Science.gov

Sample records for advance theoretical understanding

  1. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results. PMID:25286989

  2. Advancing Understanding and Design of Functional Materials Through Theoretical and Computational Chemical Physics

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Huang, Jingsong; Jakowski, Jacek; Meunier, V.; Lopez-Benzanilla, Alejandro; Cruz Silva, Eduardo; Sumpter, Bobby G; Beste, Ariana

    2012-01-01

    Theoretical and computational chemical physics and materials science offers great opportunity toward helping solve some of the grand challenges in science and engineering, because structure and properties of molecules, solids, and liquids are direct reflections of the underlying quantum motion of their electrons. With the advent of semilocal and especially nonlocal descriptions of exchange and correlation effects, density functional theory (DFT) can now describe bonding in molecules and solids with an accuracy which, for many classes of systems, is sufficient to compare quantitatively to experiments. It is therefore becoming possible to develop a semiquantitative description of a large number of systems and processes. In this chapter, we briefly review DFT and its various extensions to include nonlocal terms that are important for long-range dispersion interactions that dominate many self-assembly processes, molecular surface adsorption processes, solution processes, and biological and polymeric materials. Applications of DFT toward problems relevant to energy systems, including energy storage materials, functional nanoelectronics/optoelectronics, and energy conversion, are highlighted.

  3. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary

    2013-01-01

    Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273

  4. A Review of Theoretical and Empirical Advancements

    ERIC Educational Resources Information Center

    Wang, Mo; Henkens, Kene; van Solinge, Hanna

    2011-01-01

    In this article, we review both theoretical and empirical advancements in retirement adjustment research. After reviewing and integrating current theories about retirement adjustment, we propose a resource-based dynamic perspective to apply to the understanding of retirement adjustment. We then review empirical findings that are associated with…

  5. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  6. Theoretical understanding of chromospheric inhomogeneities

    NASA Technical Reports Server (NTRS)

    Delache, P.

    1973-01-01

    Detailed theoretical studies of chromospheric inhomogeneities consider dynamics as well as radiative transfer of mass flow as a consequence of energy deposition. It is shown that pressure is exerted by the heating waves, especially in inhomogeneous structures, where they can be defracted. A dynamical model is formulated that depicts the inhomogeneous structure of the chromosphere-corona transition region through mass flow regimes.

  7. Understanding Plasmon Resonances using Theoretical Methods

    NASA Astrophysics Data System (ADS)

    Aikens, Christine

    2015-03-01

    Theoretical investigations of noble metal nanoparticles play an important role in determining the origins of the unique chemical and physical properties of these systems that lead to applications in photonics, sensing, catalysis, etc. Time-dependent density functional theory (TDDFT) has been employed to calculate the absorption spectrum for pentagonal silver nanorods. The wavelength of their absorption maxima extrapolates linearly with aspect ratio as expected. The nanorod orbitals and length dependence agree with a simple particle-in-a-box model. The origins of the transverse and longitudinal peaks are discussed. Similar behavior is also observed for other elongated systems such as nanowires and acenes. A configuration interaction model can be employed to understand the quantum mechanical origin of the plasmon resonance in these systems.

  8. Recent advances in understanding schizophrenia

    PubMed Central

    Haller, Chiara S.; Padmanabhan, Jaya L.; Lizano, Paulo; Torous, John

    2014-01-01

    Schizophrenia is a highly disabling disorder whose causes remain to be better understood, and treatments have to be improved. However, several recent advances have been made in diagnosis, etiopathology, and treatment. Whereas reliability of diagnosis has improved with operational criteria, including Diagnostic and Statistical Manual of Mental Disorders, (DSM) Fifth Edition, validity of the disease boundaries remains unclear because of substantive overlaps with other psychotic disorders. Recent emphasis on dimensional approaches and translational bio-behavioral research domain criteria may eventually help move toward a neuroscience-based definition of schizophrenia. The etiology of schizophrenia is now thought to be multifactorial, with multiple small-effect and fewer large-effect susceptibility genes interacting with several environmental factors. These factors may lead to developmentally mediated alterations in neuroplasticity, manifesting in a cascade of neurotransmitter and circuit dysfunctions and impaired connectivity with an onset around early adolescence. Such etiopathological understanding has motivated a renewed search for novel pharmacological as well as psychotherapeutic targets. Addressing the core features of the illness, such as cognitive deficits and negative symptoms, and developing hypothesis-driven early interventions and preventive strategies are high-priority goals for the field. Schizophrenia is a severe, chronic mental disorder and is among the most disabling disorders in all of medicine. It is estimated by the National Institute of Mental Health (NIMH) that 2.4 million people over the age of 18 in the US suffer from schizophrenia. This illness typically begins in adolescence and derails the formative goals of school, family, and work, leading to considerable suffering and disability and reduced life expectancy by about 20 years. Treatment outcomes are variable, and some people are successfully treated and reintegrated (i.e. go back to work

  9. Recent advances in understanding schizophrenia.

    PubMed

    Haller, Chiara S; Padmanabhan, Jaya L; Lizano, Paulo; Torous, John; Keshavan, Matcheri

    2014-01-01

    Schizophrenia is a highly disabling disorder whose causes remain to be better understood, and treatments have to be improved. However, several recent advances have been made in diagnosis, etiopathology, and treatment. Whereas reliability of diagnosis has improved with operational criteria, including Diagnostic and Statistical Manual of Mental Disorders, (DSM) Fifth Edition, validity of the disease boundaries remains unclear because of substantive overlaps with other psychotic disorders. Recent emphasis on dimensional approaches and translational bio-behavioral research domain criteria may eventually help move toward a neuroscience-based definition of schizophrenia. The etiology of schizophrenia is now thought to be multifactorial, with multiple small-effect and fewer large-effect susceptibility genes interacting with several environmental factors. These factors may lead to developmentally mediated alterations in neuroplasticity, manifesting in a cascade of neurotransmitter and circuit dysfunctions and impaired connectivity with an onset around early adolescence. Such etiopathological understanding has motivated a renewed search for novel pharmacological as well as psychotherapeutic targets. Addressing the core features of the illness, such as cognitive deficits and negative symptoms, and developing hypothesis-driven early interventions and preventive strategies are high-priority goals for the field. Schizophrenia is a severe, chronic mental disorder and is among the most disabling disorders in all of medicine. It is estimated by the National Institute of Mental Health (NIMH) that 2.4 million people over the age of 18 in the US suffer from schizophrenia. This illness typically begins in adolescence and derails the formative goals of school, family, and work, leading to considerable suffering and disability and reduced life expectancy by about 20 years. Treatment outcomes are variable, and some people are successfully treated and reintegrated (i.e. go back to work

  10. Understanding bimolecular machines: Theoretical and experimental approaches

    NASA Astrophysics Data System (ADS)

    Goler, Adam Scott

    This dissertation concerns the study of two classes of molecular machines from a physical perspective: enzymes and membrane proteins. Though the functions of these classes of proteins are different, they each represent important test-beds from which new understanding can be developed by the application of different techniques. HIV1 Reverse Transcriptase is an enzyme that performs multiple functions, including reverse transcription of RNA into an RNA/DNA duplex, RNA degradation by the RNaseH domain, and synthesis of dsDNA. These functions allow for the incorporation of the retroviral genes into the host genome. Its catalytic cycle requires repeated large-scale conformational changes fundamental to its mechanism. Motivated by experimental work, these motions were studied theoretically by the application of normal mode analysis. It was observed that the lowest order modes correlate with largest amplitude (low-frequency) motion, which are most likely to be catalytically relevant. Comparisons between normal modes obtained via an elastic network model to those calculated from the essential dynamics of a series of all-atom molecular dynamics simulations show the self-consistency between these calculations. That similar conformational motions are seen between independent theoretical methods reinforces the importance of large-scale subdomain motion for the biochemical action of DNA polymerases in general. Moreover, it was observed that the major subunits of HIV1 Reverse Transcriptase interact quasi-harmonically. The 5HT3A Serotonin receptor and P2X1 receptor, by contrast, are trans-membrane proteins that function as ligand gated ion channels. Such proteins feature a central pore, which allows for the transit of ions necessary for cellular function across a membrane. The pore is opened by the ligation of binding sites on the extracellular portion of different protein subunits. In an attempt to resolve the individual subunits of these membrane proteins beyond the diffraction

  11. Recent advances in understanding psoriasis

    PubMed Central

    Eberle, Franziska C.; Brück, Jürgen; Holstein, Julia; Hirahara, Kiyoshi; Ghoreschi, Kamran

    2016-01-01

    T helper (Th) cells producing interleukin (IL)-17, IL-22, and tumor necrosis factor (TNF) form the key T cell population driving psoriasis pathogenesis. They orchestrate the inflammation in the skin that results in the proliferation of keratinocytes and endothelial cells. Besides Th17 cells, other immune cells that are capable of producing IL-17-associated cytokines participate in psoriatic inflammation. Recent advances in psoriasis research improved our understanding of the cellular and molecular players that are involved in Th17 pathology and inflammatory pathways in the skin. The inflammation-driving actions of TNF in psoriasis are already well known and antibodies against TNF are successful in the treatment of Th17-mediated psoriatic skin inflammation. A further key cytokine with potent IL-17-/IL-22-promoting properties is IL-23. Therapeutics directly neutralizing IL-23 or IL-17 itself are now extending the therapeutic spectrum of antipsoriatic agents and further developments are on the way. The enormous progress in psoriasis research allows us to control this Th17-mediated inflammatory skin disease in many patients. PMID:27158469

  12. Recent advances in understanding dengue

    PubMed Central

    Yacoub, Sophie; Mongkolsapaya, Juthathip; Screaton, Gavin

    2016-01-01

    Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research. PMID:26918159

  13. Recent advances in understanding vitiligo

    PubMed Central

    Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J.

    2016-01-01

    Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long

  14. Disk Dispersal: Theoretical Understanding and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Gorti, U.; Liseau, R.; Sándor, Z.; Clarke, C.

    2016-05-01

    Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.

  15. Advances in understanding cartilage remodeling

    PubMed Central

    Li, Yefu; Xu, Lin

    2015-01-01

    Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current “controversial” observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis. PMID:26380073

  16. Advances in Understanding the Biosynthesis of Fumonisins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are a group of economically important mycotoxins that are derived polyketides. Since the cloning of the fumonisin polyketide synthase (PKS) gene from Fusarium verticillioides in 1999, significant advances have been made in understanding the molecular mechanisms for fumonisin biosynthesis...

  17. A theoretical approach to understand spatial organization in complex ecologies.

    PubMed

    Roman, Ahmed; Dasgupta, Debanjan; Pleimling, Michel

    2016-08-21

    Predicting the fate of ecologies is a daunting, albeit extremely important, task. As part of this task one needs to develop an understanding of the organization, hierarchies, and correlations among the species forming the ecology. Focusing on complex food networks we present a theoretical method that allows to achieve this understanding. Starting from the adjacency matrix the method derives specific matrices that encode the various inter-species relationships. The full potential of the method is achieved in a spatial setting where one obtains detailed predictions for the emerging space-time patterns. For a variety of cases these theoretical predictions are verified through numerical simulations. PMID:27173644

  18. Recent advances in understanding hepatitis C

    PubMed Central

    Ploss, Alexander

    2016-01-01

    The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain. PMID:26918166

  19. Recent advances in understanding hepatitis C.

    PubMed

    Douam, Florian; Ding, Qiang; Ploss, Alexander

    2016-01-01

    The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain. PMID:26918166

  20. Recent advances in understanding and managing asthma.

    PubMed

    Loo, Su-Ling; Wark, Peter A B

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma. PMID:27610226

  1. Recent advances in understanding and managing asthma

    PubMed Central

    Loo, Su-Ling; Wark, Peter A.B.

    2016-01-01

    This review highlights the important articles published in the area of asthma research from January 2015 to July 2016. In basic science, significant advances have been made in understanding the link between the innate immune response and type II acquired immune responses in asthma and the role of the airway epithelium. Novel information continues to emerge with regard to the pathogenesis and heterogeneity of severe asthma. There have been important translational clinical trials in the areas of childhood asthma, treatment of allergy to improve asthma outcomes, and improving drug delivery to optimize the management of asthma. In addition, there are increasing data concerning the application of biological agents to the management of severe asthma. This body of work discusses the most notable advances in the understanding and management of asthma. PMID:27610226

  2. Understanding Literacy: Theoretical Foundations for Research in Media Ecology.

    ERIC Educational Resources Information Center

    Ramos, Lori

    2000-01-01

    Reviews the major scholarship of Harold Innis, Eric Havelock, Marshall McLuhan, Jack Goody, Walter Ong and Elizabeth Eisenstein, as they focused on the development of writing systems, and later, printing. Discusses how their theoretical frameworks are central to understanding media ecology, an emerging field of interdisciplinary study for…

  3. Advances in understanding and treating premature ejaculation.

    PubMed

    Saitz, Theodore R; Serefoglu, Ege Can

    2015-11-01

    Over the past several years, many advances have been made in our understanding of the epidemiology, pathophysiology, and management of premature ejaculation. Newly developed definitions of premature ejaculation are now available, and our perception of the classification, prevalence, aetiological factors, and treatment options for premature ejaculation have evolved. Despite ongoing research, there remains much to be learned about all aspects of this common sexual disorder, in particular effective clinical diagnosis and treatment options. PMID:26502991

  4. Recent advances in understanding and managing rhabdomyosarcoma

    PubMed Central

    Hiniker, Susan M.

    2015-01-01

    Rhabdomyosarcoma is the most common childhood soft tissue sarcoma and the fourth most common pediatric solid tumor. For most patients, treatment consists of a multimodality approach, including chemotherapy, surgery, and/or radiotherapy. To guide treatment, patients with rhabdomyosarcoma are risk stratified based on a number of factors. These factors include clinical group, which depends largely on the extent of resection and nodal involvement, and stage, which takes into account tumor size, invasion, nodal involvement, and disease site. Histology of the tumor and age at diagnosis are also factored into risk stratification. Recent advances in understanding the biology of the disease have allowed for the further sub-classification of rhabdomyosarcoma. In addition, elucidation of additional clinical features associated with poor prognosis has allowed for better understanding of risk and provides more clarity regarding those patients who require more intensive therapy. Many areas of active investigation are ongoing, including the following: further delineation of the biological underpinnings of the various disease subtypes with the possibility of molecularly targeted therapy; a better understanding of clinical risk factors, including the evaluation and management of potentially involved lymph nodes; determination of the appropriate role of post-treatment imaging and assessment of response to therapy; and incorporation of advanced radiotherapeutic techniques, including conformal intensity-modulated photon and proton therapy. PMID:26097732

  5. Recent advances in understanding apicomplexan parasites.

    PubMed

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  6. Recent advances in understanding apicomplexan parasites

    PubMed Central

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  7. Advances in understanding erythropoiesis: evolving perspectives.

    PubMed

    Nandakumar, Satish K; Ulirsch, Jacob C; Sankaran, Vijay G

    2016-04-01

    Red blood cells (RBCs) are generated from haematopoietic stem and progenitor cells (HSPCs) through the step-wise process of differentiation known as erythropoiesis. In this review, we discuss our current understanding of erythropoiesis and highlight recent advances in this field. During embryonic development, erythropoiesis occurs in three distinct waves comprising first, the yolk sac-derived primitive RBCs, followed sequentially by the erythro-myeloid progenitor (EMP) and HSPC-derived definitive RBCs. Recent work has highlighted the complexity and variability that may exist in the hierarchical arrangement of progenitors responsible for erythropoiesis. Using recently defined cell surface markers, it is now possible to enrich for erythroid progenitors and precursors to a much greater extent than has been possible before. While a great deal of knowledge has been gained on erythropoiesis from model organisms, our understanding of this process is currently being refined through human genetic studies. Genes mutated in erythroid disorders can now be identified more rapidly by the use of next-generation sequencing techniques. Genome-wide association studies on erythroid traits in healthy populations have also revealed new modulators of erythropoiesis. All of these recent developments have significant promise not only for increasing our understanding of erythropoiesis, but also for improving our ability to intervene when RBC production is perturbed in disease. PMID:26846448

  8. Recent advances in understanding and managing cholestasis

    PubMed Central

    Wagner, Martin; Trauner, Michael

    2016-01-01

    Cholestatic liver diseases are hereditary or acquired disorders with impaired hepatic excretion and enterohepatic circulation of bile acids and other cholephiles. The distinct pathological mechanisms, particularly for the acquired forms of cholestasis, are not fully revealed, but advances in the understanding of the molecular mechanisms and identification of key regulatory mechanisms of the enterohepatic circulation of bile acids have unraveled common and central mechanisms, which can be pharmacologically targeted. This overview focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19, and apical sodium-dependent bile acid transporter for the enterohepatic circulation of bile acids and their potential as new drug targets for the treatment of cholestatic liver disease. PMID:27134744

  9. Advancing Drought Understanding, Monitoring and Prediction

    NASA Technical Reports Server (NTRS)

    Mariotti, Annarita; Schubert, Siegfried D.; Mo, Kingtse; Peters-Lidard, Christa; Wood, Andy; Pulwarty, Roger; Huang, Jin; Barrie, Dan

    2013-01-01

    Having the capacity to monitor droughts in near-real time and providing accurate drought prediction from weeks to seasons in advance can greatly reduce the severity of social and economic damage caused by drought, a leading natural hazard for North America. The congressional mandate to establish the National Integrated Drought Information System (NIDIS; Public Law 109-430) in 2006 was a major impulse to develop, integrate, and provide drought information to meet the challenges posed by this hazard. Significant progress has been made on many fronts. On the research front, efforts by the broad scientific community have resulted in improved understanding of North American droughts and improved monitoring and forecasting tools. We now have a better understanding of the droughts of the twentieth century including the 1930s "Dust Bowl"; we have developed a broader array of tools and datasets that enhance the official North American Drought Monitor based on different methodologies such as state-of-the-art land surface modeling (e.g., the North American Land Data Assimilation System) and remote sensing (e.g., the evaporative stress index) to better characterize the occurrence and severity of drought in its multiple manifestations. In addition, we have new tools for drought prediction [including the new National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2, for operational prediction and an experimental National Multimodel Ensemble] and have explored diverse methodologies including ensemble hydrologic prediction approaches. Broad NIDIS-inspired progress is influencing the development of a Global Drought Information System (GDIS) under the auspices of the World Climate Research Program. Despite these advances, current drought monitoring and forecasting capabilities still fall short of users' needs, especially the need for skillful and reliable drought forecasts at regional and local scales. To tackle this outstanding challenging problem

  10. Recent advances in understanding multiple myeloma.

    PubMed

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both. PMID:27610224

  11. Recent advances in understanding multiple myeloma

    PubMed Central

    Dhakal, Binod; Girnius, Saulius; Hari, Parameswaran

    2016-01-01

    There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both. PMID:27610224

  12. Advances in Understanding and Managing Chronic Urticaria

    PubMed Central

    Moolani, Yasmin; Lynde, Charles; Sussman, Gordon

    2016-01-01

    There have been recent advances in the classification and management of chronic urticaria. The new term chronic spontaneous urticaria (CSU) has replaced chronic idiopathic urticaria and chronic autoimmune urticaria. In addition, chronic inducible urticaria (CINDU) has replaced physical urticaria and includes other forms of inducible urticaria, such as cholinergic and aquagenic urticaria. Furthermore, novel research has resulted in a new understanding with guidelines being revised in the past year by both the American Academy of Allergy, Asthma, and Immunology (AAAAI) and the European Academy of Allergy and Clinical Immunology (EAACI)/Global Allergy and Asthma European Network (GA 2LEN)/European Dermatology Forum (EDF)/World Allergy Organization (WAO). There are some differences in the recommendations, which will be discussed, but the core updates are common to both groups. The basic treatment for chronic urticaria involves second-generation non-sedating non-impairing H 1 antihistamines as first-line treatment. This is followed by up to a 4-fold increase in the licensed dose of these H 1 antihistamines. The major therapeutic advance in recent years has been in third-line treatment with omalizumab, a humanized monoclonal anti-immunoglobulin E (anti-IgE) antibody that prevents binding of IgE to the high-affinity IgE receptor. Several multicenter randomized controlled trials have shown safety and efficacy of omalizumab for CSU. There are also some small studies showing efficacy of omalizumab in CINDU. While there were previously many treatment options which were lacking in strong evidence, we are moving into an era where the treatment algorithm for chronic urticaria is simplified and contains more evidence-based, effective, and less toxic treatment options. PMID:26949520

  13. Advances in Understanding and Managing Chronic Urticaria.

    PubMed

    Moolani, Yasmin; Lynde, Charles; Sussman, Gordon

    2016-01-01

    There have been recent advances in the classification and management of chronic urticaria. The new term chronic spontaneous urticaria (CSU) has replaced chronic idiopathic urticaria and chronic autoimmune urticaria. In addition, chronic inducible urticaria (CINDU) has replaced physical urticaria and includes other forms of inducible urticaria, such as cholinergic and aquagenic urticaria. Furthermore, novel research has resulted in a new understanding with guidelines being revised in the past year by both the American Academy of Allergy, Asthma, and Immunology (AAAAI) and the European Academy of Allergy and Clinical Immunology (EAACI)/Global Allergy and Asthma European Network (GA (2)LEN)/European Dermatology Forum (EDF)/World Allergy Organization (WAO). There are some differences in the recommendations, which will be discussed, but the core updates are common to both groups. The basic treatment for chronic urticaria involves second-generation non-sedating non-impairing H 1 antihistamines as first-line treatment. This is followed by up to a 4-fold increase in the licensed dose of these H 1 antihistamines. The major therapeutic advance in recent years has been in third-line treatment with omalizumab, a humanized monoclonal anti-immunoglobulin E (anti-IgE) antibody that prevents binding of IgE to the high-affinity IgE receptor. Several multicenter randomized controlled trials have shown safety and efficacy of omalizumab for CSU. There are also some small studies showing efficacy of omalizumab in CINDU. While there were previously many treatment options which were lacking in strong evidence, we are moving into an era where the treatment algorithm for chronic urticaria is simplified and contains more evidence-based, effective, and less toxic treatment options. PMID:26949520

  14. Recent advances in understanding idiopathic pulmonary fibrosis

    PubMed Central

    Daccord, Cécile; Maher, Toby M.

    2016-01-01

    Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645

  15. Recent advances in understanding and treating ARDS

    PubMed Central

    Baron, Rebecca M.; Levy, Bruce D.

    2016-01-01

    Acute respiratory distress syndrome represents a complex syndrome with considerable morbidity and mortality, for which there exist no targeted treatment strategies. However, recent advances in clinical care have improved outcomes, and we will review a number of these approaches here, as well as explore the mechanisms underlying the benefit of intervention that might point us in the direction toward future treatment and preventive strategies for this devastating syndrome. PMID:27158460

  16. Advances in understanding and managing bullous pemphigoid

    PubMed Central

    Zhao, Cathy Y.; Murrell, Dedee F.

    2015-01-01

    Bullous pemphigoid (BP) is the commonest subtype of autoimmune blistering disease in most countries of the world. It occurs most frequently in elderly patients and is characterised clinically by large, tense blisters in the skin preceded by urticarial plaques and pruritus. Immunopathologically, it is characterised by autoantibodies directed against the 180 kD antigen (BP180) and the 230 kD antigen (BP230). New knowledge regarding BP is being continually uncovered. This article reviews the recent advances in BP, including newer diagnostic tests, standardised outcome measures and emerging therapeutic options, as well as the evidence supporting their use. PMID:26918143

  17. Recent advances in understanding and treating vasculitis

    PubMed Central

    Koster, Matthew J.; Warrington, Kenneth J.

    2016-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are near universally fatal conditions if untreated. Although effective therapeutic options are available for these diseases, treatment regimens are associated with both short- and long-term adverse effects. The recent identification of effective B-cell-targeted therapy with an anti-CD20 monoclonal antibody has transformed the treatment landscape of AAV. Questions, nevertheless, remain regarding the appropriate timing, dose, frequency, duration, and long-term effects of treatment. The aim of this article is to provide an overview of the current information, recent advances, ongoing clinical trials, and future treatment possibilities in AAV. PMID:27347395

  18. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  19. Recent advances in understanding ichthyosis pathogenesis.

    PubMed

    Marukian, Nareh V; Choate, Keith A

    2016-01-01

    The ichthyoses, also known as disorders of keratinization (DOK), encompass a heterogeneous group of skin diseases linked by the common finding of abnormal barrier function, which initiates a default compensatory pathway of hyperproliferation, resulting in the characteristic clinical manifestation of localized and/or generalized scaling. Additional cutaneous findings frequently seen in ichthyoses include generalized xerosis, erythroderma, palmoplantar keratoderma, hypohydrosis, and recurrent infections. In 2009, the Ichthyosis Consensus Conference established a classification consensus for DOK based on pathophysiology, clinical manifestations, and mode of inheritance. This nomenclature system divides DOK into two main groups: nonsyndromic forms, with clinical findings limited to the skin, and syndromic forms, with involvement of additional organ systems. Advances in next-generation sequencing technology have allowed for more rapid and cost-effective genetic analysis, leading to the identification of novel, rare mutations that cause DOK, many of which represent phenotypic expansion. This review focuses on new findings in syndromic and nonsyndromic ichthyoses, with emphasis on novel genetic discoveries that provide insight into disease pathogenesis. PMID:27408699

  20. Recent advances in understanding ichthyosis pathogenesis

    PubMed Central

    Marukian, Nareh V.; Choate, Keith A.

    2016-01-01

    The ichthyoses, also known as disorders of keratinization (DOK), encompass a heterogeneous group of skin diseases linked by the common finding of abnormal barrier function, which initiates a default compensatory pathway of hyperproliferation, resulting in the characteristic clinical manifestation of localized and/or generalized scaling. Additional cutaneous findings frequently seen in ichthyoses include generalized xerosis, erythroderma, palmoplantar keratoderma, hypohydrosis, and recurrent infections. In 2009, the Ichthyosis Consensus Conference established a classification consensus for DOK based on pathophysiology, clinical manifestations, and mode of inheritance. This nomenclature system divides DOK into two main groups: nonsyndromic forms, with clinical findings limited to the skin, and syndromic forms, with involvement of additional organ systems. Advances in next-generation sequencing technology have allowed for more rapid and cost-effective genetic analysis, leading to the identification of novel, rare mutations that cause DOK, many of which represent phenotypic expansion. This review focuses on new findings in syndromic and nonsyndromic ichthyoses, with emphasis on novel genetic discoveries that provide insight into disease pathogenesis. PMID:27408699

  1. Advances in understanding hydration of Portland cement

    SciTech Connect

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  2. Advances in understanding and treating ADHD

    PubMed Central

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability. PMID:21658285

  3. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  4. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  5. A Theoretical Framework towards Understanding of Emotional and Behavioural Difficulties

    ERIC Educational Resources Information Center

    Poulou, Maria S.

    2014-01-01

    Children's emotional and behavioural difficulties are the result of multiple individual, social and contextual factors working in concert. The current paper proposes a theoretical framework to interpret students' emotional and behavioural difficulties in schools, by taking into consideration teacher-student relationships, students'…

  6. Advances in the understanding of conduction disturbances.

    PubMed

    Kulbertus, H E

    1978-09-01

    The interest towards intraventricular conduction defects started some 10 yr after the introduction of the string galvanometer by Einthoven. As early as 1910, it was known that conduction blockade could occur along either branch of the intraventricular conducting pathway. It took some 20 yr to identify properly the electrocardiographic manifestations of right and left bundle branch blocks. A further 30 yr were needed to obtain a sound correlation between these functional disorders and the presence of anatomical lesions. The more recent introduction of the concept of left hemiblocks further improved our understanding of intraventricular conduction defects. The latter concept is based on the hypothesis of the anatomical and functional bifascicularity of the left bundle branch, a hypothesis which cannot be accepted without some reservations. Later developments indicated that left hemiblocks associated with right bundle branch block represent manifestations of bilateral conduction disturbances (incomplete bilateral bundle branch block). Such an association may constitute a forerunner of complete atrioventricular block, or an indicator of the possibility of sudden death. Whether these complications occur frequently or unfrequently in the setting of incomplete bilateral bundle branch block remains an unsettled question. PMID:699953

  7. Understanding Multiculturalism and Valuing Diversity: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    DeSensi, Joy T.

    1995-01-01

    Presents two specific approaches to understanding multiculturalism--valuing diversity and taking proactive stances in regard to educating about diversity in society and in physical education and sport settings in particular. An adaptation of Chesler and Crowfoot's organizational stages of multiculturalism and Bennett's model of ethnocentric and…

  8. Understanding International Partnerships: A Theoretical and Practical Approach

    ERIC Educational Resources Information Center

    Taylor, John

    2016-01-01

    Internationalisation is now a key strategic priority for many universities. As part of this process, universities are increasingly looking to build a number of key strategic partnerships with a small number of like-minded institutions. This paper, based on a detailed study of three such partnerships, seeks to understand and theorise the process by…

  9. Understanding New Media Literacy: An Explorative Theoretical Framework

    ERIC Educational Resources Information Center

    Lin, Tzu-Bin; Li, Jen-Yi; Deng, Feng; Lee, Ling

    2013-01-01

    With the advent of new media technologies, the role of media in a society has been changed that leads researchers to re-construct the meaning of literacy from classic literacy to new media literacy. There have been continuing efforts to understand new media and promote the importance of becoming new media literate among researchers, educators,…

  10. Polymer-brush lubrication: a review of recent theoretical advances.

    PubMed

    Kreer, T

    2016-04-13

    This review compiles recent theoretical advances to describe compressive and shear forces of polymer-brush bilayers, which consist of two opposing brushes in contact. Such model systems for polymer-brush lubrication are frequently used as a benchmark to gain insight into biological problems, e.g., synovial joint lubrication. Based on scaling theory, I derive conformational and collective properties of polymer-brush bilayers in equilibrium and out-of-equilibrium situations, such as shear forces in the linear and nonlinear response regimes of stationary shear and under non-stationary shear. Furthermore, I discuss the influence of macromolecular inclusions and electrostatic interactions on polymer-brush lubrication. Comparisons to alternative analytical approaches, experiments and numerical results are performed. Special emphasis is given to methods for simulating polymer-brush bilayers using molecular dynamics simulations. PMID:27029521

  11. CAM Modalities Can Stimulate Advances in Theoretical Biology

    PubMed Central

    2005-01-01

    Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments. PMID:15841271

  12. Advanced Science Students' Understandings on Nature of Science in Finland

    ERIC Educational Resources Information Center

    Sormunen, Kari; Köksal, Mustafa Serdar

    2014-01-01

    Majority of NOS studies comprise of determination or assessment studies conducted with ordinary students. In order to gain further understanding on variation in NOS understandings among the students, there should be different research attempts focusing on unconventional students such as academically advanced students. The purpose of this study is…

  13. Towards a Theoretical Understanding of the XYZ Mesons from QCD

    NASA Astrophysics Data System (ADS)

    Braaten, Eric

    2016-03-01

    The XYZ mesons are mesons that contain a heavy quark and antiquark but have properties that seem to require additional constituents. Some of them are electrically charged, so they must be tetraquark mesons whose additional constituents are a light quark and antiquark. The list of XYZ mesons has grown to about two dozen over the last decade. A promising approach to understanding these mesons within QCD is the Born-Oppenheimer approximation, which reduces the problem to the solution of the Schrödinger equation in potentials that can be calculated using lattice QCD. The Born-Oppenheimer approximation has not yet revealed the pattern of the XYZ mesons, but it provides a compelling framework for understanding them from the fundamental theory.

