The main themes identified were work environment, health effects, and organisational issues. Impacts of hot working conditions ranged from discomfort to serious heat-related illnesses. Poor management practices and inflexibility of supervisors featured strongly amongst callers’ concerns. With temperatures predicted to increase and energy prices escalating, this timely study, using naturalistic data, highlights accounts of hot working conditions that can compromise workers’ health and safety and the need for suitable measures to prevent heat stress. These could include risk assessments to assess the likelihood of heat stress in workplaces where excessively hot conditions prevail. PMID:29509710

  11. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    NASA Astrophysics Data System (ADS)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  12. Recent advances in the prevention and management of preterm birth

    PubMed Central

    Tan, Min Yi

    2015-01-01

    The management of preterm birth has seen major transformations in the last few decades with increasing interest worldwide, due to the impact of preterm birth on neonatal morbidity and mortality. The prevention strategies currently available for asymptomatic women at risk of preterm birth include progesterone, cervical cerclage and cervical pessary. Each approach has varying effects depending on the patient's prior history of preterm birth, cervical length and the presence of multiple gestations. There is a shift in the focus of antenatal treatment, with the use of prenatal magnesium sulphate and corticosteroids, to reduce neonatal intensive care admissions and longer-term disabilities associated with preterm birth, consequently relieving emotional and economical burden. This article provides an update on the recent advances in prevention and management approaches available for women at risk of preterm birth. PMID:26097713

  13. Design of an AdvancedTCA board management controller (IPMC)

    NASA Astrophysics Data System (ADS)

    Mendez, J.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.

    2017-03-01

    The AdvancedTCA (ATCA) standard has been selected as the hardware platform for the upgrade of the back-end electronics of the CMS and ATLAS experiments of the Large Hadron Collider (LHC) . In this context, the electronic systems for experiments group at CERN is running a project to evaluate, specify, design and support xTCA equipment. As part of this project, an Intelligent Platform Management Controller (IPMC) for ATCA blades, based on a commercial solution, has been designed to be used on existing and future ATCA blades. This paper reports on the status of this project presenting the hardware and software developments.

  14. Use of heat pipes in electronic hardware

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1977-01-01

    A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.

  15. Management of advanced prostate cancer in senior adults: the new landscape.

    PubMed

    Aapro, Matti S

    2012-01-01

    The landscape of treatment for advanced prostate cancer is continually evolving as new therapies are developed and guidelines are constantly updated. However, the management of older men with advanced disease is not optimal. Many men are denied chemotherapy based on their chronological age, not their health status. Androgen-deprivation therapy (ADT) remains the mainstay of first-line treatment of advanced disease. Once the disease becomes resistant to castration, docetaxel-based chemotherapy is the regulatory-approved standard of care, irrespective of age. The place of weekly docetaxel in patients with poor performance status and signs of frailty has to be further evaluated in clinical studies. New treatments are now available, or on the horizon, for disease that progresses during or after docetaxel therapy. Cabazitaxel and abiraterone have been shown to prolong survival, irrespective of age, and are already in clinical use having received regulatory approval. The optimal sequence for these two agents is still unknown, although there is some indication that in patients predicted to be poor responders to abiraterone (high Gleason score, progression during docetaxel therapy, rapid progression to castrate-resistant prostate cancer with ADT) cabazitaxel should be the preferred choice. Further advances are being investigated, with promising data reported from phase III trials.

  16. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2017-02-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  17. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  18. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  19. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 5. System Performance.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the performance evaluation of the Satellite-Based Advanced Air Traffic Management System (SAATMS). The evaluation established the capacity, safety, and delay performance of the system for the Los Angeles Basin termi...

  20. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a

  1. Sensible heat receiver for solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  2. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  3. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  4. Evaluation of a mobile phone-based, advanced symptom management system (ASyMS) in the management of chemotherapy-related toxicity.

    PubMed

    Kearney, N; McCann, L; Norrie, J; Taylor, L; Gray, P; McGee-Lennon, M; Sage, M; Miller, M; Maguire, R

    2009-04-01

    To evaluate the impact of a mobile phone-based, remote monitoring, advanced symptom management system (ASyMS) on the incidence, severity and distress of six chemotherapy-related symptoms (nausea, vomiting, fatigue, mucositis, hand-foot syndrome and diarrhoea) in patients with lung, breast or colorectal cancer. A two group (intervention and control) by five time points (baseline, pre-cycle 2, pre-cycle 3, pre-cycle 4 and pre-cycle 5) randomised controlled trial. Seven clinical sites in the UK; five specialist cancer centres and two local district hospitals. One hundred and twelve people with breast, lung or colorectal cancer receiving outpatient chemotherapy. A mobile phone-based, remote monitoring, advanced symptom management system (ASyMS). Chemotherapy-related morbidity of six common chemotherapy-related symptoms (nausea, vomiting, fatigue, mucositis, hand-foot syndrome and diarrhoea). There were significantly higher reports of fatigue in the control group compared to the intervention group (odds ratio = 2.29, 95%CI = 1.04 to 5.05, P = 0.040) and reports of hand-foot syndrome were on average lower in the control group (odds ratio control/intervention = 0.39, 95%CI = 0.17 to 0.92, P = 0.031). The study demonstrates that ASyMS can support the management of symptoms in patients with lung, breast and colorectal cancer receiving chemotherapy.

  5. Recent advances in the management of radiation colitis

    PubMed Central

    Kountouras, Jannis; Zavos, Christos

    2008-01-01

    Radiation colitis, an insidious, progressive disease of increasing frequency, develops 6 mo to 5 years after regional radiotherapy for malignancy, owing to the deleterious effects of the latter on the colon and the small intestine. When dealing with radiation colitis and its complications, the most conservative modality should be employed because the areas of intestinal injury do not tend to heal. Acute radiation colitis is mostly self-limited, and usually, only supportive management is required. Chronic radiation colitis, a poorly predictable progressive disease, is considered as a precancerous lesion; radiation-associated malignancy has a tendency to be diagnosed at an advanced stage and to bear a dismal prognosis. Therefore, management of chronic radiation colitis remains a major challenge owing to the progressive evolution of the disease, including development of fibrosis, endarteritis, edema, fragility, perforation, partial obstruction, and cancer. Patients are commonly managed conservatively. Surgical intervention is difficult to perform because of the extension of fibrosis and alterations in the gut and mesentery, and should be reserved for intestinal obstruction, perforation, fistulas, and severe bleeding. Owing to the difficulty in managing the complications of acute and chronic radiation colitis, particular attention should be focused onto the prevention strategies. Uncovering the fibrosis mechanisms and the molecular events underlying radiation bowel disease could lead to the introduction of new therapeutic and/or preventive approaches. A variety of novel, mostly experimental, agents have been used mainly as a prophylaxis, and improvements have been made in radiotherapy delivery, including techniques to reduce the amount of exposed intestine in the radiation field, as a critical strategy for prevention. PMID:19109862

  6. Heat and drought stresses in crops and approaches for their mitigation

    NASA Astrophysics Data System (ADS)

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-02-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavourable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  7. Heat and Drought Stresses in Crops and Approaches for Their Mitigation.

    PubMed

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-01-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  8. Diaphragm Stirling engine heat-actuated heat pump development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.A.; Swenson, P.

    1981-01-01

    The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less

  9. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  10. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders

    NASA Astrophysics Data System (ADS)

    Wang, A.; Tadjer, M. J.; Calle, F.

    2013-05-01

    We investigated the impact of diamond heat spreading layers on the performance of AlGaN/GaN high-electron-mobility-transistors (HEMTs). A finite element method was used to simulate the thermal and electrical characteristics of the devices under dc and pulsed operation conditions. The results show that the device performance can be improved significantly by optimized heat spreading, an effect strongly dependent on the lateral thermal conductivity of the initial several micrometers of diamond deposition. Of crucial importance is the proximity of the diamond layer to the heat source, which makes this method advantageous over other thermal management procedures, especially for the device in pulsed operation. In this case, the self-heating effect can be suppressed, and it is not affected by either the substrate or its thermal boundary resistance at the GaN/substrate at wider pulses. The device with a 5 µm diamond layer can present 10.5% improvement of drain current, and the self-heating effect can be neglected for a 100 ns pulse width at 1 V gate and 20 V drain voltage.

  11. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 7. System Cost.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume presents estimates of the federal government and user costs for the Satellite-Based Advanced Air Traffic Management System and the supporting rationale. The system configuration is that presented in volumes II and III. The cost estimates a...

  12. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  13. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  14. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  15. Can a manager have a life and a career? International and multisource perspectives on work-life balance and career advancement potential.

    PubMed

    Lyness, Karen S; Judiesch, Michael K

    2008-07-01

    The present study was the first cross-national examination of whether managers who were perceived to be high in work-life balance were expected to be more or less likely to advance in their careers than were less balanced, more work-focused managers. Using self ratings, peer ratings, and supervisor ratings of 9,627 managers in 33 countries, the authors examined within-source and multisource relationships with multilevel analyses. The authors generally found that managers who were rated higher in work-life balance were rated higher in career advancement potential than were managers who were rated lower in work-life balance. However, national gender egalitarianism, measured with Project GLOBE scores, moderated relationships based on supervisor and self ratings, with stronger positive relationships in low egalitarian cultures. The authors also found 3-way interactions of work-life balance ratings, ratee gender, and gender egalitarianism in multisource analyses in which self balance ratings predicted supervisor and peer ratings of advancement potential. Work-life balance ratings were positively related to advancement potential ratings for women in high egalitarian cultures and men in low gender egalitarian cultures, but relationships were nonsignificant for men in high egalitarian cultures and women in low egalitarian cultures.

  16. Managing dyspnea in patients with advanced chronic obstructive pulmonary disease: A Canadian Thoracic Society clinical practice guideline

    PubMed Central

    Marciniuk, Darcy D; Goodridge, Donna; Hernandez, Paul; Rocker, Graeme; Balter, Meyer; Bailey, Pat; Ford, Gordon; Bourbeau, Jean; O’Donnell, Denis E; Maltais, Francois; Mularski, Richard A; Cave, Andrew J; Mayers, Irvin; Kennedy, Vicki; Oliver, Thomas K; Brown, Candice

    2011-01-01

    Dyspnea is a cardinal symptom of chronic obstructive pulmonary disease (COPD), and its severity and magnitude increases as the disease progresses, leading to significant disability and a negative effect on quality of life. Refractory dyspnea is a common and difficult symptom to treat in patients with advanced COPD. There are many questions concerning optimal management and, specifically, whether various therapies are effective in this setting. The present document was compiled to address these important clinical issues using an evidence-based systematic review process led by a representative interprofessional panel of experts. The evidence supports the benefits of oral opioids, neuromuscular electrical stimulation, chest wall vibration, walking aids and pursed-lip breathing in the management of dyspnea in the individual patient with advanced COPD. Oxygen is recommended for COPD patients with resting hypoxemia, but its use for the targeted management of dyspnea in this setting should be reserved for patients who receive symptomatic benefit. There is insufficient evidence to support the routine use of anxiolytic medications, nebulized opioids, acupuncture, acupressure, distractive auditory stimuli (music), relaxation, hand-held fans, counselling programs or psychotherapy. There is also no evidence to support the use of supplemental oxygen to reduce dyspnea in nonhypoxemic patients with advanced COPD. Recognizing the current unfamiliarity with prescribing and dosing of opioid therapy in this setting, a potential approach for their use is illustrated. The role of opioid and other effective therapies in the comprehensive management of refractory dyspnea in patients with advanced COPD is discussed. PMID:21499589

  17. A review on battery thermal management in electric vehicle application

    NASA Astrophysics Data System (ADS)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  18. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop

  19. Vaccine delivery management.

    PubMed

    Cheyne, J

    1989-01-01

    During the typical 12- to 18-month voyage of a vaccine from manufacturer to immunization site, many situations arise in which the cold chain may be interrupted. Extensive efforts have been made in the 1980s to ensure an uninterrupted cold chain through the use of improved equipment and better training of personnel. One important advance is the vaccine cold-chain monitor, which identifies weak spots in the cold chain and prevents the use of heat-damaged vaccine. Further improvements will require efforts by the recipient countries (e.g., better use of the private sector for transport and equipment management), by donor agencies (e.g., greater consideration of the operational and maintenance costs of the equipment selected and resolution of fuel shortages), and by industry (e.g., more appropriate packaging and pricing of vaccine, extension of the expiration period, and increased heat stability.