  14. Understanding the conductance switching of permethyloligosilanes: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Anup; Sarkar, Pranab

    2015-09-01

    On the basis of ab initio density functional theory coupled with non-equilibrium Green's function technique, we have presented a molecular level understanding on the stereoelectronic switching of conducting properties of oligosilane molecules. Su et al. [Nat. Chem. 7, 215-220 (2015)] demonstrated that these types of oligosilane molecules exhibit three stereoconformers which show two distinct conducting profiles. On the basis of break-junction technique, the authors show that manipulating a specific dihedral angle and thereby controlling the length of the molecular contact, it is possible to switch the conducting states minutely. However, their discussions scarce the proper energy level alignment upon which the molecule-lead tunneling amplitude depends. On the basis of electronic structure and non-equilibrium electron transport calculations, we interpret such switching behavior and thus quantify the switching parameter demonstrating how the metal-molecule contact geometry along with the electronic energy level alignment is responsible for such kind of junction process. We also provide the variation of switching parameter and the type of majority carrier with the conjugation length of the oligosilanes.

  15. Understanding the conductance switching of permethyloligosilanes: A theoretical approach

    SciTech Connect

    Pramanik, Anup; Sarkar, Pranab

    2015-09-21

    On the basis of ab initio density functional theory coupled with non-equilibrium Green’s function technique, we have presented a molecular level understanding on the stereoelectronic switching of conducting properties of oligosilane molecules. Su et al. [Nat. Chem. 7, 215–220 (2015)] demonstrated that these types of oligosilane molecules exhibit three stereoconformers which show two distinct conducting profiles. On the basis of break-junction technique, the authors show that manipulating a specific dihedral angle and thereby controlling the length of the molecular contact, it is possible to switch the conducting states minutely. However, their discussions scarce the proper energy level alignment upon which the molecule-lead tunneling amplitude depends. On the basis of electronic structure and non-equilibrium electron transport calculations, we interpret such switching behavior and thus quantify the switching parameter demonstrating how the metal-molecule contact geometry along with the electronic energy level alignment is responsible for such kind of junction process. We also provide the variation of switching parameter and the type of majority carrier with the conjugation length of the oligosilanes.

  16. Advances in genetics: widening our understanding of prostate cancer

    PubMed Central

    Pine, Angela C.; Fioretti, Flavia F.; Brooke, Greg N.; Bevan, Charlotte L.

    2016-01-01

    Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients. PMID:27408704

  17. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  18. University Students' Understanding of the Concepts Empirical, Theoretical, Qualitative and Quantitative Research

    ERIC Educational Resources Information Center

    Murtonen, Mari

    2015-01-01

    University research education in many disciplines is frequently confronted by problems with students' weak level of understanding of research concepts. A mind map technique was used to investigate how students understand central methodological concepts of empirical, theoretical, qualitative and quantitative. The main hypothesis was that some…

  19. Assessing Students' Understandings of Biological Models and their Use in Science to Evaluate a Theoretical Framework

    NASA Astrophysics Data System (ADS)

    Grünkorn, Juliane; Belzen, Annette Upmeier zu; Krüger, Dirk

    2014-07-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation). Therefore, the purpose of this article is to present the results of an empirical evaluation of a conjoint theoretical framework. The theoretical framework integrates relevant research findings and comprises five aspects which are subdivided into three levels each: nature of models, multiple models, purpose of models, testing, and changing models. The study was conducted with a sample of 1,177 seventh to tenth graders (aged 11-19 years) using open-ended items. The data were analysed by identifying students' understandings of models (nature of models and multiple models) and their use in science (purpose of models, testing, and changing models), and comparing as well as assigning them to the content of the theoretical framework. A comprehensive category system of students' understandings was thus developed. Regarding the empirical evaluation, the students' understandings of the nature and the purpose of models were sufficiently described by the theoretical framework. Concerning the understandings of multiple, testing, and changing models, additional initial understandings (only one model possible, no testing of models, and no change of models) need to be considered. This conjoint and now empirically tested framework for students' understandings can provide a common basis for future science education research. Furthermore, evidence-based indications can be provided for teachers and their instructional practice.

  20. Recent Advances in Understanding and Engineering Polyketide Synthesis

    PubMed Central

    Zhang, Wenjun; Liu, Joyce

    2016-01-01

    Polyketides are a diverse group of natural products that form the basis of many important drugs. The engineering of the polyketide synthase (PKS) enzymes responsible for the formation of these compounds has long been considered to have great potential for producing new bioactive molecules. Recent advances in this field have contributed to the understanding of this powerful and complex enzymatic machinery, particularly with regard to domain activity and engineering, unique building block formation and incorporation, and programming rules and limitations. New developments in tools for in vitro biochemical analysis, full-length megasynthase structural studies, and in vivo heterologous expression will continue to improve our fundamental understanding of polyketide synthesis as well as our ability to engineer the production of polyketides. PMID:26962443

  1. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026

  2. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  3. Developing a Theoretical Framework for Examining Student Understanding of Fractional Concepts: An Historical Accounting

    ERIC Educational Resources Information Center

    Cooper, Susan M.; Wilkerson, Trena L.; Montgomery, Mark; Mechell, Sara; Arterbury, Kristin; Moore, Sherrie

    2012-01-01

    In 2007, a group of mathematics educators and researchers met to examine rational numbers and why children have such an issue with them. An extensive review of the literature on fractional understanding was conducted. The ideas in that literature were then consolidated into a theoretical framework for examining fractions. Once that theoretical…

  4. Compassion Fatigue as a Theoretical Framework to Help Understand Burnout among Special Education Teachers

    ERIC Educational Resources Information Center

    Hoffman, Shari; Palladino, John M.; Barnett, Jeffery

    2007-01-01

    Compassion fatigue is a theoretical framework researchers have applied to helping professions other than teaching. The purpose of this report is to propose the use of this theory to better understand the prevalent rates of special education teachers' exit from the profession often labeled as burnout. A qualitative study with six middle school…

  5. Observational and theoretical advances in cosmological foreground emission

    NASA Astrophysics Data System (ADS)

    Stevenson, Matthew A.

    Observational and theoretical work towards the separation of foreground emission from the cosmic microwave background is described. The bulk of this work is in the design, construction, and commissioning of the C-Band All-Sky Survey (C-BASS), an experiment to produce a template of the Milky Way Galaxy's polarized synchrotron emission. Theoretical work is the derivation of an analytical approximation to the emission spectrum of spinning dust grains. The performance of the C-BASS experiment is demonstrated through a preliminary, deep survey of the North Celestial Pole region. A comparison to multiwavelength data is performed, and the thermal and systematic noise properties of the experiment are explored. The systematic noise has been minimized through careful data processing algorithms, implemented both in the experiment's Field Programmable Gate Array (FPGA) based digital backend and in the data analysis pipeline. Detailed descriptions of these algorithms are presented. The analytical function of spinning dust emission is derived through the application of careful approximations, with each step tested against numerical calculations. This work is intended for use in the parameterized separation of cosmological foreground components and as a framework for interpreting and comparing the variety of anomalous microwave emission observations.

  6. Experimental and theoretical advances in prosody: A review

    PubMed Central

    Wagner, Michael; Watson, Duane G.

    2011-01-01

    Research on prosody has recently become an important focus in various disciplines, including Linguistics, Psychology, and Computer Science. This article reviews recent research advances on two key issues: prosodic phrasing and prosodic prominence. Both aspects of prosody are influenced by linguistic factors such as syntactic constituent structure, semantic relations, phonological rhythm, pragmatic considerations, and also by processing factors such as the length, complexity or predictability of linguistic material. Our review summarizes recent insights into the production and perception of these two components of prosody and their grammatical underpinnings. While this review only covers a subset of a broader set of research topics on prosody in cognitive science, they are representative of a tendency in the field toward a more interdisciplinary approach. PMID:22096264

  7. Advancing our understanding of the human microbiome using QIIME

    PubMed Central

    Navas-Molina, José A.; Peralta-Sánchez, Juan M.; González, Antonio; McMurdie, Paul J.; Vázquez-Baeza, Yoshiki; Xu, Zhenjiang; Ursell, Luke K.; Lauber, Christian; Zhou, Hongwei; Song, Se Jin; Huntley, James; Ackermann, Gail L.; Berg-Lyons, Donna; Holmes, Susan; Caporaso, J. Gregory; Knight, Rob

    2014-01-01

    High-throughput DNA sequencing technologies, coupled with advanced bioinformatics tools, have enabled rapid advances in microbial ecology and our understanding of the human microbiome. QIIME (Quantitative Insights Into Microbial Ecology) is an open-source bioinformatics software package designed for microbial community analysis based on DNA sequence data, which provides a single analysis framework for analysis of raw sequence data through publication quality statistical analyses and interactive visualizations. In this paper, we demonstrate the use of the QIIME pipeline to analyze microbial communities obtained from several sites on the bodies of transgenic and wild-type mice, as assessed using 16S rRNA gene sequences generated on the Illumina MiSeq platform. We present our recommended pipeline for performing microbial community analysis, and provide guidelines for making critical choices in the process. We present examples of some of the types of analyses that are enabled by QIIME, and discuss how other tools, such as phyloseq and R, can be applied to expand upon these analyses. PMID:24060131

  8. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  9. Recent advances in understanding Antarctic subglacial lakes and hydrology

    PubMed Central

    Siegert, Martin J.; Ross, Neil; Le Brocq, Anne M.

    2016-01-01

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from ‘active’ lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further ‘active’ subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many ‘active’ lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  10. Advances in understanding the urine-concentrating mechanism.

    PubMed

    Sands, Jeff M; Layton, Harold E

    2014-01-01

    The renal medulla produces concentrated urine through the generation of an osmotic gradient that progressively increases from the cortico-medullary boundary to the inner medullary tip. In the outer medulla, the osmolality gradient arises principally from vigorous active transport of NaCl, without accompanying water, from the thick ascending limbs of short- and long-looped nephrons. In the inner medulla, the source of the osmotic gradient has not been identified. Recently, there have been important advances in our understanding of key components of the urine-concentrating mechanism, including (a) better understanding of the regulation of water, urea, and sodium transport proteins; (b) better resolution of the anatomical relationships in the medulla; and (c) improvements in mathematical modeling of the urine-concentrating mechanism. Continued experimental investigation of signaling pathways regulating transepithelial transport, both in normal animals and in knockout mice, and incorporation of the resulting information into mathematical simulations may help to more fully elucidate the mechanism for concentrating urine in the inner medulla. PMID:24245944

  11. Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1992-01-01

    This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.

  12. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches.

    PubMed

    Snyder, Hannah R; Miyake, Akira; Hankin, Benjamin L

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  13. Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches

    PubMed Central

    Snyder, Hannah R.; Miyake, Akira; Hankin, Benjamin L.

    2015-01-01

    Executive function (EF) is essential for successfully navigating nearly all of our daily activities. Of critical importance for clinical psychological science, EF impairments are associated with most forms of psychopathology. However, despite the proliferation of research on EF in clinical populations, with notable exceptions clinical and cognitive approaches to EF have remained largely independent, leading to failures to apply theoretical and methodological advances in one field to the other field and hindering progress. First, we review the current state of knowledge of EF impairments associated with psychopathology and limitations to the previous research in light of recent advances in understanding and measuring EF. Next, we offer concrete suggestions for improving EF assessment. Last, we suggest future directions, including integrating modern models of EF with state of the art, hierarchical models of dimensional psychopathology as well as translational implications of EF-informed research on clinical science. PMID:25859234

  14. Recent advances in the understanding and management of delayed puberty.

    PubMed

    Wei, Christina; Crowne, Elizabeth Clare

    2016-05-01

    Delayed puberty, especially in boys, is a common presentation in paediatrics. Recent advances have improved our understanding of the neuroendocrine, genetic and environmental factors controlling pubertal development, and hence inform the pathophysiology of delayed puberty. The discovery of kisspeptin signalling through its receptor identified neuroendocrine mechanisms controlling the gonadotrophin-releasing hormone (GnRH) pulse generator at the onset of puberty. Genetic mechanisms from single gene mutations to single nucleotide polymorphism associated with delayed puberty are being identified. Environmental factors, including nutritional factors and endocrine disruptors, have also been implicated in changes in secular trends and abnormal timing of puberty. Despite these advances, the key clinical question is to distinguish delayed puberty associated with an underlying pathology or hypogonadism from constitutional delay in growth and puberty, which remains challenging as biochemical tests are not always discriminatory. The diagnostic accuracies of newer investigations, including 36-hour luteinising hormone releasing hormone (LHRH) tests, GnRH-agonist tests, antimullerian hormone and inhibin-B, require further evaluation. Sex hormone replacement remains the main available treatment for delayed puberty, the choice of which is largely dictated by clinical practice and availability of the various sex steroid preparations. Spontaneous reversal of hypogonadism has been reported in boys with idiopathic hypogonadotrophic hypogonadism after a period of sex steroid treatment, highlighting the importance of reassessment at the end of pubertal induction. Novel therapies with a more physiological basis such as gonadotrophins or kisspeptin-agonist are being investigated for the management of hypogonadotrophic hypogonadism. Careful clinical assessment and appreciation of the normal physiology remain the key approach to patients with delayed puberty. PMID:26353794

  15. Recent advances in understanding and diagnosing hepatitis B virus infection

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2016-01-01

    Hepatitis B virus (HBV) infects approximately 240 million individuals worldwide. Recent advances in the virology, immunopathogenesis, and diagnosis of HBV infection are summarized in this review article. The identification of a hepatocyte-specific cellular receptor for HBV, the sodium taurocholate co-transporting polypeptide (NTCP), made it possible to develop reliable cell culture systems and better understand the early steps of the viral lifecycle. Viral and host factors involved in covalently closed circular DNA synthesis, stability, and transcriptional regulation have also been identified and provide potential targets for new drugs. Based on recent evidence showing trained immunity in immune-tolerant patients, the immune tolerance and immune clearance phases have been renamed the non-inflammatory and inflammatory phases, respectively. New diagnostic and monitoring tools are now available, including rapid diagnostic tests for hepatitis B surface antigen (HBsAg) detection, HBsAg quantification assays, anti-HBc antibody quantification assays, an HBV core-related antigen (HBcrAg) quantification test, new HBV DNA detection and quantification assays, and an HBV RNA quantification test. Their clinical utility is under study. Finally, new antiviral and immune modulation approaches are in the preclinical or early clinical developmental stages, with the goal to achieve functional cure or ideally (if possible) eradication of HBV infection.

  16. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    PubMed Central

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  17. Some recent advances in understanding the mineralogy of Earth's deep mantle

    SciTech Connect

    Duffy, T S

    2008-12-09

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO{sub 3} in the CaIrO{sub 3}-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  18. Advances in the understanding and operations of superconducting colliders

    SciTech Connect

    Annala, G.; Bauer, P.; Bottura, L.; Martens, M.A.; Sammut, N.; Velev, G.; Shiltsev, V.; /Fermilab

    2005-05-01

    Chromaticity drift during injection is a well-known phenomenon in superconducting colliders, such as the Tevatron, HERA and RHIC. Imperfect compensation of the drift effects can contribute to beam loss and emittance growth. It is caused by the drift of the sextupole component in the dipole magnets due to current redistribution in its superconducting coils. Recently extensive studies of chromaticity drift were conducted at the Tevatron, aiming at the improvement of the luminosity performance in the ongoing run II. These studies included not only beam experiments, but also extensive off-line magnetic measurements on spare Tevatron dipoles. Less known, until recently, is that chromaticity drift is often accompanied by tune and coupling drift. This was recently discovered in the Tevatron. We believe that these effects are the product of systematic beam offset in conjunction with the sextupole drifts (and their compensation in the chromaticity correctors). These discoveries are most relevant to the upcoming LHC, where the drift effects will have even more dramatic consequences given the high beam current. It is therefore not a surprise that CERN has been the source of major advances in the understanding of dynamic effects during the LHC superconducting magnet development. The following will briefly review the CERN results as well as those of the recent Fermilab studies. A new result, which will be presented here also, is related to fast drifts occurring in the first few seconds of the injection plateau. Again, these fast drifts were observed first in the Tevatron and efforts are underway to explain them. Finally this paper will attempt to derive the implications of these drift effects on LHC commissioning and operation.

  19. Students' Understanding of Advanced Properties of Java Exceptions

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2012-01-01

    This study examines how Information Systems Engineering School students on the verge of their graduation understand the mechanism of exception handling. The main contributions of this paper are as follows: we construct a questionnaire aimed at examining students' level of understanding concerning exceptions; we classify and analyse the students'…

  20. Personality is of central concern to understand health: towards a theoretical model for health psychology

    PubMed Central

    Ferguson, Eamonn

    2013-01-01

    This paper sets out the case that personality traits are central to health psychology. To achieve this, three aims need to be addressed. First, it is necessary to show that personality influences a broad range of health outcomes and mechanisms. Second, the simple descriptive account of Aim 1 is not sufficient, and a theoretical specification needs to be developed to explain the personality-health link and allow for future hypothesis generation. Third, once Aims 1 and 2 are met, it is necessary to demonstrate the clinical utility of personality. In this review I make the case that all three Aims are met. I develop a theoretical framework to understand the links between personality and health drawing on current theorising in the biology, evolution, and neuroscience of personality. I identify traits (i.e., alexithymia, Type D, hypochondriasis, and empathy) that are of particular concern to health psychology and set these within evolutionary cost-benefit analysis. The literature is reviewed within a three-level hierarchical model (individual, group, and organisational) and it is argued that health psychology needs to move from its traditional focus on the individual level to engage group and organisational levels. PMID:23772230

  1. Manganese: Recent advances in understanding its transport and neurotoxicity

    SciTech Connect

    Aschner, Michael . E-mail: Michael.Aschner@vanderbilt.edu; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-06-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans.

  2. Moral distress: a comparative analysis of theoretical understandings and inter-related concepts.

    PubMed

    Lützén, Kim; Kvist, Beatrice Ewalds

    2012-03-01

    Research on ethical dilemmas in health care has become increasingly salient during the last two decades resulting in confusion about the concept of moral distress. The aim of the present paper is to provide an overview and a comparative analysis of the theoretical understandings of moral distress and related concepts. The focus is on five concepts: moral distress, moral stress, stress of conscience, moral sensitivity and ethical climate. It is suggested that moral distress connects mainly to a psychological perspective; stress of conscience more to a theological-philosophical standpoint; and moral stress mostly to a physiological perspective. Further analysis indicates that these thoughts can be linked to the concepts of moral sensitivity and ethical climate through a relationship to moral agency. Moral agency comprises a moral awareness of moral problems and moral responsibility for others. It is suggested that moral distress may serve as a positive catalyst in exercising moral agency. An interdisciplinary approach in research and practice broadens our understanding of moral distress and its impact on health care personnel and patient care. PMID:22454155

  3. Advances in understanding glycosyltransferases from a structural perspective

    PubMed Central

    Gloster, Tracey M

    2014-01-01

    Glycosyltransferases (GTs), the enzymes that catalyse glycosidic bond formation, create a diverse range of saccharides and glycoconjugates in nature. Understanding GTs at the molecular level, through structural and kinetic studies, is important for gaining insights into their function. In addition, this understanding can help identify those enzymes which are involved in diseases, or that could be engineered to synthesize biologically or medically relevant molecules. This review describes how structural data, obtained in the last 3–4 years, have contributed to our understanding of the mechanisms of action and specificity of GTs. Particular highlights include the structure of a bacterial oligosaccharyltransferase, which provides insights into N-linked glycosylation, the structure of the human O-GlcNAc transferase, and the structure of a bacterial integral membrane protein complex that catalyses the synthesis of cellulose, the most abundant organic molecule in the biosphere. PMID:25240227

  4. Recent Molecular Advances in Our Understanding of Glioma

    PubMed Central

    Pisapia, David

    2015-01-01

    Our molecular understanding of glioma has undergone a sea change over the last decade. In this review, we discuss two recent articles that employed whole genome sequencing to subclassify gliomas vis-à-vis known molecular alterations. We further discuss the relevance of these findings vis-à-vis current treatment paradigms. PMID:26244119

  5. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  6. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  7. Cancer surviving patients' rehabilitation - understanding failure through application of theoretical perspectives from Habermas.

    PubMed

    Mikkelsen, Thorbjørn H; Soendergaard, Jens; Jensen, Anders B; Olesen, Frede

    2008-01-01

    This study aims to analyze whether the rehabilitation of cancer surviving patients (CSPs) can be better organized. The data for this paper consists of focus group interviews (FGIs) with CSPs, general practitioners (GPs) and hospital physicians. The analysis draws on the theoretical framework of Jürgen Habermas, utilizing his notions of 'the system and the life world' and 'communicative and strategic action'. In Habermas' terminology, the social security system and the healthcare system are subsystems that belong to what he calls the 'system', where actions are based on strategic actions activated by the means of media such as money and power which provide the basis for other actors' actions. The social life, on the other hand, in Habermas' terminology, belongs to what he calls the 'life world', where communicative action is based on consensual coordination among individuals. Our material suggests that, within the hospital world, the strategic actions related to diagnosis, treatment and cure in the biomedical discourse dominate. They function as inclusion/exclusion criteria for further treatment. However, the GPs appear to accept the CSPs' previous cancer diagnosis as a precondition sufficient for providing assistance. Although the GPs use the biomedical discourse and often give biomedical examples to exemplify rehabilitation needs, they find psychosocial aspects, so-called lifeworld aspects, to be an important component of their job when helping CSPs. In this way, they appear more open to communicative action in relation to the CSPs' lifeworld than do the hospital physicians. Our data also suggests that the CSPs' lifeworld can be partly colonized by the system during hospitalization, making it difficult for CSPs when they are discharged at the end of treatment. This situation seems to be crucial to our understanding of why CSPs often feel left in limbo after discharge. We conclude that the distinction between the system and the lifeworld and the implications of a

  8. Cancer surviving patients' rehabilitation – understanding failure through application of theoretical perspectives from Habermas

    PubMed Central

    Mikkelsen, Thorbjørn H; Soendergaard, Jens; Jensen, Anders B; Olesen, Frede

    2008-01-01

    This study aims to analyze whether the rehabilitation of cancer surviving patients (CSPs) can be better organized. The data for this paper consists of focus group interviews (FGIs) with CSPs, general practitioners (GPs) and hospital physicians. The analysis draws on the theoretical framework of Jürgen Habermas, utilizing his notions of 'the system and the life world' and 'communicative and strategic action'. In Habermas' terminology, the social security system and the healthcare system are subsystems that belong to what he calls the 'system', where actions are based on strategic actions activated by the means of media such as money and power which provide the basis for other actors' actions. The social life, on the other hand, in Habermas' terminology, belongs to what he calls the 'life world', where communicative action is based on consensual coordination among individuals. Our material suggests that, within the hospital world, the strategic actions related to diagnosis, treatment and cure in the biomedical discourse dominate. They function as inclusion/exclusion criteria for further treatment. However, the GPs appear to accept the CSPs' previous cancer diagnosis as a precondition sufficient for providing assistance. Although the GPs use the biomedical discourse and often give biomedical examples to exemplify rehabilitation needs, they find psychosocial aspects, so-called lifeworld aspects, to be an important component of their job when helping CSPs. In this way, they appear more open to communicative action in relation to the CSPs' lifeworld than do the hospital physicians. Our data also suggests that the CSPs' lifeworld can be partly colonized by the system during hospitalization, making it difficult for CSPs when they are discharged at the end of treatment. This situation seems to be crucial to our understanding of why CSPs often feel left in limbo after discharge. We conclude that the distinction between the system and the lifeworld and the implications of a

  9. Recent advances in managing and understanding diabetic nephropathy

    PubMed Central

    Tang, Sydney C.W.; Chan, Gary C.W.; Lai, Kar Neng

    2016-01-01

    Diabetic nephropathy is the commonest cause of end-stage renal disease in most developed economies. Current standard of care for diabetic nephropathy embraces stringent blood pressure control via blockade of the renin-angiotensin-aldosterone system and glycemia control. Recent understanding of the pathophysiology of diabetic nephropathy has led to the development of novel therapeutic options. This review article focuses on available data from landmark studies on the main therapeutic approaches and highlights some novel management strategies. PMID:27303648

  10. Recent advances in understanding the pathogenesis of Lawsonia intracellularis infections.

    PubMed

    Vannucci, F A; Gebhart, C J

    2014-03-01

    Proliferative enteropathy is an infectious disease caused by an obligate intracellular bacterium, Lawsonia intracellularis, and characterized by thickening of the intestinal epithelium due to enterocyte proliferation. The disease is endemic in swine herds and has been occasionally reported in various other species. Furthermore, outbreaks among foals began to be reported on breeding farms worldwide within the past 5 years. Cell proliferation is directly associated with bacterial infection and replication in the intestinal epithelium. As a result, mild to severe diarrhea is the major clinical sign described in infected animals. The dynamics of L. intracellularis infection in vitro and in vivo have been well characterized, but little is known about the genetic basis for the pathogenesis or ecology of this organism. The present review focuses on the recent advances regarding the pathogenesis and host-pathogen interaction of L. intracellularis infections. PMID:24476941

  11. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae

    PubMed Central

    Sartor, R. Balfour

    2015-01-01

    Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection. PMID:26097735

  12. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  13. The growth threshold conjecture: a theoretical framework for understanding T-cell tolerance

    PubMed Central

    Arias, Clemente F.; Herrero, Miguel A.; Cuesta, José A.; Acosta, Francisco J.; Fernández-Arias, Cristina

    2015-01-01

    Adaptive immune responses depend on the capacity of T cells to target specific antigens. As similar antigens can be expressed by pathogens and host cells, the question naturally arises of how can T cells discriminate friends from foes. In this work, we suggest that T cells tolerate cells whose proliferation rates remain below a permitted threshold. Our proposal relies on well-established facts about T-cell dynamics during acute infections: T-cell populations are elastic (they expand and contract) and they display inertia (contraction is delayed relative to antigen removal). By modelling inertia and elasticity, we show that tolerance to slow-growing populations can emerge as a population-scale feature of T cells. This result suggests a theoretical framework to understand immune tolerance that goes beyond the self versus non-self dichotomy. It also accounts for currently unexplained observations, such as the paradoxical tolerance to slow-growing pathogens or the presence of self-reactive T cells in the organism. PMID:26587263

  14. Imaging for understanding speech communication: Advances and challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth

    2005-04-01

    Research in speech communication has relied on a variety of instrumentation methods to illuminate details of speech production and perception. One longstanding challenge has been the ability to examine real-time changes in the shaping of the vocal tract; a goal that has been furthered by imaging techniques such as ultrasound, movement tracking, and magnetic resonance imaging. The spatial and temporal resolution afforded by these techniques, however, has limited the scope of the investigations that could be carried out. In this talk, we focus on some recent advances in magnetic resonance imaging that allow us to perform near real-time investigations on the dynamics of vocal tract shaping during speech. Examples include Demolin et al. (2000) (4-5 images/second, ultra-fast turbo spin echo) and Mady et al. (2001,2002) (8 images/second, T1 fast gradient echo). A recent study by Narayanan et al. (2004) that used a spiral readout scheme to accelerate image acquisition has allowed for image reconstruction rates of 24 images/second. While these developments offer exciting prospects, a number of challenges lie ahead, including: (1) improving image acquisition protocols, hardware for enhancing signal-to-noise ratio, and optimizing spatial sampling; (2) acquiring quality synchronized audio; and (3) analyzing and modeling image data including cross-modality registration. [Work supported by NIH and NSF.

  15. Recent Advances in Understanding Integrative Control of Potassium Homeostasis

    PubMed Central

    Youn, Jang H.; McDonough, Alicia A.

    2016-01-01

    The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K+], there is evidence for a feedforward mechanism: Dietary K+ intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K+ excretion. This pathway may explain renal and extrarenal responses to altered K+ intake that occur independently of changes in ECF [K+]. Mechanisms for conserving ECF K+ during fasting or K+ deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K+ channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K+ uptake. How these mechanisms are triggered by K+ deprivation remains unclear. Cellular AMP kinase–dependent protein kinase activity provokes the acute transfer of K+ from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K+ diet for the cardiovascular system. PMID:18759636

  16. Advances in Understanding Bronchiolitis Obliterans After Lung Transplantation.

    PubMed

    Verleden, Stijn E; Sacreas, Annelore; Vos, Robin; Vanaudenaerde, Bart M; Verleden, Geert M

    2016-07-01

    Bronchiolitis obliterans syndrome (BOS) remains a major complication after lung transplantation, causing significant morbidity and mortality in a majority of recipients. BOS is believed to be the clinical correlate of chronic allograft dysfunction, and is defined as an obstructive pulmonary function defect in the absence of other identifiable causes, mostly not amenable to treatment. Recently, it has become clear that BOS is not the only form of chronic allograft dysfunction and that other clinical phenotypes exist; however, we focus exclusively on BOS. Radiologic findings typically demonstrate air trapping, mosaic attenuation, and hyperinflation. Pathologic examination reveals obliterative bronchiolitis lesions and a pure obliteration of the small airways (< 2 mm), with a relatively normal surrounding parenchyma. In this review, we highlight recent advances in diagnosis, pathologic examination, and risk factors, such as microbes, viruses, and antibodies. Although the pathophysiological mechanisms remain largely unknown, we review the role of the airway epithelium and inflammation and the various experimental animal models. We also clarify the clinical and therapeutic implications of these findings. Although significant progress has been made, the exact pathophysiological mechanisms and adequate therapy for posttransplantation BOS remain unknown, highlighting the need for further research to improve long-term posttransplantation BOS-free and overall survival. PMID:27212132

  17. Advances in mechanistic understanding and treatment approaches to Tourette syndrome.

    PubMed

    Shprecher, David R; Kious, Brent M; Himle, Michael H

    2015-11-01

    Tourette syndrome (TS) is a childhood onset neurodevelopmental disorder characterized by semi-involuntary, repetitive movements and sounds (motor and phonic tics). Transient tics in childhood are common, and their persistence in TS may be due to failure of maturation of frontal-subcortical circuits mediated by genetic predisposition and environmental factors. Tic improvement by young adult years is common, but its mechanism and predictive factors are unclear. Though tics can often be managed with nonmedical therapies, pharmacotherapy is often used for refractory, severe, or injurious tics but is complicated by side effects and incomplete benefit. This review summarizes the current understanding of TS pathophysiology, current and future treatment options, and recommendations for future research. PMID:26645901

  18. Advances in understanding and treating dystrophic epidermolysis bullosa

    PubMed Central

    Vanden Oever, Michael J

    2014-01-01

    Epidermolysis bullosa is a group of inherited disorders that can be both systemic and life-threatening. Standard treatments for the most severe forms of this disorder, typically limited to palliative care, are ineffective in reducing the morbidity and mortality due to complications of the disease. Emerging therapies—such as the use of allogeneic cellular therapy, gene therapy, and protein therapy—have all shown promise, but it is likely that several approaches will need to be combined to realize a cure. For recessive dystrophic epidermolysis bullosa, each particular therapeutic approach has added to our understanding of type VII collagen (C7) function and the basic biology surrounding the disease. The efficacy of these therapies and the mechanisms by which they function also give us insight into developing future strategies for treating this and other extracellular matrix disorders. PMID:24860657

  19. Recent Advances in Understanding and Managing Tourette Syndrome.

    PubMed

    Thenganatt, Mary Ann; Jankovic, Joseph

    2016-01-01

    Tourette syndrome (TS) is a neurologic and behavioral disorder consisting of motor and phonic tics with onset in childhood or adolescence. The severity of tics can range from barely perceptible to severely impairing due to social embarrassment, discomfort, self-injury, and interference with daily functioning and school or work performance. In addition to tics, most patients with TS have a variety of behavioral comorbidities, including attention deficit hyperactivity disorder and obsessive-compulsive disorder. Studies evaluating the pathophysiology of tics have pointed towards dysfunction of the cortico-striato-thalamo-cortical circuit, but the mechanism of this hyperkinetic movement disorder is not well understood. Treatment of TS is multidisciplinary, typically involving behavioral therapy, oral medications, and botulinum toxin injections. Deep brain stimulation may be considered for "malignant" TS that is refractory to conventional therapy. In this review, we will highlight recent developments in the understanding and management strategies of TS. PMID:26918185

  20. Recent advances in the understanding and management of rosacea

    PubMed Central

    2014-01-01

    Rosacea is a chronic relapsing inflammatory facial dermatosis. There are several known triggers but the pathogenesis remains unknown. Recent achievements in understanding this disease point to the importance of skin-environmental interactions. This includes physical and chemical factors, but also microbial factors. The impairment of the skin barrier function and the activation of the innate immune defences are major and connected pathways contributing to an ongoing inflammatory response in the affected skin. This becomes modulated by endogenous factors like neurovascular, drugs, and psychological factors. These factors offer new therapeutic targets for rosacea treatment. There is a broader range of anti-inflammatory compounds available with a favourable safety record. Only recently have persistent erythema and flushing been addressed by new drug formulations. PMID:25184040

  1. Advances in the Understanding of Cobalamin Assimilation and Metabolism

    PubMed Central

    Quadros, Edward V.

    2009-01-01

    Summary The haematological and neurological consequences of cobalamin deficiency define the essential role of this vitamin in key metabolic reactions. The identification of cubilin-amnionless as the receptors for intestinal absorption of intrinsic factor-bound cobalamin and the plasma membrane receptor for cellular uptake of transcobalamin bound cobalamin have provided a clearer understanding of the absorption and cellular uptake of this vitamin. As the genes involved in the intracellular processing of cobalamins and genetic defects of these pathways are identified, the metabolic disposition of cobalamins and the proteins involved are being recognized. The synthesis of methylcobalamin and 5’deoxyadenosylcobalamin, their utilization in conjunction with methionine synthase and methylmalonylCoA mutase, respectively, and the metabolic consequences of defects in these pathways could provide insights into the clinical presentation of cobalamin deficiency. PMID:19832808

  2. Understanding type 1 diabetes through genetics: advances and prospects.

    PubMed

    Polychronakos, Constantin; Li, Quan

    2011-11-01

    Starting with early crucial discoveries of the role of the major histocompatibility complex, genetic studies have long had a role in understanding the biology of type 1 diabetes (T1D), which is one of the most heritable common diseases. Recent genome-wide association studies (GWASs) have given us a clearer picture of the allelic architecture of genetic susceptibility to T1D. Fine mapping and functional studies are gradually revealing the complex mechanisms whereby immune self-tolerance is lost, involving multiple aspects of adaptive immunity. The triggering of these events by dysregulation of the innate immune system has also been implicated by genetic evidence. Finally, genetic prediction of T1D risk is showing promise of use for preventive strategies. PMID:22005987

  3. Advances in our understanding of mechanisms of venous thrombus resolution.

    PubMed

    Altmann, Johanna; Sharma, Smriti; Lang, Irene M

    2016-01-01

    Traditionally, venous thrombosis has been seen as the consequence of a regulated cascade of proteolytic steps leading to the polymerization of fibrinogen and fibrin crosslinking that is facilitated by platelets. A new view of thrombosis is providing a more integrated concept, with components of the vascular wall contributing to the vascular remodeling of thrombosis. Angiogenesis and inflammation are two key mechanisms that safeguard venous thrombus resolution and restitution of vascular patency after thrombosis. Disturbance of these processes leads to thrombus persistence and has potentially severe consequences for affected patients. Examples for clinical conditions associated with recurrent or persisting venous thrombosis are post-thrombotic syndrome or chronic thromboembolic pulmonary hypertension. Recently, studies using animal models of venous thrombosis have contributed to a better understanding of thrombus non-resolution that will eventually lead to modification of current treatment concepts. For example, recent data suggest that innate immunity is involved in the modification of thrombosis. PMID:26629617

  4. Recent Advances in Understanding and Managing Tourette Syndrome

    PubMed Central

    Thenganatt, Mary Ann; Jankovic, Joseph

    2016-01-01

    Tourette syndrome (TS) is a neurologic and behavioral disorder consisting of motor and phonic tics with onset in childhood or adolescence. The severity of tics can range from barely perceptible to severely impairing due to social embarrassment, discomfort, self-injury, and interference with daily functioning and school or work performance. In addition to tics, most patients with TS have a variety of behavioral comorbidities, including attention deficit hyperactivity disorder and obsessive-compulsive disorder. Studies evaluating the pathophysiology of tics have pointed towards dysfunction of the cortico-striato-thalamo-cortical circuit, but the mechanism of this hyperkinetic movement disorder is not well understood. Treatment of TS is multidisciplinary, typically involving behavioral therapy, oral medications, and botulinum toxin injections. Deep brain stimulation may be considered for “malignant” TS that is refractory to conventional therapy. In this review, we will highlight recent developments in the understanding and management strategies of TS. PMID:26918185

  5. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  6. Recent advances in understanding myelofibrosis and essential thrombocythemia

    PubMed Central

    Vainchenker, William; Constantinescu, Stefan N.; Plo, Isabelle

    2016-01-01

    The classic BCR-ABL-negative myeloproliferative neoplasms (MPNs), a form of chronic malignant hemopathies, have been classified into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). ET and PMF are two similar disorders in their pathogenesis, which is marked by a key role of the megakaryocyte (MK) lineage. Whereas ET is characterized by MK proliferation, PMF is also associated with aberrant MK differentiation (myelodysplasia), leading to the release of cytokines in the marrow environment, which causes the development of myelofibrosis. Thus, PMF is associated with both myeloproliferation and different levels of myelodysplastic features. MPNs are mostly driven by mutated genes called MPN drivers, which abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors. The recent discovery of CALR mutations has closed a gap in our knowledge and has shown that this mutated endoplasmic reticulum chaperone activates the thrombopoietin receptor MPL and JAK2. These genetic studies have shown that there are two main types of MPNs: JAK2V617F-MPNs, including ET, PV, and PMF, and the MPL-/CALR-MPNs, which include only ET and PMF. These MPN driver mutations are associated with additional mutations in genes involved in epigenetics, splicing, and signaling, which can precede or follow the acquisition of MPN driver mutations. They are involved in clonal expansion or phenotypic changes or both, leading to myelofibrosis or leukemic transformation or both. Only a few patients with ET exhibit mutations in non-MPN drivers, whereas the great majority of patients with PMF harbor one or several mutations in these genes. However, the entire pathogenesis of ET and PMF may also depend on other factors, such as the patient’s constitutional genetics, the bone marrow microenvironment, the inflammatory response, and age. Recent advances allowed a better stratification of these diseases and new therapeutic approaches with the

  7. Advances in the Understanding and Treatment of Head Injury

    PubMed Central

    Evans, Joseph P.

    1966-01-01

    The author describes his personal involvement in head injury prevention and management over the past 40 years. He reviews the evolution of knowledge concerning the role of increased intracranial pressure, and considers the importance of cerebral vasoparalysis in the production of signs and symptoms following head injury, and the development of methods of recording intracranial pressure continuously, over hours and days. The development of an experimental compression model has led to a fuller understanding of edema of the brain and has provided a means of studying, by light and electron microscopy, the histological changes that result from edema. More recently, analyses of biochemical changes and disturbed membrane function have opened up a new avenue of potential treatment. Moreover, it is now clear that cerebral vascular dilatation and abrupt pressure increase can be produced in the monkey, in over 50% of cases, by lesions in the dorsomedial nucleus of the hypothalamus. Similar lesions may occur in the human and this suggests other therapeutic approaches. There is, then, a genuine hope of a breakthrough in the management of head injuries. ImagesFig. 1Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 16Fig. 21 PMID:5928533

  8. Recent advances in understanding transcription termination by RNA polymerase II

    PubMed Central

    Loya, Travis J.; Reines, Daniel

    2016-01-01

    Transcription termination is a fundamental process in which RNA polymerase ceases RNA chain extension and dissociates from the chromatin template, thereby defining the end of the transcription unit. Our understanding of the biological role and functional importance of termination by RNA polymerase II and the range of processes in which it is involved has grown significantly in recent years. A large set of nucleic acid-binding proteins and enzymes have been identified as part of the termination machinery. A greater appreciation for the coupling of termination to RNA processing and metabolism has been recognized. In addition to serving as an essential step at the end of the transcription cycle, termination is involved in the regulation of a broad range of cellular processes. More recently, a role for termination in pervasive transcription, non-coding RNA regulation, genetic stability, chromatin remodeling, the immune response, and disease has come to the fore. Interesting mechanistic questions remain, but the last several years have resulted in significant insights into termination and an increasing recognition of its biological importance. PMID:27408690

  9. Reef sharks: recent advances in ecological understanding to inform conservation.

    PubMed

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. PMID:26709218

  10. Advances in understanding and utilising ELM control in JET

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; de la Luna, E.; Lang, P. T.; Liang, Y.; Alper, B.; Denner, P.; Frigione, D.; Garzotti, L.; Ham, C. J.; Huijsmans, G. T. A.; Jachmich, S.; Kocsis, G.; Lennholm, M.; Lupelli, I.; Rimini, F. G.; Sips, A. C. C.; Contributors, JET

    2016-01-01

    Edge localised mode (ELM) control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is found to depend on plasma shaping, with the change in magnetic boundary achieved when non-axisymmetric fields are applied facilitating access to small ELM regimes. The understanding of ELM pacing by vertical kicks or pellets has also been improved in a range of pedestal conditions in JET ({{T}\\text{ped}}=0.7 –1.3 keV) encompassing the ITER-expected domain ({β\\text{N}}=1.4 –2.4, H 98(y, 2)  =  0.8–1.2, {{f}\\text{GW}}∼ 0.7 ). ELM triggering is reliable provided the perturbation is above a threshold which depends on pedestal parameters. ELM triggering is achieved even in the first 10% of the natural ELM cycle suggesting no inherent maximum frequency. At high normalised pressure, the peeling-ballooning modes are stabilised as predicted by ELITE, necessitating a larger perturbation from either kicks or pellets in order to trigger ELMs. Both kicks and pellets have been used to pace ELMs for tungsten flushing. This has allowed stationary plasma conditions with low gas injection in plasmas where the natural ELM frequency is such that it would normally preclude stationary conditions.

  11. Beyond vascular inflammation--recent advances in understanding atherosclerosis.

    PubMed

    Wolf, Dennis; Zirlik, Andreas; Ley, Klaus

    2015-10-01

    Atherosclerosis is the most life-threatening pathology worldwide. Its major clinical complications, stroke, myocardial infarction, and heart failure, are on the rise in many regions of the world--despite considerable progress in understanding cause, progression, and consequences of atherosclerosis. Originally perceived as a lipid-storage disease of the arterial wall (Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre. August Hirschwald Verlag Berlin, [1871]), atherosclerosis was recognized as a chronic inflammatory disease in 1986 (New Engl J Med 314:488-500, 1986). The presence of lymphocytes in atherosclerotic lesions suggested autoimmune processes in the vessel wall (Clin Exp Immunol 64:261-268, 1986). Since the advent of suitable mouse models of atherosclerosis (Science 258:468-471, 1992; Cell 71:343-353, 1992; J Clin Invest 92:883-893, 1993) and the development of flow cytometry to define the cellular infiltrate in atherosclerotic lesions (J Exp Med 203:1273-1282, 2006), the origin, lineage, phenotype, and function of distinct inflammatory cells that trigger or inhibit the inflammatory response in the atherosclerotic plaque have been studied. Multiphoton microscopy recently enabled direct visualization of antigen-specific interactions between T cells and antigen-presenting cells in the vessel wall (J Clin Invest 122:3114-3126, 2012). Vascular immunology is now emerging as a new field, providing evidence for protective as well as damaging autoimmune responses (Int Immunol 25:615-622, 2013). Manipulating inflammation and autoimmunity both hold promise for new therapeutic strategies in cardiovascular disease. Ongoing work (J Clin Invest 123:27-36, 2013; Front Immunol 2013; Semin Immunol 31:95-101, 2009) suggests that it may be possible to develop antigen-specific immunomodulatory prevention and therapy-a vaccine against atherosclerosis. PMID:26100516

  12. Recent advances in the understanding of homogeneous dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Massines, F.; Gherardi, N.; Naudé, N.; Ségur, P.

    2009-08-01

    This paper is a state of the art of the understanding on the physics of homogeneous dielectric barrier discharges at atmospheric pressure. It is based on the analysis of present and previous work about the behavior of these discharges and the conditions to get them. Mechanisms controlling the homogeneity during gas breakdown and discharge development are successively discussed. The breakdown has to be a Townsend one, the ionization has to be slow enough to avoid a large avalanche development. During the breakdown, the discharge homogeneity is related to the ratio of the secondary emission at the cathode (γ coefficient) on the ionization in the gas bulk (α coefficient). Higher is this ratio, higher is the pressure × gas gap product (Pd) value for which a Townsend breakdown is obtained. Among the phenomena enhancing the secondary emission there is the negative charge of the dielectric on the cathode surface, the trapping of ions in the gas and the existence of excited state having a long lifetime compared to the time between two consecutive discharges. The first phenomenon is always present when the electrodes are covered by a solid dielectric, the second one is related to the formation of a positive column and the third one is specific of the gas. During the discharge development, the homogeneity is mainly controlled by the voltage or the current imposed by the electrical circuit/electrode configuration and by the gas ability to be slowly ionized. Larger is the contribution of a multiple step ionization process like Penning ionization, higher will be the working domain of the discharge. A decrease of the gas voltage during the discharge development is a solution to enhance the contribution of this process. After 20 years of research a lot of mechanisms have been understood however there is still open questions like the nature of the Inhibited homogeneous DBD, surface energy transfers, role of attachment and detachment...

  13. Polarization propagators: A powerful theoretical tool for a deeper understanding of NMR spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Aucar, Gustavo A.; Romero, Rodolfo H.; Maldonado, Alejandro F.

    Magnetic molecular spectroscopic properties, like NMR J-coupling and magnetic shielding σ, have been studied by non-relativistic quantum methods since their discovery. When they were found to depend strongly on relativistic effects in molecules containing heavy atoms, this started a new area of intensive research into the development of methods that include such effects. In most cases non-relativistic concepts were extended to the new field though keeping the previous non-relativistic point of view. Quantum mechanics can be formulated by two different formal approaches. Molecular physics and quantum chemistry were developed mostly within the Schrödinger or Heisenberg approaches. The path integral formalism of Feynman is less well known. This may be the reason why propagators are not broadly known in this field of research. Polarization propagators were developed in the early 1970s. Since that time they have been successfully applied to calculate NMR spectroscopic parameters. They are special theoretical devices from which one can do a deep analysis of the electronic mechanisms that underly any molecular response property from basic theoretical elements, like molecular orbitals, electronic excitation energies, coupling pathways, entanglement, contributions within different levels of theory, etc. All this is obtained in a natural way in both regimes: relativistic and non-relativistic. Its relativistic generalization in the early 1990s and the finding of a quantum electrodynamic (QED)-based theory for them, has given us the opportunity to improve our understanding of the physics behind such parameters. In this paper we give a presentation of polarization propagators that start in non-relativistic quantum physics and end up with the introduction of QED effects. The same and powerful basic quantum ideas are applied throughout this review, so that coherence and beauty arise in a natural way. We will give a new understanding that comes from the three levels of theory

  14. What I Wish: Three Advancement Professionals Discuss What Their Colleagues Need to Understand about Their Jobs

    ERIC Educational Resources Information Center

    Gurd, Andy; Peirce, Susan; Morris, Sarah

    2012-01-01

    Three advancement professionals discuss what their colleagues need to understand about their jobs. The Ohio State University Alumni Association is currently integrating into the university's advancement office at the behest of the board of trustees, so Andy Gurd is now working more closely with his development and communications colleagues than…

  15. Recent Advances in Understanding the Role of Nutrition in Human Genome Evolution12

    PubMed Central

    Ye, Kaixiong; Gu, Zhenglong

    2011-01-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics. PMID:22332091

  16. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  17. A Case Study on Advanced Technology: Understanding the Impact of Advanced Technology on Student Performance

    ERIC Educational Resources Information Center

    Morris, Jill Sellars

    2010-01-01

    While research has focused on the effect of technology on student performance, it is not yet known how advanced technology, such as Promethean boards influence student achievement. The purpose of this mixed-method study was to examine how Promethean boards impact academic performance of elementary school students in third and fifth grade…

  18. Theoretical and experimental research in aeroelastic stability of an advanced bearingless rotor for future helicopters

    NASA Technical Reports Server (NTRS)

    Wang, James M.

    1991-01-01

    The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.

  19. Understanding the Role of Numeracy in Health: Proposed Theoretical Framework and Practical Insights

    ERIC Educational Resources Information Center

    Lipkus, Isaac M.; Peters, Ellen

    2009-01-01

    Numeracy--that is, how facile people are with mathematical concepts and their applications--is gaining importance in medical decision making and risk communication. This article proposes six critical functions of health numeracy. These functions are integrated into a theoretical framework on health numeracy that has implications for risk…

  20. Understanding, Selecting, and Integrating a Theoretical Framework in Dissertation Research: Creating the Blueprint for Your "House"

    ERIC Educational Resources Information Center

    Grant, Cynthia; Osanloo, Azadeh

    2014-01-01

    The theoretical framework is one of the most important aspects in the research process, yet is often misunderstood by doctoral candidates as they prepare their dissertation research study. The importance of theory-driven thinking and acting is emphasized in relation to the selection of a topic, the development of research questions, the…

  1. Understanding Older Adults' Physical Activity Behavior: A Multi-Theoretical Approach

    ERIC Educational Resources Information Center

    Grodesky, Janene M.; Kosma, Maria; Solmon, Melinda A.

    2006-01-01

    Physical inactivity is a health issue with serious consequences for older adults. Investigating physical activity promotion within a multi-theoretical approach may increase the predictive strength of physical activity determinants and facilitate the development and implementation of effective interventions for older adults. This article examines…

  2. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    ERIC Educational Resources Information Center

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  3. Exploring Asynchrony as a Theoretical Framework for Understanding Giftedness: A Case of Cognitive Dissonance?

    ERIC Educational Resources Information Center

    Andronaco, Julie A.; Shute, Rosalyn; McLachlan, Angus

    2014-01-01

    Asynchrony is a theoretical construct that views the intellectually gifted child as inherently vulnerable because of disparities arising from the mismatch between his or her chronological age and mental age. Such disparities, for example, between wanting to belong but being intellectually out of step with peers, are said to give rise to a…

  4. Recent theoretical advances in analysis of AIRS/AMSU sounding data

    NASA Astrophysics Data System (ADS)

    Susskind, Joel

    2007-04-01

    The AIRS Science Team Version 5.0 retrieval algorithm will become operational at the Goddard DAAC in early 2007 in the near real-time analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments are: 1) the development and implementation of a very accurate Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology is described briefly and results are shown, including comparison with those using AIRS Version 4, as well as a forecast impact experiment assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System.

  5. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2002-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  6. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by

  7. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2003-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  8. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    ERIC Educational Resources Information Center

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of…

  9. Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor autodetermination.

    PubMed

    Xu, Lei

    2004-07-01

    The nature of Bayesian Ying-Yang harmony learning is reexamined from an information theoretic perspective. Not only its ability for model selection and regularization is explained with new insights, but also discussions are made on its relations and differences from the studies of minimum description length (MDL), Bayesian approach, the bit-back based MDL, Akaike information criterion (AIC), maximum likelihood, information geometry, Helmholtz machines, and variational approximation. Moreover, a generalized projection geometry is introduced for further understanding such a new mechanism. Furthermore, new algorithms are also developed for implementing Gaussian factor analysis (FA) and non-Gaussian factor analysis (NFA) such that selecting appropriate factors is automatically made during parameter learning. PMID:15461081

  10. A Theoretical Framework for Research in Algebra: Modification of Janvier's "Star" Model of Function Understanding.

    ERIC Educational Resources Information Center

    Bowman, Anita H.

    A pentagonal model, based on the star model of function understanding of C. Janvier (1987), is presented as a framework for the design and interpretation of research in the area of learning the concept of mathematical function. The five vertices of the pentagon correspond to five common representations of mathematical function: (1) graph; (2)…

  11. Gender Structure and Women's Agency: Toward Greater Theoretical Understanding of Education for Transformation

    ERIC Educational Resources Information Center

    Stromquist, Nelly P.

    2015-01-01

    Under the research radar, and yet highly influential in transformation of practices concerning the social understanding and enactment of gender, are women-led non-governmental organizations (WNGOs). Their continued efforts to reconfigure gender identities and their impact on public policy formation have expanded notions of citizenship and…

  12. College Students' Achievement and Understanding of Experimental and Theoretical Probability: The Role of Tasks

    ERIC Educational Resources Information Center

    Papaieronymou, Irini

    2012-01-01

    This study examined the role of particular tasks implemented through two instructional methods on college students' "achievement" and understanding of probability. A mixed methods design that utilized a pre-test and post-test was used. This included treatment and control groups, each comprised of students in three sections of an…

  13. Advances in the understanding of dairy and cheese flavors: Symposium Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A symposium titled “Advances in the Understanding of Dairy and Cheese Flavors” was held in September 2013 at the American Chemical Society’s 246th National Meeting in Indianapolis, IN. The symposium, which was sponsored by the Division of Agricultural and Food Chemistry, was to discuss the state of...

  14. The Effect of Explicit Embedded Reflective Instruction on Nature of Science Understandings in Advanced Science Students

    ERIC Educational Resources Information Center

    Koksal, Mustafa Serdar; Cakiroglu, Jale; Geban, Omer

    2013-01-01

    The purpose of this study is to investigate the effectiveness of explicit-embedded-reflective (EER) instruction in nature of science (NOS) understandings of ninth-grade advanced science students. This study was conducted with 71 students, who were divided into three groups, by using non-equivalent quasi-experimental design. In the treatment…

  15. Recent Advances in Our Understanding of the Environmental, Epidemiological, Immunological, and Clinical Dimensions of Coccidioidomycosis

    PubMed Central

    Nguyen, Chinh; Barker, Bridget Marie; Hoover, Susan; Nix, David E.; Ampel, Neil M.; Frelinger, Jeffrey A.; Orbach, Marc J.

    2013-01-01

    SUMMARY Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine. PMID:23824371

  16. Revealing membrane potential by advanced impedance spectroscopy: theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; Bratu, D.; Olaru, A.; Polonschii, C.; Gheorghiu, E.

    2013-04-01

    In spite of recent advancement of novel optical and electrical techniques, availability of non-invasive, label-free methods to assess membrane potential of living cells is still an open issue. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. We now report on both theoretical and experimental aspects showing that whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum the decrement presented by impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very low frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. Based on the microscopic model we indicate that an appropriate design of the experiment may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We discuss the effect on the low frequency of permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential, (ii) size of the cells/vesicles, (iii) conductivity; II. Conductivity of the outer medium. A novel measuring set-up has recently been developed within the International Centre of Biodynamics allowing for sensitive low frequency (~10mHz) four point (bio)impedance assays. Its capability to test theoretical predictions is reported as well. The far reaching implications of this study applicability for life sciences (noninvasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assess the cytotoxicity of a wide range of stimuli, will be outlined.

  17. Understanding Confounding Effects in Linguistic Coordination: An Information-Theoretic Approach

    PubMed Central

    Gao, Shuyang; Ver Steeg, Greg; Galstyan, Aram

    2015-01-01

    We suggest an information-theoretic approach for measuring stylistic coordination in dialogues. The proposed measure has a simple predictive interpretation and can account for various confounding factors through proper conditioning. We revisit some of the previous studies that reported strong signatures of stylistic accommodation, and find that a significant part of the observed coordination can be attributed to a simple confounding effect—length coordination. Specifically, longer utterances tend to be followed by longer responses, which gives rise to spurious correlations in the other stylistic features. We propose a test to distinguish correlations in length due to contextual factors (topic of conversation, user verbosity, etc.) and turn-by-turn coordination. We also suggest a test to identify whether stylistic coordination persists even after accounting for length coordination and contextual factors. PMID:26115446

  18. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect

    Arsalan Razani; Kwang J. Kim

    2001-12-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has

  19. Understanding Skill in EVA Mass Handling. Volume 1; Theoretical and Operational Foundations

    NASA Technical Reports Server (NTRS)

    Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob

    1997-01-01

    This report describes the theoretical and operational foundations for our analysis of skill in extravehicular mass handling. A review of our research on postural control, human-environment interactions, and exploratory behavior in skill acquisition is used to motivate our analysis. This scientific material is presented within the context of operationally valid issues concerning extravehicular mass handling. We describe the development of meaningful empirical measures that are relevant to a special class of nested control systems: manual interactions between an individual and the substantial environment. These measures are incorporated into a unique empirical protocol implemented on NASA's principal mass handling simulator, the precision air-bearing floor, in order to evaluate skill in extravehicular mass handling. We discuss the components of such skill with reference to the relationship between postural configuration and controllability of an orbital replacement unit, the relationship between orbital replacement unit control and postural stability, the relationship between antecedent and consequent movements of an orbital replacement unit, and the relationship between antecedent and consequent postural movements. Finally, we describe our expectations regarding the operational relevance of the empirical results as it pertains to extravehicular activity tools, training, monitoring, and planning.

  20. Theoretical and Experimental Approaches to Understanding the Anomalous Distribution of Oxygen Isotopes in the Solar System

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo; Christensen, Elizabeth; Boyer, Charisa; Park, Manesseh; Benitez, Ezra; Nunn, Morgan; Thiemens, Mark H.; Jackson, Terri

    2016-06-01

    Decades of careful laboratory analysis of primitive meteorites have revealed an intriguing and unexplained pattern in the distribution of oxygen isotopes in the solar system. With the recent analysis of solar wind oxygen by NASA’s Genesis mission, it appears that the Sun has a distinct oxygen isotopic composition from the terrestrial planets, asteroids, and comets. These differences cannot be explained by mass-dependent diffusion and require a physical-chemical mechanism or mechanisms that separate oxygen isotopes in a non-mass dependent manner.Several hypothesis have been proposed to explain the anomalous distribution. Photochemical self-shielding of CO may explain the anomalous distribution, however, this mechanism has key weaknesses including the requirement of a very fine tuned timescale to explain the isotopic differences between the Sun and bulk of the terrestrial planets. Recently, attention has been directed at understanding specific chemical reactions that occur on interstellar dust grains due to their similarities with non-equilibrium photochemical reactions believed to be responsible for the mass-independent isotopic fractionation patterns observed in Earth’s atmosphere. A specific focus has been directed towards understanding the formation of H2O because some of its precursor (HO2, and O3) are well-known to acquire mass-independent isotopic signatures when formed in the gas-phase.In this presentation, I describe a series of laboratory astrophysical experiments whose goal is to understand the distribution of oxygen isotopes in the solar system and perhaps, by extension, the distribution in other planetary systems. Preliminary results for the isotopic composition of O3 formed at 5K will be presented as well as the first, to our knowledge, measurements of the isotopic composition of H2O (18O/16O, 17O/16O, D/H) formed at 32K. We find that H2O formed in the astrophysical conditions we simulated acquired an anomalous isotopic composition with a triple

  1. Theoretical Approaches for Understanding the Interplay Between Stress and Chemical Reactivity.

    PubMed

    Kochhar, Gurpaul S; Heverly-Coulson, Gavin S; Mosey, Nicholas J

    2015-01-01

    The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry. PMID:26233311

  2. Theoretical understanding of two-photon-induced fluorescence of isomorphic nucleoside analogs.

    PubMed

    Samanta, Pralok K; Pati, Swapan K

    2015-04-21

    We use ab initio Density Functional Theory (DFT) and Time-dependent DFT (TDDFT) calculations for a detailed understanding of one-photon absorption (1PA) and two-photon absorption (2PA) cross sections of eight different nucleoside analogs. The results are compared and contrasted with the available experimental data. Our calculated results show that the low energy peaks in the absorption spectra mainly arise because of the π-π* electronic transition of the nucleoside analogs. The emission spectra of the nucleoside analogs are also calculated using TDDFT methods. The calculated absorption and emission spectra in the presence of a solvent follow the same trend as those found experimentally. Our results demonstrate that the nucleoside analogs show significantly different electronic and optical properties, although their bonding aspects towards Watson-Crick base pairing remain the same. We also derive the microscopic details of the origin of nonlinear optical properties of the nucleoside analogs. PMID:25785569

  3. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A; Fiedler, Benjamin; Anacker, Tony; Friedrich, Joachim

    2016-08-01

    Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations. PMID:27314892

  4. In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances

    NASA Astrophysics Data System (ADS)

    Atti, Claudio Ciofi degli

    2015-08-01

    The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon-nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced treatments

  5. Illness understanding in patients with advanced lung cancer: curse or blessing?

    PubMed

    Janssens, Annelies; Kohl, Sisca; Michielsen, Toke; Van Langendonck, Shana; Hiddinga, Birgitta I; van Meerbeeck, Jan P

    2016-04-01

    Early palliative care (EPC) should be introduced from the start of the treatment of patients with advanced lung cancer. Unfortunately, this is often not integrated in daily oncologic care. This letter wants to emphasize the importance of offering a holistic approach, meaning EPC to optimize quality of life (QoL). Illness understanding is important because patients with better understanding of their disease choose more often for symptom control and less for an aggressive treatment at the end of life. This illness understanding should be achieved during communication with the treating oncologist. Based on the limited available literature about illness understanding, it seems that an EPC program is necessary when breaking bad news, in order to maintain or improve QoL in patients. PMID:27121741

  6. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect

    Arsalan Razani; Kwang J. Kim

    2000-10-28

    The annual progress report for the period of October 1, 1999 to September 30, 2000 on DOE/UNM grant number DE-FG26-98FT40148 discusses the progress on both the theoretical analysis of advanced power cycles and the experimental investigation of advanced falling film heat exchangers. The previously developed computer program for the triple cycle, based on the air standard cycle assumption, was modified to include actual air composition (%77.48 N{sub 2}, %20.59 O{sub 2}, %1.9 H{sub 2}O, and %0.03 CO{sub 2}). The actual combustion products were used in exergy analysis of the triple cycle. The effect of steam injection into the combustion chamber on its irreversibility, and the irreversibility of the entire cycle, was evaluated. A more practical fuel inlet condition and a better position of the feedwater heater in the steam cycle were used in the modified cycle. The effect of pinch point and the temperature difference between the combustion products, as well as the steam in the heat recovery steam generator on irreversibility of the cycle were evaluated. Design, construction, and testing of the multitube horizontal falling film condenser facility were completed. Two effective heat transfer additives (2-ethyl-1-hexanol and alkyl amine) were identified and tested for steam condensation. The test results are included. The condenser was designed with twelve tubes in an array of three horizontals and four verticals, with a 2-inch horizontal and 1.5-inch vertical in-line pitch. By using effective additives, the condensation heat transfer rate can be augmented as much as 30%, as compared to a heat transfer that operated without additives under the same operating condition. When heat transfer additives function effectively, the condensate-droplets become more dispersed and have a smaller shape than those produced without additives. These droplets, unlike traditional turbulence, start at the top portion of the condenser tubes and cover most of the tubes. Such a flow behavior can

  7. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.