  20. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  1. Combined Heat and Power Protocol for Uniform Methods Project | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP

  2. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  3. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  4. Current advance care planning practice in the Australian community: an online survey of home care package case managers and service managers.

    PubMed

    Sellars, Marcus; Detering, Karen M; Silvester, William

    2015-04-23

    Advance care planning (ACP) is the process of planning for future healthcare that is facilitated by a trained healthcare professional, whereby a person's values, beliefs and treatment preferences are made known to guide clinical decision-making at a future time when they cannot communicate their decisions. Despite the potential benefits of ACP for community aged care clients the availability of ACP is unknown, but likely to be low. In Australia many of these clients receive services through Home Care Package (HCP) programs. This study aimed to explore current attitudes, knowledge and practice of advance care planning among HCP service managers and case managers. An invitation to take part in a cross-sectional online survey was distributed by email to all HCP services across Australia in November 2012. Descriptive analyses were used to examine overall patterns of responses to each survey item in the full sample. 120 (response rate 25%) service managers and 178 (response rate 18%) case managers completed the survey. Only 34% of services had written ACP policies and procedures in place and 48% of case managers had previously completed any ACP training. In addition, although most case managers (70%) had initiated an ACP discussion in the past 12 months and viewed ACP as part of their role, the majority of the conversations (80%) did not result in documentation of the client's wishes and most (85%) of the case managers who responded did not believe ACP was done well within their service. This survey shows low organisational ACP systems and support for case managers and a lack of a normative approach to ACP across Australian HCP services. As HCPs become more prevalent it is essential that a model of ACP is developed and evaluated in this setting, so that clients have the opportunity to discuss and document their future healthcare wishes if they choose to.

  5. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  6. Advancing the management of childhood epilepsies.

    PubMed

    Cross, J Helen; Kluger, Gerhard; Lagae, Lieven

    2013-07-01

    Childhood epilepsies comprise a heterogeneous group of disorders and syndromes that vary in terms of severity, prognosis and treatment requirements. Effective management requires early, accurate recognition and diagnosis, and a holistic approach that addresses each individual's medical and psychosocial needs within the context of their overall health status and quality of life. With increasing understanding of underlying aetiologies, new approaches to management and treatment are emerging. For example, genetic testing is beginning to provide a tool to aid differential diagnosis and a means of predicting predisposition to particular types of epilepsy. Despite the availability of an increasing number of antiepileptic drugs (AEDs)--due not only to the development of new AEDs, but also to changes in regulatory requirements that have facilitated clinical development--seizure control and tolerability continue to be suboptimal in many patients, and there is therefore a continuing need for new treatment strategies. Surgery and other non-pharmacological treatments (e.g. vagus nerve stimulation, ketogenic diet) are already relatively well established in paediatric epilepsy. New pharmacological treatments include generational advances on existing AEDs and AEDs with novel modes of action, and non-AED pharmacological interventions, such as immunomodulation. Emerging technologies include novel approaches allowing the delivery of medicinal agents to specific areas of the brain, and 'closed-loop' experimental devices employing algorithms that allow treatment (e.g., electrical stimulation) to be targeted both spatially and temporally. Although in early stages of development, cell-based approaches (e.g., focal targeting of adenosine augmentation) and gene therapy may also provide new treatment choices in the future. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.

  8. Something Ventured, Something Gained. An Advanced Curriculum for Small Business Management. Volume II.

    ERIC Educational Resources Information Center

    Shuchat, Jo; And Others

    Nine units on small business management are provided in this curriculum guide designed for use in an advanced course for secondary and postsecondary students who are interested in beginning a small business venture, have some prior business knowledge, and have a specific business in mind. Unit topics include marketing, location, systems and…

  9. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  10. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  11. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a

  12. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  13. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  14. Recent advances in managing vascular occlusions in the cardiac catheterization laboratory

    PubMed Central

    Qureshi, Athar M.; Mullins, Charles E.; Latson, Larry A.

    2018-01-01

    Vascular occlusions continue to be a significant cause of morbidity and mortality. The management of vascular occlusions in patients is complex, requiring specialized expertise in the cardiac catheterization laboratory and from other disciplines. Knowledge of currently available tools at the operator’s disposal is important to optimize the success of these procedures. In this review, we discuss some of the recent advances in recanalization procedures of vascular occlusions and thrombotic lesions in the cardiac catheterization laboratory. PMID:29770200

  15. Automation Applications in an Advanced Air Traffic Management System : Volume 4B. Automation Requirements (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  16. Advances in surgical management of lumbar degenerative disease.

    PubMed

    Silber, Jeff S; Anderson, D Greg; Hayes, Victor M; Vaccaro, Alexander R

    2002-07-01

    The past several years have seen many advances in spine technology. Some of these advances have improved the quality of life of patients suffering from disabling low back pain from degenerative disk disease. Traditional fusion procedures are trending toward less invasive approaches with less iatrogenic soft-tissue morbidity. The diversity of bone graft substitutes is increasing with the potential for significant improvements in fusion success with the future introduction of several well tested bone morphogenic proteins to the spinal market. Biologic solutions to modify the natural history of disk degeneration are being investigated. Recently, electrothermal modulation of the posterior annulus fibrosis has been published as a semi-invasive technique to relieve low back pain generated by fissures in the outer annulus and ingrowing nociceptors (intradiskal electrothermal therapy, and intradiskal electrothermal annuloplasty). Initial results are promising, however, prospective randomized studies comparing this technique with conservative therapy are still lacking. The same is true for artificial nucleus pulposus replacement using hydrogel cushions implanted in the intervertebral space after removal of the nucleus pulposus posterior or through an anterior approach. Intervertebral disk prostheses are presently being studied in small prospective patient cohorts. As with all new developments, careful prospective, long-term trials are needed to fully define the role of these technologies in the management of symptomatic lumbar degenerative disk disease.

  17. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Gu, Junjie; Liu, Jie

    2015-01-01

    An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

  18. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  19. Advanced Computational Framework for Environmental Management ZEM, Version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinov, Velimir V.; O'Malley, Daniel; Pandey, Sachin

    2016-11-04

    Typically environmental management problems require analysis of large and complex data sets originating from concurrent data streams with different data collection frequencies and pedigree. These big data sets require on-the-fly integration into a series of models with different complexity for various types of model analyses where the data are applied as soft and hard model constraints. This is needed to provide fast iterative model analyses based on the latest available data to guide decision-making. Furthermore, the data and model are associated with uncertainties. The uncertainties are probabilistic (e.g. measurement errors) and non-probabilistic (unknowns, e.g. alternative conceptual models characterizing site conditions).more » To address all of these issues, we have developed an integrated framework for real-time data and model analyses for environmental decision-making called ZEM. The framework allows for seamless and on-the-fly integration of data and modeling results for robust and scientifically-defensible decision-making applying advanced decision analyses tools such as Bayesian- Information-Gap Decision Theory (BIG-DT). The framework also includes advanced methods for optimization that are capable of dealing with a large number of unknown model parameters, and surrogate (reduced order) modeling capabilities based on support vector regression techniques. The framework is coded in Julia, a state-of-the-art high-performance programing language (http://julialang.org). The ZEM framework is open-source and can be applied to any environmental management site. The framework will be open-source and released under GPL V3 license.« less

  20. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  1. How can we help family carers manage pain medicines for patients with advanced cancer? A systematic review of intervention studies

    PubMed Central

    Latter, Sue; Hopkinson, Jane B; Richardson, Alison; Hughes, Jane A; Lowson, Elizabeth; Edwards, Deborah

    2016-01-01

    Background Family carers play a significant role in managing pain and associated medicines for people with advanced cancer. Research indicates that carers often feel inadequately prepared for the tasks involved, which may impact on carers’ and patients’ emotional state as well as the achievement of optimal pain control. However, little is known about effective methods of supporting family carers with cancer pain medicines. Aims To systematically identify and review studies of interventions to help carers manage medicines for pain in advanced cancer. To identify implications for practice and research. Method A systematic literature search of databases (MEDLINE, CINAHL, PsycINFO and AMED) was carried out to identify studies of pain medication management interventions that involved family carers of patients with advanced cancer, and reported specific outcomes for family carers. Patient pain outcomes were also sought. Studies were quality appraised; key aspects of study design, interventions and outcomes were compared and a narrative synthesis of findings developed. Results 8 studies were included; all had significant methodological limitations. The majority reported improvements in family carer knowledge and/or self-efficacy for managing pain medicines; no effect on patient pain outcomes; and no adverse effects. It was not possible to discern any association between particular intervention characteristics and family carer outcomes. Conclusions Current evidence is limited, but overall suggests face-to-face educational interventions supported by written and/or other resources have potential to improve carers’ knowledge and self-efficacy for pain management. Further research is needed to identify how best to help family carers manage pain medicines for patients with advanced cancer. PMID:27150294

  2. Management of heat in laser tissue welding using NIR cover window material.

    PubMed

    Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R

    2011-12-01

    Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.

  3. Emergency management of heat exchanger leak on cardiopulmonary bypass with hypothermia.

    PubMed

    Gukop, P; Tiezzi, A; Mattam, K; Sarsam, M

    2015-11-01

    Heat exchanger leak on cardiopulmonary bypass is very rare, but serious. The exact incidence is not known. It is an emergency associated with the potential risk of blood contamination, air embolism and haemolysis, difficulty with re-warming, acidosis, subsequent septic shock, multi-organ failure and death. We present a prompt, highly co-ordinated algorithm for the successful management of this important rare complication. There is need for further research to look for safety devices that detect leaks and techniques to reduce bacterial load. It is essential that teams practice oxygenator change-out routines and have a well-established change-out protocol. © The Author(s) 2015.

  4. Advanced Concepts and Controversies in Emergency Department Pain Management.

    PubMed

    Motov, Sergey M; Nelson, Lewis S

    2016-06-01

    Pain is the most common complaint for which patients come to the emergency department (ED). Emergency physicians are responsible for pain relief in a timely, efficient, and safe manner in the ED. The improvement in our understanding of the neurobiology of pain has balanced the utilization of nonopioid and opioid analgesia, and simultaneously has led to more rational and safer opioid prescribing practices. This article reviews advances in pain management in the ED for patients with acute and chronic pain as well as describes several newer strategies and controversies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Airway emergencies presenting to the paediatric emergency department requiring advanced management techniques.

    PubMed

    Simma, Leopold; Cincotta, Domenic; Sabato, Stefan; Long, Elliot

    2017-09-01

    Airway emergencies presenting to the emergency department (ED) are usually managed with conventional equipment and techniques. The patient group managed urgently in the operating room (OR) has not been described. This study aims to describe a case series of children presenting to the ED with airway emergencies managed urgently in the OR, particularly the anaesthetic equipment and techniques used and airway findings. A retrospective cohort study undertaken at The Royal Children's Hospital, Melbourne, Australia. All patients presenting to the ED between 1 January 2012 and 30 July 2015 (42 months) with an airway emergency who were subsequently managed in the OR were included. Patient characteristics, anaesthetic equipment and technique and airway findings were recorded. Twenty-two airway emergencies in 21 patients were included over the study period, on average one every 2 months. Median age was 18 months and 43% were male. Inhalational induction was used in 77.3%, combined inhalational and intravenous induction in 9.1%, and intravenous induction alone in 13.6%. The most commonly used inhalational induction agent was sevoflurane, and the most commonly used intravenous induction agents were ketamine and propofol. Ten airway emergencies did not require intubation, seven for removal of inhaled foreign body, two with progressive tracheal stenosis requiring emergent dilatation and one examination under anaesthesia to rule out inhaled foreign body. Of the 12 airway emergencies that required immediate intubation, direct laryngoscopy was used in 9 and fibre-optic intubating bronchoscopy in 3. For intubations performed by direct laryngoscopy, one was difficult (Cormack and Lehane grade 3). First pass success was 83.3%. Adverse events occurred in 3/22 (13.6%) cases. Advanced airway techniques, including inhalational induction and intubation via fibre-optic intubating bronchoscope, are rarely but predictably required in the management of patients presenting to the ED

  6. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  7. Management of Heart Failure in Advancing CKD: Core Curriculum 2018.

    PubMed

    House, Andrew A

    2018-02-23

    Heart failure and chronic kidney disease have increasing incidence and prevalence owing in part to the aging population and increasing rates of hypertension, diabetes, and other cardiovascular and kidney disease risk factors. The presence of one condition also has a strong influence on the other, leading to greater risks for hospitalization, morbidity, and death, as well as very high health care costs. Despite the frequent coexistence of heart failure and chronic kidney disease, many of the pivotal randomized trials that guide the management of heart failure have excluded patients with more advanced stages of chronic kidney disease. In this Core Curriculum article, management of a challenging, yet not unusual, case of heart failure with reduced ejection fraction in a patient with stage 4 chronic kidney disease provides an opportunity to review the relevant literature and highlight gaps in our knowledge. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  9. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Ely, Donald W. (Inventor); Fussell, Ronald M. (Inventor); Halpin, Paul C. (Inventor); Blackwell-Thompson, Charlie (Inventor); Meier, Gary M. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  10. Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.

    2013-12-01

    Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted

  11. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  12. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  13. Post-fire Tree Mortality: Heating Increases Vulnerability to Cavitation in Longleaf Pine Branches

    NASA Astrophysics Data System (ADS)

    Lodge, A.; Kavanagh, K.; Dickinson, M. B.

    2016-12-01

    Tree mortality following wild and prescribed fires is of interest to both researchers and land managers. While some models exist that can predict mortality following fires, process-based models that incorporate physiological mechanisms of mortality are still being developed and improved. Delayed post-fire tree mortality has recently received increased attention, in part due to an increased use of prescribed fire as a restoration and management tool. One hypothesized mechanism of delayed mortality in trees is disruption of water transport in xylem due to exposure to the heat plume of a fire. This heat plume rapidly increases the vapor pressure deficit in the tree canopy, quickly increasing the tension on the water held in the xylem and leaves, potentially leading to cavitation. Cavitated xylem conduits can no longer transport water, eventually leading to tree death. We conducted a laboratory experiment examining whether heating stems increases their vulnerability to cavitation. We placed longleaf pine (Pinus palustris) branches in a water bath at sub-lethal temperatures (<60°C) and applied pressure in a cavitation chamber to simulate a range of xylem tension levels that may occur during fire. Percent loss of conductivity was measured following cavitation induced by various levels of applied pressure. When we compared the resulting vulnerability curves of heated branches to those of branches pressurized at room temperature, we observed increased vulnerability to cavitation in the heated samples especially at lower pressures. P50, or the pressure at which 50% of conductivity has been lost, decreased by 18% on branches heated to approximately 54°C. This suggests that stems heated during fires may be more vulnerable to cavitation, and provides some support for hydraulic disruption as a mechanism for post-fire tree mortality. Continued advancement in understanding of the mechanisms leading to delayed mortality will improve models predicting tree mortality.

  14. Understanding requirements of novel healthcare information systems for management of advanced prostate cancer.

    PubMed

    Wagholikar, Amol S; Fung, Maggie; Nelson, Colleen C

    2012-01-01

    Effective management of chronic diseases is a global health priority. A healthcare information system offers opportunities to address challenges of chronic disease management. However, the requirements of health information systems are often not well understood. The accuracy of requirements has a direct impact on the successful design and implementation of a health information system. Our research describes methods used to understand the requirements of health information systems for advanced prostate cancer management. The research conducted a survey to identify heterogeneous sources of clinical records. Our research showed that the General Practitioner was the common source of patient's clinical records (41%) followed by the Urologist (14%) and other clinicians (14%). Our research describes a method to identify diverse data sources and proposes a novel patient journey browser prototype that integrates disparate data sources.

  15. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  16. The Urban Heat Island Pilot Project (UHIPP)

    NASA Technical Reports Server (NTRS)

    Luvall, Jeff; Morris, Lynn; Stewart, Fran; Thretheway, Ray; Gartland, Lisa; Russell, Camille; Reddish, Merrill; Arnold, James E. (Technical Monitor)

    2001-01-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively "cool" the metropolitan landscape. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three U.S. cities. As part of the pilot, NASA is using remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. To pursue these efforts, more information is needed about specific characteristics of several different cities. NASA used the Advanced Thermal and Land Applications Sensor (ATLAS) to obtain high spatial resolution (10 m pixel resolution) over each of the three pilot cities (Baton Rouge, Sacramento, and Salt Lake City). The goal of the UHIPP is to use the results from the NASA/LBNL analysis, combined with knowledge gained through working with various organizations within each pilot city to identify the most effective means of implementing strategies designed to mitigate the urban heat island, These "lessons learned" will be made available and used by cities across the U.S. to assist policy makers and others within various communities to analyze their own urban heat islands and determine which, if any, measures can be taken to help save energy and money, and to prevent pollution. The object of this session is for representatives from each of the pilot cities to present their results of the study and share the experience of working with these data in managing their urban landscape.

  17. Reducing domestic heating demand: Managing the impact of behavior-changing feedback devices via marketing.

    PubMed

    Jensen, Thorben; Chappin, Émile J L

    2017-07-15

    Feedback devices can be used to inform households about their energy-consumption behavior. This may persuade them to practice energy conservation. The use of feedback devices can also-via word of mouth-spread among households and thereby support the spread of the incentivized behavior, e.g. energy-efficient heating behavior. This study investigates how to manage the impact of these environmental innovations via marketing. Marketing activities can support the diffusion of devices. This study aims to identify the most effective strategies of marketing feedback devices. We did this by adapting an agent-based model to simulate the roll-out of a novel feedback technology and heating behavior within households in a virtual city. The most promising marketing strategies were simulated and their impacts were analyzed. We found it particularly effective to lend out feedback devices to consumers, followed by leveraging the social influence of well-connected individuals, and giving away the first few feedback devices for free. Making households aware of the possibility of purchasing feedback devices was found to be least effective. However, making households aware proved to be most cost-efficient. This study shows that actively managing the roll-out of feedback devices can increase their impacts on energy-conservation both effectively and cost-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  19. The NSF-RCN Urban Heat Island Network

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hamilton, P.; Shepherd, M.; Stone, B., Jr.

    2014-12-01

    In much of the world cities are warming at twice the rate of outlying rural areas. The frequency of urban heat waves is projected to increase with climate change through the 21stcentury. Addressing the economic, environmental, and human costs of urban heat islands requires a better understanding of their behavior from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to (1) bring together scientists studying the causes and impacts of urban warming, (2) advance multidisciplinary understanding of urban heat islands, (3) examine how they can be ameliorated through engineering and design practices, and (4) share these new insights with a wide array of stakeholders responsible for managing urban warming to reduce their health, economic, and environmental impacts. The Urban Heat Island Network involves atmospheric scientists, engineers, architects, landscape designers, urban planners, public health experts, and education and outreach experts, who will share knowledge, evaluate research directions, and communicate knowledge and research recommendations to the larger research community as well as stakeholders engaged in developing strategies to adapt to and mitigate urban warming. The first Urban Climate Institute was held in Saint Paul, Minnesota in July 2013 and focused on the characteristics of urban heat islands. Scientists engaged with local practitioners to improve communication pathways surrounding issues of understanding, adapting to, and mitigating urban warming. The second Urban Climate Institute was held in Atlanta, Georgia in July 2014 and focused on urban warming and public health. Scientists discussed the state of the science on urban modeling, heat adaptation, air pollution, and infectious disease. Practitioners informed participants on emergency response methods and protocols related to heat and other extreme weather events. Evaluation experts at the Science Museum of Minnesota have extensively evaluated both Institutes

  20. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico.

    PubMed

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E; Otis, Daniel; McCarthy, Matthew J; Rodríguez, Ernesto

    2018-05-01

    Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate

  1. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E.; Otis, Daniel; McCarthy, Matthew J.; Rodríguez, Ernesto

    2018-05-01

    Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate

  2. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E.; Otis, Daniel; McCarthy, Matthew J.; Rodríguez, Ernesto

    2017-02-01

    Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate

  3. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  4. Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Song, Li

    developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.

  5. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  6. Management of treatment-related toxicities in advanced medullary thyroid cancer.

    PubMed

    Brose, Marcia S; Bible, Keith C; Chow, Laura Q M; Gilbert, Jill; Grande, Carolyn; Worden, Francis; Haddad, Robert

    2018-05-01

    Progress in the treatment of advanced medullary thyroid cancer (MTC) has resulted from the approval of 2 drugs within the past 5 years, vandetanib and cabozantinib. These multikinase inhibitors (MKIs) possess overlapping specificities for multiple kinase targets implicated in the progression of MTC. Both drugs are associated with toxicities, including hypertension, hemorrhage/perforation, diarrhea and other gastrointestinal events, several dermatologic events, and hypothyroidism. In addition, vandetanib is uniquely associated with QTc prolongation through interaction with myocardial potassium channels, and cabozantinib is uniquely associated with hand-foot skin reaction. Treatment-related toxicities occur frequently and can be severe or life-threatening, and patients undergoing long-term treatment will likely experience adverse events (AEs). Here we offer specific practical recommendations for managing AEs commonly occurring with vandetanib and cabozantinib. The recommended approach relies on early recognition and palliation of symptoms, dose interruption, and dose reduction as necessary in order for the patient to maintain the highest tolerable dose for as long as possible and optimal quality of life. Treatment guidelines do not specify a recommended sequence for treating with vandetanib and cabozantinib; however, most patients will receive both drugs during their lifetime. The choice for first-line therapy is individualized after a risk-benefit assessment and depends on physician preference and patient-related factors, such as comorbid conditions. Because most generalist practices may not be familiar with the intricacies of agents such as vandetanib and cabozantinib, we commend that patients with advanced MTC be managed and treated by a thyroid cancer specialist with coordination of care within a multidisciplinary team. Copyright © 2018. Published by Elsevier Ltd.

  7. Planning and Managing Learning Tasks and Activities. Advances in Research on Teaching. Volume 3.

    ERIC Educational Resources Information Center

    Brophy, Jere, Ed.

    This publication is the third volume in the "Advanced in Research on Teaching" series, which has been established to provide state-of-the-art conceptualization and analysis of the processes involved in functioning as a classroom teacher. This volume focuses on the planning and managing of learning tasks and activities, in particular,…

  8. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  9. Natural language processing and advanced information management

    NASA Technical Reports Server (NTRS)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  10. Management of advanced colon cancer in a community hospital--impact of age on clinical management and survival.

    PubMed

    Mogili, Sujatha; Yousaf, Mobeen; Nadaraja, Nagendra; Woodlock, Timothy

    2012-09-01

    Colon cancer is more common in the elderly than in younger and middle-aged people. Cancer clinical trials focus more on younger patients and the management of elderly patients with advanced disease is still unclear. We studied all patients presenting with colon adenocarcinoma metastasis to liver at a community teaching hospital from Dec 2000 through Dec 2007 by a retrospective review of Tumor Registry data and patient chart review with focus on age, clinical management, decision making, and survival. Sixty-seven patients with a median age of 69 and a male to female ratio of 31:36 were identified. The patients with obstructive symptoms and Eastern Cooperative Oncology Group performance status on presentation though varied little by age, smaller proportion of elderly patients underwent resection of the primary bowel tumor in the presence of liver metastases with ten of 16 (63%) aged 80 or greater being managed without surgery. The percentage of patient's preference to physician's preference for patients not undergoing the primary bowel resection increased for older age group. Median survival decreased significantly with age (p < 0.05). Age-related clinical management, decision-making autonomy, and survival are apparent in this study, and there was an increasing trend of patient's involvement in decision making as the age increases and, thus, affecting the age-related clinical management.