    PubMed

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Xiao, Cheng-Liang; Zhao, Yu-Liang; Wei, Yue-Zhou; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-03-20

    Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater. PMID:24592814

  8. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed. PMID:27444495

  9. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  10. Advancing the understanding, monitoring and prediction of North American drought in support of NIDIS

    NASA Astrophysics Data System (ADS)

    Mariotti, Annarita; Pulwarty, Roger

    2014-05-01

    The NOAA's Drought Task Force was established in October 2011 with the goal of achieving significant new advances in the ability to understand, monitor and predict drought over North America. The Task Force is an initiative of NOAA's Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program in support of the National Integrated Drought Information System NIDIS. It brings together over thirty-five leading drought scientists research laboratories and/or operational centers from NOAA, other U.S. agencies laboratories and academia. Their concerted research effort builds on individual MAPP research projects and related drought-research sector developments. The projects span the wide spectrum of drought research needed to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to those evaluating new drought monitoring and prediction tools for operational and service purposes. In this presentation we will show how a coordinated, sustained multidisciplinary effort to assess understanding of both past droughts and emergent events contributes to the effectiveness of early warning systems. This contribution will present an overview of Drought Task Force activities to date, including highlights of research activities and how the group has been working in partnership with NIDIS to advance the science underpinning the development, assessment and provision of drought information.

  11. Toward theoretical understanding of the fertility preservation decision-making process: Examining information processing among young women with cancer

    PubMed Central

    Hershberger, Patricia E.; Finnegan, Lorna; Altfeld, Susan; Lake, Sara; Hirshfeld-Cytron, Jennifer

    2014-01-01

    Background Young women with cancer now face the complex decision about whether to undergo fertility preservation. Yet little is known about how these women process information involved in making this decision. Objective The purpose of this paper is to expand theoretical understanding of the decision-making process by examining aspects of information processing among young women diagnosed with cancer. Methods Using a grounded theory approach, 27 women with cancer participated in individual, semi-structured interviews. Data were coded and analyzed using constant-comparison techniques that were guided by five dimensions within the Contemplate phase of the decision-making process framework. Results In the first dimension, young women acquired information primarily from clinicians and Internet sources. Experiential information, often obtained from peers, occurred in the second dimension. Preferences and values were constructed in the third dimension as women acquired factual, moral, and ethical information. Women desired tailored, personalized information that was specific to their situation in the fourth dimension; however, women struggled with communicating these needs to clinicians. In the fifth dimension, women offered detailed descriptions of clinician behaviors that enhance or impede decisional debriefing. Conclusion Better understanding of theoretical underpinnings surrounding women’s information processes can facilitate decision support and improve clinical care. PMID:24552086

  12. Mathematical Physics of Complex Coevolutionary Systems: Theoretical Advances and Applications to Multiscale Hydroclimate Dynamics

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.

    2016-04-01

    The fundamental stochastic-dynamic coevolution laws governing complex coevolutionary systems are introduced in a mathematical physics framework formally unifying nonlinear stochastic physics with fundamental deterministic interaction laws among spatiotemporally distributed processes. The methodological developments are then used to shed light onto fundamental interactions underlying complex spatiotemporal behaviour and emergence in multiscale hydroclimate dynamics. For this purpose, a mathematical physics framework is presented predicting evolving distributions of hydrologic quantities under nonlinearly coevolving geophysical processes. The functional formulation is grounded on first principles regulating the dynamics of each system constituent and their interactions, therefore its applicability is general and data-independent, not requiring local calibrations. Moreover, it enables the dynamical estimation of hydroclimatic variations in space and time from knowledge at different spatiotemporal conditions, along with the associated uncertainties. This paves the way for a robust physically based prediction of hydroclimatic changes in unsupervised areas (e.g. ungauged basins). Validation is achieved by producing, with the mathematical physics framework, a comprehensive spatiotemporal legacy consistent with the observed distributions along with their statistic-dynamic relations. The similarity between simulated and observed distributions is further assessed with novel robust nonlinear information-theoretic diagnostics. The present study brings to light emerging signatures of structural change in hydroclimate dynamics arising from nonlinear synergies across multiple spatiotemporal scales, and contributes to a better dynamical understanding and prediction of spatiotemporal regimes, transitions, structural changes and extremes in complex coevolutionary systems. This study further sheds light onto a diversity of emerging properties from harmonic to hyper-chaotic in general

  13. Recent advances in understanding stratospheric dynamics and transport processes - Application of satellite data to their interpretation

    NASA Technical Reports Server (NTRS)

    Grose, W. L.

    1984-01-01

    The present paper discusses the use of the transformed Eulerian (or 'residual') mean-flow formulation, the Eliassen-Palm flux, and Ertel's potential vorticity to provide an increased understanding of wave, mean-flow interactions, and constituent transport processes in the stratosphere. Temperature and ozone data retrieved from radiance profiles obtained by the LIMS instrument on the Nimbus 7 satellite are utilized in conjunction with these theoretical concepts for the interpretation of phenomena that occurred during the major and minor warmings of January-February 1979. The results illustrate the insight provided by these concepts and demonstrate that useful diagnostic quantities can be derived from global satellite temperature fields.

  14. NOAA Drought Task Force: A Coordinated Research Initiative to Advance Drought Understanding, Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Barrie, D.

    2014-12-01

    The NOAA's Drought Task Force was first established in October 2011 and renewed in October 2014 with the goal of achieving significant new advances in the ability to understand, monitor and predict drought over North America. The Task Force is an initiative of NOAA's Climate Program Office Modeling, Analysis, Predictions, and Projections (MAPP) program in support of the National Integrated Drought Information System NIDIS. The Drought Task Force also represents an important research contribution to efforts to develop an international Global Drought Information System (GDIS). The Drought Task Force brings together leading drought scientists research laboratories and/or operational centers from NOAA, other U.S. agencies laboratories and academia. Their concerted research effort builds on individual MAPP research projects and related drought-research sector developments. The projects span the wide spectrum of drought research needed to make fundamental advances, from those aimed at the basic understanding of drought mechanisms to those evaluating new drought monitoring and prediction tools for operational and service purposes. This contribution will present an overview of Drought Task Force activities and plans to date, including highlights of research activities and how the group has been working in partnership with NIDIS and synergy with GDIS to advance the science underpinning the development, assessment and provision of drought information.

  15. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated

  16. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  17. Advances in the understanding of host response associated with tumor PDT

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen

    2007-02-01

    Photodynamic therapy (PDT) is clinically established modality used for treatment of solid cancers and other conditions, which destroys lesions by localized generation of cytotoxic oxygen species mediated by administered drugs (photosensitizers) that are activated at targeted sites by exposure to light. Since over 20 years ago it has become increasingly clear that important contribution to the antitumor effect of PDT is secured by host reaction induced by this therapy and manifested as inflammatory and immune response. Presented is an overview of advances in the understanding of this host response associated with tumor PDT by tracing its evolution from initial breakthroughs and discoveries in the early 1980s, followed by advances preceding recent developments, and concluding with recently acquired knowledge and directions for clinical exploitation. Tribute is given to researchers making important contributions to this field during the last three decades including Drs. Gianfranco Canti, Julia Levy, and Barbara Henderson.

  18. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    PubMed

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. PMID:23015529

  19. Advances in the understanding of dairy and cheese flavors: symposium introduction.

    PubMed

    Tunick, Michael H; Gummalla, Sanjay

    2014-06-25

    A symposium titled "Advances in the Understanding of Dairy and Cheese Flavors" was held in September 2013 at the American Chemical Society's 246th National Meeting in Indianapolis, IN, USA. The symposium, which was sponsored by the Division of Agricultural and Food Chemistry, was to discuss the state of the art in the detection and quantitation of flavor in dairy products. The authors of two of the presentations have been selected to expand on their talks by submitting full papers about their research. PMID:24911867

  20. USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

    SciTech Connect

    N.D. Budiansky; F. Bocher; H. Cong; M.F. Hurley; J.R. Scully

    2006-02-23

    The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.

  1. a Roadmap to Advance Understanding of the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Schrijver, K.; Kauristie, K.; Aylward, A.; De Nardin, C. M.; Gibson, S. E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M. A.; Heynderickx, D.; Jakowski, N.; Kalegaev, V. V.; Lapenta, G.; Linker, J.; Liu, S.; Mandrini, C. H.; Mann, I. R.; Nagatsuma, T.; Nandy, D.; Obara, T.; O'Brien, T. P., III; Onsager, T. G.; Opgenoorth, H. J.; Terkildsen, M. B.; Valladares, C. E.; Vilmer, N.

    2015-12-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. A COSPAR/ILWS team recently completed a roadmap that identifies the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications and costs for society. This presentation provides a summary of the highest-priority recommendations from that roadmap.

  2. Advances in understanding itching and scratching: a new era of targeted treatments.

    PubMed

    Sanders, Kristen M; Nattkemper, Leigh A; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  3. Advances in understanding itching and scratching: a new era of targeted treatments

    PubMed Central

    Sanders, Kristen M.; Nattkemper, Leigh A.; Yosipovitch, Gil

    2016-01-01

    Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials. PMID:27610225

  4. Sarcasm and advanced theory of mind understanding in children and adults with prelingual deafness.

    PubMed

    O'Reilly, Karin; Peterson, Candida C; Wellman, Henry M

    2014-07-01

    Two studies addressed key theoretical debates in theory of mind (ToM) development by comparing (a) deaf native signers (n = 18), (b) deaf late signers (n = 59), and (c) age-matched hearing persons (n = 74) in childhood (Study 1: n = 81) and adulthood (Study 2: n = 70) on tests of first- and second-order false belief and conversational sarcasm. Results showed ToM development to be a life span phenomenon for deaf and hearing people alike. Native and late signers were outperformed by hearing peers on advanced ToM in childhood (M = 9 years), but in adulthood (M = 40 years), native signers had caught up, whereas late signers had not. Findings highlight the extended importance of conversational interaction for ToM growth. PMID:24798505

  5. Advances in understanding monoclonal gammopathy of undetermined significance as a precursor of multiple myeloma

    PubMed Central

    Weiss, Brendan M; Kuehl, W Michael

    2010-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) affects at least 3% of the population above the age of 50 and is the precursor to multiple myeloma (MM), an incurable malignancy of plasma cells. Recent advances in MGUS include: an improved understanding of the pathogenesis of MGUS and its progression to MM, involving molecular events intrinsic to the malignant plasma cell as well as the microenvironment; novel techniques to assess risk for progression to MM using serum-free light-chain analysis and immunophenotyping; and a renewed interest in chemoprevention of MM. In the future, continued improvement in our understanding of MGUS will lead to the development of better biomarkers for prognosis and therapies for chemoprevention of MM. PMID:20473362

  6. Understanding the Canadian adult CT head rule trial: use of the theoretical domains framework for process evaluation

    PubMed Central

    2013-01-01

    Background The Canadian CT Head Rule was prospectively derived and validated to assist clinicians with diagnostic decision-making regarding the use of computed tomography (CT) in adult patients with minor head injury. A recent intervention trial failed to demonstrate a decrease in the rate of head CTs following implementation of the rule in Canadian emergency departments. Yet, the same intervention, which included a one-hour educational session and reminders at the point of requisition, was successful in reducing cervical spine imaging rates in the same emergency departments. The reason for the varied effect of the intervention across these two behaviours is unclear. There is an increasing appreciation for the use of theory to conduct process evaluations to better understand how strategies are linked with outcomes in implementation trials. The Theoretical Domains Framework (TDF) has been used to explore health professional behaviour and to design behaviour change interventions but, to date, has not been used to guide a theory-based process evaluation. In this proof of concept study, we explored whether the TDF could be used to guide a retrospective process evaluation to better understand emergency physicians’ responses to the interventions employed in the Canadian CT Head Rule trial. Methods A semi-structured interview guide, based on the 12 domains from the TDF, was used to conduct telephone interviews with project leads and physician participants from the intervention sites in the Canadian CT Head Rule trial. Two reviewers independently coded the anonymised interview transcripts using the TDF as a coding framework. Relevant domains were identified by: the presence of conflicting beliefs within a domain; the frequency of beliefs; and the likely strength of the impact of a belief on the behaviour. Results Eight physicians from four of the intervention sites in the Canadian CT Head Rule trial participated in the interviews. Barriers likely to assist with

  7. Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Yeo, Hyeonsoo; Norman, Thomas R.

    2011-01-01

    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation.

  8. Advances in understanding and treating liver diseases during pregnancy: A review

    PubMed Central

    Kamimura, Kenya; Abe, Hiroyuki; Kawai, Hirokazu; Kamimura, Hiroteru; Kobayashi, Yuji; Nomoto, Minoru; Aoyagi, Yutaka; Terai, Shuji

    2015-01-01

    Liver disease in pregnancy is rare but pregnancy-related liver diseases may cause threat to fetal and maternal survival. It includes pre-eclampsia; eclampsia; haemolysis, elevated liver enzymes, and low platelets syndrome; acute fatty liver of pregnancy; hyperemesis gravidarum; and intrahepatic cholestasis of pregnancy. Recent basic researches have shown the various etiologies involved in this disease entity. With these advances, rapid diagnosis is essential for severe cases since the decision of immediate delivery is important for maternal and fetal survival. The other therapeutic options have also been shown in recent reports based on the clinical trials and cooperation and information sharing between hepatologist and gynecologist is important for timely therapeutic intervention. Therefore, correct understandings of diseases and differential diagnosis from the pre-existing and co-incidental liver diseases during the pregnancy will help to achieve better prognosis. Therefore, here we review and summarized recent advances in understanding the etiologies, clinical courses and management of liver disease in pregnancy. This information will contribute to physicians for diagnosis of disease and optimum management of patients. PMID:25954092

  9. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  10. Advancing our understanding of functional genome organisation through studies in the fission yeast

    PubMed Central

    Olsson, Ida

    2010-01-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation. PMID:21113595

  11. Prospects for Significant Theoretical Advances in Communication: The Role of the Interesting Question.

    ERIC Educational Resources Information Center

    Gouran, Dennis S.

    This paper discusses ways in which the field of speech communication can be advanced. The first half of the paper characterizes the objectivist and subjectivist views of how knowledge is acquired and the forms of inquiry to which these views have led. The remainder of the paper demonstrates the role that the "interesting question" (one for which…

  12. Recent Theoretical and Experimental Advances in the Electronic Circular Dichroisms of Planar Chiral Cyclophanes

    NASA Astrophysics Data System (ADS)

    Mori, Tadashi; Inoue, Yoshihisa

    The chiroptical properties, such as electronic and vibrational circular dichroism and optical rotation, of planar chiral cyclophanes have attracted much attention in recent years. Although the chemistry of cyclophanes has been extensively explored for more than 60 years, the studies on chiral cyclophanes are rather limited. Experimentally, the use of chiral stationary phases in HPLC becomes more popular and facilitates the enantiomer separation of chiral cyclophanes of interest. Almost all chiral cyclophanes can be readily separated, in analytical and preparative scales, most typically on a Daicel OD type column, which is based on cellulose tris(3,5-dimethylphenylcarbamate). The CD spectra of chiral cyclophanes are unique in their fairly large, significantly coupled Cotton effects observed in all the 1 B b, 1 L a, and 1 L b band regions. Theoretically, the time-dependent density functional theory, or TD-DFT, method becomes a cost-efficient, yet accurate, theoretical method to reproduce the electronic circular dichroisms and the absorption spectra of a variety of cyclophanes. The direct comparison of the experimental CD spectra with the theoretical ones readily leads to the unambiguous assignment of the absolute configuration of cyclophanes. In addition, the analysis of configuration interaction and molecular orbitals allows detailed interpretation of the electronic transitions and Cotton effects in the UV and CD spectra. Through the study of the CD spectra of chiral cyclophanes as model systems, the effects of intra- and intermolecular interactions on the chiroptical properties of molecules can be explored, and the results thus obtained are valuable in comprehensively elucidating the structure-chiroptical property relationship. In this review the recent progress in experimental and theoretical investigations of the electronic CD spectra of chiral cyclophanes is discussed.

  13. Advances in understanding the molecular basis of the first steps in color vision.

    PubMed

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-11-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  14. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  15. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease.

    PubMed

    Liang, Raymond; Ghaffari, Saghi

    2016-09-01

    Anaemia or decreased blood haemoglobin is the most common blood disorder often characterized by reduced red blood cell (RBC) numbers. RBCs are produced from differentiation and commitment of haematopoietic stem cells to the erythroid lineage by a process called erythropoiesis. Coordination of erythropoietin receptor signalling with several erythroid transcription factors including GATA1 is essential for this process. A number of additional players that are critical for RBC production have been identified in recent years. Major technological advances, such as the development of RNA interference, genetically modified animals, including zebrafish, and imaging flow cytometry have led to these discoveries; the emergence of -omics approaches in combination with the optimization of ex vivo erythroid cultures have also produced a more comprehensive understanding of erythropoiesis. Here we summarize studies describing novel regulators of erythropoiesis that modulate erythroid cell production in the context of human erythroid disorders involving hypoxia, iron regulation, immune-related molecules, and the transcription factor FOXO3. PMID:27442953

  16. Advances in understanding the molecular basis of the first steps in color vision

    PubMed Central

    Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035

  17. Advances and limits of using population genetics to understand local adaptation.

    PubMed

    Tiffin, Peter; Ross-Ibarra, Jeffrey

    2014-12-01

    Local adaptation shapes species diversity, can be a stepping stone to ecological speciation, and can facilitate species range expansion. Population genetic analyses, which complement organismal approaches in advancing our understanding of local adaptation, have become widespread in recent years. We focus here on using population genetics to address some key questions in local adaptation: what traits are involved? What environmental variables are the most important? Does local adaptation target the same genes in related species? Do loci responsible for local adaptation exhibit trade-offs across environments? After discussing these questions we highlight important limitations to population genetic analyses including challenges with obtaining high-quality data, deciding which loci are targets of selection, and limits to identifying the genetic basis of local adaptation. PMID:25454508

  18. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management.

    PubMed

    Taylor, Darlene K; Holthouser, Kristine; Segars, James H; Leppert, Phyllis C

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches. PMID:26236472

  19. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management

    PubMed Central

    Taylor, Darlene K.; Holthouser, Kristine; Segars, James H.; Leppert, Phyllis C.

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches. PMID:26236472

  20. Theoretical and experimental investigation of the aeroelastic stability of an advanced bearingless rotor in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Chopra, Inderjit; Samak, D. K.; Green, Michael; Graham, Todd

    1989-01-01

    The aeroelastic stability of a shaft-fixed, 1/8th Froude scaled bearingless rotor was investigated in a series of wind tunnel experiments simulating a wide range of operating conditions. A finite element formulation was used to perform a parallel theoretical analysis, with the goal of determining whether a bearingless rotor system could be made aeroelastically stable without the incorporation of auxilliary dampers. A quick estimate of lag mode damping was provided by a refined moving-block analysis implemented in real time which predicted similar damping values. Model rotor and blade properties were also determined, and these properties were used as inputs for a newly refined bearingless rotor analysis. Predicted results were compared with experimental results in hover and forward flight. Results indicated that soft pitch link stiffness increases pitch-lag coupling and stabilizes lag mode stability in hover and at low advance ratios, but destabilizes at higher advance ratios.

  1. Recent advances in understanding the role of the hypothalamic circuit during aggression

    PubMed Central

    Falkner, Annegret L.; Lin, Dayu

    2014-01-01

    The hypothalamus was first implicated in the classic “fight or flight” response nearly a century ago, and since then, many important strides have been made in understanding both the circuitry and the neural dynamics underlying the generation of these behaviors. In this review, we will focus on the role of the hypothalamus in aggression, paying particular attention to recent advances in the field that have allowed for functional identification of relevant hypothalamic subnuclei. Recent progress in this field has been aided by the development of new techniques for functional manipulation including optogenetics and pharmacogenetics, as well as advances in technology used for chronic in vivo recordings during complex social behaviors. We will examine the role of the hypothalamus through the complimentary lenses of (1) loss of function studies, including pharmacology and pharmacogenetics; (2) gain of function studies, including specific comparisons between results from classic electrical stimulation studies and more recent work using optogenetics; and (3) neural activity, including both immediate early gene and awake-behaving recordings. Lastly, we will outline current approaches to identifying the precise role of the hypothalamus in promoting aggressive motivation and aggressive action. PMID:25309351

  2. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

    PubMed

    Tardif, Christine Lucas; Gauthier, Claudine Joëlle; Steele, Christopher John; Bazin, Pierre-Louis; Schäfer, Andreas; Schaefer, Alexander; Turner, Robert; Villringer, Arno

    2016-05-01

    Over the last two decades, numerous human MRI studies of neuroplasticity have shown compelling evidence for extensive and rapid experience-induced brain plasticity in vivo. To date, most of these studies have consisted of simply detecting a difference in structural or functional images with little concern for their lack of biological specificity. Recent reviews and public debates have stressed the need for advanced imaging techniques to gain a better understanding of the nature of these differences - characterizing their extent in time and space, their underlying biological and network dynamics. The purpose of this article is to give an overview of advanced imaging techniques for an audience of cognitive neuroscientists that can assist them in the design and interpretation of future MRI studies of neuroplasticity. The review encompasses MRI methods that probe the morphology, microstructure, function, and connectivity of the brain with improved specificity. We underline the possible physiological underpinnings of these techniques and their recent applications within the framework of learning- and experience-induced plasticity in healthy adults. Finally, we discuss the advantages of a multi-modal approach to gain a more nuanced and comprehensive description of the process of learning. PMID:26318050

  3. From evidence to understanding: a commentary on Fisher (1922) ‘On the mathematical foundations of theoretical statistics’

    PubMed Central

    Hand, David J.

    2015-01-01

    The nature of statistics has changed over time. It was originally concerned with descriptive ‘matters of state’—with summarizing population numbers, economic strength and social conditions. But during the course of the twentieth century its aim broadened to include inference—how to use data to shed light on underlying mechanisms, about what might happen in the future, about what would happen if certain actions were taken. Central to this development was Ronald Fisher. Over the course of his life he was responsible for many of the major conceptual advances in statistics. This is particularly illustrated by his 1922 paper, in which he introduced many of the concepts which remain fundamental to our understanding of how to extract meaning from data, right to the present day. It is no exaggeration to say that Fisher's work, as illustrated by the ideas he described and developed in this paper, underlies all modern science, and much more besides. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750151

  4. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  5. A comparison of theoretical and experimental pressure distributions for two advanced fighter wings

    NASA Technical Reports Server (NTRS)

    Haney, H. P.; Hicks, R. M.

    1981-01-01

    A comparison was made between experimental pressure distributions measured during testing of the Vought A-7 fighter and the theoretical predictions of four transonic potential flow codes. Isolated wind and three wing-body codes were used for comparison. All comparisons are for transonic Mach numbers and include both attached and separate flows. In general, the wing-body codes gave better agreement with the experiment than did the isolated wing code but, because of the greater complexity of the geometry, were found to be considerably more expensive and less reliable.

  6. Scientific thinking in young children: theoretical advances, empirical research, and policy implications.

    PubMed

    Gopnik, Alison

    2012-09-28

    New theoretical ideas and empirical research show that very young children's learning and thinking are strikingly similar to much learning and thinking in science. Preschoolers test hypotheses against data and make causal inferences; they learn from statistics and informal experimentation, and from watching and listening to others. The mathematical framework of probabilistic models and Bayesian inference can describe this learning in precise ways. These discoveries have implications for early childhood education and policy. In particular, they suggest both that early childhood experience is extremely important and that the trend toward more structured and academic early childhood programs is misguided. PMID:23019643

  7. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    PubMed

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena. PMID:25738490

  8. Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming

    1995-01-01

    Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.

  9. Towards a Theoretical Framework for the Comparative Understanding of Globalisation, Higher Education, the Labour Market and Inequality

    ERIC Educational Resources Information Center

    Kupfer, Antonia

    2011-01-01

    This paper is a theoretical examination of three major empirical trends that affect many people: globalisation, increasingly close relations between higher education (HE) and labour markets, and increasing social inequality. Its aim is to identify key theoretical resources and their contribution to the development of a comparative theoretical…

  10. Advancing the theoretical foundation of the partially-averaged Navier-Stokes approach

    NASA Astrophysics Data System (ADS)

    Reyes, Dasia Ann

    The goal of this dissertation is to consolidate the theoretical foundation of variable-resolution (VR) methods in general and the partially-averaged Navier-Stokes (PANS) approach in particular. The accurate simulation of complex turbulent flows remains an outstanding challenge in modern computational fluid dynamics. High-fidelity approaches such as direct numerical simulations (DNS) and large-eddy simulation (LES) are not typically feasible for complex engineering simulations with current computational technologies. Low-fidelity approaches such as Reynolds-averaged Navier-Stokes (RANS), although widely used, are inherently inadequate for turbulent flows with complex flow features. VR bridging methods fill the gap between DNS and RANS by allowing a tunable degree of resolution ranging from RANS to DNS. While the utility of VR methods is well established, the mathematical foundations and physical characterization require further development. This dissertation focuses on the physical attributes of fluctuations in partially-resolved simulations of turbulence. The specific objectives are to: (i) establish a framework for assessing the physical fidelity of VR methods to examine PANS fluctuations; (ii) investigate PANS simulations subject to multiple resolution changes; (iii) examine turbulent transport closure modeling for partially-resolved fields; (iv) examine the effect of filter control parameters in the limit of spectral cut-off in the dissipative region; and (v) validate low-Reynolds number corrections with RANS for eventual implementation with PANS. While the validation methods are carried out in the context of PANS, they are considered appropriate for all VR bridging methods. The key findings of this dissertation are summarized as follows. The Kolmogorov hypotheses are suitably adapted to describe fluctuations of partially-resolved turbulence fields, and the PANS partially-resolved field is physically consistent with the adapted Kolmogorov hypotheses. PANS

  11. Advances in understanding societal vulnerability to tsunamis in the United States

    NASA Astrophysics Data System (ADS)

    Wood, N. J.

    2009-12-01

    Loss of life and property damage from future tsunamis can be reduced if officials develop risk-reduction strategies and education programs that address how at-risk populations and communities are specifically vulnerable to tsunamis. Prior to the 2004 Indian Ocean tsunami, information concerning societal vulnerability to tsunamis in the U.S. was largely limited to state-level summaries of the number of residents within one kilometer of the coast. Since 2004, the U.S. Geological Survey has furthered the Nation’s understanding of societal vulnerability to tsunamis with several studies that describe the exposure, sensitivity, and adaptive capacity of at-risk populations in tsunami-hazard zones. Community-level assessments have been completed in Hawaii, Oregon, and Washington to document variations in the number and types of people, businesses, and critical facilities in tsunami-prone areas. A method using midresolution satellite imagery was developed to identify community variations in the amount of developed land in tsunami-prone areas. Factor analysis and geospatial analysis were integrated to model variations in demographic sensitivity to tsunamis. Public workshops have been held to examine community sensitivity, adaptive capacity and post-tsunami recovery. Results demonstrate that social vulnerability to tsunamis varies throughout a community or region and that certain areas are likely to suffer disproportionately due to differences in pre-tsunami socioeconomic conditions and other demographic attributes. This presentation will summarize advances in understanding societal vulnerability in the U.S. to tsunamis since the 2004 Indian Ocean tsunami, as well as discuss opportunities and needs for further work.

  12. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  13. Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition

    PubMed Central

    2013-01-01

    Summary The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC’s catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  14. Advancements in the mechanistic understanding of the copper-catalyzed azide-alkyne cycloaddition.

    PubMed

    Berg, Regina; Straub, Bernd F

    2013-01-01

    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC's catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates. PMID:24367437

  15. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species.

    PubMed

    Lee, Saet Buyl; Suh, Mi Chung

    2015-04-01

    The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study. PMID:25693495

  16. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    DOE PAGESBeta

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less

  17. Recent advances in the understanding of Quaternary periglacial features of the English Channel coastlands

    NASA Astrophysics Data System (ADS)

    Murton, Julian B.; Lautridou, Jean-Pierre

    2003-02-01

    Recent advances in the understanding of Quaternary periglaciation of the English Channel coastlands concern laboratory modelling of periglacial processes, dating of periglacial sediments and the distribution of permafrost during marine oxygen isotope stage (MOIS) 2. Modelling studies have successfully simulated (i) ice segregation in chalk in artificial permafrost, (ii) periglacial solifluction of natural slope sediments, and (iii) soft-sediment deformation during thaw of ice-rich soil. The resultant structures and deposits in these experiments have similarities with naturally brecciated chalk, solifluction deposits and involutions, respectively, along the English Channel coastlands, providing insights into their genesis and palaeoenvironmental significance.Dating of periglacial sediments is based on radiocarbon assays of organic material in head deposits, luminescence measurements of loess and coversand, and mammalian biostratigraphy in raised-beach and associated slope deposits. Most age estimates fall within MOIS 2, although some are within MOIS 6 and possibly other cold stages.Maps reconstructing the distribution of permafrost during MOIS 2 vary in detail. The precise distribution of permafrost remains to be established owing to problems of (i) imprecise dating in the context of climatic instability, (ii) uncertain palaeoclimatic significance of particular periglacial structures and (iii) sparse data on the age and distribution of relict periglacial features.The wider significance of periglacial processes to the evolution of the Channel coastlands is speculated to involve rapid valley development by flowing water in areas of moist, frost-susceptible bedrock that has been brecciated by ice segregation.

  18. Understanding Brain Injury and Neurodevelopmental Disabilities in the Preterm Infant: The Evolving Role of Advanced MRI

    PubMed Central

    Mathur, Amit M.; Neil, Jeffrey J.; Inder, Terrie E.

    2010-01-01

    The high incidence of neurodevelopmental disability in premature infants requires continued efforts at understanding the underlying microstructural changes in the brain that cause this perturbation in normal development. Magnetic resonance imaging (MRI) methods offer great potential to fulfill this need. Serial MR imaging and the application of newer analysis techniques such as, diffusion tensor imaging (DTI), volumetric MR analysis, cortical surface analysis, functional connectivity (fcMRI) and diffusion tractography, provide important insights into the trajectory of brain development in the premature infant and the impact of injury on this developmental trajectory. While some of these imaging techniques are currently available in the research setting only, other measures such as DTI and brain metric measures can be used clinically. MR imaging also has enormous potential to be used as a surrogate, short-term outcome measure in clinical studies evaluating new therapeutic interventions of neuroprotection of the developing brain. In this article we review the current status of these advanced MR imaging techniques. PMID:20109973

  19. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies.

    PubMed

    Abu-Baker, Aida; Rouleau, Guy A

    2007-02-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. OPMD is caused by a small expansion of a short polyalanine tract in the poly (A) binding protein nuclear 1 protein (PABPN1). The mechanism by which the polyalanine expansion mutation in PABPN1 causes disease is unclear. PABPN1 is a nuclear multi-functional protein which is involved in pre-mRNA polyadenylation, transcription regulation, and mRNA nucleocytoplasmic transport. The distinct pathological hallmark of OPMD is the presence of filamentous intranuclear inclusions (INIs) in patient's skeletal muscle cells. The exact relationship between mutant PABPN1 intranuclear aggregates and pathology is not clear. OPMD is a unique disease sharing common pathogenic features with other polyalanine disorders, as well as with polyglutamine and dystrophic disorders. This chapter aims to review the rapidly growing body of knowledge concerning OPMD. First, we outline the background of OPMD. Second, we compare OPMD with other trinucleotide repeat disorders. Third, we discuss the recent advances in the understanding of the molecular mechanisms underlying OPMD pathogenesis. Finally, we review recent therapeutic strategies for OPMD. PMID:17110089

  20. Bovine viral diarrhea virus infections: manifestations of infection and recent advances in understanding pathogenesis and control.

    PubMed

    Brodersen, B W

    2014-03-01

    Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs. PMID:24476940

  1. [Recent advances in the understanding and treatment of diffuse large B-cell lymphoma].