  11. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  12. Methods of forming thermal management systems and thermal management methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  13. Base heating methodology improvements, volume 1

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.; Somers, Richard E.; Fulton, Michael S.; Smith, Sheldon D.; Pergament, Harold

    1992-01-01

    This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years.

  14. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less

  15. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  16. Nursing home manager's knowledge, attitudes and beliefs about advance care planning for people with dementia in long-term care settings: a cross-sectional survey.

    PubMed

    Beck, Esther-Ruth; McIlfatrick, Sonja; Hasson, Felicity; Leavey, Gerry

    2017-09-01

    To examine nursing home managers' knowledge, attitudes, beliefs and current practice regarding advance care planning for people with dementia in long-term care settings informed by the theory of planned behaviour. Internationally, advance care planning is advocated for people with dementia. However, evidence suggests that discussions with people with dementia are rare, particularly in long-term care settings. Whilst nursing home managers can be considered central to implementation in this setting, there is a dearth of research that has examined their perspective. This study reports on their role with regard to advance care planning and the perceived factors which influence this. A cross-sectional postal survey was carried out as part of a larger scale sequential explanatory mixed-methods study between January-March 2015. Nursing home managers in a region in the UK (n = 178). A response rate of 66% (n = 116) was achieved. Nursing home managers demonstrated a lack of knowledge of advance care planning, with negative attitudes underpinned by concerns regarding the capacity and lack of perceived benefits to the person with dementia. Currently, they do not view advance care planning as part of their role, with lack of ownership impacting upon current practice behaviours. Whilst nursing home managers recognise the potential benefits of advance care planning, barriers and challenges create a reluctance to facilitate. Targeted training to address the knowledge deficit is required, with the wider components of advance care planning promoted. There is a need for greater role clarification to ensure nurses in long-term care settings identify with the process in the future. A gap between rhetoric and reality of implementation is evident; therefore, long-term care settings must critically examine system, organisational and individual factors for failure to implement advance care planning for people with dementia. Increased cognisance of the context in which advance care

  17. Medical and Surgical Advancements in the Management of Cystic Fibrosis Chronic Rhinosinusitis

    PubMed Central

    Tipirneni, Kiranya E.; Woodworth, Bradford A.

    2017-01-01

    Purpose of review The purpose of this review is to provide otolaryngologists with the most up-to-date advancements in both the medical and surgical management of CF-related sinus disease. Recent findings Recent studies have supported more aggressive CRS management, often with a combination of both medical and surgical therapies. Comprehensive treatment strategies have been shown to reduce hospital admissions secondary to pulmonary exacerbations in addition to improving CRS symptoms. Still, current management strategies are lacking in both high-level evidence and standardized guidelines. Summary The unified airway model describes the bi-directional relationship between the upper and lower airways as a single functional unit and suggests that CRS may play a pivotal role in both the development and progression of lower airway disease. Current strategies for CF CRS focus primarily on amelioration of symptoms with antibiotics, nasal saline and/or topical medicated irrigations, and surgery. However, there are no definitive management guidelines and there remains a persistent need for additional studies. Nevertheless, otolaryngologists have a significant role in the overall management of CF, which requires a multi-disciplinary approach and a combination of both surgical and medical interventions for optimal outcomes of airway disease. Here we present a review of currently available literature and summarize medical and surgical therapies best suited for the management of CF-related sinus disease. PMID:28989817

  18. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.; Wilmarth, W.; Marra, J.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS

  19. Enterprise SRS: leveraging ongoing operations to advance radioactive waste management technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Wilmarth, William; Marra, John E.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that

  20. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-01-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  1. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  2. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    PubMed Central

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  3. How can we help family carers manage pain medicines for patients with advanced cancer? A systematic review of intervention studies.

    PubMed

    Latter, Sue; Hopkinson, Jane B; Richardson, Alison; Hughes, Jane A; Lowson, Elizabeth; Edwards, Deborah

    2016-09-01

    Family carers play a significant role in managing pain and associated medicines for people with advanced cancer. Research indicates that carers often feel inadequately prepared for the tasks involved, which may impact on carers' and patients' emotional state as well as the achievement of optimal pain control. However, little is known about effective methods of supporting family carers with cancer pain medicines. To systematically identify and review studies of interventions to help carers manage medicines for pain in advanced cancer. To identify implications for practice and research. A systematic literature search of databases (MEDLINE, CINAHL, PsycINFO and AMED) was carried out to identify studies of pain medication management interventions that involved family carers of patients with advanced cancer, and reported specific outcomes for family carers. Patient pain outcomes were also sought. Studies were quality appraised; key aspects of study design, interventions and outcomes were compared and a narrative synthesis of findings developed. 8 studies were included; all had significant methodological limitations. The majority reported improvements in family carer knowledge and/or self-efficacy for managing pain medicines; no effect on patient pain outcomes; and no adverse effects. It was not possible to discern any association between particular intervention characteristics and family carer outcomes. Current evidence is limited, but overall suggests face-to-face educational interventions supported by written and/or other resources have potential to improve carers' knowledge and self-efficacy for pain management. Further research is needed to identify how best to help family carers manage pain medicines for patients with advanced cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Heat Stress Effects on Growing-Finishing Swine

    USDA-ARS?s Scientific Manuscript database

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  5. Heat-transfer optimization of a high-spin thermal battery

    NASA Astrophysics Data System (ADS)

    Krieger, Frank C.

    Recent advancements in thermal battery technology have produced batteries incorporating a fusible material heat reservoir for operating temperature control that operate reliably under the high spin rates often encountered in ordnance applications. Attention is presently given to the heat-transfer optimization of a high-spin thermal battery employing a nonfusible steel heat reservoir, on the basis of a computer code that simulated the effect of an actual fusible material heat reservoir on battery performance. Both heat paper and heat pellet employing thermal battery configurations were considered.

  6. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation lawsmore » along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.« less

  7. Heat transfer of molten metal layers in severe accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Seung Kai; Walton, A.; Yang, Zhilin

    1997-12-01

    In some scenarios of severe accidents of light water reactors, a layer of molten metal from internal structural components of the pressure vessel is predicted to occur on top of a ceramic core debris in the lower head. The layer transfers the heat generated in the ceramic pool to the side wall of the vessel, causing the latter to melt. This problem has been investigated by Theofanous et al. for the advanced light water reactor AP600 in the context of the accident management strategy of ex-vessel cooling, and the conclusion was drawn that the melting does not seriously compromise themore » integrity of the pressure vessel.« less

  8. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014

  9. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  10. A dual-mode textile for human body radiative heating and cooling

    PubMed Central

    Hsu, Po-Chun; Liu, Chong; Song, Alex Y.; Zhang, Ze; Peng, Yucan; Xie, Jin; Liu, Kai; Wu, Chun-Lan; Catrysse, Peter B.; Cai, Lili; Zhai, Shang; Majumdar, Arun; Fan, Shanhui; Cui, Yi

    2017-01-01

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textile without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. Numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast. PMID:29296678

  11. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems.

    PubMed

    Floyd, Michael S; Valentine, Jeremy R; Olson, Randall J

    2006-09-01

    To study heat generation, vacuum, and flow characteristics of the Alcon Infiniti and Bausch & Lomb Millennium with results compared with the Alcon Legacy and advanced medical optics (AMO) Sovereign machines previously studied. Experimental study. Heat generation with continuous ultrasound was determined with and without a 200-g weight. Flow and vacuum were determined from 12 to 40-ml/min in 2-ml/min steps. The impact of a STAAR Cruise Control was also tested. Millennium created the most heat/20% of power (5.67 +/- 0.51 degrees C unweighted and 6.80 +/- 0.80 degrees C weighted), followed by Sovereign (4.59 +/- 0.70 degrees C unweighted and 5.65 +/- 0.72 degrees C weighted), Infiniti (2.79 +/- 0.62 degrees C unweighted and 3.96 +/- 0.31 degrees C weighted), and Legacy (1.99 +/- 0.49 degrees C unweighted and 4.27 +/- 0.76 degrees C weighted; P < .0001 for all comparisons between machines except Infiniti vs Legacy, both weighted). Flow studies revealed that Millennium Peristaltic was 17% less than indicated (P < .0001 to all other machines), and all other machines were within 3.5% of indicated. Cruise Control decreased flow by 4.1% (P < .0001 for same machine without it). Millennium Venturi had the greatest vacuum (81% more than the least Sovereign; P < .0001), and Cruise Control increased vacuum in a peristaltic machine 35% more than the Venturi system (P < .0001). Percent power is not consistent in regard to heat generation, however, flow was accurate for all machines except Millennium Peristaltic. Restriction with Cruise Control elevates unoccluded vacuum to levels greater than the Venturi system tested.

  12. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  13. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    PubMed

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  14. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    NASA Astrophysics Data System (ADS)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  15. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest.

    PubMed

    Hasegawa, Kohei; Hiraide, Atsushi; Chang, Yuchiao; Brown, David F M

    2013-01-16

    It is unclear whether advanced airway management such as endotracheal intubation or use of supraglottic airway devices in the prehospital setting improves outcomes following out-of-hospital cardiac arrest (OHCA) compared with conventional bag-valve-mask ventilation. To test the hypothesis that prehospital advanced airway management is associated with favorable outcome after adult OHCA. Prospective, nationwide, population-based study (All-Japan Utstein Registry) involving 649,654 consecutive adult patients in Japan who had an OHCA and in whom resuscitation was attempted by emergency responders with subsequent transport to medical institutions from January 2005 through December 2010. Favorable neurological outcome 1 month after an OHCA, defined as cerebral performance category 1 or 2. Of the eligible 649,359 patients with OHCA, 367,837 (57%) underwent bag-valve-mask ventilation and 281,522 (43%) advanced airway management, including 41,972 (6%) with endotracheal intubation and 239,550 (37%) with use of supraglottic airways. In the full cohort, the advanced airway group incurred a lower rate of favorable neurological outcome compared with the bag-valve-mask group (1.1% vs 2.9%; odds ratio [OR], 0.38; 95% CI, 0.36-0.39). In multivariable logistic regression, advanced airway management had an OR for favorable neurological outcome of 0.38 (95% CI, 0.37-0.40) after adjusting for age, sex, etiology of arrest, first documented rhythm, witnessed status, type of bystander cardiopulmonary resuscitation, use of public access automated external defibrillator, epinephrine administration, and time intervals. Similarly, the odds of neurologically favorable survival were significantly lower both for endotracheal intubation (adjusted OR, 0.41; 95% CI, 0.37-0.45) and for supraglottic airways (adjusted OR, 0.38; 95% CI, 0.36-0.40). In a propensity score-matched cohort (357,228 patients), the adjusted odds of neurologically favorable survival were significantly lower both for

  16. Management of heat stress in the livestock industry

    USDA-ARS?s Scientific Manuscript database

    Heat stress costs the animal industry over $1.7 billion annually. Annual losses average $369 million in the beef cattle industry and $299 million in the swine industry. The impacts of a single heat stress event on individual animals are quite varied. Brief events often cause little or no effect. ...

  17. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  18. The management of corneal trauma: advances in the past twenty-five years.

    PubMed

    Macsai, M S

    2000-09-01

    Over the past quarter century, advances in our understanding of corneal anatomy, physiology, and wound healing have all played an integral role in the management of corneal trauma. As the etiologies of corneal trauma have changed, so has our understanding of the impact of injury on corneal function as it relates to visual rehabilitation. Numerous new classes of antibiotics, antiinflammatory agents, and tissue adhesives have emerged. Occlusive therapy has advanced from simple pressure patching bandage soft contact lenses and collagen shields. Surgical instrumentation, operating microscopes, viscoelastic substances, and suture materials have all improved the outcomes of corneal trauma repair. Improved understanding of the refractive properties of the cornea through topography and alternative suture techniques has helped us restore the natural corneal curvature and visual outcomes. Consequently, in the last quarter of this century our therapeutic approaches to cornea trauma, both medical and surgical, have improved.

  19. Informative Top-k Retrieval for Advanced Skill Management

    NASA Astrophysics Data System (ADS)

    Colucci, Simona; di Noia, Tommaso; Ragone, Azzurra; Ruta, Michele; Straccia, Umberto; Tinelli, Eufemia

    The paper presents a knowledge-based framework for skills and talent management based on an advanced matchmaking between profiles of candidates and available job positions. Interestingly, informative content of top-k retrieval is enriched through semantic capabilities. The proposed approach allows to: (1) express a requested profile in terms of both hard constraints and soft ones; (2) provide a ranking function based also on qualitative attributes of a profile; (3) explain the resulting outcomes (given a job request, a motivation for the obtained score of each selected profile is provided). Top-k retrieval allows to select most promising candidates according to an ontology formalizing the domain knowledge. Such a knowledge is further exploited to provide a semantic-based explanation of missing or conflicting features in retrieved profiles. They also indicate additional profile characteristics emerging by the retrieval procedure for a further request refinement. A concrete case study followed by an exhaustive experimental campaign is reported to prove the approach effectiveness.

  20. Metabolic heat production, heat loss and the circadian rhythm of body temperature in the rat.

    PubMed

    Refinetti, Roberto

    2003-05-01

    Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of heat production was phase-advanced by about half an hour in relation to the body temperature rhythm, whereas the rhythm of heat loss was phase-delayed by about half an hour. The balance of heat production and heat loss exhibited a daily oscillation 180 deg out of phase with the oscillation in body temperature. Computations indicated that the amount of heat associated with the generation of the body temperature rhythm (1.6 kJ) corresponds to less than 1 % of the total daily energy budget (172 kJ) in this species. Because of the small magnitude of the fraction of heat balance associated with the body temperature rhythm, it is likely that the daily oscillation in heat balance has a very slow effect on body temperature, thus accounting for the 180 deg phase difference between the rhythms of heat balance and body temperature.

  1. Platelet rich fibrin (Prf) and β-tricalcium phosphate with coronally advanced flap for the management of grade-II furcation defect.

    PubMed

    Sambhav, Jain; Rohit, Rai; Ranjana, Mohan; Shalabh, Mehrotra

    2014-07-01

    Multirooted teeth offer unique and challenging problems due to the furcation area, creates situations in which routine periodontal procedures are somewhat limited and special procedures are generally required. The present case was showing the management of grade II furcation defect by platelet rich fibrin (PRF) and β-Tricalcium phosphate with coronally advanced flap. Platelet rich fibrin and β-Tricalcium phosphate with coronally advanced flap have been shown to be a promising and successful approach for the treatment of furcation defect. Its gaining clinical attachment significantly manages both the gingival recession and furcation involvement simultaneously.

  2. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  3. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  4. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  5. Advanced Seal Sessions I and II

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H.; Sarawate, Neelesh

    2013-01-01

    As aircraft operators continue to seek higher fuel efficiency, lower emissions, and longer on-wing performance, turbine engine designers are scrutinizing all components for areas of improvement. To achieve overall goals, turbine pressure ratios and by-pass ratios continue to climb. Also, designers are seeking to minimize parasitic and cooling flows to extract the most useful work out of the flow stream, placing a renewed interest on seal technology and secondary flow path management. In the area of future manned spacecraft, advancements are being examined for both habitat seals and re-entry thermal protection system thermal barrierseals. For long duration space craft, designers are continuing to look for savings in parasitic losses to reduce the amount of cabin re-supply air that needs to be brought along. This is placing greater demands on seal designs and materials to exhibit low leakage and be resistant to space environments. For future missions to and from distant planets, the re-entry heating will be higher than for low-earth orbit or lunar return motivating advanced thermal barrier development. This presentation will provide an overview of the seal challenges and opportunities in these diverse areas.

  6. Asian consensus workshop report: expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia.

    PubMed

    Han, Kwang-Hyub; Kudo, Masatochi; Ye, Sheng-Long; Choi, Jong Young; Poon, Roonni Tung-Ping; Seong, Jinsil; Park, Joong-Won; Ichida, Takafumi; Chung, Jin Wook; Chow, Pierce; Cheng, Ann-Lii

    2011-01-01

    Hepatocellular carcinoma (HCC) is a highly prevalent disease in many Asian countries, accounting for 80% of victims worldwide. Screening programs improve the detection of early HCC and have a positive impact on survival, but the majority of HCC patients in Asia still present with advanced stage disease. The treatment outcomes of HCC are affected by multiple variables, including liver function, performance status of the patient, and tumor stage. Therefore, it is not easy to apply a multidisciplinary therapeutic approach for optimal management. At present, limited numbers of HCC patients are eligible for curative therapies such as surgery or ablation in Asia. Therefore, most patients are eligible for only palliative treatments. For optimal management, the treatment choice is guided by staging systems and treatment guidelines. Numerous staging systems have been proposed and treatment guidelines vary by region. According to the Barcelona Clinic Liver Cancer (BCLC) guideline based on evidence from randomized clinical trials, only transarterial chemoembolization (TACE) is recommended for intermediate stage HCC and sorafenib for advanced stage HCC. However, treatment guidelines from Asian countries have adopted several other therapeutic modalities such as a surgical approach, hepatic arterial infusion chemotherapy, external radiation, and their combinations based on clinical experiences for intermediate and advanced stage HCC. Although TACE is the main therapeutic modality in the intermediate stage, overall therapeutic outcomes depend on the tumor size. In the advanced stage, the prognosis depends on the tumor status, e.g. major vessel invasion or extrahepatic spread. Thus, a new staging system representing prognoses suitable for Asian HCC patients and a corresponding optimal treatment algorithm should be further investigated using evidence-based data, which will finally bring about an Asian consensus for the management of intermediate and advanced stage HCC. Copyright

  7. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  8. ASME Material Challenges for Advanced Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less

  9. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  10. Automation Applications in an Advanced Air Traffic Management System : Volume 5A. DELTA Simulation Model - User's Guide

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  11. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  12. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  13. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 4. Operational Description and Qualitative Assessment.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a description of how the Satellite-Based Advanced Air Traffic Management System (SAATMS) operates and a qualitative assessment of the system. The operational description includes the services, functions, and tasks performed by the...

  14. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 6. Development and Transition Plans.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the plans for implementing the Satellite-Based Advanced Air Traffic Management System (SAATMS) described in Volumes II, III, and IV. Two plans are presented: an RDT&E plan and a transition plan. The RDT&E plan is presented as a se...

  15. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  16. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Management of locally advanced and metastatic colon cancer in elderly patients.

    PubMed

    Kurniali, Peter C; Hrinczenko, Borys; Al-Janadi, Anas

    2014-02-28

    Colon cancer is the second leading cause of cancer mortality in the United States with a median age at diagnosis of 69 years. Sixty percent are diagnosed over the age of 65 years and 36% are 75 years or older. At diagnosis, approximately 58% of patients will have locally advanced and metastatic disease, for which systemic chemotherapy has been shown to improve survival. Treatment of cancer in elderly patients is more challenging due to multiple factors, including disabling co-morbidities as well as a decline in organ function. Cancer treatment of elderly patients is often associated with more toxicities that may lead to frequent hospitalizations. In locally advanced disease, fewer older patients receive adjuvant chemotherapy despite survival benefit and similar toxicity when compared to their younger counterparts. A survival benefit is also observed in the palliative chemotherapy setting for elderly patients with metastatic disease. When treating elderly patients with colon cancer, one has to consider drug pharmacokinetics and pharmacodynamics. Since chronological age is a poor marker of a patient's functional status, several methods of functional assessment including performance status and activities of daily living (ADL) or instrumental ADL, or even a comprehensive geriatric assessment, may be used. There is no ideal chemotherapy regimen that fits all elderly patients and so a regimen needs to be tailored for each individual. Important considerations when treating elderly patients include convenience and tolerability. This review will discuss approaches to the management of elderly patients with locally advanced and metastatic colon cancer.

  18. The Benefits, Limitations, and Cost-Effectiveness of Advanced Technologies in the Management of Patients With Diabetes Mellitus

    PubMed Central

    Vigersky, Robert A.

    2015-01-01

    Background: Hypoglycemia mitigation is critical for appropriately managing patients with diabetes. Advanced technologies are becoming more prevalent in diabetes management, but their benefits have been primarily judged on the basis of hemoglobin A1c. A critical appraisal of the effectiveness and limitations of advanced technologies in reducing both A1c and hypoglycemia rates has not been previously performed. Methods: The cost of hypoglycemia was estimated using literature rates of hypoglycemia events resulting in hospitalizations. A literature search was conducted on the effect on A1c and hypoglycemia of advanced technologies. The cost-effectiveness of continuous subcutaneous insulin infusion (CSII) and real-time continuous glucose monitors (RT-CGM) was reviewed. Results: Severe hypoglycemia in insulin-using patients with diabetes costs $4.9-$12.7 billion. CSII reduces A1c in some but not all studies. CSII improves hypoglycemia in patients with high baseline rates. Bolus calculators improve A1c and improve the fear of hypoglycemia but not hypoglycemia rates. RT-CGM alone and when combined with CSII improve A1c with a neutral effect on hypoglycemia rates. Low-glucose threshold suspend systems reduce hypoglycemia with a neutral effect on A1c, and low-glucose predictive suspend systems reduce hypoglycemia with a small increase in plasma glucose levels. In short-term studies, artificial pancreas systems reduce both hypoglycemia rates and plasma glucose levels. CSII and RT-CGM are cost-effective technologies, but their wide adoption is limited by cost, psychosocial, and educational factors. Conclusions: Most currently available technologies improve A1c with a neutral or improved rate of hypoglycemia. Advanced technologies appear to be cost-effective in diabetes management, especially when including the underlying cost of hypoglycemia. PMID:25555391

  19. A Novel Silicon Micromachined Integrated MCM Thermal Management System

    NASA Technical Reports Server (NTRS)

    Kazmierczak, M. J.; Henderson, H. T.; Gerner, F. M.

    1997-01-01

    "Micromachining" is a chemical means of etching three-dimensional structures, typically in single- crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (Micro Electro Mechanical Systems), where in addition to the ordinary two-dimensional (planar) microelectronics, it is possible to build three-dimensional n-ticromotors, electrically- actuated raicrovalves, hydraulic systems and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor n-ticrofabfication. The University of Cincinnati group in collaboration with Karl Baker at NASA Lewis were the first to form micro heat pipes in silicon by the above techniques. Current work now in progress using MEMS technology is now directed towards the development of the next generation in MCM (Multi Chip Module) packaging. Here we propose to develop a complete electronic thermal management system which will allow densifica6on in chip stacking by perhaps two orders of magnitude. Furthermore the proposed technique will allow ordinary conu-nercial integrated chips to be utilized. Basically, the new technique involves etching square holes into a silicon substrate and then inserting and bonding commercially available integrated chips into these holes. For example, over a 100 1/4 in. by 1 /4 in. integrated chips can be placed on a 4 in. by 4 in. silicon substrate to form a Multi-Chip Module (MCM). Placing these MCM's in-line within an integrated rack then allows for three-diniensional stacking. Increased miniaturization of microelectronic circuits will lead to very high local heat fluxes. A high performance thermal management system will be specifically designed to remove the generated energy. More specifically, a compact heat exchanger with milli / microchannels will be developed and tested to remove the heat through the back side of this MCM assembly for moderate and high

  20. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Schifer, Nicholas

    2011-01-01

    Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.

  1. Two-dimensional heat flow apparatus

    NASA Astrophysics Data System (ADS)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  2. [Application of clinical nursing path in standard management of advanced schistosomiasis patients with splenomegaly].

    PubMed

    Yang, Liu; Liu, Juan-Juan

    2013-04-01

    To study the feasibility and effect of clinical nursing path in the standard management of advanced schistosomiasis patients with splenomegaly. A total of 64 advanced schistosomiasis patients with splenomegaly were randomly divided into a routine nursing group (control group) and a clinical nursing pathway group (CNP group), and the postoperative situation, average hospitalization days, cost of hospitalization and the satisfaction of the patients of the 2 groups were compared. The complications, average hospitalization days, costs of hospitalization in the CNP group were significantly decreased compared with those in the control group, and satisfaction rate of the patients in the CNP group increased from 81.25% to 100%. The implementation of CNP effectively reduces the length of hospitalization, costs and complications, and improves the satisfaction of the patients.