    PubMed

    Gergely, Lajos; Illés, Árpád

    2016-07-01

    Diffuse large B-cell lymphoma is the most common type of non-Hodgkin's lymphoma. Using the conventional cyclophosphamide adriablastin vincristin prednisolon polychemotherapy about 50% of the patients were cured. The addition of rituximab to the regimen increased the cure rate to 60%. This is a major improvement, however, further advance is still needed to increase the cure rate. The extensive genetic testing performed recently revealed several important pathognomic mutations as potential targets in this disease. Routine diagnosis of patients now includes the use of (18)Fluor-deoxy-glucose positron emission computer tomography, according to the recent Lugano classification system. With all these data we can better predict the prognosis of patients, and we can select candidates for novel targeted therapies as well. Answering these questions, and utilizing novel therapies possibly will further increase the cure rate in the near future. This paper summarizes current diagnostic and therapeutic approaches and describes recent understanding in the mutations and pathognomic changes resulting in the disease. The authors also summarize the data available on experimental therapies possibly entering clinical pratice in the forthcoming years. Orv. Hetil., 2016, 157(31), 1232-1241. PMID:27476519

  2. Advances in the formation, use and understanding of multi-cellular spheroids

    PubMed Central

    Achilli, Toni-Marie; Meyer, Julia; Morgan, Jeffrey R

    2015-01-01

    Introduction Developing in vitro models for studying cell biology and cell physiology is of great importance to the fields of biotechnology, cancer research, drug discovery, toxicity testing, as well as the emerging fields of tissue engineering and regenerative medicine. Traditional two dimensional (2D) methods of mammalian cell culture have several limitations and it is increasingly recognized that cells grown in a three dimensional (3D) environment more closely represent normal cellular function due to the increased cell-to-cell interactions, and by mimicking the in vivo architecture of natural organs and tissues. Areas Covered In this review, we discuss the methods to form 3D multi-cellular spheroids, the advantages and limitations of these methods, and assays used to characterize the function of spheroids. The use of spheroids has led to many advances in basic cell sciences, including understanding cancer cell interactions, creating models for drug discovery and cancer metastasis, and they are being investigated as basic units for engineering tissue constructs. As so, this review will focus on contributions made to each of these fields using spheroid models. Expert Opinion Multi-cellular spheroids are rich in biological content and mimic better the in vivo environment than 2D cell culture. New technologies to form and analyze spheroids are rapidly increasing their adoption and expanding their applications. PMID:22784238

  3. Recent advances in the understanding of the Aspergillus fumigatus cell wall.

    PubMed

    Lee, Mark J; Sheppard, Donald C

    2016-03-01

    Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction. PMID:26920883

  4. Recent Advances in the Mass Spectrometric Analysis of Glycoproteins: Theoretical Considerations

    PubMed Central

    Lazar, Iulia M.; Lazar, Alexandru C.; Cortes, Diego F.; Kabulski, Jarod L.

    2011-01-01

    Protein glycosylation is involved in a broad range of biological processes that regulate protein function and control cell fate. As aberrant glycosylation has been found to be implicated in numerous diseases, the study and large-scale characterization of protein glycosylation is of great interest not only to the biological and biomedical research community, but also to the pharmaceutical and biotechnology industry. Due to the complex chemical structure and differing chemical properties of the protein/peptide and glycan moieties, the analysis and structural characterization of glycoproteins has been proven to be a difficult task. Large-scale endeavors have been further limited by the dynamic outcome of the glycosylation process itself, and, occasionally, by the low abundance of glycoproteins in biological samples. Recent advances in mass spectrometry (MS) instrumentation, and progress in miniaturized technologies for sample handling, enrichment and separation, have resulted in robust and compelling analysis strategies that effectively address the challenges of the glycoproteome. This review summarizes the key steps that are involved in the development of efficient glycoproteomic analysis methods, and the latest innovations that led to successful strategies for the characterization of glycoproteins and their corresponding glycans. As a follow-up to this work, we review innovative capillary and microfluidic-MS workflows for the identification, sequencing, and characterization of glycoconjugates. PMID:21171109

  5. The critical perspective in psychological jurisprudence theoretical advances and epistemological assumptions.

    PubMed

    Arrigo, Bruce A

    2002-01-01

    The critical perspectives of psychological jurisprudence identified above, along with their corresponding epistemological assumptions, reflect a radical agenda for change at the law-psychology divide. Although not exhaustively reviewed, the individual theories represent different approaches by which structural reform can be enacted and citizen well-being can therefore be realized. Collectively, the critical perspectives and their attending presuppositions challenge conventional wisdom about prospects for transforming (i.e., humanizing) the legal apparatus. I submit that the future viability of the law-psychology movement, and its overall utility for society, considerably depends on its capacity to facilitate and secure such widespread change. By focusing on critical theoretical inquiry, this article makes painfully clear that much of what is wrong with the legal system, especially in its interactions with and interpretations of people, cannot be amended or solved through it. Indeed, as Roesch (1995) observed, "changes in the justice system will never be sufficient to create a just society, nor will within system changes by themselves ever have much of an impact on individuals who come into conflict with the law" (p. 3). I agree. Accordingly, it is time to move on and, where necessary, to look elsewhere for guidance. The radical agenda in psychological jurisprudence represents a provocative strategy, providing a meaningful basis for critique and a sustainable basis for reform. Both are integral to the call for justice embodied in the founding of the AP-LS decades ago. Realizing this challenge, however, remains an unfulfilled dream. Thus, the task that awaits is to apply the insights of critical psychological jurisprudence to relevant areas of research and policy. I submit that the academy can ill afford to dismiss this task. Indeed, in the final analysis, to do so would not only defer prospects for justice but would destroy its very possibility, especially for

  6. Advancing Fourth-Grade Students' Understanding of Arithmetic Properties with Instruction That Promotes Mathematical Argumentation

    ERIC Educational Resources Information Center

    Rumsey, Chepina Witkowski

    2012-01-01

    The goals for this study were to investigate how fourth-grade students developed an understanding of the arithmetic properties when instruction promoted mathematical argumentation and to identify the characteristics of students' arguments. Using the emergent perspective as an overarching theoretical perspective helped distinguish between two…

  7. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    ERIC Educational Resources Information Center

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical…

  8. Advancing the application of systems thinking in health: understanding the dynamics of neonatal mortality in Uganda

    PubMed Central

    2014-01-01

    internal audits at the health facilities as well as addressing the gaps in resources (human, logistics, and drugs). Conclusions Synthesis of theoretical concepts through CLDs facilitated our understanding and interpretation of the interactions and feedback loops that contributed to the stagnant neonatal mortality rates in Uganda, which is the first step towards discussing and exploring the potential strategies and their likely impact. PMID:25104047

  9. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    SciTech Connect

    Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  10. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  11. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  12. The NEDICES Study: Recent Advances in the Understanding of the Epidemiology of Essential Tremor

    PubMed Central

    Romero, Juan Pablo; Benito-León, Julián; Bermejo-Pareja, Félix

    2012-01-01

    Background Essential tremor (ET) is the most common tremor disorder. ET has classically been viewed as a benign monosymptomatic condition. Yet over the past 10 years, a growing body of evidence indicates that this is a progressive condition that is clinically heterogeneous, and may be associated with a variety of different features. Large epidemiological studies such as the Neurological Disorders of Central Spain (NEDICES), a longitudinal, population-based survey, have contributed significantly to the changing view of the disease. Our aim is to review some of the main results of NEDICES within the larger framework of the epidemiology of ET. Methods Data for this review were gathered from all our articles published up to October 2011 regarding NEDICES study and “Essential Tremor”. Results We have published 18 articles up to October 2011. The prevalence, incidence, and mortality of ET were analyzed in this cohort. In addition, ET was found to be associated with increased frailty and low morale, as well as with a series of non-motor manifestations, including cognitive deficits, mild cognitive impairment, dementia, depressive symptoms, and hearing impairment. Finally, the link between ET and Parkinson's disease (PD) was formally quantified in the NEDICES study, which demonstrated that the risk of developing incident PD was 4.3 times higher in prevalent ET cases than in age-matched controls without ET. Conclusions This review highlights the contributions of NEDICES towards the advancement of current knowledge of the epidemiology and clinical features of ET, and emphasizes the importance of population-based studies towards the understanding of complex, ageing-related diseases. PMID:23439396

  13. Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loeb, Norman G.; Kato, Seiji; Su, Wenying; Wong, Takmeng; Rose, Fred G.; Doelling, David R.; Norris, Joel R.; Huang, Xianglei

    2012-07-01

    This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth's top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5 Wm-2 per decade based upon comparisons between Clouds and the Earth's Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Niño-Southern Oscillation (ENSO). During positive ENSO phase (El Niño), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Niña). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Niña conditions and a net cooling influence during El Niño, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden-Julian Oscillation.

  14. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  15. Technological Difficulties: A Theoretical Frame for Understanding the Non-Relativistic Permanence of Traditional Print Literacy in Elementary Education

    ERIC Educational Resources Information Center

    Hassett, Dawnene D.

    2006-01-01

    Currently, definitions of "science", "reading", and "literacy" in the US lend a seemingly nonrelativistic permanence to these terms, and render them resistant to critique. This paper offers a theoretical frame for critiquing this permanence, analysing why early-literacy instruction is tightly tied to traditional forms of print literacy, focusing…

  16. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  17. Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2003-01-01

    associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.

  18. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well

  19. Towards integrated approaches to advance understanding of ecohydrological systems across scales

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    It is increasingly recognised that the processes and connections in our landscapes are influencing the functioning of aquatic ecosystems. Fundamental scientific understanding of the functioning of both aquatic and terrestrial ecosystems is required for an integrated and sustainable management of landscapes and riverscapes to maintain their ecosystem services and biological integrity at multiple scales. This talk will show how the interactions and feedbacks in ecohydrological systems can be quantitatively assessed through a number of novel, integrated approaches. Importantly, this talk will discuss the need to understand the role of vegetation on water partitioning at the terrestrial and aquatic interface. Terrestrial and aquatic ecosystems are interacting at every scale level and cross-scale investigations are extremely useful to gain an integrated understanding of ecohydrological systems. Environmental tracers are valuable tools to understand the functioning of ecohydrological systems at the landscape scale in terms of understand flow paths, sources of water and associated biogeochemical interactions. Extensive empirical studies were conducted at the plot and hillslope scale to understand ecohydrological systems, and in particular, soil-vegetation-water interlinkages. This empirically based understanding was then integrated into spatially distributed, tracer-aided models to understand mixing of water, flows to the stream and water age distribution at the catchment scale. Finally, remote sensing techniques were used to integrate empirically based findings and to extrapolate system understanding to cross-regional scales, specifically in terms of studying hydroclimatic variability, vegetation dynamics and consequent changes of plant water use and water partitioning.

  20. School Drama and Representations of War and Terror--Some Theoretical Approaches to Understanding Learning in Drama in Troubled Times

    ERIC Educational Resources Information Center

    Franks, Anton

    2008-01-01

    The argument here proceeds from an understanding that learning in drama is about participating in forms of cultural production whilst simultaneously engaging thought and feeling to make sense of aspects of contemporary life. In contemporary culture, acts of war and terror are mediated through television and digitised media and are thereby given…

  1. Sarcasm and Advanced Theory of Mind Understanding in Children and Adults with Prelingual Deafness

    ERIC Educational Resources Information Center

    O'Reilly, Karin; Peterson, Candida C.; Wellman, Henry M.

    2014-01-01

    Two studies addressed key theoretical debates in theory of mind (ToM) development by comparing (a) deaf native signers (n = 18), (b) deaf late signers (n = 59), and (c) age-matched hearing persons (n = 74) in childhood (Study 1: n = 81) and adulthood (Study 2: n = 70) on tests of first- and second-order false belief and conversational sarcasm.…

  2. Design and fundamental understanding of Minimum Quantity Lubrication (MQL) assisted grinding using advanced nanolubricants

    NASA Astrophysics Data System (ADS)

    Kalita, Parash

    Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants that are hazardous to human health and environment. Application of Minimum Quantity Lubrication (MQL) that cuts the volumetric fluid consumption by 3-4 orders of magnitude have been extensively researched in grinding as a high-productivity and environmentally-sustainable alternative to the conventional flood method. However, the lubrication performance and productivity of MQL technique with current fluids has been critically challenged by the extreme thermo-mechanical conditions of abrasive grinding. In this research, an MQL system based on advanced nanolubricants has been proposed to address the current thermo-mechanical challenges of MQL grinding and improve its productivity. The nanolubricants were composed of inorganic Molybdenum Disulphide nanoparticles (≈ 200 nm) intercalated with organic macromolecules of EP/AW property, dispersed in straight (base) oils---mineral-based paraffin and vegetable-based soybean oil. After feasibility investigations into the grindability of cast iron using MQL with nanolubricants, this research focused on the fundamental understanding of tribological behavior and lubricating mechanisms of nanolubricants as a method to improve the productivity of MQL-assisted surface grinding

  3. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.

    PubMed

    McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L

    2009-01-01

    In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on

  4. Recent advances in understanding/management of non-alcoholic steatohepatitis.

    PubMed

    Pacana, Tommy; Sanyal, Arun J

    2015-01-01

    Non-alcoholic steatohepatitis (NASH) can lead to advanced fibrosis, hepatocellular carcinoma, and end-stage liver disease requiring liver transplantation. A myriad of pathways and genetic influence contribute to NASH pathogenesis and liver disease progression. Diagnosing patients with NASH and advanced fibrosis is critical prior to treatment and prognostication. There has been ongoing interest in developing non-invasive biomarkers and tools for identifying NASH and advanced fibrosis. To date, there has been no approved therapy for NASH. Recently, the FLINT (Farnesoid X Receptor [FXR] Ligand Obeticholic Acid in NASH Treatment) trial provided promising results of the efficacy of obeticholic acid, a farnesoid X receptor agonist, in improving histological features of NASH and fibrosis. Long-term studies are needed to assess the safety of obeticholic acid and its effects on liver- and cardiovascular-related outcomes. PMID:25926979

  5. 48 CFR 1552.215-74 - Advanced understanding-uncompensated time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-uncompensated time. 1552.215-74 Section 1552.215-74 Federal Acquisition Regulations System ENVIRONMENTAL... Clauses 1552.215-74 Advanced understanding—uncompensated time. As prescribed in 1515.408(b), insert the...—Uncompensated Time (AUG 1999) (a) The estimated cost of this contract is based upon the Contractor's...

  6. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  7. How Syntactic Reasoners Can Develop Understanding, Evaluate Conjectures, and Generate Counterexamples in Advanced Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith

    2009-01-01

    This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…

  8. Advances in Modern Botnet Understanding and the Accurate Enumeration of Infected Hosts

    ERIC Educational Resources Information Center

    Nunnery, Christopher Edward

    2011-01-01

    Botnets remain a potent threat due to evolving modern architectures, inadequate remediation methods, and inaccurate measurement techniques. In response, this research exposes the architectures and operations of two advanced botnets, techniques to enumerate infected hosts, and pursues the scientific refinement of infected-host enumeration data by…

  9. Annual Research Review: Impact of Advances in Genetics in Understanding Developmental Psychopathology

    ERIC Educational Resources Information Center

    Addington, Anjene M.; Rapoport, Judith L.

    2012-01-01

    It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number…

  10. A Study of Three Impoverished Preschoolers with Advanced Understanding of Literacy.

    ERIC Educational Resources Information Center

    Smith, Susan Robinson; Rotman, Molly

    A study examined factors that may foster advanced knowledge of literacy among impoverished preschoolers who are generally found to be academically at-risk in learning to read. Six preschoolers enrolled in a Head Start program were identified by teacher recommendation as showing profound interest in written language (looking at books, writing…

  11. A cross-age study of students' conceptual understanding of interdependency in seed dispersal, pollination, and food chains using a constructivist theoretical framework

    NASA Astrophysics Data System (ADS)

    Smith, Shirley Mccraw

    2003-06-01

    The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.

  12. Toward understanding the dissociation of I2 in chemical oxygen-iodine lasers: Combined experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-07-01

    The dissociation of I2 molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three-dimensional computational fluid dynamics calculations. The measurements, briefly reported in a recent paper [Rybalkin et al., Appl. Phys. Lett. 89, 021115 (2006)] and reanalyzed in detail here, revealed that the number N of consumed O2(aΔg1) molecules per dissociated I2 molecule depends on the experimental conditions: it is 4.5±0.4 for typical conditions and I2 densities applied for optimal operation of the COIL but increases at lower I2 densities. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature, I2 dissociation fraction, and N at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven [AIAA J. 44, 1593 (2006)], where I2(A'Π2u3), I2(AΠ1u3), and O2(aΔg1,v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner III et al. [J. Phys. Chem. 87, 2348 (1983)], involving I(P1/22) and I2(XΣg +1,v).

  13. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  14. Toward an understanding of intermediate- and short-range defects in ZnO single crystals. A combined experimental and theoretical study.

    PubMed

    Lima, R C; Macario, L R; Espinosa, J W M; Longo, V M; Erlo, R; Marana, N L; Sambrano, J R; dos Santos, M L; Moura, A P; Pizani, P S; Andrés, J; Longo, E; Varela, J A

    2008-09-25

    A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band. PMID:18652436

  15. Commentary: Advancing Our Understanding of Asian American Child Development: History, Context, and Culture as Essential Considerations.

    PubMed

    McLoyd, Vonnie C

    2016-07-01

    The Special Section will help scholars make informed choices about how to conceptualize developmental processes and assess contextually and culturally relevant variables in future research with Asian American children and youth. It undertakes tasks and addresses challenges that have broad relevance to the study of developmental processes and stands as a reminder of the vital role of interdisciplinary perspectives in the advancement of developmental science. PMID:27392798

  16. Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate: A Combined Experimental and Density Functional Theoretical Approach

    SciTech Connect

    Chaudhuri,S.; Graetz, J.; Ignatov, A.; Reilly, J.; Muckerman, J.

    2006-01-01

    We report the results of an experimental and theoretical study of hydrogen storage in sodium alanate (NaAlH{sub 4}). Reversible hydrogen storage in this material is dependent on the presence of 2-4% Ti dopant. Our combined study shows that the role of Ti may be linked entirely to Ti-containing active catalytic sites in the metallic Al phase present in the dehydrogenated NaAlH{sub 4}. The EXAFS data presented here show that dehydrogenated samples contain a highly disordered distribution of Ti-Al distances with no long-range order beyond the second coordination sphere. We have used density functional theory techniques to calculate the chemical potential of possible Ti arrangements on an Al(001) surface for Ti coverages ranging from 0.125 to 0.5 monolayer (ML) and have identified those that can chemisorb molecular hydrogen via spontaneous or only moderately activated pathways. The chemisorption process exhibits a characteristic nodal symmetry property for the low-barrier sites: the incipient doped surface-H2 adduct's highest occupied molecular orbital (HOMO) incorporates the {sigma}* antibonding molecular orbital of hydrogen, allowing the transfer of charge density from the surface to dissociate the molecular hydrogen. This work also proposes a plausible mechanism for the transport of an aluminum hydride species back into the NaH lattice that is supported by Car-Parrinello molecular dynamics (CPMD) simulations of the stability and mobility of aluminum clusters (alanes) on Al(001). As an experimental validation of the proposed role of titanium and the subsequent diffusion of alanes, we demonstrate experimentally that AlH{sub 3} reacts with NaH to form NaAlH{sub 4} without any requirement of a catalyst or hydrogen overpressure.

  17. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach.

    PubMed

    Chaudhuri, Santanu; Graetz, Jason; Ignatov, Alex; Reilly, James J; Muckerman, James T

    2006-09-01

    We report the results of an experimental and theoretical study of hydrogen storage in sodium alanate (NaAlH(4)). Reversible hydrogen storage in this material is dependent on the presence of 2-4% Ti dopant. Our combined study shows that the role of Ti may be linked entirely to Ti-containing active catalytic sites in the metallic Al phase present in the dehydrogenated NaAlH(4). The EXAFS data presented here show that dehydrogenated samples contain a highly disordered distribution of Ti-Al distances with no long-range order beyond the second coordination sphere. We have used density functional theory techniques to calculate the chemical potential of possible Ti arrangements on an Al(001) surface for Ti coverages ranging from 0.125 to 0.5 monolayer (ML) and have identified those that can chemisorb molecular hydrogen via spontaneous or only moderately activated pathways. The chemisorption process exhibits a characteristic nodal symmetry property for the low-barrier sites: the incipient doped surface-H(2) adduct's highest occupied molecular orbital (HOMO) incorporates the sigma antibonding molecular orbital of hydrogen, allowing the transfer of charge density from the surface to dissociate the molecular hydrogen. This work also proposes a plausible mechanism for the transport of an aluminum hydride species back into the NaH lattice that is supported by Car-Parrinello molecular dynamics (CPMD) simulations of the stability and mobility of aluminum clusters (alanes) on Al(001). As an experimental validation of the proposed role of titanium and the subsequent diffusion of alanes, we demonstrate experimentally that AlH(3) reacts with NaH to form NaAlH(4) without any requirement of a catalyst or hydrogen overpressure. PMID:16939263

  18. Understanding of matrix embedding: a theoretical spectroscopic study of CO interacting with Ar clusters, surfaces and matrices.

    PubMed

    Mahjoubi, K; Benoit, D M; Jaidane, N-E; Al-Mogren, M Mogren; Hochlaf, M

    2015-07-14

    Through benchmark studies, we explore the performance of PBE density functional theory, with and without Grimme's dispersion correction (DFT-D3), in predicting spectroscopic properties for molecules interacting with rare gas matrices. Here, a periodic-dispersion corrected model of matrix embedding is used for the first time. We use PBE-D3 to determine the equilibrium structures and harmonic vibrational frequencies of carbon monoxide in interaction with small Ar clusters (CO-Arn, n = 1, 2, 3), with an Ar surface and embedded in an Ar matrix. Our results show a converging trend for both the vibrational frequencies and binding energies when going from the gas-phase to a fully periodic approach describing CO embedding in Ar. This trend is explained in terms of solvation effects, as CO is expected to alter the structure of the Ar matrix. Due to a competition between CO-Ar interactions and Ar-Ar interactions, perturbations caused by the presence of CO are found to extend over several Å in the matrix. Accordingly, it is mandatory to fully relax rare gas matrices when studying their interaction with embedded molecules. Moreover, we show that the binding energy per Ar is almost constant (∼-130 cm(-1) atom(-1)) regardless of the environment of the CO molecule. Finally, we show that the concentration of the solute into the cold matrix influences the spectroscopic parameters of molecules embedded into cold matrices. We suggest hence that several cautions should be taken before comparing these parameters to gas phase measurements and to theoretical data of isolated species. PMID:26067278

  19. Reversible Photohydration of Trenbolone Acetate Metabolites: Mechanistic Understanding of Product-to-Parent Reversion through Complementary Experimental and Theoretical Approaches.

    PubMed

    Baltrusaitis, Jonas; Patterson, Eric V; O'Connor, Meghan; Qu, Shen; Kolodziej, Edward P; Cwiertny, David M

    2016-07-01

    Photolysis experiments (in H2O and D2O) and quantum chemical calculations were performed to explore the pH-dependent, reversible photohydration of trenbolone acetate (TBA) metabolites. Photohydration of 17α-trenbolone (17α-TBOH) and 17β-trenbolone (17β-TBOH) occurred readily in simulated sunlight to yield hydrated products with incorporated H(+) at C4 and OH(-) at either C5 (5-OH-TBOH) or C12 (12-OH-TBOH) in the tetracyclic steroid backbone. Although unable to be elucidated analytically, theory suggests preferred orientations of cis-12-OH-TBOH (relative to C13 methyl) and trans-5-OH-TBOH, with the former most thermodynamically stable overall. Both experiment and theory indicate limited stability of trans-5-OH-TBOH at acidic pH where it undergoes concurrent, carbocation-mediated thermal rearrangement to cis-12-OH-TBOH and dehydration to regenerate its parent structure. Experiments revealed cis-12-OH-TBOH to be more stable at acidic pH, which is the only condition where its reversion to parent TBA metabolite occurred. At basic pH cis-12-OH-TBOH decayed quickly via hydroxide/water addition, behavior that theory attributes to the formation of a stable enolate resistant to dehydration but prone to thermal hydration. In a noteworthy deviation from predicted theoretical stability, 17α-TBOH photohydration yields major trans-5-OH-TBOH and minor cis-12-OH-TBOH, a distribution also opposite that observed for 17β-TBOH. Because H(+) and OH(-) loss from adjacent carbon centers allows trans-5-OH-TBOH to dehydrate at all pH values, the presumed kinetically controlled yield of 17α-TBOH photohydrates results in a greater propensity for 17α-TBOH reversion than 17β-TBOH. Additional calculations explored minor, but potentially bioactive, trenbolone analogs that could be generated via alternative rearrangement of the acidic carbocation intermediate. PMID:26800354

  20. Issues In-Depth: Advancing Understanding of Drug Addiction and Treatment

    ERIC Educational Resources Information Center

    Miller, Roxanne Greitz

    2009-01-01

    While most school districts utilize a drug abuse resistance curriculum, as science teachers, it is our responsibility to understand the science behind drug addiction in order to most effectively educate our students against drug abuse. In the last two decades, increases in scientific technology have permitted significant discoveries surrounding…

  1. Recent advances in the understanding of male lower urinary tract symptoms (LUTS)

    PubMed Central

    Kahokehr, Arman A.; Gilling, Peter J.

    2016-01-01

    In this review, we have looked at three important areas in understanding male lower urinary tract symptoms. These are improvement in terminology, detrusor underactivity, and nocturia. Benign prostatic hyperplasia leading to bladder outlet obstruction has been covered in a previous review. PMID:27134738

  2. Recent advances in the understanding of male lower urinary tract symptoms (LUTS).

    PubMed

    Kahokehr, Arman A; Gilling, Peter J

    2016-01-01

    In this review, we have looked at three important areas in understanding male lower urinary tract symptoms. These are improvement in terminology, detrusor underactivity, and nocturia. Benign prostatic hyperplasia leading to bladder outlet obstruction has been covered in a previous review. PMID:27134738

  3. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  4. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    SciTech Connect

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan; Albenze, Erik; Thompson, Robert L.; Kim, Jihan; Harancyzk, Maciel; Nulwala, Hunaid B.; Luebke, David R.; Smit, Berend

    2013-01-01

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquid properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.

  5. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction

    PubMed Central

    Alton, Eric W.F.W.

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  6. The Understanding by Design Guide to Advanced Concepts in Creating and Reviewing Units

    ERIC Educational Resources Information Center

    McTighe, Jay; Wiggins, Grant

    2012-01-01

    Regardless of your stage at implementing the design tools and using the improved template for Understanding by Design[R] (UbD), this companion to "The UbD Guide to Creating High-Quality Units" is essential for taking your work to a higher plane. This volume features a set of hands-on modules containing worksheets, models, and self-assessments that…

  7. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction.

    PubMed

    Griesenbach, Uta; Alton, Eric W F W

    2015-01-01

    Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians and has been extensively studied for many decades. The cystic fibrosis transmembrane conductance regulator gene was identified in 1989. It encodes a complex protein which has numerous cellular functions. Our understanding of cystic fibrosis pathophysiology and genetics is constantly expanding and being refined, leading to improved management of the disease and increased life expectancy in affected individuals. PMID:26097737

  8. Exploring multi/full polarised SAR imagery for understanding surface soil moisture and roughness by using semi-empirical and theoretical models and field experiments

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Marzahn, Philip; Ludwig, Ralf

    2010-05-01

    -range digital photogrammetry for surface roughness retrieval. A semi-empirical model is tested and a theoretical model AIEM is utilised for further understanding. Results demonstrate that the semi-empirical soil moisture retrieval algorithm, which was developed in studies in humid climate conditions, must be carefully adapted to the drier Mediterranean environment. Modifying the approach by incorporating regional field data, led to a considerable improvement of the algorithms performance. In addition, it is found that the current representation of soil surface roughness in the AIEM is insufficient to account for the specific heterogeneities on the field scale. The findings in this study indicate the necessity for future research, which must be extended to a more integrated combination of current sensors, e.g. ENVISAT/ASAR, ALOS/PALSAR and Radarsat-2 imagery and advanced development of soil moisture retrieval model for multi/full polarised radar imagery.

  9. Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson's disease.

    PubMed

    Rochester, Lynn; Chastin, Sebastien Francois Martin; Lord, Sue; Baker, Katherine; Burn, David John

    2012-06-01

    Whilst deep brain stimulation of the subthalamic nucleus (DBS-STN) improves the motor symptoms of Parkinson's disease (PD), its effect on daily activity is unknown. We aimed to quantify changes in ambulatory activity following DBS-STN in advanced PD using novel accelerometry based measures that describe changes to the volume and pattern of walking. Seventeen participants with advanced PD were measured over a 7-day period using an activPAL (™) activity monitor. Data were collected 6 weeks before and 6 months after surgery and included measures that describe the volume and pattern of ambulatory activity (number of steps per day, accumulation, diversity and variability of walking time), alongside standard measures for disease severity, freezing of gait, gait speed, and extended activities of daily living. Activity outcomes were compared pre- and 6 months post-surgery using linear mixed models and correlated with standard outcomes. The results of this study are despite significant improvements in motor symptoms after surgery, the volume of ambulatory activity (total number of steps per day) did not change (P = 0.468). However, significant increases in length and variability of walking bouts emerged, suggesting improvements in diversity and flexibility of walking patterns. Motor severity and extended activities of daily living scores were significantly correlated with walking bout variability but not with volume of walking. Thus, the conclusions are reduction in motor symptom severity after DBS-STN translated into selective improvements in daily activity. Novel measures derived from accelerometry provide a discrete measure of performance and allow closer interpretation of the impact of DBS-STN on real-world activity. PMID:22086738

  10. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  11. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  12. Recent advances in the understanding and management of IgA nephropathy

    PubMed Central

    Lai, Kar Neng; Leung, Joseph C.K.; Tang, Sydney C.W.

    2016-01-01

    Since its first description in 1968, IgA nephropathy has remained the most common form of primary glomerulonephritis leading to chronic kidney disease in developed countries. The clinical progression varies, and consequent end-stage renal disease occurs in 30% to 40% of patients 20 to 30 years after the first clinical presentation. Current data implicate overproduction of aberrantly glycosylated IgA1 as being pivotal in the induction of renal injury. Effective and specific treatment is still lacking, and new therapeutic approaches will be developed after better understanding the disease pathogenesis.

  13. Pediatric Cerebellar Tumors: Emerging Imaging Techniques and Advances in Understanding of Genetic Features.

    PubMed

    Choudhri, Asim F; Siddiqui, Adeel; Klimo, Paul

    2016-08-01

    Cerebellar tumors are the most common group of solid tumors in children. MR imaging provides an important role in characterization of these lesions, surgical planning, and postsurgical surveillance. Preoperative imaging can help predict the histologic subtype of tumors, which can provide guidance for surgical planning. Beyond histology, pediatric brain tumors are undergoing new classification schemes based on genetic features. Intraoperative MR imaging has emerged as an important tool in the surgical management of pediatric brain tumors. Effective understanding of the imaging features of pediatric cerebellar tumors can benefit communication with neurosurgeons and neuro-oncologists and can improve patient management. PMID:27423803

  14. The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes.

    PubMed

    Harmer, Stephen C; Tinker, Andrew

    2016-07-01

    Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work. PMID:26910742

  15. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications

    PubMed Central

    Yin, Shen; Niswender, Colleen M.