  3. Advances in the Diagnosis and Management of Persistent Pulmonary Hypertension of the Newborn (PPHN)

    PubMed Central

    Konduri, G. Ganesh; Kim, U. Olivia

    2009-01-01

    Synopsis Rapid evaluation of a neonate who is cyanotic and in respiratory distress is essential for achieving a good outcome. Persistent pulmonary hypertension of the newborn (PPHN) can be a primary cause or a contributing factor to respiratory failure, particularly in neonates born at ≥34 weeks gestation. PPHN represents a failure of normal postnatal adaptation that occurs at birth in the pulmonary circulation. Rapid advances in therapy in recent years have lead to a remarkable decrease in mortality for the affected infants. However, infants who survive PPHN are at a significant risk for long term hearing and neuro-developmental impairments. This review focuses on the diagnosis, recent advances in management and recommendations for the long term follow-up of infants with PPHN. PMID:19501693

  4. Guideline for the management of terminal haemorrhage in palliative care patients with advanced cancer discharged home for end-of-life care.

    PubMed

    Ubogagu, Edith; Harris, Dylan G

    2012-12-01

    Terminal haemorrhage is a rare and distressing emergency in palliative oncology. We present an algorithm for the management of terminal haemorrhage in patients likely to receive end-of-life care at home, based on a literature review of the management of terminal haemorrhage for patients with advanced cancer, where a DNAR (do not attempt resuscitation) order is in place and the patient wishes to die at home. A literature review was conducted to identify literature on the management of terminal haemorrhage in patients with advanced cancer who are no longer amenable to active interventional/invasive procedures. Electronic databases, the grey literature, local guidelines from hospitals and hospices, and online web portals were all searched systematically. The literature review was used to formulate a management algorithm. The evidence base is very limited. A three-step practical algorithm is suggested: preparing for the event, managing the event ('ABC') and 'aftercare'. Step 1 involves the identification and optimisation of risk factors. Step 2 (the event) consists of A (assure and re-assure the patient), B (be there - above all stay with the patient) and C (comfort, calm, consider dark towels and anxiolytics if possible). Step 3 (the aftercare) involves the provision of practical and psychological support to those involved including relatives and professionals. Terminal haemorrhage is a rare yet highly feared complication of advanced cancer, for which there is a limited evidence base to guide management. The suggested three-step approach to managing this situation gives professionals a logical framework within which to work.

  5. Advancing the Science of Behavioral Self-Management of Chronic Disease: The Arc of a Research Trajectory.

    PubMed

    Allegrante, John P

    2018-02-01

    This article describes advances in the behavioral self-management of chronic disease from the perspective of a 25-year trajectory of National Institute of Health-funded research in arthritis and cardiopulmonary diseases that has sought to develop a transdisciplinary understanding of how applied behavioral science can be used to improve health behaviors, functional status, and health outcomes. The article traces the arc of a novel research program-conducted in collaboration with physician-scientists at Columbia, Weill Cornell Medical College, and New York University School of Medicine-that runs through social cognitive theory, behavioral economics, and the emerging science of positive psychology in an effort to develop promising new approaches to fostering the adoption and maintenance of health-related behavioral change. The article concludes with what has been learned and what the implications of the work are for advancing behavioral self-management and patient education to improve patient outcomes and achieve the compression of morbidity.

  6. Effectiveness of exercise-heat acclimation for preventing heat illness in the workplace.

    PubMed

    Yamazaki, Fumio

    2013-09-01

    The incidence of heat-related illness in the workplace is linked to whether or not workers have acclimated to a hot environment. Heat acclimation improves endurance work performance in the heat and thermal comfort at a given work rate. These improvements are achieved by increased sweating and skin blood flow responses, better fluid balance and cardiovascular stability. As a practical means of acclimatizing the body to heat stress, daily aerobic exercise training is recommended since thermoregulatory capacity and blood volume increase with physical fitness. In workers wearing personal protective suits in hot environments, however, little psychophysiological benefit is received from short-term exercise training and/or heat acclimation because of the ineffectiveness of sweating for heat dissipation and the aggravation of thermal discomfort with the accumulation of sweat within the suit. For a manual laborer who works under uncompensable heat stress, better management of the work rate, the work environment and health is required.

  7. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  8. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Moriarty, Michael P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  9. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.

    1993-01-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  10. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    PubMed

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  11. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    NASA Technical Reports Server (NTRS)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  12. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Bolek, Kevin J; Ashwell, Chris M; Persia, Mike E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2015-12-17

    Losses in poultry production due to heat stress have considerable negative economic consequences. Previous studies in poultry have elucidated a genetic influence on response to heat. Using a unique chicken genetic resource, we identified genomic regions associated with body temperature (BT), body weight (BW), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens. Generations F18 and F19 of a broiler (heat-susceptible) × Fayoumi (heat-resistant) advanced intercross line (AIL) were used to fine-map quantitative trait loci (QTL). Six hundred and thirty-one birds were exposed to daily heat cycles from 22 to 28 days of age, and phenotypes were measured before heat treatment, on the 1st day and after 1 week of heat treatment. BT was measured at these three phases and BW at pre-heat treatment and after 1 week of heat treatment. Breast muscle yield was calculated as the percentage of BW at day 28. Ileal feed digestibility was assayed from digesta collected from the ileum at day 28. Four hundred and sixty-eight AIL were genotyped using the 600 K Affymetrix chicken SNP (single nucleotide polymorphism) array. Trait heritabilities were estimated using an animal model. A genome-wide association study (GWAS) for these traits and changes in BT and BW was conducted using Bayesian analyses. Candidate genes were identified within 200-kb regions around SNPs with significant association signals. Heritabilities were low to moderate (0.03 to 0.35). We identified QTL for BT on Gallus gallus chromosome (GGA)14, 15, 26, and 27; BW on GGA1 to 8, 10, 14, and 21; dry matter digestibility on GGA19, 20 and 21; and QTL of very large effect for breast muscle yield on GGA1, 15, and 22 with a single 1-Mb window on GGA1 explaining more than 15% of the genetic variation. This is the first study to estimate heritabilities and perform GWAS using this

  13. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  14. The NSF-RCN Urban Heat Island Network

    NASA Astrophysics Data System (ADS)

    Snyder, P. K.; Twine, T. E.; Hamilton, P.; Shepherd, M.; Stone, B., Jr.

    2016-12-01

    In much of the world cities are warming at twice the rate of outlying rural areas. The frequency of urban heat waves is projected to increase with climate change through the 21st century. Addressing the economic, environmental, and human costs of urban heat islands requires a better understanding of their behavior from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to (1) bring together scientists studying the causes and impacts of urban warming, (2) advance multidisciplinary understanding of urban heat islands, (3) examine how they can be ameliorated through engineering and design practices, and (4) share these new insights with a wide array of stakeholders responsible for managing urban warming to reduce their health, economic, and environmental impacts. The NSF-RCN Urban Heat Island Network involves atmospheric scientists, engineers, architects, landscape designers, urban planners, public health experts, and education and outreach experts, who will share knowledge, evaluate research directions, and communicate knowledge and research recommendations to the larger research community as well as stakeholders engaged in developing strategies to adapt to and mitigate urban warming. The first Urban Climate Institute was held in Saint Paul, MN in July 2013 and focused on the characteristics of urban heat islands. Scientists engaged with local practitioners to improve communication pathways surrounding issues of understanding, adapting to, and mitigating urban warming. The second Urban Climate Institute was held in Atlanta, Georgia in July 2014 and focused on urban warming and public health. The third Urban Climate Institute was held in Athens, GA in July 2015 and focused on urban warming and the role of the built environment. Scientists and practitioners discussed strategies for mitigation and adaptation. The fourth Institute was held in Saint Paul, MN in July 2016 and focused on putting research to practice. Evaluation experts

  15. Microencapsulated Phase-Change Materials For Storage Of Heat

    NASA Technical Reports Server (NTRS)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  16. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Treesearch

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  17. Fy00 Treasure Valley ITS Deployment Project : advanced traffic management system (ATMS) software procurement and implementation process

    DOT National Transportation Integrated Search

    2006-08-02

    In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...

  18. Dynamic Heat Generation Modeling and Thermal Management of Electromechanical Actuators

    DTIC Science & Technology

    2012-07-01

    PCM Module In situations where the heat load is high and the convection heat transfer is ineffective (such as in an aircraft bay with near stagnant...excess thermal energy in the PCM , we should choose a PCM with a melting temperature range below 150oC and a high latent heat of fusion. In this...chapter, we select Erythritol as the PCM [21]. This PCM has a high latent heat (340 kJ/kg) and suitable phase change temperature range (~120oC). The

  19. Public participation GIS for improving wood burning emissions from residential heating and urban environmental management.

    PubMed

    López-Aparicio, Susana; Vogt, Matthias; Schneider, Philipp; Kahila-Tani, Maarit; Broberg, Anna

    2017-04-15

    A crowdsourcing study supported by a public participation GIS tool was designed and carried out in two Norwegian regions. The aim was to improve the knowledge about emissions from wood burning for residential heating in urban areas based on the collection of citizens' localized insights. We focus on three main issues: 1) type of dwelling and residential heating source; 2) wood consumption and type of wood appliances; and 3) citizens' perception of the urban environment. Our study shows the importance of wood burning for residential heating, and of the resulted particle emissions, in Norwegian urban areas. Citizens' localized insights on environmental perception highlight the areas in the city that require particular attention as part of clean air strategies. Information about environmental perception is combined with existing environmental data showing certain correlation. The results support the urban environmental management based on co-benefit approaches, achieving several outcomes from a single policy measure. Measures to reduce urban air pollution will have a positive impact on the citizens' environmental perception, and therefore on their quality of life, in addition to reducing the negative consequences of air pollution on human health. The characterization of residential heating by fuelwood is still a challenging activity. Our study shows the potential of a crowdsourcing method as means for bottom-up approaches designed to increase our knowledge on human activities at urban scale that result on emissions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  1. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  2. Medical and surgical management of advanced Parkinson's disease.

    PubMed

    Antonini, Angelo; Moro, Elena; Godeiro, Clecio; Reichmann, Heinz

    2018-03-23

    Advanced Parkinson's disease is characterized by the presence of motor fluctuations, various degree of dyskinesia, and disability with functional impact on activities of daily living and independence. Therapeutic management aims to extend levodopa benefit while minimizing motor complications and includes, in selected cases, the implementation of drug infusion and surgical techniques. In milder forms of motor complications, these can often be controlled with manipulation of levodopa dose and the introduction of supplemental therapies such as catechol-O-methyl transferase inhibitors, monoamine oxidase B inhibitors, and dopamine agonists including apomorphine. Clinical experience and evidence from published studies indicate that when these agents cannot satisfactorily control motor complications, patients should be assessed and considered for device-aided therapies. This review article summarizes some of the newer available therapeutic opportunities such as use of enzyme inhibitors like opicapone and safinamide, adenosine A 2A receptor antagonists, apomorphine and levodopa/carbidopa intestinal gel infusion, deep brain stimulation including the role of closed-loop and adaptive stimulation, and MRI-guided focused ultrasound. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  3. Testicular microlithiasis: recent advances in understanding and management.

    PubMed

    Tan, Min-Han; Eng, Charis

    2011-03-01

    Testicular microlithiasis is an infrequent but well recognized condition, which is usually incidentally identified on testicular ultrasound scan. Interest in testicular microlithiasis has increased over the past few years, owing to an observed association with testicular germ cell tumor (TGCT) and intratubular germ cell neoplasia of unclassified type (ITGCNU). This association has added to evidence that testicular microlithiasis is a feature of the testicular dysgenesis syndrome (TDS), which is postulated to underpin disorders of male reproduction such as subfertility, testicular atrophy, cryptorchidism, TGCT and other abnormalities of sexual development. Although the genetic and environmental components of TDS remain unclear, studies of the molecular basis of TGCT support a genetic component for testicular microlithiasis and have identified multiple genes that are associated with TGCT. These advances in the biological understanding of testicular microlithiasis and TGCT have not, however, resolved key clinical dilemmas in the management of patients with these diseases. The role of testicular microlithiasis in the clinical consideration of testicular biopsy is discussed in the context of the apparently healthy individual, the individual with TGCT and the individual with TDS.

  4. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  5. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov Websites

    on advanced distribution management systems (ADMS) and microgrid controls. The workshops were held at . July 7, 2015: Advanced Distribution Management Systems (ADMS) Welcome and NREL Overview Dr. Murali Keynote: Next-Generation Distribution Management Systems and Distributed Resource Energy Management

  6. A dual-mode textile for human body radiative heating and cooling

    DOE PAGES

    Hsu, Po -Chun; Liu, Chong; Song, Alex Y.; ...

    2017-11-10

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less

  7. A dual-mode textile for human body radiative heating and cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Po -Chun; Liu, Chong; Song, Alex Y.

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less

  8. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  9. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  10. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  11. Advanced solar box and flat plate collector cookers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grupp, M.; Bergler, H.

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  12. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  13. Management by Objectives. Advanced Institutional Development Program (AIDP) Two-year College Consortium, Vol. II, No. 4.

    ERIC Educational Resources Information Center

    Harvey, L. James

    This document explains and clarifies the management by objectives (MBO) concept in order to give institutions in the Advanced Institutional Development Program (AIDP) help in understanding and using the concept. MBO is defined as an administrative system whereby an administrator and his subordinates identify areas of responsibility in which a…

  14. Advancing the Science of Behavioral Self-Management of Chronic Disease: The Arc of a Research Trajectory

    ERIC Educational Resources Information Center

    Allegrante, John P.

    2018-01-01

    This article describes advances in the behavioral self-management of chronic disease from the perspective of a 25-year trajectory of National Institute of Health-funded research in arthritis and cardiopulmonary diseases that has sought to develop a transdisciplinary understanding of how applied behavioral science can be used to improve health…

  15. Advanced Health Management Algorithms for Crew Exploration Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Jones, Judit

    2005-01-01

    Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.

  16. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  17. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 2. System Functional Description and System Specification.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...

  18. Understanding and Managing Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Patients With Advanced Melanoma

    PubMed Central

    Weinstein, Alyona; Gordon, Ruth-Ann; Kasler, Mary Kate; Burke, Matthew; Ranjan, Smita; Hodgetts, Jackie; Reed, Vanessa; Shames, Yelena; Prempeh-Keteku, Nana; Lingard, Karla

    2017-01-01

    The immune checkpoint inhibitors ipilimumab, nivolumab, and pembrolizumab represent a substantial improvement in treating advanced melanoma but are associated with adverse events (AEs) likely related to general immunologic enhancement. To ensure that patients receive optimal benefit from these agents, prompt assessment and treatment of AEs are essential. We review the efficacy and safety profiles of these immune checkpoint inhibitors and describe guidelines for managing immune-related AEs. We also present case studies describing the management of toxicities in patients receiving immune checkpoint inhibitor therapy. These cases illustrate the importance of collecting a detailed medical history when administering immunotherapy, as this information is necessary to establish baseline, inform monitoring, and determine the etiology of symptoms. Advanced practice nurses and physician assistants are uniquely positioned to educate patients on the early recognition of AEs and have an important role in establishing appropriate monitoring and open dialogue among services. PMID:29900017

  19. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  20. Triggers in advanced neurological conditions: prediction and management of the terminal phase.

    PubMed

    Hussain, Jamilla; Adams, Debi; Allgar, Victoria; Campbell, Colin

    2014-03-01

    The challenge to provide a palliative care service for individuals with advanced neurological conditions is compounded by variability in disease trajectories and symptom profiles. The National End of Life Care Programme (2010) recommended seven 'triggers' for a palliative approach to care for patients with advanced neurological conditions. To establish the frequency of triggers in the palliative phase, and if they could be reduced to fewer components. Management of the terminal phase also was evaluated. Retrospective study of 62 consecutive patients under the care of a specialist palliative neurology service, who had died. Principle component analysis (PCA) was performed to establish the interrelationship between triggers. Frequency of triggers increased as each patient approached death. PCA found that four symptom components explained 76.8% of the variance. These represented: rapid physical decline; significant complex symptoms, including pain; infection in combination with cognitive impairment; and risk of aspiration. Median follow-up under the palliative care service was 336 days. In 56.5% of patients, the cause of death was pneumonia. The terminal phase was recognised in 72.6%. The duration of the terminal phase was 8.8 days on average, and the Liverpool Care of the dying Pathway was commenced in 33.9%. All carers were offered bereavement support. Referral criteria based on the triggers can facilitate appropriate and timely patient access to palliative care. The components deduced through PCA have face validity; however larger studies prospectively validating the triggers are required. Closer scrutiny of the terminal phase is necessary to optimise management.

  1. Heat injury prevention practices in high school football.

    PubMed

    Luke, Anthony C; Bergeron, Michael F; Roberts, William O

    2007-11-01

    To survey high school American football programs regarding current prevention measures for reducing heat injuries during the football season. Web-based survey of 27 questions based on consensus statement guidelines by the American College of Sports Medicine on reducing heat injury risk in youth football. National (United States) and community-based. High school programs receiving survey distribution from their state athletic association and the National Federation of State High School Associations. Responses (percentage and incidence) to questions on preseason acclimatization procedures, practice modification protocols, preparticipation risk factors, hydration management strategies, rest period strategies, heat injury education and policies, and preparation for heat-related emergency care. A total of 540 high school football programs from 26 states completed the survey. The reported number of preseason heat injuries per program (1.38+/-2.08) was greater (P<0.001) compared to during the regular season (0.98+/-1.84). Programs modified equipment configurations during preseason (no helmets or pads, 31.3%; just helmets, 57.0%; helmets and shoulder pads only, 33.5%) or altered the practice schedule when there was excessive heat. Hydration management, education, and preparation for dealing with an acute heat injury varied among programs. Greater implementation of effective prevention measures to reduce the incidence of heat-related injury and death in high school American football is needed. Strategies should focus on modifying practices appropriately on a day-to-day basis to minimize heat strain and optimize hydration, identifying and educating at-risk individuals during the preparticipation period, and developing an emergency action plan for effectively managing heat injuries.

  2. Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, Mumin; Akkaya, Kemal

    Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less

  3. Advanced project management : training manual.

    DOT National Transportation Integrated Search

    2006-07-14

    This course identifies the principles and methodologies adopted by the Indiana Department of Transportation (INDOT) to support successful project management and delivery. Project management requires the application of knowledge, skills, tools, and te...

  4. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    DTIC Science & Technology

    2016-10-28

    assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy

  5. Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor

    NASA Astrophysics Data System (ADS)

    Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue

    2015-09-01

    The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.

  6. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  7. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  8. Recent advances in the management of bovine tuberculosis in free-ranging wildlife.

    PubMed

    O'Brien, Daniel J; Schmitt, Stephen M; Rudolph, Brent A; Nugent, Graham

    2011-07-05

    Established foci of Mycobacterium bovis (the causative agent of bovine tuberculosis [bTB]) in free-ranging wildlife are currently under various stages of management on three continents (Africa, Europe and North America) and in New Zealand. Other, as yet undiagnosed, foci seem likely to exist elsewhere. The complex roles that these wildlife foci play in the ecology of bTB remain among the greatest challenges facing bTB control globally. Conceptually, management of bTB in free-ranging wildlife can be thought of as progressing from the discovery of an outbreak through frequently overlapping stages of epidemiological characterization, initial control, simulation and forecasting, focused control, and verification of eradication. Surveillance in its various forms remains a critical component of assessment throughout. Since the Fourth International M. bovis Conference in 2005, research on management of bTB in free-ranging wildlife has encompassed such areas as the human dimensions of wildlife management, mitigation of bTB risks from wildlife on cattle farms, vaccine biology, and epidemiology, with a major contribution from simulation modeling. In order to advance the actual field management of bTB, however, research must be sufficiently grounded to aid development of practical, affordable and politically defensible management interventions which stand a reasonable chance of being implemented. The current management of two wildlife reservoirs of bTB, brushtail possums (Trichosurus vulpecula) in New Zealand, and white-tailed deer (Odocoileus virginianus) in Michigan, USA, serve as contrasting examples of different wildlife management strategies aimed at achieving a common goal. In New Zealand, the importance of agricultural export markets and the status of the possum as a non-native pest have facilitated direct, aggressive management of the disease reservoir, resulting in considerable progress towards bTB freedom since 1994. In Michigan, the relative importance of the

  9. Management of Dyslipidemia in Type 2 Diabetes: Recent Advances in Nonstatin Treatment.

    PubMed

    Sugiyama, Kazutoshi; Saisho, Yoshifumi

    2018-05-24

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD), which is the leading cause of morbidity and mortality in type 2 diabetes (T2DM). Statins have played a crucial role in its management, but residual risk remains since many patients cannot achieve their desired low-density lipoprotein cholesterol (LDL-C) level and up to 20% of patients are statin-intolerant, experiencing adverse events perceived to be caused by statins, most commonly muscle symptoms. Recently, great advances have been made in nonstatin treatment with ezetimibe, a cholesterol absorption inhibitor, and proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mAbs), all showing a proven benefit with an excellent safety profile in cardiovascular outcome trials. This review summarizes the key aspects and the evolving role of these agents in the management of dyslipidemia in patients with T2DM, along with a brief introduction of novel drugs currently in development.

  10. Recent advances in endovascular techniques for management of acute nonvariceal upper gastrointestinal bleeding

    PubMed Central

    Loffroy, Romaric F; Abualsaud, Basem A; Lin, Ming D; Rao, Pramod P

    2011-01-01

    Over the past two decades, transcatheter arterial embolization has become the first-line therapy for the management of upper gastrointestinal bleeding that is refractory to endoscopic hemostasis. Advances in catheter-based techniques and newer embolic agents, as well as recognition of the effectiveness of minimally invasive treatment options, have expanded the role of interventional radiology in the management of hemorrhage for a variety of indications, such as peptic ulcer bleeding, malignant disease, hemorrhagic Dieulafoy lesions and iatrogenic or trauma bleeding. Transcatheter interventions include the following: selective embolization of the feeding artery, sandwich coil occlusion of the gastroduodenal artery, blind or empiric embolization of the supposed bleeding vessel based on endoscopic findings and coil pseudoaneurysm or aneurysm embolization by three-dimensional sac packing with preservation of the parent artery. Transcatheter embolization is a fast, safe and effective, minimally invasive alternative to surgery when endoscopic treatment fails to control bleeding from the upper gastrointestinal tract. This article reviews the various transcatheter endovascular techniques and devices that are used in a variety of clinical scenarios for the management of hemorrhagic gastrointestinal emergencies. PMID:21860697

  11. Recent advances in the management of transient ischemic attacks

    PubMed Central

    Gomez, Camilo R.; Schneck, Michael J.; Biller, Jose

    2017-01-01

    Significant advances in our understanding of transient ischemic attack (TIA) have taken place since it was first recognized as a major risk factor for stroke during the late 1950's. Recently, numerous studies have consistently shown that patients who have experienced a TIA constitute a heterogeneous population, with multiple causative factors as well as an average 5–10% risk of suffering a stroke during the 30 days that follow the index event. These two attributes have driven the most important changes in the management of TIA patients over the last decade, with particular attention paid to effective stroke risk stratification, efficient and comprehensive diagnostic assessment, and a sound therapeutic approach, destined to reduce the risk of subsequent ischemic stroke. This review is an outline of these changes, including a discussion of their advantages and disadvantages, and references to how new trends are likely to influence the future care of these patients. PMID:29263784

  12. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  13. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  14. Capillary Pump Loop (CPL) heat pipe development status report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  15. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  16. Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management.