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are a group of Class C Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission in both the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, especially the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members. PMID:24793301

  16. Advances in the understanding of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage

    PubMed Central

    Flynn, Liam; Andrews, Peter

    2015-01-01

    Delayed cerebral ischaemia has been described as the single most important cause of morbidity and mortality in patients who survive the initial aneurysmal subarachnoid haemorrhage. Our understanding of the pathophysiology of delayed cerebral ischaemia is meagre at best and the calcium channel blocker nimodipine remains the only intervention to consistently improve functional outcome after aneurysmal subarachnoid haemorrhage. There is substantial evidence to support cerebral vessel narrowing as a causative factor in delayed cerebral ischaemia, but contemporary research demonstrating improvements in vessel narrowing has failed to show improved functional outcomes. This has encouraged researchers to investigate other potential causes of delayed cerebral ischaemia, such as early brain injury, microthrombosis, and cortical spreading depolarisation. Adherence to a common definition of delayed cerebral ischaemia is needed in order to allow easier assessment of studies using multiple different terms. Furthermore, improved recognition of delayed cerebral ischaemia would not only allow for faster treatment but also better assessment of interventions. Finally, understanding nimodipine’s mechanism of action may allow us to develop similar agents with improved efficacy. PMID:26937276

  17. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants.

    PubMed

    Wang, Chung-Ju R; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation. PMID:25295051

  18. Recent advances in understanding of meiosis initiation and the apomictic pathway in plants

    PubMed Central

    Wang, Chung-Ju R.; Tseng, Ching-Chih

    2014-01-01

    Meiosis, a specialized cell division to produce haploid cells, marks the transition from a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms, meiosis takes place in sporogenous cells that develop de novo from somatic cells in anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed or a mitosis-like division occurs to produce unreduced cells, followed by the development of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction pathway found in 400 species of flowering plants. An understanding of the regulation of entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the key gene for entry into meiosis, and increasing evidence has shown that the apomictic pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis during sexual reproduction or for its omission in the apomictic pathway still remains largely unknown. Here we review the current understanding of meiosis initiation and the apomictic pathway and raised several questions that are awaiting further investigation. PMID:25295051

  19. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass

    SciTech Connect

    Ju, Xiaohui; Engelhard, Mark H.; Zhang, Xiao

    2013-01-17

    A deep understanding of biomass recalcitrance has been hampered by the intricate and heterogeneous nature of pretreated biomass substrates obtained from random deconstruction methods. In this study, we established a unique methodology based on chemical pulping principles to create "reference substrates" with intact cellulose fibers and controlled morphological and chemical properties that enable us to investigate the individual effect of xylan, bulk, and surface lignin content on enzymatic hydrolysis. We also developed and demonstrated an X-ray photoelectron spectroscopy (XPS) technique for quantifying surface lignin content on biomass substrates. The results from this study show that, apart from its hindrance effect, xylan can facilitate cellulose fibril swelling and thus create more accessible surface area, which improves enzyme and substrate interactions. Surface lignin has a significant impact on enzyme adsorption kinetics and hydrolysis rate. Advanced understanding of xylan, bulk, and surface lignin effects provides critical information for an effective biomass conversion process.

  20. Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.

  1. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    PubMed Central

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  2. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    NASA Astrophysics Data System (ADS)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  3. Recent Advances in Understanding of NASH: MicroRNAs as Both Biochemical Markers and Players

    PubMed Central

    Vincent, Robert; Sanyal, Arun

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatis (NASH) are becoming the dominant liver diseases in the US and Western World. Extensive work is being done to diagnose, understand, and explore the pathogenesis of these multivariable complex diseases. Recently a new avenue of biologic regulation is being explored. MicroRNAs are non-coding RNAs that modulate the expression of multiple genes and have been implicated in multiple diseases. Recently there is a growing body of evidence supporting a significant role of microRNAs in NAFLD pathogenesis and progression to NASH, and hinting at their use as targets, biomarkers and potential therapeutic tools. This review is designed to highlight some of the recent work on a few of the key microRNAs involved in the pathogenesis of NAFLD and NASH. PMID:25574453

  4. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  5. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  6. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    PubMed

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  7. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells

    PubMed Central

    2014-01-01

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed. PMID:25037625

  8. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    NASA Technical Reports Server (NTRS)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  9. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology.

    PubMed

    Schroeder, Kristin M; Hoeman, Christine M; Becher, Oren J

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a high-grade glioma that originates in the pons and is seen exclusively in children. Despite numerous efforts to improve treatment, DIPG remains incurable with 90% of children dying within 2 y of diagnosis, making it one of the leading causes of death in children with brain tumors. With the advent of new genomic tools, the genetic landscape of DIPG is slowly being unraveled. The most common genetic alterations include a K27M mutation in H3.3 or H3.1, which are found in up to 78% of DIPGs, whereas p53 mutations are found in up to 77%. Other recently discovered alterations include amplification of components of the receptor tyrosine kinase/Ras/phosphatidylinositol 3-kinase signaling pathway, particularly platelet-derived growth factor receptor A. Recapitulating such alterations, genetically engineered DIPG preclinical models have been developed, and DIPG xenograft models have also been established. Both models have strengths and weaknesses but can help with the prioritization of novel agents for clinical trials for children with DIPG. As we move forward, it is important that we continue to study the complex and unique biology of DIPG and develop improved preclinical models to increase our understanding of DIPG pathogenesis, allowing translation into successful therapies in the not too distant future. PMID:24192697

  10. Recent Observational Advances in our Understanding of Magnetic Reconnection in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.

    2014-12-01

    The availability of multi-point observations through the ion diffusion region has provided a wealth of information on the workings of magnetic reconnection at the dayside magnetopause and at the nightside plasma sheet. Ion inertia and finite gyroradius result in clear Hall effects on ion inertial length scales that have been observed by single and multi-point spacecraft resulting in a fairly detailed understanding of that physics. The role of Hall dynamics on establishing the reconnection rate, and the outflow conditions is well understood. Electron violation of the frozen-in condition is much more subtle and rarely observed at the X-point; indirect evidence has been more frequently observed in parallel electric fields. The waves responsible for this violation and for resultant energy conversion are at the forefront of observational studies. The contraction of islands centered at multiple O-points could provide for rapid energy conversion. However, observations of in vivo FTEs at the dayside and classical plasmoids at the nightside, are rare even near the expected most probable location of reconnection. Rather, asymmetric proto-plasmoids and dipolarization (a.k.a reconnection) fronts at the nightside signify distinctly different evolution of the reconnection geometry from that of X and O points. Operating within meso-scale (1-3Re) flows the inherently kinetic (at electron inertial scales embeded in ion inertial scale current systems) processes at such fronts play a significant role in the dynamics and drive global magnetospheric energy conversion and flux transport. Recent studies suggest that the entire magnetosphere is, in fact, connected front-to-back by reconnection pulses resulting in meso-scale flows. The upcoming Heliophysics System Observatory, motivated by the launch of MMS and the coordinated observations of THEMIS, ARTEMIS, Van Allen probes and other space and ground assets will answer key questions on this subject locally, regionally and globally.

  11. Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region

    NASA Astrophysics Data System (ADS)

    Li, X.

    2015-12-01

    Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  12. Vulnerable self, poor understanding of others' minds, threat anticipation and cognitive biases as triggers for delusional experience in schizophrenia: a theoretical model.

    PubMed

    Salvatore, Giampaolo; Lysaker, Paul H; Popolo, Raffaele; Procacci, Michele; Carcione, Antonino; Dimaggio, Giancarlo

    2012-01-01

    It remains unclear what processes lead to the establishment of persecutory delusions in acute phases of schizophrenia. Recently, it has been argued that persecutory delusions arise from an interaction among a range of emotional, cognitive and social factors. In this work, we explored this possibility by first discussing the relevant aspects of recent theoretical models of the causes of persecutory delusions. Then, we offered an analysis of the literature, illustrated with clinical observations suggesting that persecutory delusions are triggered during stressful intersubjective transactions by the interactions of (a) an alteration in empathetic perspective taking and in pragmatic understanding of others' minds; (b) a perception/representation of the self as vulnerable or subordinate and of the other as dominant and threatening; and (c) a hyperfunctioning of the threat/self-protection system when faced with perceived danger. Implications for future research and treatment of people suffering from this symptom are discussed. PMID:21374760

  13. Understanding the relationships among HIV/AIDS-related stigma, health service utilization, and HIV prevalence and incidence in Sub-Saharan Africa: a multi-level theoretical perspective.

    PubMed

    Williams, Leslie D

    2014-03-01

    HIV-positive individuals often face community-wide discrimination or public shame and humiliation as a result of their HIV-status. In Sub-Saharan Africa, high HIV incidence coupled with unique cultural contexts make HIV-positive individuals particularly likely to experience this kind of HIV/AIDS-related (HAR) stigma. To date, there is a relatively small amount of high-quality empirical literature specific to HAR stigma in this context, supporting the notion that a better understanding of this phenomenon is needed to inform potential interventions. This paper provides a thorough review of the literature specific to HAR stigma in Sub-Saharan Africa, finding (a) qualitative support for the existence of important relationships between HAR stigma and health service utilization and barriers; (b) a need for more quantitative study of stigma and its relationships both to health service utilization and to HIV outcomes directly; and (c) a disconnect between methodological techniques used in this context-specific literature and well-known theories about stigma as a general phenomenon. This paper then draws from its empirical literature review, as well as from well-known theoretical frameworks from multiple disciplines, to propose a theoretical framework for the ecological and multilevel relationships among HAR stigma, health service utilization, and HIV outcomes in this context. PMID:24477769

  14. Recent advances in understanding the assembly and repair of photosystem II

    PubMed Central

    Nixon, Peter J.; Michoux, Franck; Yu, Jianfeng; Boehm, Marko; Komenda, Josef

    2010-01-01

    Background Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress. Scope Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis. Conclusions Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these ‘assembly’ factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a

  15. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  16. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  17. Understanding what the public know and value about geoheritage sites in order to advance Earth science literacy

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.

    2013-12-01

    With its impressive geology and rich cultural history, Michigan's Keweenaw Peninsula is ideally suited for Earth science education and geotourism initiatives, such as a Geopark. Geologic events that have shaped this region can be interpreted in such a way as to engage learners, not only through an intellectual connection to Earth science subject matter, but also through an emotional connection via culture, history, and sense of place. The notion that landscape is special because it is the sum total of all the interacting earth systems, including people as part of the biosphere, can be used to drive these initiatives as they affect one personally. It is speculated that most people in the Keweenaw have a basic understanding of the local cultural history and some understanding of geology. Advanced awareness and understanding of the geological significance of the Keweenaw stands to greatly enrich our community's sense of place and desire to advance further education and geotourism initiatives. It is anticipated that these initiatives will ultimately lead to increased Earth science literacy and understanding and recognition of one's own environs. This will aid in the further development of publications, teaching media, trails info, on-site museums, etc. Although the community has embraced geo-outreach thus far, it is germane to know what people value, what they know of the geology and how they connect to place. Results from semi-structured interviews administered with the aim and focus of determining what places are special to people, why they are special and how they formed will be presented in this paper. The results from this research will be used to direct the creation and continued development of geologic interpretation of our region. It is hoped that this understanding will reveal common misconceptions that can be used to improve interpretive material that not only addresses misconceptions but also connects the immediate past with the deep geologic past of the

  18. Institute for Theoretical Physics

    SciTech Connect

    Giddings, S.B.; Ooguri, H.; Peet, A.W.; Schwarz, J.H.

    1998-06-01

    String theory is the only serious candidate for a unified description of all known fundamental particles and interactions, including gravity, in a single theoretical framework. Over the past two years, activity in this subject has grown rapidly, thanks to dramatic advances in understanding the dynamics of supersymmetric field theories and string theories. The cornerstone of these new developments is the discovery of duality which relates apparently different string theories and transforms difficult strongly coupled problems of one theory into weakly coupled problems of another theory.

  19. Recent advances in the understanding of endometriosis: the role of inflammatory mediators in disease pathogenesis and treatment

    PubMed Central

    Nothnick, Warren; Alali, Zahraa

    2016-01-01

    In this review, we focus on recent advancements in our understanding of the roles of inflammatory mediators in endometriosis pathophysiology and the potential for improved therapies based upon targeting these pathways. We review the association between endometriosis and inflammation and the initial promise of anti-tumor necrosis factor therapies based upon experimental evidence, and how and why these studies have not translated to the clinic. We then discuss emerging data on the role of inter-relationship among macrophage migration inhibitory factor, prostaglandin E 2, and estrogen receptor-beta, and the potential utility of targeting these factors in endometriosis treatment. In doing so, we highlight the strengths and discuss the current research on identification of novel, anti-inflammatory-based therapy and the necessity to expand experimental endpoints to include clinically relevant measures when assessing the efficacy of potential new therapies for endometriosis. PMID:26949527

  20. Advancing Our Understanding of the Link between Statistical Learning and Language Acquisition: The Need for Longitudinal Data

    PubMed Central

    Arciuli, Joanne; Torkildsen, Janne von Koss

    2012-01-01

    Mastery of language can be a struggle for some children. Amongst those that succeed in achieving this feat there is variability in proficiency. Cognitive scientists remain intrigued by this variation. A now substantial body of research suggests that language acquisition is underpinned by a child’s capacity for statistical learning (SL). Moreover, a growing body of research has demonstrated that variability in SL is associated with variability in language proficiency. Yet, there is a striking lack of longitudinal data. To date, there has been no comprehensive investigation of whether a capacity for SL in young children is, in fact, associated with language proficiency in subsequent years. Here we review key studies that have led to the need for this longitudinal research. Advancing the language acquisition debate via longitudinal research has the potential to transform our understanding of typical development as well as disorders such as autism, specific language impairment, and dyslexia. PMID:22969746

  1. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia.

    PubMed

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H

    2015-11-15

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  2. Advanced simulation technology used to reduce accident rates through a better understanding of human behaviors and human perception

    NASA Astrophysics Data System (ADS)

    Manser, Michael P.; Hancock, Peter A.

    1996-06-01

    Human beings and technology have attained a mutually dependent and symbiotic relationship. It is easy to recognize how each depends on the other for survival. It is also easy to see how technology advances due to human activities. However, the role technology plays in advancing humankind is seldom examined. This presentation examines two research areas where the role of advanced visual simulation systems play an integral and essential role in understanding human perception and behavior. The ultimate goal of this research is the betterment of humankind through reduced accident and death rates in transportation environments. The first research area examined involved the estimation of time-to-contact. A high-fidelity wrap-around simulator (RAS) was used to examine people's ability to estimate time-to- contact. The ability of people to estimate the amount of time before an oncoming vehicle will collide with them is a necessary skill for avoiding collisions. A vehicle approached participants at one of three velocities, and while en route to the participant, the vehicle disappeared. The participants' task was to respond when they felt the accuracy of time-to-contact estimates and the practical applications of the result. The second area of research investigates the effects of various visual stimuli on underground transportation tunnel walls for the perception of vehicle speed. A RAS is paramount in creating visual patterns in peripheral vision. Flat-screen or front-screen simulators do not have this ability. Results are discussed in terms of speed perception and the application of these results to real world environments.

  3. The Blackholic energy: long and short Gamma-Ray Bursts (New perspectives in physics and astrophysics from the theoretical understanding of Gamma-Ray Bursts, II)

    NASA Astrophysics Data System (ADS)

    Ruffini, Remo; Bernardini, Maria Grazia; Bianco, Carlo Luciano; Chardonnet, Pascal; Fraschetti, Federico; Gurzadyan, Vahe; Vitagliano, Luca; Xue, She-Sheng

    2005-08-01

    We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor ~ 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole originating the vacuum polarization process. There are two different classes of GRBs: the long GRBs and the short GRBs. We here address the issue of the long GRBs. The theoretical understanding of the long GRBs has led to the detailed description of their luminosities in fixed energy bands, of their spectral features and made also possible to probe the astrophysical scenario in which they originate. We are specially interested, in this report, to a subclass of long GRBs which appear to be accompanied by a supernova explosion. We are considering two specific examples: GRB980425/SN1998bw and GRB030329/SN2003dh. While these supernovae appear to have a standard energetics of 1049 ergs, the GRBs are highly variable and can have energetics 104 - 105 times larger than the ones of the supernovae. Moreover, many long GRBs occurs without the presence of a supernova. It is concluded that in no way a GRB can originate from a supernova. The precise theoretical understanding of the GRB luminosity we present evidence, in both these systems, the existence of an independent component in the X-ray emission, usually interpreted in the current literature as part of the GRB afterglow. This component has been observed by Chandra and XMM to have a strong decay on scale of months. We have named here these two sources respectively URCA-1 and URCA-2, in honor of the work that George Gamow and Mario Shoenberg did in 1939 in this town of Urca identifying the basic mechanism, the Urca processes, leading to the process of gravitational collapse and the formation of a neutron star and a supernova. The further

  4. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed. PMID:27310182

  5. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis.

    PubMed

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-08-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  6. Understanding the Racial and Ethnic Differences in Cost and Mortality Among Advanced Stage Prostate Cancer Patients (STROBE).

    PubMed

    Chhatre, Sumedha; Bruce Malkowicz, Stanley; Sanford Schwartz, J; Jayadevappa, Ravishankar

    2015-08-01

    The aims of the study were to understand the racial/ethnic differences in cost of care and mortality in Medicare elderly with advanced stage prostate cancer.This retrospective, observational study used SEER-Medicare data. Cohort consisted of 10,509 men aged 66 or older and diagnosed with advanced-stage prostate cancer between 2001and 2004. The cohort was followed retrospectively up to 2009. Racial/ethnic variation in cost was analyzed using 2 part-models and quantile regression. Step-wise GLM log-link and Cox regression was used to study the association between race/ethnicity and cost and mortality. Propensity score approach was used to minimize selection bias.Pattern of cost and mortality varies between racial/ethnic groups. Compared with other racial/ethnic groups, non-Hispanic white patients had higher unadjusted costs in treatment and follow-up phases. Quintile regression results indicated that in treatment phase, Hispanics had higher costs in the 95th quantile and non-Hispanic blacks had lower cost in the 95th quantile, compared with non-Hispanic white men. In terminal phase non-Hispanic blacks and Hispanics had higher cost. After controlling for treatment, all-cause and prostate cancer-specific mortality was not significant for non-Hispanic black men, compared with non-Hispanic white men. However, for Asians, mortality remained significantly lower compared with non-Hispanic white men.In conclusion, relationship between race/ethnicity, cost of care, and mortality is intricate. For non-Hispanic black men, disparity in mortality can be attributed to treatment differences. To reduce racial/ethnic disparities in prostate cancer care and outcomes, tailored policies to address underuse, overuse, and misuse of treatment and health services are necessary. PMID:26266389

  7. Toward a better understanding of the magnetocaloric effect: An experimental and theoretical study of MnFe{sub 4}Si{sub 3}

    SciTech Connect

    Gourdon, Olivier; Gottschlich, Michael; Persson, Joerg; Cruz, Clarina de la; Petricek, Vaclav; McGuire, Michael A.; Brückel, Thomas

    2014-08-15

    The intermetallic compound MnFe{sub 4}Si{sub 3} has been studied by high-resolution Time of Flight (TOF) neutron powder diffraction. MnFe{sub 4}Si{sub 3} crystallizes in the hexagonal space group P6{sub 3}/mcm with lattice constants of a=b=6.8043(4) Å and c=4.7254(2) Å at 310 K. Magnetic susceptibility measurements show clearly the magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. Magnetic structure refinements based on neutron powder diffraction data with and without external magnetic field reveal strong evidence on the origin of the large magnetocaloric effect (MCE) in this material as a partial reordering of the spins between ∼270 K and 300 K. In addition, electronic structure calculations using the self-consistent, spin-polarized Tight Binding-Linear MuffinTin Orbital (TB-LMTO) method were also accomplished to address the “coloring problem” (Mn/Fe site preference) as well as the unique ferromagnetic behavior of this intermetallic compound. - Graphical abstract: Theoretical and experimental reinvestigation of the magnetic structure of MnFe{sub 4}Si{sub 3} for a better understanding of its large magnetocaloric effect (MCE). - Highlights: • Strong magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. • MCE associated to a partial reordering of the spins between ∼270 K and 300 K. • DFT calculations show strong relation between MCE and spintronic materials.

  8. Advances in the Understanding of ELM Suppression by Resonant Magnetic Perturbations (RMPs) in DIII-D and Implications for ITER

    SciTech Connect

    Nazikian, R.

    2014-09-01

    Experiments on DIII-D have expanding the operating window for RMP ELM suppression to higher q95 with dominant electron heating and fully non-inductive current drive relevant to advanced modes of ITER operation. Robust ELM suppression has also been obtained with a reduced coil set, mitigating the risk of coil failure in maintaining ELM suppression in ITER. These results significantly expand the operating space and reduce risk for obtaining RMP ELM suppression in ITER. Efforts have also been made to search for 3D cause of ELM suppression. No internal non-axisymmetric structure is detected at the top of the pedestal, indicating that the dominant effect of the RMP is to produce an n=0 transport modification of the profiles. Linear two fluid MHD simulations using M3D-C1 indicate resonant field penetration and significant magnetic stochasticity at the top of the pedestal, consistent with the absence of detectable 3D structure in that region. A profile database was developed to compare the scaling of the pedestal and global confinement with the applied 3D field strength in ELM suppressed and ELM mitigated plasmas. The EPED pedestal model accurately predicts the measured pedestal pressure at the threshold of ELM suppression, increasing confidence in theoretical projections to ITER pedestal conditions. Both the H-factor (H(sub)98y2) and thermal energy confinement time do not degrade substantially with applied RMP fields near the threshold of ELM suppression, enhancing confidence in the compatibility of ITER high performance operation with RMP ELM suppression.

  9. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. PMID:27542556

  10. Utilizing LiDAR Datasets From Experimental Watersheds to Advance Ecohydrological Understanding in Seasonally Snow-Covered Forests

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Broxton, P. D.; Guo, Q.; Barlage, M. J.; Gochis, D. J.

    2014-12-01

    The Western U.S. is strongly reliant on snowmelt from forested areas for ecosystem services and downstream populations. The ability to manage water resources from snow-covered forests faces major challenges from drought, disturbance, and regional changes in climate. An exciting avenue for improving ecohydrological process understanding is Light Detection and Ranging (LiDAR) because the technology simultaneously observes topography, forest properties, and snow/ice at high-resolution (<10 cm) and over large extents (>100 km2). The availability and quality of LiDAR datasets is increasing rapidly, however they remain under-utilized for process-based ecohydrology investigations. This presentation will illustrate how LiDAR datasets from the Critical Zone Observatory (CZO) network have been applied to advance ecohydrological understanding through direct empirical analysis, as well as model parameterization and verification. Direct analysis of the datasets has proved fruitful for pre- and post-disturbance snow distribution estimates and interpreting in-situ snow depth measurements across sites. In addition, we illustrate the potential value of LiDAR to parameterize and verify of physical models with two examples. First, we use LiDAR to parameterize a land surface model, Noah multi-parameterization (Noah-MP), to investigate the sensitivity of modeled water and energy fluxes to high-resolution forest information. Second, we present a Snow Physics and Laser Mapping (SnowPALM) model that is parameterized with LiDAR information at its native 1-m scale. Both modeling studies demonstrate the value of LiDAR for representing processes with greater fidelity. More importantly, the increased model fidelity led to different estimates of water and energy fluxes at larger, watershed scales. Creating a network of experimental watersheds with LiDAR datasets offers the potential to test theories and models in previously unexplored ways.

  11. Finite difference simulations of seismic wave propagation for understanding earthquake physics and predicting ground motions: Advances and challenges

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Ducellier, Ariane; Dupros, Fabrice; Michea, David

    2013-08-01

    Seismic waves radiated from an earthquake propagate in the Earth and the ground shaking is felt and recorded at (or near) the ground surface. Understanding the wave propagation with respect to the Earth's structure and the earthquake mechanisms is one of the main objectives of seismology, and predicting the strong ground shaking for moderate and large earthquakes is essential for quantitative seismic hazard assessment. The finite difference scheme for solving the wave propagation problem in elastic (sometimes anelastic) media has been more widely used since the 1970s than any other numerical methods, because of its simple formulation and implementation, and its easy scalability to large computations. This paper briefly overviews the advances in finite difference simulations, focusing particularly on earthquake mechanics and the resultant wave radiation in the near field. As the finite difference formulation is simple (interpolation is smooth), an easy coupling with other approaches is one of its advantages. A coupling with a boundary integral equation method (BIEM) allows us to simulate complex earthquake source processes.

  12. Long-Term Transcriptional Consequences of Drug Exposure as Cues to Understand Vulnerability to Relapse: Advances and Perspectives.

    PubMed

    Becker, Jerome A J; Le Merrer, Julie

    2016-09-01

    Quitting drug abuse represents a true challenge for addicted individuals because of the highly persistent vulnerability to relapse. Identifying long-lasting, drug-induced alterations in the brain-including at the transcriptome level-that underlie such vulnerability appears invaluable to improve relapse prevention. Despite substantial technological developments and research effort, however, the picture of drug-induced adaptations provided by high-throughput transcriptomics remains frustratingly partial, notably because of methodological issues. Major advances were made, however, regarding the time course and specificity of long-term transcriptional consequences of drug exposure as well as the recruitment of small, noncoding mRNAs (or miRNAs [microRNAs]) that were previously undetectable. Most importantly, high-throughput studies have benefited from systems biology approaches and shifted their interest toward regulations within functional gene networks rather than individual changes. Such network-based gene discovery approaches have proven informative to delineate the physiological processes, cellular signaling pathways, and neuronal populations altered by drug exposure. Provided the high-throughput effort will be pursued, together with the development of adapted bioinformatics tools, addiction transcriptomics should progressively integrate data across multiple scales (from epigenome to protein), allowing a better understanding of the genetics of drug abuse and opening novel therapeutic trails. PMID:27588526

  13. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  14. Advancing understanding of the fluvial export of organic matter through high-resolution profiling of dissolved organic carbon.

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Drew, S.; Gilvear, D.; Murray, H.; Heal, K.

    2012-04-01

    Quantifying the natural variation (complexity) of a system remains an enduring scientific challenge in better understanding controls on surface water quality. This characterisation is needed in order to reveal controlling processes, such as dilution, and also to identify unusual load profiles. In trying to capture that natural variation we still rely largely on concentration time series (and associated export budgets) generated from manual spot sampling, or from samples collected by autosamplers - approaches which are unlikely to provide the high temporal resolution of parameter concentration required. Now however, advances in sensor technology are helping us address this challenge. Here we present detailed dissolved organic carbon (DOC) export profiles from a small upland river (9.4 km sq.), generated since June 2011 by semi-continuous logging of UV-vis absorption (200-750 nm, every 2.5 nm) every 30 minutes. Observed increases in the concentration of the DOC, [DOC], in freshwaters have prompted significant research to understand the cause and consequences of increased export: higher levels of DOC require additional water purification of potable sources; increased aquatic export may represent a reduction in terrestrial C-soil sequestration; changes in light penetration can affect the heterotrophic / autotrophic balance in surface waters and this has consequences for the food web structure; increased aquatic export may also result in increased carbon dioxide evasion. Additionally, C export is often linked to nutrient export: we have observed statistically significant stoichiometric relationships between DOC and soluble reactive phosphorus (SRP) concentrations, thus understanding better this parameters offers insight into export of other nutrient and the source of material from which these dissolved compounds are produced; this may be particulate. Our Scottish study site is interesting because there are multiple processes that can contribute to DOC and other nutrient

  15. Advances in analytical spectrochemistry with ionized gases. I. Improved fundamental understanding through laser based techniques. II. Novel bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Gamez, Gerardo

    Over the past several decades plasma spectrochemistry has become the workhorse for performing elemental analysis. Nevertheless, we are still far from fully understanding the fundamental mechanisms that affect and led to the production of the analytical signal. Thus, the first part of this study was focused on improving our knowledge of plasma fundamental processes. First, the effect of exposing an inductively coupled plasma to a mass spectrometer sampling interface was investigated. Our results show that the mass spectrometer sampler affects the plasma fundamental parameters in a way that changes with gas flow, forward r.f. power, and plasma torch-to-sampler distance. The findings help to better explain the plasma sampling process and have made clear that results from mass-spectrometry based plasma diagnostics are applicable to unperturbed plasmas only as a rough approximation. Second, and instrument was constructed to characterize the fundamental parameters of an analytical glow discharge by using Thomson and Rayleigh laser scattering. A continuous dc glow discharge source was studied and a set of corresponding numerical modeling experiments were performed. The resulting theory agrees qualitatively with the experimental findings; moreover, the theoretical and experimental techniques often provide complementary information. Finally, a temporally and spatially resolved map of the fundamental parameters of a dc glow discharge operated in pulsed mode was obtained. The results confirm previously proposed electron energy-transfer mechanisms at the beginning of the pulse. In contrast, the findings call into question other mechanisms involving plasma gas metastable formation proposed for the time period immediately after the end of the pulse. In the second part of the study an imaging radio frequency glow discharge instrument was developed to provide three-dimensional elemental analysis of solids. The newly developed instrument was then applied to the simultaneous

  16. Recent advances in bio-logging science: Technologies and methods for understanding animal behaviour and physiology and their environments

    NASA Astrophysics Data System (ADS)

    Evans, K.; Lea, M.-A.; Patterson, T. A.

    2013-04-01

    The deployment of an ever-evolving array of animal-borne telemetry and data logging devices is rapidly increasing our understanding of the movement, behaviour and physiology of a variety species and the complex, and often highly dynamic, environments they use and respond to. The rapid rate at which new technologies, improvements to current technologies and new analytical techniques are being developed has meant that movements, behaviour and physiological processes are being quantified at finer spatial and temporal scales than ever before. The Fourth International Symposium on Bio-logging Science, held on 14-18 March in Hobart, Australia, brought together scientists across multiple disciplines to discuss the latest innovations in technology, applications and analytical techniques in bio-logging science, building on research presented at three previous conferences. Here we present an update on the state of bio-logging research and provide some views on the future of this field of research. Papers were grouped into five theme areas: (i) Southern Ocean ecosystems; (ii) fishery and biodiversity management applications; (iii) from individuals to populations—inferences of population dynamics from individuals; (iv) conservation biology and (v) habitat modelling. Papers reflected wider uptake of newer technologies, with a greater proportion of studies utilising accelerometry and incorporating advances in statistical modelling of behaviour and habitats, especially via state space modelling methods. Environmental data collected by tags at increasing accuracies are now having wider application beyond the bio-logging community, providing important oceanographic data from regions difficult to sample using traditional methodologies. Partnerships between multiple organisations are also now enabling regional assessments of species movements, behaviour and physiology at population scales and will continue to be important for applying bio-logging technologies to species

  17. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  18. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  19. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  20. Chapter 2: Theoretical Models for Understanding Physical Activity Behavior among Children and Adolescents--Social Cognitive Theory and Self-Determination Theory

    ERIC Educational Resources Information Center

    Motl, Robert W.

    2007-01-01

    The study of physical activity behavior in youth generally lacks a sufficient theoretical foundation for examining variables that influence that behavior. This is a major limitation because theory guides the search for determinants of behavior and the subsequent interplay between research findings and application. Theory offers a systematically…

  1. Senior Female Academics in the UK Academy: Theoretical Perspectives for Understanding the Impact of Education and Familial Influences on Career Success

    ERIC Educational Resources Information Center

    Hoskins, Kate

    2013-01-01

    This paper examines the theoretical perspectives I utilised in my doctoral research to uncover the role of class and gender in my respondents' stories and experiences of their career success. I argue that adopting an economic model for conceptualising the influence of social class and gender in the respondents' stories and experiences of their…

  2. To Be Cared for and to Care: Understanding Theoretical Conceptions of Care as a Framework for Effective Inclusion in Early Childhood Education and Care

    ERIC Educational Resources Information Center

    Wood, Rebecca

    2015-01-01

    This article argues that incorporating theoretical conceptions of care into Early Childhood Education and Care (ECEC) programmes creates a foundation for achieving the effective inclusion of children with disabilities. Critical examinations of the origins of care theory and current conceptions of care are used to consider the differing valuation…

  3. Collective Commitment and Collective Efficacy: A Theoretical Model for Understanding the Motivational Dynamics of Dilemma Resolution in Inter-Professional Work

    ERIC Educational Resources Information Center

    Rose, Jo; Norwich, Brahm

    2014-01-01

    This paper presents a new theoretical model which conceptualizes inter-professional and multi-agency collaborative working, at the level of the individual within a group. This arises from a review of the literature around joint working, and is based on social psychological theories which refer to shared goals. The model assumes that collective…

  4. Advancing Understanding of the Role of Belowground Processes in Terrestrial Carbon Sinks trhrough Ground-Penetrating Radar. Final Report

    SciTech Connect

    Day, Frank P.

    2015-02-06

    scanning events; however, it appears to lack sufficient accuracy at small scales. Knowledge of soil conditions and their effects on GPR wave propagation and reception are paramount for the collection of useful data. Strong familiarity with the software and equipment is both important and necessary for GPR use in estimating coarse root biomass. GPR must be utilized at low soil moisture levels in order to accurately represent existing coarse root structures. Our results from Disney Wilderness Preserve highlight the need for a strong understanding of the limitations of GPR, specifically knowledge of root structures (saw palmetto rhizomes) or environmental factors (low moisture content) that may hinder its application within a given system. The 3D modeling of course roots with GPR appears quite promising, as it has become more accurate and precise as the software has advanced and become more robust, but there is still a need for more precision before it will likely be able to model anything more than simple root systems comprised mostly of large diameter roots. Our results from Kennedy Space Center suggest that there are legacy effects from CO2 fertilization in the form of more root mass providing a greater capacity for aboveground plant regrowth following fire, even 7 years after treatment ended.

  5. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  6. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  7. Lectures in Advanced Mathematics: Why Students Might Not Understand What the Mathematics Professor Is Trying to Convey

    ERIC Educational Resources Information Center

    Lew, Kristen; Fukawa-Connelly, Timothy Patrick; Mejía-Ramos , Juan Pablo; Weber, Keith

    2016-01-01

    We describe a case study in which we investigate the effectiveness of a lecture in advanced mathematics. We first videorecorded a lecture delivered by an experienced professor who had a reputation for being an outstanding instructor. Using video recall, we then interviewed the professor to determine the ideas that he intended to convey and how he…

  8. A decade of advancement in understanding of rangeland hydrology and erosion and the effects of conservation practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade the USDA-ARS Northwest Watershed Research Center (NWRC) has conducted extensive field research to quantify hydrologic and erosion effects of rangeland conservation practices and to develop and advance tools for rangeland assessment and management. Much of what was previously kn...

  9. Investigating the Effect of Different Verbal Formats of Advance Organizers on Third Graders' Understanding of Heat Transfer Concept

    ERIC Educational Resources Information Center

    Chuang, Hsueh-Hua; Liu, Han-Chin

    2014-01-01

    The emergence of computer and multimedia technology change the forms of instructional materials and instructional design plays an important role on student learning outcome in multimedia learning. Research has found that using advance organizers has the potential for achieving learning objectives. Thus, this study investigated how using different…

  10. Investigating the Effect of Different Verbal Formats of Advance Organizers on Third Graders' Understanding of Heat Transfer Concept

    ERIC Educational Resources Information Center

    Chuang, Hsueh-Hua; Liu, Han-Chin

    2014-01-01

    The emergence of computer and multimedia technology change the forms of instructional materials and instructional design plays an important role on student learning outcome in multimedia learning. Research has found that using advance organizers has the potential for achieving learning objectives. Thus, this study investigated how using different…

  11. Socioscientific Issues: A Path Towards Advanced Scientific Literacy and Improved Conceptual Understanding of Socially Controversial Scientific Theories

    NASA Astrophysics Data System (ADS)

    Pinzino, Dean William

    This thesis investigates the use of socioscientific issues (SSI) in the high school science classroom as an introduction to argumentation and socioscientific reasoning, with the goal of improving students' scientific literacy (SL). Current research is reviewed that supports the likelihood of students developing a greater conceptual understanding of scientific theories as well as a deeper understanding of the nature of science (NOS), through participation in informal and formal forms of argumentation in the context of SSI. Significant gains in such understanding may improve a student's ability to recognize the rigor, legitimacy, and veracity of scientific claims and better discern science from pseudoscience. Furthermore, students that participate in significant SSI instruction by negotiating a range of science-related social issues can make significant gains in content knowledge and develop the life-long skills of argumentation and evidence-based reasoning, goals not possible in traditional lecture-based science instruction. SSI-based instruction may therefore help students become responsible citizens. This synthesis also suggests that that the improvements in science literacy and NOS understanding that develop from sustained engagement in SSI-based instruction will better prepare students to examine and scrutinize socially controversial scientific theories (i.e., evolution, global warming, and the Big Bang).

  12. Fast Tracking Data to Informed Decisions: An Advanced Information System to Improve Environmental Understanding and Management (Invited)

    NASA Astrophysics Data System (ADS)

    Minsker, B. S.; Myers, J.; Liu, Y.; Bajcsy, P.

    2010-12-01

    Emerging sensing and information technology are rapidly creating a new paradigm for environmental research and management, in which data from multiple sensors and information sources can guide real-time adaptive observation and decision making. This talk will provide an overview of emerging cyberinfrastructure and three case studies that illustrate their potential: combined sewer overflows in Chicago, hypoxia in Corpus Christi Bay, Texas, and sustainable agriculture in Illinois. An advanced information system for real-time decision making and visual geospatial analytics will be presented as an example of cyberinfrastructure that enables easier implementation of numerous real-time applications.

  13. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  14. Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia.

    PubMed

    Higgins, Claire A; Christiano, Angela M

    2014-01-01

    Many of the current drug therapies for androgenetic alopecia were discovered serendipitously, with hair growth observed as an off-target effect when drugs were used to treat a different disorder. Subsequently, several studies using cultured cells have enabled identification of hair growth modulators with similar properties to the currently available drugs, which may also provide clinical benefit. In situations where the current therapeutics do not work, follicular unit transplantation is an alternative surgical option. More recently, the concept of follicular cell implantation, or hair follicle neogenesis, has been attempted, exploiting the inherent properties of cultured hair follicle cells to induce de novo hair growth in balding scalp. In this review, we discuss both the advances in cell culture techniques that have led to a wider range of potential therapeutics to promote hair growth, in addition to detailing current knowledge on follicular cell implantation, and the challenges in making this approach a reality. PMID:24351010

  15. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    SciTech Connect

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  16. Understanding the formation and growth of Ag nanoparticles on silver chromate induced by electron irradiation in electron microscope: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fabbro, Maria T.; Gracia, Lourdes; Silva, Gabriela S.; Santos, Luís P. S.; Andrés, Juan; Cordoncillo, Eloisa; Longo, E.

    2016-07-01

    Ag2CrO4 microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag2CrO4 microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy that allowed the calculation of the optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO6] and [AgO4] clusters, generating ideal conditions for the growth of Ag nanoparticles.

  17. Advances in understanding the genesis and evolution solar energetic particle events over the last two solar cycles

    NASA Astrophysics Data System (ADS)

    Vainio, Rami

    2016-04-01

    I will review the observational and modeling efforts related to solar energetic particle (SEP) events over the 23rd and 24th solar cycles. I will concentrate on large SEP events related to coronal mass ejections (CMEs), but discuss observations related to the possible role of flares in the acceleration of particles in those events, as well. The possible roles of various acceleration and transport processes in understanding the characteristics of the events will be discussed. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  18. Defining a sample preparation workflow for advanced virus detection and understanding sensitivity by next-generation sequencing.

    PubMed

    Wang, Christopher J; Feng, Szi Fei; Duncan, Paul

    2014-01-01

    The application of next-generation sequencing (also known as deep sequencing or massively parallel sequencing) for adventitious agent detection is an evolving field that is steadily gaining acceptance in the biopharmaceutical industry. In order for this technology to be successfully applied, a robust method that can isolate viral nucleic acids from a variety of biological samples (such as host cell substrates, cell-free culture fluids, viral vaccine harvests, and animal-derived raw materials) must be established by demonstrating recovery of model virus spikes. In this report, we implement the sample preparation workflow developed by Feng et. al. and assess the sensitivity of virus detection in a next-generation sequencing readout using the Illumina MiSeq platform. We describe a theoretical model to estimate the detection of a target virus in a cell lysate or viral vaccine harvest sample. We show that nuclease treatment can be used for samples that contain a high background of non-relevant nucleic acids (e.g., host cell DNA) in order to effectively increase the sensitivity of sequencing target viruses and reduce the complexity of data analysis. Finally, we demonstrate that at defined spike levels, nucleic acids from a panel of model viruses spiked into representative cell lysate and viral vaccine harvest samples can be confidently recovered by next-generation sequencing. PMID:25475632

  19. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  20. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE PAGESBeta

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  1. Understanding the Redox Obstacles in High Sulfur-Loading Li-S Batteries and Design of an Advanced Gel Cathode.

    PubMed

    Zu, Chenxi; Li, Longjun; Guo, Jianhe; Wang, Shaofei; Fan, Donglei; Manthiram, Arumugam

    2016-04-01

    Lithium-sulfur batteries with a high energy density are being considered a promising candidate for next-generation energy storage. However, realization of Li-S batteries is plagued by poor sulfur utilization due to the shuttle of intermediate lithiation products between electrodes and its dynamic redistribution. To optimize the sulfur utilization, an understanding of its redox behavior is essential. Herein, we report a gel cathode consisting of a polysulfide-impregnated O- and N-doped porous carbon and an independent, continuous, and highly conducting 3-dimensional graphite film as the charge-transfer network. This design decouples the function of electron conduction and polysulfide absorption, which is beneficial for understanding the sulfur redox behavior and identifying the dominant factors leading to cell failure when the cells have high sulfur content and insufficient electrolyte. This design also opens up new prospects of tuning the properties of Li-S batteries via separately designing the material functions of electron conduction and polysulfide absorption. PMID:27014923

  2. Spectroscopic and Theoretical Study on the Structures and Dynamics of Functional Molecules - Towards AN Understanding of the Molecular Recognition for Encapsulation Complexes

    NASA Astrophysics Data System (ADS)

    Ebata, Takayuki; Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.

    2011-06-01

    Functional molecules, such as crown ethers and calixarenes, can act as hosts for encapsulating guest species through non-covalent interactions. Applications of crown ethers and calixarenes as molecular receptors, metal cation extraction agents, fluoro-ionophores and phase transfer catalytic media have been previously reported in a number of studies in the literature. One of the important aspects of these host/guest molecular assemblies is their selectivity in the encapsulation of guest species. Two important factors that control this selectivity are: (1) the size and the flexibility of the host cavity and (2) the properties of solvent molecules. Molecular complexes formed in supersonic jets provide ideal systems for the selective study of the conformational preference and micro-solvated effects under solvent-controlled conditions. This talk will review our spectroscopic and theoretical studies of the structures of dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6), calix[4]arene (C4A) and their complexes with guest molecules. We apply laser-induced fluorescence (LIF), resonance enhanced two-photon ionization (R2PI) and UV-UV hole-burning (HB) spectroscopy for obtaining electronic spectra and IR-UV doubleresonance and IR photodissociation (IRPD) spectroscopy for the IR spectra. The electronic and IR spectra are compared with the corresponding results obtained by DFT calculations and high-level first principles electronic structure calculations [MP2 and CCSD(T)]. Based on these joint studies we can elucidate the nature of interactions that control the encapsulation of a guest molecular species as well as how the host can adjust its conformation to accommodate a specific guest, leading to the molecular recognition.

  3. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Randi; Hagerman, Paul

    2014-01-01

    Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198

  4. Insight into Pathologic Abnormalities in Congenital Semilunar Valve Disease Based on Advances in Understanding Normal Valve Microstructure and Extracellular Matrix

    PubMed Central

    Stephens, Elizabeth H.; Kearney, Debra L.; Grande-Allen, K. Jane

    2011-01-01

    Congenitally diseased valves are relatively frequent causes of significant morbidity and mortality. Pathology descriptions of such valves have primarily focused on gross structural features including the number of leaflets or commissures (bicuspid/bicommissural valve) and alterations in the contour, thickness and consistency of the leaflets (dysplastic valve). Functional correlates of these pathologic alterations are valvar stenosis, insufficiency or both. Further characterization of the microstructural abnormalities seen in these malformed valves may not only provide insight into the correlation of distinct pathologies with their respective pathogenesis and clinical sequelae, but also may prove pivotal in uncovering new avenues for therapeutic interventions and prevention regimens. This review summarizes microstructural findings in congenital semilunar valve disease (CSVD) and discusses their relevance in light of recent advances in knowledge of normal valve microstructure, biology, and function. Specifically, the biological and mechanical roles of various matrix components and their interactions are discussed in the context of CSVD. Indeed, recent research in normal valves adds significant insight into CSVD, and raises many hypotheses that will need to be addressed by future studies. PMID:21349746

  5. Recent Advances in Understanding the Microbiology of the Female Reproductive Tract and the Causes of Premature Birth

    PubMed Central

    Zhou, Xia; Brotman, Rebecca M.; Gajer, Pawel; Abdo, Zaid; Schüette, Ursel; Ma, Sam; Ravel, Jacques; Forney, Larry J.

    2010-01-01

    Data derived from molecular microbiological investigations of the human vagina have led to the discovery of resident bacterial communities that exhibit marked differences in terms of species composition. All undergo dynamic changes that are likely due to intrinsic host and behavioral factors. Similar types of bacteria have been found in both amniotic fluid and the vagina, suggesting a potential route of colonization. Given that not all of the species involved in intrauterine infections are readily cultivated, it is important that culture-independent methods of analysis must be used to understand the etiology of these infections. Further research is needed to establish whether an ascending pathway from the vagina to the amniotic cavity enables the development of intrauterine infections. PMID:21197076

  6. Training preschoolers on first-order false belief understanding: transfer on advanced ToM skills and metamemory.

    PubMed

    Lecce, Serena; Bianco, Federica; Demicheli, Patrizia; Cavallini, Elena

    2014-01-01

    This study investigated the relation between theory of mind (ToM) and metamemory knowledge using a training methodology. Sixty-two 4- to 5-year-old children were recruited and randomly assigned to one of two training conditions: A first-order false belief (ToM) and a control condition. Intervention and control groups were equivalent at pretest for age, parents' education, verbal ability, inhibition, and ToM. Results showed that after the intervention children in the ToM group improved in their first-order false belief understanding significantly more than children in the control condition. Crucially, the positive effect of the ToM intervention was stable over 2 months and generalized to more complex ToM tasks and metamemory. PMID:25040788

  7. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2010-01-01

    AIRS is a precision state of the art High Spectral Resolution Multi-detector IR grating array spectrometer that was launched into a polar orbit on EOS Aqua in 2002. AIRS measures most of the infra-red spectrum with very low noise from 650/cm to 2660/cm with a resolving power of 2400 at a spatial resolution of 13 km. The objectives of AIRS were to perform accurate determination of atmospheric temperature and moisture profiles in up to 90% partial cloud cover conditions for the purpose of improving numerical weather prediction and understanding climate processes. AIRS data has also been used to determine accurate trace gas profiles. A brief overview of the retrieval methodology used to analyze AIRS observations under partial cloud cover will be presented and sample results will be shown from the weather and climate perspectives.

  8. Electric Potential Surrounding Two Conducting Spheres: An Exercise for Advancing Student Understanding of the Method of Relaxation

    NASA Astrophysics Data System (ADS)

    Gallagher, Hugh; Chartrand, Bridget; Beach, John

    2016-03-01

    In undergraduate computational physics courses, the method of relaxation provides a well-established technique for obtaining solutions to Laplace's Equation. The technique's value stems from its accessibility and clear dependence on the properties of solutions to Laplace's Equation. We have created an exercise that allows students to develop an experiential understanding of the method of images and its connection to the properties of solutions to Laplace's Equation. The problem of two conducting spheres separated by a relatively small distance and maintained at fixed but distinct electric potentials is considered. Using the method of relaxation, students solve the problem in two-dimensions, three-dimensions with a Dirichlet condition on the outer boundary and three-dimensions using a Neumann condition on the outer boundary. At each step, the results are compared to a solution obtained using the method of images for a spherical conductor in an iterative fashion. Through this comparison, students gain insight into the significance of their choices for the solving the problem using the method of relaxation. We will discuss application of the relaxation method to this problem, validation by the method of images, and potential use in an undergraduate computational physics course.

  9. Recent advances in the biotechnological production of microbial poly(ɛ-L-lysine) and understanding of its biosynthetic mechanism.

    PubMed

    Xu, Zhaoxian; Xu, Zheng; Feng, Xiaohai; Xu, Delei; Liang, Jinfeng; Xu, Hong

    2016-08-01

    Poly(ɛ-L-lysine) (ɛ-PL) is an unusual biopolymer composed of L-lysine connected between α-carboxyl and ɛ-amino groups. It has been used as a preservative in food and cosmetics industries, drug carrier in medicines, and gene carrier in gene therapy. Modern biotechnology has significantly improved the synthetic efficiency of this novel homopoly(amino acid) on an industrial scale and has expanded its industrial applications. In the latest years, studies have focused on the biotechnological production and understanding the biosynthetic mechanism of microbial ɛ-PL. Herein, this review focuses on the current trends and future perspectives of microbial ɛ-PL. Information on the screening of ɛ-PL-producing strains, fermentative production of ɛ-PL, breeding of high-ɛ-PL-producing strains, genomic data of ɛ-PL-producing strains, biosynthetic mechanism of microbial ɛ-PL, and the control of molecular weight of microbial ɛ-PL is included. This review will contribute to the development of this novel homopoly(amino acid) and serve as a basis of studies on other biopolymers. PMID:27333910

  10. Co-existence of tic disorders and attention-deficit/hyperactivity disorder-recent advances in understanding and treatment.

    PubMed

    Rothenberger, Aribert; Roessner, Veit; Banaschewski, Tobias; Leckman, James F

    2007-06-01

    In daily clinical practice of child psychiatry tic disorders (TD) and attention-deficit/hyperactivity disorder (ADHD) as well as their co-existence are common and need careful evidence-based approaches in differential diagnostics and treatment choice. Hence, their relationship at different levels (e.g., psychopathology, neuropsychology, neurobiology, treatment) needs to be elucidated in more detail. The articles of this supplement deal with this subject. It is unclear if TD + ADHD represents an own clinical entity and which component (TD vs. ADHD) is most important in case of co-existence with respect to accompanying problems like emotional or cognitive disturbances. This editorial gives a short overview of the essential research topics concerning TD + ADHD and shows where (in this ECAP supplement and other literature) empirically based answers can be found. Probably, the identification of separate or common "endophenotypes" for TD-only, ADHD-only and for TD + ADHD would help to sort out the complexities and this supplement may nurture such a perspective of future research for a better understanding and treatment of youths with TD + ADHD and their families. PMID:17665277

  11. Advancing current approaches to disease management evaluation: capitalizing on heterogeneity to understand what works and for whom

    PubMed Central

    2013-01-01

    Background Evaluating large-scale disease management interventions implemented in actual health care settings is a complex undertaking for which universally accepted methods do not exist. Fundamental issues, such as a lack of control patients and limited generalizability, hamper the use of the ‘gold-standard’ randomized controlled trial, while methodological shortcomings restrict the value of observational designs. Advancing methods for disease management evaluation in practice is pivotal to learn more about the impact of population-wide approaches. Methods must account for the presence of heterogeneity in effects, which necessitates a more granular assessment of outcomes. Methods This paper introduces multilevel regression methods as valuable techniques to evaluate ‘real-world’ disease management approaches in a manner that produces meaningful findings for everyday practice. In a worked example, these methods are applied to retrospectively gathered routine health care data covering a cohort of 105,056 diabetes patients who receive disease management for type 2 diabetes mellitus in the Netherlands. Multivariable, multilevel regression models are fitted to identify trends in clinical outcomes and correct for differences in characteristics of patients (age, disease duration, health status, diabetes complications, smoking status) and the intervention (measurement frequency and range, length of follow-up). Results After a median one year follow-up, the Dutch disease management approach was associated with small average improvements in systolic blood pressure and low-density lipoprotein, while a slight deterioration occurred in glycated hemoglobin. Differential findings suggest that patients with poorly controlled diabetes tend to benefit most from disease management in terms of improved clinical measures. Additionally, a greater measurement frequency was associated with better outcomes, while longer length of follow-up was accompanied by less positive results

  12. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena

    2010-01-01

    AIRS (Atmospheric Infra-Red Sounder), was launched, in conjunction with AMSU-A (Advanced Microwave Sounding Unit-A) on the NASA polar orbiting research satellite EOS (Earth Observing System) Aqua satellite in May 2002 as a next generation atmospheric sounding system. Atmospheric sounders provide information primarily about the vertical distribution of atmospheric temperature and water vapor distribution. This is achieved by measuring outgoing radiation in discrete channels (spectral intervals) which are sensitive primarily to variations of these geophysical parameters. The primary objectives of AIRS/AMSU were to utilize such information in order to improve the skill of numerical weather prediction as well as to measure climate variability and trends. AIRS is a multi-detector array grating spectrometer with 2378 channels covering the spectral range 650/cm (15 microns) to 2660/cm (3.6 microns) with a resolving power (i/a i) of roughly 1200 where a i is the spectral channel bandpass. Atmospheric temperature profile can be determined from channel observations taken within the 15 micron (the long-wave CO2 absorption band) and within the 4.2 micron (the short-wave CO2 absorption band). Radiances in these (and all other) spectral intervals in the infrared are also sensitive to the presence of clouds in the instrument?s field of view (FOV), which are present about 95% of the time. AIRS was designed so as to allow for the ability to produce accurate Quality Controlled atmospheric soundings under most cloud conditions. This was achieved by having 1) extremely low channel noise values in the shortwave portion of the spectrum and 2) a very flat spatial response function within a channel?s FOV. IASI, the high spectral resolution IR interferometer flying on the European METOP satellite, does not contain either of these important characteristics. The AIRS instrument was also designed to be extremely stabile with regard to its spectral radiometric characteristics, which is

  13. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity

    PubMed Central

    Speakman, John R.; Levitsky, David A.; Allison, David B.; Bray, Molly S.; de Castro, John M.; Clegg, Deborah J.; Clapham, John C.; Dulloo, Abdul G.; Gruer, Laurence; Haw, Sally; Hebebrand, Johannes; Hetherington, Marion M.; Higgs, Susanne; Jebb, Susan A.; Loos, Ruth J. F.; Luckman, Simon; Luke, Amy; Mohammed-Ali, Vidya; O’Rahilly, Stephen; Pereira, Mark; Perusse, Louis; Robinson, Tom N.; Rolls, Barbara; Symonds, Michael E.; Westerterp-Plantenga, Margriet S.

    2011-01-01

    The close correspondence between energy intake and expenditure over prolonged time periods, coupled with an apparent protection of the level of body adiposity in the face of perturbations of energy balance, has led to the idea that body fatness is regulated via mechanisms that control intake and energy expenditure. Two models have dominated the discussion of how this regulation might take place. The set point model is rooted in physiology, genetics and molecular biology, and suggests that there is an active feedback mechanism linking adipose tissue (stored energy) to intake and expenditure via a set point, presumably encoded in the brain. This model is consistent with many of the biological aspects of energy balance, but struggles to explain the many significant environmental and social influences on obesity, food intake and physical activity. More importantly, the set point model does not effectively explain the ‘obesity epidemic’ – the large increase in body weight and adiposity of a large proportion of individuals in many countries since the 1980s. An alternative model, called the settling point model, is based on the idea that there is passive feedback between the size of the body stores and aspects of expenditure. This model accommodates many of the social and environmental characteristics of energy balance, but struggles to explain some of the biological and genetic aspects. The shortcomings of these two models reflect their failure to address the gene-by-environment interactions that dominate the regulation of body weight. We discuss two additional models – the general intake model and the dual intervention point model – that address this issue and might offer better ways to understand how body fatness is controlled. PMID:22065844

  14. Advances in systems biology are enhancing our understanding of disease and moving us closer to novel disease treatments.

    PubMed

    Schadt, Eric E; Zhang, Bin; Zhu, Jun

    2009-06-01

    With tens of billions of dollars spent each year on the development of drugs to treat human diseases, and with fewer and fewer applications for investigational new drugs filed each year despite this massive spending, questions now abound on what changes to the drug discovery paradigm can be made to achieve greater success. The high rate of failure of drug candidates in clinical development, where the great majority of these drugs fail due to lack of efficacy, speak directly to the need for more innovative approaches to study the mechanisms of disease and drug discovery. Here we review systems biology approaches that have been devised over the last several years to understand the biology of disease at a more holistic level. By integrating a diversity of data like DNA variation, gene expression, protein-protein interaction, DNA-protein binding, and other types of molecular phenotype data, more comprehensive networks of genes both within and between tissues can be constructed to paint a more complete picture of the molecular processes underlying physiological states associated with disease. These more integrative, systems-level methods lead to networks that are demonstrably predictive, which in turn provides a deeper context within which single genes operate such as those identified from genome-wide association studies or those targeted for therapeutic intervention. The more comprehensive views of disease that result from these methods have the potential to dramatically enhance the way in which novel drug targets are identified and developed, ultimately increasing the probability of success for taking new drugs through clinical development. We highlight a number of the integrative approaches via examples that have resulted not only in the identification of novel genes for diabetes and cardiovascular disease, but in more comprehensive networks as well that describe the context in which the disease genes operate. PMID:19363597

  15. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  16. Teaching theoretical thinking for a sense of salience.

    PubMed

    Hanna, Debra R

    2011-08-01

    Using a thought-provoking photograph, blank paper, and a series of questions, graduate students were asked to engage in an interactive classroom exercise that helps them understand the process and usefulness of theoretical thinking. This one-time exercise helps students envision ways they will be able to use theoretical thinking when they enter their advanced practice roles. The exercise is followed by a short, debriefing lecture on the four levels of theory as originally described by Dickoff, James, and Weidenbach. Students engage in a four-stage, systematic process of theoretical thinking that can be used as a model for clinical reasoning and problem solving, especially for ambiguous situations. PMID:21598862

  17. The Texas Water Observatory: Utilizing Advanced Observing System Design for Understanding Water Resources Sustainability Across Climatic and Geologic Gradients of Texas

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Moore, G. W.; Miller, G. R.; Quiring, S. M.; Everett, M. E.; Morgan, C.

    2015-12-01

    The Texas Water Observatory (TWO) is a new distributed network of field observatories for better understanding of the hydrologic flow in the critical zone (encompassing groundwater, soil water, surface water, and atmospheric water) at various space and time scales. Core sites in the network will begin in Brazos River corridor and expand from there westward. Using many advanced observational platforms and real-time / near-real time sensors, this observatory will monitor high frequency data of water stores and fluxes, critical for understanding and modeling the in the state of Texas and Southern USA. Once implemented, TWO will be positioned to support high-impact water science that is highly relevant to societal needs and serve as a regional resource for better understanding and/or managing agriculture, water resources, ecosystems, biodiversity, disasters, health, energy, and weather/climate. TWO infrastructure will span land uses (cultivation agriculture, range/pasture, forest), landforms (low-relief erosional uplands to depositional lowlands), and across climatic and geologic gradients of Texas to investigate the sensitivity and resilience of fertile soils and the ecosystems they support. Besides developing a network of field water observatory infrastructure/capacity for accounting water flow and storage, TWO will facilitate developing a new generation interdisciplinary water professionals (from various TAMU Colleges) with better understanding and skills for attending to future water challenges of the region. This holistic growth will have great impact on TAMU research enterprise related to water resources, leading to higher federal and state level competitiveness for funding and establishing a center of excellence in the region

  18. Preface: Special Topic on Advances in Density Functional Theory

    SciTech Connect

    Yang, Weitao

    2014-05-14

    This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.

  19. Preface: Special topic on advances in density functional theory.

    PubMed

    Yang, Weitao

    2014-05-14

    This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering. PMID:24832306

  20. Theoretical Developments in Understanding Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Yorke, H. W.; Bodenheimer, P.

    2008-05-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low-mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen-burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors. The evolution of accreting stars depends strongly on the accretion history. We find that for the high accretion rates considered, ˜10^{-3} M_⊙yr^{-1}, stars of ˜5-10 M_⊙ tend to bloat up to radii which may exceed 100 R_⊙. Because of the high rate of binarity among massive stars, we expect that these large radii during short phases of evolution will result in mass transfer, common envelope evolution, and a higher number of tight binaries with periods of a few days.

  1. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung.

    PubMed

    Zhao, Yidan D; Chu, Lei; Lin, Kathleen; Granton, Elise; Yin, Li; Peng, Jenny; Hsin, Michael; Wu, Licun; Yu, Amy; Waddell, Thomas; Keshavjee, Shaf; Granton, John; de Perrot, Marc

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH. PMID:26317340

  2. Recent Advances and Understanding of Using Probiotic-Based Interventions to Restore Homeostasis of the Microbiome for the Prevention/Therapy of Bacterial Diseases.

    PubMed

    Suchodolski, Jan S; Jergens, Albert E

    2016-04-01

    The importance of the microbiome in health and disease has galvanized interest in using manipulations of the gastrointestinal ecosystem to prevent and/or combat gut bacterial infections and to restore mucosal homeostasis in patients with generalized microbial imbalances (i.e., dysbiosis), including the human inflammatory bowel diseases, Crohn's disease, and ulcerative colitis. Probiotics, prebiotics, or their combination use (i.e., synbiotics) are one mechanism for modifying the microbiota and exerting direct and indirect effects on the host immune responses and metabolomics profiles. These beneficial effects are transferred through various pathways, including the production of antimicrobial peptides, promoting the growth of beneficial microbes and enhancing immunomodulatory functions via various metabolites. While probiotic therapy has been used empirically for decades with mixed success, the recent advances in molecular and mass spectrophotometric techniques for the characterization of the complexity and diversity of the intestinal microbiome has aided in better understanding of host-microbe interactions. It is important to better understand the functional properties of the microbiome, because it is now clear that the microbiota secretes many metabolites that have a direct impact on host immune responses. This information will improve selection of the most appropriate probiotic strains that selectively target intestinal disease processes. PMID:27227298

  3. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung

    PubMed Central

    Zhao, Yidan D.; Chu, Lei; Lin, Kathleen; Granton, Elise; Yin, Li; Peng, Jenny; Hsin, Michael; Wu, Licun; Yu, Amy; Waddell, Thomas; Keshavjee, Shaf; Granton, John; de Perrot, Marc

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH. PMID:26317340

  4. Advances in understanding colonic function.

    PubMed

    Milla, Peter J

    2009-04-01

    The colon is an organ of conservation that salvages water, electrolytes, and energy. The organization of colonic function is determined by the roles played by the luminal flora, the function of the different mucosal epithelial cell types, immunocompetent cells, and the neuromusculature. These different components of the colon interact with one another and with the colonic flora, and different areas of the colon serve different functions. In the normal adult during the course of a day the colon absorbs approximately 1.5 L of fluid, but under the influence of aldosterone increases up to 5 to 6 L. Diarrhoea occurs when secretion exceeds absorptive processes by either small intestinal secretion overwhelming colonic salvage or salvage being impaired by reduced colonic absorption or increased colonic secretion. PMID:19300122

  5. Advances in Understanding Hair Growth

    PubMed Central

    Bernard, Bruno A.

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a “Yin Yang” type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  6. Advances in Understanding Hair Growth.