    PubMed

    Mulshine, James L; Avila, Rick; Yankelevitz, David; Baer, Thomas M; Estépar, Raul San Jose; Ambrose, Laurie Fenton; Aldigé, Carolyn R

    2015-05-01

    The Prevent Cancer Foundation Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management was held in New York, NY on May 16 and 17, 2014. The two goals of the Workshop were to define strategies to drive innovation in precompetitive quantitative research on the use of imaging to assess new therapies for management of early lung cancer and to discuss a process to implement a national program to provide high quality computed tomography imaging for lung cancer and other tobacco-induced disease. With the central importance of computed tomography imaging for both early detection and volumetric lung cancer assessment, strategic issues around the development of imaging and ensuring its quality are critical to ensure continued progress against this most lethal cancer.

  17. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss

    PubMed Central

    Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel

    2014-01-01

    Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027

  18. Drug-Induced Liver Injury: Advances in Mechanistic Understanding that will Inform Risk Management

    PubMed Central

    Mosedale, Merrie; Watkins, Paul B.

    2016-01-01

    Drug-induced liver injury (DILI) is a major public health problem. Intrinsic (dose-dependent) DILI associated with acetaminophen overdose is the number one cause of acute liver failure in the US. However the most problematic type of DILI impacting drug development is idiosyncratic, occurring only very rarely among treated patients and often only after several weeks or months of treatment with the offending drug. Recent advances in our understanding of the pathogenesis of DILI suggest that three mechanisms may underlie most hepatocyte effects in response to both intrinsic and idiosyncratic DILI drugs: mitochondrial dysfunction, oxidative stress, and alterations in bile acid homeostasis. However, in some cases, hepatocyte stress promotes an immune response that results in clinically important idiosyncratic DILI. This review discusses recent advances in our understanding of the pathogenesis of both intrinsic and idiosyncratic DILI as well as emerging tools and techniques that will likely improve DILI risk identification and management. PMID:27861792

  19. Rewards and advancements for clinical pharmacists.

    PubMed

    Goodwin, S Diane; Kane-Gill, Sandra L; Ng, Tien M H; Melroy, Joel T; Hess, Mary M; Tallian, Kimberly; Trujillo, Toby C; Vermeulen, Lee C

    2010-01-01

    The American College of Clinical Pharmacy charged the Clinical Practice Affairs Committee to review and update the College's 1995 White Paper, "Rewards and Advancements for Clinical Pharmacy Practitioners." Because of the limited data on the present state of rewards and advancements for clinical pharmacists, an online survey of "front-line" clinical pharmacists and pharmacy managers was conducted (1126 total respondents, 14% response rate). The resulting White Paper discusses motivators and existing systems of rewards and advancements for clinical pharmacists, as well as perceived barriers to implementation of these systems. Clinical pharmacists reported work-life balance, a challenging position, and opportunities for professional advancement as the most important factors for career success. At the time of the survey, financial rewards appeared not to be a major motivator for clinical pharmacists. Managers underestimated the importance that clinical pharmacists place on work-life balance and favorable work schedules. Although almost two thirds of the clinical pharmacists surveyed had not developed a professional development plan, 84% indicated an interest in career planning. Both clinical pharmacists and managers rated the lack of a clear reward and advancement structure as the most important barrier to effective systems of rewards and advancements. Pharmacy managers and administrators are encouraged to develop effective systems of rewards and advancements for clinical pharmacists that positively impact patient care and the institution's mission; these systems will benefit the clinical pharmacist, the health care institution, and the patient.

  20. Thermal management systems and methods

    DOEpatents

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  1. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  2. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  3. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  4. Advancing the business creed? The framing of decisions about public sector managed care.

    PubMed

    Waitzkin, Howard; Yager, Joel; Santos, Richard

    2012-01-01

    Relatively little research has clarified how executives of for-profit healthcare organisations frame their own motivations and behaviour, or how government officials frame their interactions with executives. Because managed care has provided an organisational structure for health services in many countries, we focused our study on executives and government officials who were administering public sector managed care services. Emphasising theoretically the economic versus non-economic motivations that guide economic behaviour, we extended a long-term research project on public sector Medicaid managed care (MMC) in the United States. Our method involved in-depth, structured interviews with chief executive officers of managed care organisations, as well as high-ranking officials of state government. Data analysis involved iterative interpretation of interview data. We found that the rate of profit, which proved relatively low in the MMC programme, occupied a limited place in executives' self-described motivations and in state officials' descriptions of corporation-government interactions. Non-economic motivations included a strong orientation toward corporate social responsibility and a creed in which market processes advanced human wellbeing. Such patterns contradict some of the given wisdom about how corporate executives and government officials construct their reality. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  5. Can gradual dose titration of ketamine for management of neuropathic pain prevent psychotomimetic effects in patients with advanced cancer?

    PubMed

    Okamoto, Yoshiaki; Tsuneto, Satoru; Tanimukai, Hitoshi; Matsuda, Yoichi; Ohno, Yumiko; Tsugane, Mamiko; Uejima, Etsuko

    2013-08-01

    Ketamine is often used to manage neuropathic pain in patients with cancer. However, it occasionally causes psychotomimetic effects such as vivid dreams, nightmares, illusions, hallucinations, and altered body image. To examine whether gradual dose titration of ketamine for management of neuropathic pain prevents psychotomimetic effects in patients with advanced cancer. This was a retrospective chart review. We administered ketamine when neuropathic pain in patients with advanced cancer became refractory to opioids and oral adjuvant analgesics. The starting dose of ketamine was 10 mg/d by continuous intravenous infusion. The dose was gradually increased by 10 mg/d every 4 to 6 hours to 50 mg/d or until the pain was relieved. It was subsequently increased by 25 mg/d every 12 to 24 hours until the pain was relieved. For this study, we enrolled 46 patients with advanced cancer. The mean age was 52.2 ± 16.9 years. The mean dose at onset of action and maximum dose of ketamine were 56 ± 58 and 272 ± 214 mg/d, respectively. The mean pain intensity (numerical rating scale) decreased significantly from 7.3 ± 2.0 to 3.5 ± 2.2 after the administration of ketamine (P < .01). The effectiveness was 69.5%. No psychotomimetic effect of less than 300 mg/d was observed during the introduction phase even though psychotropic drugs were not prescribed. Mild sedation was observed in 3 patients (7%) as the only adverse effect during the introduction phase. Gradual dose titration of ketamine for management of neuropathic pain can prevent psychotomimetic effects in patients with advanced cancer.

  6. Principles and techniques in the design of ADMS+. [advanced data-base management system

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nick; Kang, Hyunchul

    1986-01-01

    'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

  7. Project COMPAS [Consortium for Operating and Managing Programs for the Advancment of Skills]: A Design for Change.

    ERIC Educational Resources Information Center

    Schermerhorn, Leora L., Ed.; And Others

    Descriptive and evaluative information is provided in this report on Project COMPAS (Consortium for Operating and Managing Programs for the Advancement of Skills), a cooperative effort between seven community colleges which developed cognitive skills programs for entry-level freshmen. Chapter I reviews the unique features of Project COMPAS,…

  8. Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota

    2017-10-01

    Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.

  9. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  10. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  11. Making Advanced Scientific Algorithms and Big Scientific Data Management More Accessible

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatakrishnan, S. V.; Mohan, K. Aditya; Beattie, Keith

    2016-02-14

    Synchrotrons such as the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory are known as user facilities. They are sources of extremely bright X-ray beams, and scientists come from all over the world to perform experiments that require these beams. As the complexity of experiments has increased, and the size and rates of data sets has exploded, managing, analyzing and presenting the data collected at synchrotrons has been an increasing challenge. The ALS has partnered with high performance computing, fast networking, and applied mathematics groups to create a"super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resourcesmore » to overcome this challenge. This combination forms an efficient closed loop, where data despite its high rate and volume is transferred and processed, in many cases immediately and automatically, on appropriate compute resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beam-time. In this paper, We will present work done on advanced tomographic reconstruction algorithms to support users of the 3D micron-scale imaging instrument (Beamline 8.3.2, hard X-ray micro-tomography).« less

  12. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    PubMed

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  13. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  14. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  15. Heat-Flux Sensor For Hot Engine Cylinders

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.; Smith, Floyd A.; Koch, John

    1989-01-01

    Heat-flux sensor includes buried wire thermocouple and thin-film surface thermocouple, made of platinum and platinum with 13 percent rhodium. Sensor intended for use in ceramic-insulated, low-heat-rejection diesel engine at temperatures of about 1,000 K. Thermocouple junction resists environment in cylinder of advanced high-temperature diesel engine created by depositing overlapping films of Pt and 0.87 Pt/0.13 Rh on iron plug. Plug also contains internal thermocouple.

  16. Management of venous thromboembolism in patients with advanced cancer: a systematic review and meta-analysis.

    PubMed

    Noble, Simon I R; Shelley, Mike D; Coles, Bernadette; Williams, Susan M; Wilcock, Andrew; Johnson, Miriam J

    2008-06-01

    Venous thromboembolism is common in patients with cancer. However, no management guidelines exist for venous thromboembolism specific to patients with advanced progressive cancer. To help develop recommendations for practice, we have done a comprehensive review of anticoagulation treatment in patients with cancer, with particular focus on studies that included patients with advanced disease. Data from 19 publications, including randomised, prospective, and retrospective studies suggest that: long-term full-dose low-molecular-weight heparin (LMWH) is more effective than warfarin in the secondary prophylaxis of venous thromboembolism in patients with cancer of any stage, performance status, or prognosis; warfarin should not be used in patients with advancing progressive disease; and in patients at high risk of bleeding, full-dose LMWH for 7 days followed by a long-term decreased fixed dose long term can be considered. The optimum treatment duration is unclear, but because the prothrombotic tendency will persist in patients with advanced cancer, indefinite treatment is generally recommended. For patients with contraindications to anticoagulation, inferior-vena-caval filters can be considered, but their use needs careful patient selection. Ultimately, the decision to initiate, continue, and stop anticoagulation will need to be made on an individual basis, guided by the available evidence, the patient's circumstances, and their informed preferences.

  17. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  18. Clinical Management of Heat-Related Illnesses

    DTIC Science & Technology

    2012-01-01

    rhabdomyolysis and multiorgan dysfunction syndrome, and it may result in death from overwhelming cell necrosis caused by a lethal heat-shock exposure...complications such as rhabdomyolysis and multiorgan dysfunction syndrome, and it may result in death from overwhelming cell necrosis caused by a...acetaminophen lower Tco by normalizing the elevated hypothalamic set point that is caused by pyrogens; in heatstroke, the set point is normal, with

  19. Benchmarking Investments in Advancement: Results of the Inaugural CASE Advancement Investment Metrics Study (AIMS). CASE White Paper

    ERIC Educational Resources Information Center

    Kroll, Juidith A.

    2012-01-01

    The inaugural Advancement Investment Metrics Study, or AIMS, benchmarked investments and staffing in each of the advancement disciplines (advancement services, alumni relations, communications and marketing, fundraising and advancement management) as well as the return on the investment in fundraising specifically. This white paper reports on the…

  20. Advances in endoscopic management of biliary complications after living donor liver transplantation: Comprehensive review of the literature

    PubMed Central

    Shin, Milljae; Joh, Jae-Won

    2016-01-01

    Apart from noticeable improvements in surgical techniques and immunosuppressive agents, biliary complications remain the major causes of morbidity and mortality after living donor liver transplantation (LDLT). Bile leakage and stricture are the predominant complications. The reported incidence of biliary complications is 15%-40%, and these are known to occur more frequently in living donors than in deceased donors. Despite the absence of a confirmed therapeutic algorithm, many approaches have been used for treatment, including surgical, endoscopic, and percutaneous transhepatic techniques. In recent years, nonsurgical approaches have largely replaced reoperation. Among these, the endoscopic approach is currently the preferred initial treatment for patients who undergo duct-to-duct biliary reconstruction. Previously, endoscopic management was achieved most optimally through balloon dilatation and single or multiple stents placement. Recently, there have been significant developments in endoscopic devices, such as novel biliary stents, as well as advances in endoscopic technologies, including deep enteroscopy, the rendezvous technique, magnetic compression anastomosis, and direct cholangioscopy. These developments have resulted in almost all patients being managed by the endoscopic approach. Multiple recent publications suggest superior long-term results, with overall success rates ranging from 58% to 75%. This article summarizes the advances in endoscopic management of patients with biliary complications after LDLT. PMID:27468208