    PubMed

    Bernard, Bruno A

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a "Yin Yang" type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  7. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  8. The Nature of Science Instrument-Elementary (NOSI-E): Using Rasch principles to develop a theoretically grounded scale to measure elementary student understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Peoples, Shelagh

    The purpose of this study was to determine which of three competing models will provide, reliable, interpretable, and responsive measures of elementary students' understanding of the nature of science (NOS). The Nature of Science Instrument-Elementary (NOSI-E), a 28-item Rasch-based instrument, was used to assess students' NOS understanding. The NOS construct was conceptualized using five construct dimensions (Empirical, Inventive, Theory-laden, Certainty and Socially & Culturally Embedded). The competing models represent three internal models for the NOS construct. One postulate is that the NOS construct is unidimensional where one latent construct explains the relationship between the 28 items of the NOSI-E. Alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. A validity argument was developed that hypothesized that the internal structure of the NOS construct is best represented by the multidimensional Rasch model. Four sets of analyses were performed in which the three representations were compared. These analyses addressed five validity aspects (content, substantive, generalizability, structural and external) of construct validity. The vast body of evidence supported the claim that the NOS construct is composed of five separate but inter-related dimensions that is best represented by the multidimensional Rasch model. The results of the multidimensional analyses indicated that the items of the five subscales were of excellent technical quality, exhibited no differential item functioning (based on gender), had an item hierarchy that conformed to theoretical expectations; and together formed subscales of reasonable reliability (> 0.7 on each subscale) that were responsive to change in the construct. Theory-laden scores from the multidimensional model predicted students' science achievement with

  9. Cryptobiosis: a new theoretical perspective.

    PubMed

    Neuman, Yair

    2006-10-01

    The tardigrade is a microscopic creature that under environmental stress conditions undergoes cryptobiosis [Feofilova, E.P., 2003. Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: A review. Appl. Biochem. Microbiol. 39, 1-18; Nelson, D.R., 2002. Current status of the tardigrada: Evolution and ecology. Integrative Comp. Biol. 42, 652-659]-a temporary metabolic depression-which is considered to be a third state between life and death [Clegg, J.S., 2001. Cryptobiosis-a peculiar state of biological organization. Comp. Biochem. Physiol. Part B 128, 613-624]. In contrast with death, cryptobiosis is a reversible state, and as soon as environmental conditions change, the tardigrade "returns to life." Cryptobiosis in general, and among the tardigrade in particular, is a phenomenon poorly understood [Guppy, M., 2004. The biochemistry of metabolic depression: a history of perceptions. Comp. Biochem. Physiol. Part B 139, 435-442; Schill, R.O., et al., 2004. Stress gene (hsp70) sequences and quantitative expression in Milensium tardigradum (Tardigrade) during active and cryptobiotic stages. J. Exp. Biol. 207, 1607-1613; Watanabe, M., et al., 2002. Mechanisn allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol. 205, 2799-2802; Wright, J.C., 2001. Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool. Anz. 240, 563-582]. Moreover, the ability of the tardigrade to bootstrap itself and to return to life seems paradoxical like the legendary Baron von Munchausen who pulled himself out of the swamp by grabbing his own hair. Two theoretical obstacles prevent us from advancing our knowledge of cryptobiosis. First, we lack appropriate theoretical understanding of reversible processes of biological computation in living systems. Second, we lack appropriate theoretical understanding of bootstrapping in living systems. In this short opinion

  10. Interstellar dust: interfacing laboratory, theoretical and observational studies

    NASA Astrophysics Data System (ADS)

    Jones, Anthony Peter

    2015-08-01

    In this talk I will consider how our understanding of interstellar dust can only be advanced through a combination of laboratory, theoretical and observational studies, which provide the critical framework for advancing our understanding. I will summarise what we currently know, or think we know, about the physical and compositional properties of dust and their evolution in interstellar media. Along the way I will question the utility of astronomical dust analogues and show, based on data from the laboratory, theoretical studies and from astronomical observations, that some of our prior interpretations need to be subjected to a critical re-evaluation. I will present interstellar dust modelling from a new vantage point and review ideas on the interpretation of observations within the framework of this model and its predictions for dust evolution within and between interstellar media. Finally, I will summarise some of the current outstanding issues and what we would like to learn in the future.

  11. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  12. Recent advances in the understanding and care of familial hypercholesterolaemia: significance of the biology and therapeutic regulation of proprotein convertase subtilisin/kexin type 9.

    PubMed

    Page, Michael M; Stefanutti, Claudia; Sniderman, Allan; Watts, Gerald F

    2015-07-01

    Familial hypercholesterolaemia (FH) is an autosomal co-dominant disorder that markedly raises plasma low-density lipoprotein-cholesterol (LDL-C) concentration, causing premature atherosclerotic coronary artery disease (CAD). FH has recently come under intense focus and, although there is general consensus in recent international guidelines regarding diagnosis and treatment, there is debate about the value of genetic studies. Genetic testing can be cost-effective as part of cascade screening in dedicated centres, but the full mutation spectrum responsible for FH has not been established in many populations, and its use in primary care is not at present logistically feasible. Whether using genetic testing or not, cholesterol screening of family members of index patients with an abnormally raised LDL-C must be used to determine the need for early treatment to prevent the development of CAD. The metabolic defects in FH extend beyond LDL, and may affect triacylglycerol-rich and high-density lipoproteins, lipoprotein(a) and oxidative stress. Achievement of the recommended targets for LDL-C with current treatments is difficult, but this may be resolved by new drug therapies. Lipoprotein apheresis remains an effective treatment for severe FH and, although expensive, it costs less than the two recently introduced orphan drugs (lomitapide and mipomersen) for homozygous FH. Recent advances in understanding of the biology of proprotein convertase subtilisin/kexin type 9 (PCSK9) have further elucidated the regulation of lipoprotein metabolism and led to new drugs for effectively treating hypercholesterolaemia in FH and related conditions, as well as for treating many patients with statin intolerance. The mechanisms of action of PCSK9 inhibitors on lipoprotein metabolism and atherosclerosis, as well as their impact on cardiovascular outcomes and cost-effectiveness, remain to be established. PMID:25881720

  13. The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)

    PubMed Central

    Pahari, Susanta; Mackessy, Stephen P; Kini, R Manjunatha

    2007-01-01

    Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among

  14. Theoretical models of neural circuit development.

    PubMed

    Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J

    2009-01-01

    Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515

  15. Recent Advances in Quantum Dynamics of Bimolecular Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong H.; Guo, Hua

    2016-05-01

    In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.

  16. Toward a Student-Centered Understanding of Intensive Writing and Writing-to-Learn in the Spanish Major: An Examination of Advanced L2 Spanish Students' Learning in the Writing-Intensive Spanish Content Course

    ERIC Educational Resources Information Center

    Strong, Robert Marvin

    2009-01-01

    The purpose of this study is to build upon our understanding of the place and value of writing in the advanced foreign language curriculum. Specifically, the study examines how students in writing-intensive Spanish-major courses are affected by the writing-intensive (WI) requirement at the University of Minnesota. Writing-Across-the-Curriculum…

  17. Theoretical Issues

    SciTech Connect

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  18. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  19. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  20. Theoretical Mathematics

    NASA Astrophysics Data System (ADS)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  1. Understanding independence

    NASA Astrophysics Data System (ADS)

    Annan, James; Hargreaves, Julia

    2016-04-01

    In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.

  2. Theoretical Awakenings.

    ERIC Educational Resources Information Center

    Journal of Counseling and Development, 1988

    1988-01-01

    Contains six personal accounts: "Hysterical Paralysis: Confirmation of Counseling Process" (Theodore Chapin); "Understanding Psychodynamic Concepts through Personal Trauma" (Steven Michael Cobb); "Theory into Practice: Choosing an F-Stop" (Ron Crawford); "Learning to Empathize with Resistance" (Stuart Frederick); "I Still Don't Know how to Do…

  3. Maternal filicide theoretical framework.

    PubMed

    Mugavin, Marie

    2008-01-01

    The maternal filicide theoretical framework (MFTF) was developed to enrich the understanding of how traumatic experiences during formative years can affect a woman's relationship with her own child. Exposure to a known set of vulnerabilities can foster triggers that predispose a woman to respond impulsively and violently toward her child. Comprehensive assessment of vulnerable families is essential for the prevention of fatal and nonfatal abuse. The MFTF may be applied to both crimes. PMID:18522605

  4. Understanding Space, Understanding Citizenship

    ERIC Educational Resources Information Center

    Fouberg, Erin Hogan

    2002-01-01

    In this time of geopolitical uncertainty, one question that arises repeatedly is how will citizenship be affected by changes in sovereignty? This paper uses the concepts of spaces of dependence and spaces of engagement to understand both formal and substantive citizenship on American Indian reservations in the United States. By studying the…

  5. Understanding Readers' Differing Understandings

    ERIC Educational Resources Information Center

    Kucer, Stephen B.

    2015-01-01

    This research examines the characteristics of reader understandings that vary from those stated in the text. Eighty-seven fourth graders orally read complex academic literary and scientific texts, followed by probed retellings. Retold ideas not directly supported by, or reflective of, the texts were identified. These differing understandings…

  6. EO-based lake-ice cover and surface temperature products: Advancing process understanding and modeling capabilities of lake-atmosphere interactions in cold regions

    NASA Astrophysics Data System (ADS)

    Duguay, C. R.; Kheyrollah Pour, H.; Ochilov, S.

    2011-12-01

    operational agencies, and the requirements of the operational user community to better characterize river-ice (and glacier temporary lakes) dynamics in flood forecasting models at the basin scale. This paper presents recent results on the development and evaluation of EO-based lake ice cover and LST products for future NWP/RCM experiments, and comparison with output from numerical lake models using Great Bear Lake (GBL) and Great Slave Lake (GSL), Canada, as test sites. Lake ice cover fraction estimates derived from Radarsat-1 imagery using the iterative region-growing using semantics as the core algorithm of the MAGIC (MAp Guided Ice-Classification) software are comparable to those determined through visual interpretation by expert ice analysts. Mean daily LST estimates from MODIS (Terra/Aqua satellites) are shown to be overall in good agreement with LSTs estimated with two lake models, with larger differences during the ice cover season than the open water season. Implications of these results in advancing our understanding of ice thermodynamics and the open-water thermal regime of the two large lakes, and for improving lake schemes currently used in NWP models and RCMs are also discussed.

  7. Theoretical geodesy

    NASA Astrophysics Data System (ADS)

    Borkowski, Andrzej; Kosek, Wiesław

    2015-12-01

    The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+) that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis. New algorithms based on the wavelet, Fourier and Hilbert transforms were applied to find time-frequency characteristics of geodetic and geophysical time series as well as time-frequency relations between them. Statistical properties of these time series are also presented using different statistical tests as well as 2nd, 3rd and 4th moments about the mean. The new forecasts methods are presented which enable prediction of the considered time series in different frequency bands.

  8. Tracing the Construction of Mathematical Activity with an Advanced Graphing Calculator to Understand the Roles of Technology Developers, Teachers and Students

    ERIC Educational Resources Information Center

    Hillman, Thomas

    2014-01-01

    This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…

  9. Understanding the views of those who care for patients with cancer on advance care planning and end-of-life care.

    PubMed

    Mattes, Malcolm D; Tung, Kaity; Baum, Rachel; Parikh, Kapila; Ashamalla, Hani

    2015-12-01

    An electronic survey was used to assess the views of a diverse nationwide cohort of health care professionals regarding advance care planning and end-of-life care. A total of 645 responses were received. If diagnosed with a serious incurable illness with limited life expectancy, 97% would want to discuss their prognosis, 74% would refuse cardiopulmonary resuscitation, and 72% favored supportive/comfort care to more aggressive life-prolonging treatments. However, prognosis was thought to be discussed with only 52% of such patients, and just 5% thought doctors were either very or extremely successful at explaining advanced life-sustaining treatments to patients. Greater than 90% believed these discussions should best occur when a patient is thought to have one or more years to live and 80% thought they are best initiated in the outpatient setting. PMID:24939206

  10. An Historical Perspective on How Advances in Microscopic Imaging Contributed to Understanding the Leishmania Spp. and Trypanosoma cruzi Host-Parasite Relationship

    PubMed Central

    Florentino, P. T. V.; Real, F.; Bonfim-Melo, A.; Orikaza, C. M.; Ferreira, E. R.; Pessoa, C. C.; Lima, B. R.; Sasso, G. R. S.; Mortara, R. A.

    2014-01-01

    The literature has identified complex aspects of intracellular host-parasite relationships, which require systematic, nonreductionist approaches and spatial/temporal information. Increasing and integrating temporal and spatial dimensions in host cell imaging have contributed to elucidating several conceptual gaps in the biology of intracellular parasites. To access and investigate complex and emergent dynamic events, it is mandatory to follow them in the context of living cells and organs, constructing scientific images with integrated high quality spatiotemporal data. This review discusses examples of how advances in microscopy have challenged established conceptual models of the intracellular life cycles of Leishmania spp. and Trypanosoma cruzi protozoan parasites. PMID:24877115

  11. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  12. Panorama of theoretical physics

    NASA Astrophysics Data System (ADS)

    Mimouni, J.

    2012-06-01

    We shall start this panorama of theoretical physics by giving an overview of physics in general, this branch of knowledge that has been taken since the scientific revolution as the archetype of the scientific discipline. We shall then proceed in showing in what way theoretical physics from Newton to Maxwell, Einstein, Feynman and the like, in all modesty, could be considered as the ticking heart of physics. By its special mode of inquiry and its tantalizing successes, it has capturing the very spirit of the scientific method, and indeed it has been taken as a role model by other disciplines all the way from the "hard" ones to the social sciences. We shall then review how much we know today of the world of matter, both in term of its basic content and in the way it is structured. We will then present the dreams of today's theoretical physics as a way of penetrating into its psyche, discovering in this way its aspirations and longing in much the same way that a child's dreams tell us about his yearning and craving. Yet our understanding of matter has been going in the past decades through a crisis of sort. As a necessary antidote, we shall thus discuss the pitfalls of dreams pushed too far….

  13. Theoretical Particle Astrophysics

    SciTech Connect

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  14. Theoretical Aeroacoustics: Compiled Mathematical Derivations of Fereidoun 'Feri' Farassat

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2016-01-01

    Dr. Fereidoun 'Feri' Farassat was a theoretical aero-acoustician at the National Aeronautics and Space Administration (NASA) Langley Research Center. This book contains technical derivations, notes, and classes that Dr. Farassat produced during his professional career. The layout of the book has been carefully crafted so that foundational ideas through advanced theories, which altered the technical discipline of aeroacoustics, build upon one another. The book can be used to understand the theories of acoustics and learn one contemporary aeroacoustic prediction approach made popular by Dr. Farassat. Most importantly, this book gives the general reader insight into how one of NASA's best aeroacoustics theoreticians thought, constructed, and solved problems throughout his career.

  15. Understanding the nano- and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry

    NASA Astrophysics Data System (ADS)

    Colomban, Philippe

    2013-03-01

    The coupled mechanical and Raman/infrared (IR) analysis of the (nano)structure and texture of synthetic and natural polymer fibres (polyamides (PA66), polyethylene terephthalate (PET), polypropylene (PP), poly(paraphenylene benzobisoxazole) (PBO), keratin/hair, Bombyx mori, Gonometa rufobrunea/postica Antheraea/Tussah silkworms and Nephila Madagascarensis spider silks) is applied so as to differentiate between crystalline and amorphous macromolecules. Bonding is very similar in the two cases but a broader distribution of conformations is observed for the amorphous macromolecules. These conclusions are then used to discuss the modifications induced by the application of a tensile or compressive stress, including the effects of fatigue. Detailed attention is paid to water and the inter-chain coupling for which the importance of hydrogen bonding is reconsidered. The significant role of the ‘amorphous’ bonds/domains in the process of fracture/fatigue is shown. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November 2012, Ha Long, Vietnam.

  16. Fifth Joint Meeting of J-CaP and CaPSURE: advancing the global understanding of prostate cancer and its management.

    PubMed

    Akaza, Hideyuki; Carroll, Peter; Cooperberg, Matthew R; Hinotsu, Shiro

    2012-03-01

    This report summarizes the presentations and discussions that took place at the Fifth Joint Meeting of J-CaP and CaPSURE held in Tokyo, Japan, in July 2011. The J-CaP and CaPSURE Joint Initiative was established in 2007 with the objective of analyzing, reviewing, comparing and contrasting data on prostate cancer patients from Japan and the USA within the two important large-scale, longitudinal, observational databases-J-CaP and CaPSURE. Since its inception, the initiative has reviewed a wide range of topics and generated valuable data on the patterns of prostate cancer treatment and patient outcomes in the two geographical regions. The objectives of this 5th Joint Meeting were to provide an update on the current status of the J-CaP and CaPSURE databases, and also to discuss perspectives from a range of other Asian countries-Japan, China, Indonesia and Korea-on the use of androgen deprivation therapy for prostate cancer. The collaborators recognize that large databases, such as J-CaP and CaPSURE, provide valuable 'real-world' information, to complement data from clinical trials, which can help to advance the clinical management of prostate cancer patients worldwide. It is anticipated that in the near future, the Joint Initiative will expand globally to include patient registries from other countries so that best practice can be shared and regional differences in patients, treatments and outcomes can be explored. PMID:22217576

  17. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  18. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts.

    PubMed

    Schaumann, Gabriele E; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra; Kumahor, Samuel K; Kühn, Melanie; Baumann, Thomas; Lang, Friederike; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in

  19. The Nature of Science Instrument-Elementary (NOSI-E): Using Rasch Principles to Develop a Theoretically Grounded Scale to Measure Elementary Student Understanding of the Nature of Science

    ERIC Educational Resources Information Center

    Peoples, Shelagh

    2012-01-01

    The purpose of this study was to determine which of three competing models will provide, reliable, interpretable, and responsive measures of elementary students' understanding of the nature of science (NOS). The Nature of Science Instrument-Elementary (NOSI-E), a 28-item Rasch-based instrument, was used to assess students' NOS…

  20. Computational Design of Advanced Nuclear Fuels

    SciTech Connect

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  1. Understanding aging.

    PubMed

    Strehler, B L

    2000-01-01

    Enormous advances in our understanding of human aging have occurred during the last 50 yr. From the late 19th to the mid-20th centuries only four comprehensive and important sources of information were available: 1. August Weismann's book entitled Essays on Heredity and Kindred Biological Problems (the first of these essays dealt with The Duration of Life; 1). Weissmann states (p. 10) "In the first place in regulating the length of life, the advantage to the species, and not to the individual, is alone of any importance. This must be obvious to any one who has once thoroughly thought out the process of natural selection_". 2. A highly systematized second early source of information on aging was the collection of essays edited by Cowdry and published in 1938. This 900+ page volume contains 34 chapters and was appropriately called Problems of Aging. 3. At about the same time Raymond Pearl published his book on aging (2). Pearl believed that aging was the indirect result of cell specialization and that only the germ line was resistant to aging. Unfortunately Pearl died in the late 1930s and is largely remembered now for having been the founding editor of Quarterly Review of Biology while he was at the Johns Hopkins University, this author's alma mater. 4. Alexis Carrel wrote a monumental scientific and philosophical book, Man, the Unknown (3). Carrel believed that he had demonstrated that vertebrate cells could be kept in culture and live indefinitely, a conclusion challenged by others (more on this later). PMID:22351262

  2. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.

    PubMed

    Price, G Dean; Badger, Murray R; Woodger, Fiona J; Long, Ben M

    2008-01-01

    Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes. Cyanobacteria can possess up to five distinct transport systems for Ci uptake. Through database analysis of some 33 complete genomic DNA sequences for cyanobacteria it is evident that considerable diversity exists in the composition of transporters employed, although in many species this diversity is yet to be confirmed by comparative phenomics. In addition, two types of carboxysomes are known within the cyanobacteria that have apparently arisen by parallel evolution, and considerable progress has been made towards understanding the proteins responsible for carboxysome assembly and function. Progress has also been made towards identifying the primary signal for the induction of the subset of CCM genes known as CO(2)-responsive genes, and transcriptional regulators CcmR and CmpR have been shown to regulate these genes. Finally, some prospects for introducing cyanobacterial CCM components into higher plants are considered, with the objective of engineering plants that make more efficient use of water and nitrogen. PMID:17578868

  3. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness.

    PubMed

    Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Thibaut, Aurore; Moonen, Gustave; Laureys, Steven

    2011-07-01

    Functional neuroimaging and electrophysiology studies are changing our understanding of patients with coma and related states. Some severely brain damaged patients may show residual cortical processing in the absence of behavioural signs of consciousness. Given these new findings, the diagnostic errors and their potential effects on treatment as well as concerns regarding the negative associations intrinsic to the term vegetative state, the European Task Force on Disorders of Consciousness has recently proposed the more neutral and descriptive term unresponsive wakefulness syndrome. When vegetative/unresponsive patients show minimal signs of consciousness but are unable to reliably communicate the term minimally responsive or minimally conscious state (MCS) is used. MCS was recently subcategorized based on the complexity of patients' behaviours: MCS+ describes high-level behavioural responses (i.e., command following, intelligible verbalizations or non-functional communication) and MCS- describes low-level behavioural responses (i.e., visual pursuit, localization of noxious stimulation or contingent behaviour such as appropriate smiling or crying to emotional stimuli). Finally, patients who show non-behavioural evidence of consciousness or communication only measurable via para-clinical testing (i.e., functional MRI, positron emission tomography, EEG or evoked potentials) can be considered to be in a functional locked-in syndrome. An improved assessment of brain function in coma and related states is not only changing nosology and medical care but also offers a better-documented diagnosis and prognosis and helps to further identify the neural correlates of human consciousness. PMID:21674197

  4. Data, Methods, and Theoretical Implications

    ERIC Educational Resources Information Center

    Hannagan, Rebecca J.; Schneider, Monica C.; Greenlee, Jill S.

    2012-01-01

    Within the subfields of political psychology and the study of gender, the introduction of new data collection efforts, methodologies, and theoretical approaches are transforming our understandings of these two fields and the places at which they intersect. In this article we present an overview of the research that was presented at a National…

  5. Advancing the understanding of the Sun-Earth interaction—the Climate and Weather of the Sun-Earth System (CAWSES) II program

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshitaka; Shepherd, Marianna; Gopalswamy, Nat

    2015-12-01

    The Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) of the International Council for Science (ICSU) implemented an international collaborative program called Climate and Weather of the Sun-Earth System (CAWSES), which was active from 2004 to 2008; this was followed by the CAWSES II program during the period of 2009-2013. The CAWSES program was aimed at improving the understanding of the coupled solar-terrestrial system, with special emphasis placed on the short-term (weather) and long-term (climate) variability of solar activities and their effects on and responses of Geospace and Earth's environment. Following the successful implementation of CAWSES, the CAWSES II program pursued four fundamental questions addressing the way in which the coupled Sun-Earth system operates over time scales ranging from minutes to millennia, namely, (1) What are the solar influences on the Earth's climate? (2) How will Geospace respond to an altered climate? (3) How does short-term solar variability affect the Geospace environment? and (4) What is the Geospace response to variable inputs from the lower atmosphere? In addition to these four major tasks, the SCOSTEP and CAWSES promoted E-science and informatics activities including the creation of scientific databases and their effective utilization in solar-terrestrial physics research. Capacity building activities were also enhanced during CAWSES II, and this represented an important contribution of SCOSTEP to the world's solar-terrestrial physics community. This introductory paper provides an overview of CAWSES II activities and serves as a preface to the dedicated review papers summarizing the achievements of the program's four task groups (TGs) and the E-science component.

  6. Advanced Seismic Studies of the Endeavour Ridge: Understanding the Interplay among Magmatic, Hydrothermal, and Tectonic Processes at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Arnoux, G. M.; VanderBeek, B. P.; Morgan, J. V.; Hooft, E. E. E.; Toomey, D. R.; Wilcock, W. S. D.; Warner, M.

    2014-12-01

    At mid-ocean ridges magmatic, hydrothermal, and tectonic processes are linked. Understanding their interactions requires mapping magmatic systems and tectonic structures, as well as their relationship to hydrothermal circulation. Three-dimensional seismic images of the crust can be used to infer the size, shape, and location of magma reservoirs, in addition to the structure of the thermal boundary layer that connects magmatic and hydrothermal processes. Travel time tomography has often been used to study these processes, however, the spatial resolution of travel time tomography is limited. Three-dimensional full waveform inversion (FWI) is a state-of-the art seismic method developed for use in the oil industry to obtain high-resolution models of the velocity structure. The primary advantage of FWI is that it has the potential to resolve subsurface structures on the order of half the seismic wavelength—a significant improvement on conventional travel time tomography. Here, we apply anisotropic FWI to data collected on the Endeavour segment of the Juan de Fuca Ridge. Starting models for anisotropic P-wave velocity were obtained by travel time tomography [Weekly et al., 2014]. During FWI, the isotropic velocity model is updated and anisotropy is held constant. We have recovered low-velocity zones approximately 2-3 km beneath the ridge axis that likely correspond to a segmented magma-rich body and are in concert with those previously resolved using multi-channel seismic reflection methods. The segmented crustal magma body underlies all five known high-temperature hydrothermal vent fields along the Endeavour segment. A high-velocity zone, shallower than the observed low-velocity zones, underlies the southernmost hydrothermal vent field. This may be indicative of waning hydrothermal activity in which minerals are crystallizing beneath the vent field. Our FWI study of the Endeavour Ridge will provide the most detailed three-dimensional images of the crustal structure to

  7. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  8. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  9. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  10. Theoretical studies of the physics of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.

  11. How Can We Understand Au8 Cores and Entangled Ligands of Selenolate- and Thiolate-Protected Gold Nanoclusters Au24(ER)20 and Au20(ER)16 (E = Se, S; R = Ph, Me)? A Theoretical Study.

    PubMed

    Takagi, Nozomi; Ishimura, Kazuya; Matsui, Masafuyu; Fukuda, Ryoichi; Matsui, Toru; Nakajima, Takahito; Ehara, Masahiro; Sakaki, Shigeyoshi

    2015-07-01

    The geometries and electronic structures of selenolate-protected Au nanoclusters, Au24(SeR)20 and Au20(SeR)16, and their thiolate analogues are theoretically investigated with DFT and SCS-MP2 methods, to elucidate the electronic structure of their unusual Au8 core and the reason why they have the unusual entangled "staple-like" chain ligands. The Au8 core is understood to be an [Au4](2+) dimer in which the [Au4](2+) species has a tetrahedral geometry with a closed-shell singlet ground state. The SCS-MP2 method successfully reproduced the distance between two [Au4](2+) moieties, but the DFT with various functionals failed it, suggesting that the dispersion interaction is crucial between these two [Au4](2+) moieties. The SCS-MP2-calculated formation energies of these nanocluster compounds indicate that the thiolate staple-like chain ligands are more stable than the selenolate ones, but the Au8 core more strongly coordinates with the selenolate staple-like chain ligands than with the thiolate ones. Though Au20(SeR)16 has not been reported yet, its formation energy is calculated to be large, suggesting that this compound can be synthesized as a stable species if the concentration of Au(SeR) is well adjusted. The aurophilic interactions between the staple-like chain ligands and between the Au8 core and the staple-like chain ligand play an important role for the stability of these compounds. Because of the presence of this autophilic interaction, Au24(SeR)20 is more stable than Au20(SeR)16 and the unusual entangled ligands are involved in these compounds. PMID:26076323

  12. Theoretical integration and the psychology of sport injury prevention.

    PubMed

    Chan, Derwin King-Chung; Hagger, Martin S

    2012-09-01

    Integrating different theories of motivation to facilitate or predict behaviour change has received an increasing amount of attention within the health, sport and exercise science literature. A recent review article in Sports Medicine, by Keats, Emery and Finch presented an integrated model using two prominent theories in social psychology, self-determination theory (SDT) and the theory of planned behaviour (TPB), aimed at explaining and enhancing athletes' adherence to sport injury prevention. While echoing their optimistic views about the utility of these two theories to explain adherence in this area and the virtues of theoretical integration, we would like to seize this opportunity to clarify several conceptual principles arising from the authors' integration of the theories. Clarifying the theoretical assumptions and explaining precisely how theoretical integration works is crucial not only for improving the comprehensiveness of the integrated framework for predicting injury prevention behaviour, but also to aid the design of effective intervention strategies targeting behavioural adherence. In this article, we use the integration of SDT and TPB as an example to demonstrate how theoretical integration can advance the understanding of injury prevention behaviour in sport. PMID:22909184

  13. Advances in the understanding of cancer immunotherapy.

    PubMed

    Shore, Neal D

    2015-09-01

    The principal role of the immune system is to prevent and eradicate pathogens and infections. The key characteristics or features of an effective immune response include specificity, trafficking, antigen spread and durability (memory). The immune system is recognised to have a critical role in controlling cancer through a dynamic relationship with tumour cells. Normally, at the early stages of tumour development, the immune system is capable of eliminating tumour cells or keeping tumour growth abated; however, tumour cells may evolve multiple pathways over time to evade immune control. Immunotherapy may be viewed as a treatment designed to boost or restore the ability of the immune system to fight cancer, infections and other diseases. Immunotherapy manifests differently from traditional cancer treatments, eliciting delayed response kinetics and thus may be more effective in patients with lower tumour burden, in whom disease progression may be less rapid, thereby allowing ample time for the immunotherapy to evolve. Because immunotherapies may have a different mechanism of action from traditional cytotoxic or targeted biological agents, immunotherapy techniques have the potential to combine synergistically with traditional therapies. PMID:24612369

  14. Recent advances in understanding Colombian mangroves

    NASA Astrophysics Data System (ADS)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  15. Advances in understanding and managing atopic dermatitis

    PubMed Central

    Barton, Michael; Sidbury, Robert

    2015-01-01

    Atopic dermatitis is a chronic, pruritic skin disease characterized by an improperly functioning skin barrier and immune dysregulation. We review proposed atopic dermatitis pathomechanisms, emphasizing how these impact current perspectives on natural history, role of allergic sensitization, and future therapeutic targets. PMID:26918129

  16. Recent advances in understanding norovirus pathogenesis.

    PubMed

    Karst, Stephanie M; Tibbetts, Scott A

    2016-11-01

    Noroviruses constitute a family of ubiquitous and highly efficient human pathogens. In spite of decades of dedicated research, human noroviruses remain a major cause of gastroenteritis and severe diarrheal disease around the world. Recent findings have begun to unravel the complex mechanisms that regulate norovirus pathogenesis and persistent infection, including the important interplay between the virus, the host immune system, and commensal bacteria. Herein, we will summarize recent research developments regarding norovirus cell tropism, the use of M cells, and commensal bacteria to facilitate norovirus infection, and virus, host, and bacterial determinants of persistent norovirus infections. J. Med. Virol. 88:1837-1843, 2016. © 2016 Wiley Periodicals, Inc. PMID:27110852

  17. Recent advances in understanding urethral lichen sclerosus

    PubMed Central

    Mangera, Altaf; Osman, Nadir; Chapple, Christopher

    2016-01-01

    Lichen sclerosus affecting the male genitalia is a poorly understood but potentially devastating condition. The natural history of the condition is beginning to be understood better with longer follow-up of patients. Recent long-term data suggest that circumcision for lichen sclerosus limited to the prepuce may not be curative as was once thought. In addition, surgical treatments should be followed up for longer periods as recurrences may occur after urethroplasty and perineal urethrostomy. PMID:26918163

  18. Advances in understanding of bile acid diarrhea

    PubMed Central

    Camilleri, Michael

    2014-01-01

    Bile acids (BA) are actively reabsorbed in the terminal ileum by the apical Na+-dependent bile salt transporter. This review addresses the epidemiology, pathophysiology, diagnosis and treatment of BA diarrhea (BAD). BAD is typically caused by ileal resection or disease; 25–33% of patients with chronic functional diarrhea or irritable bowel syndrome-diarrhea (IBS-D) have BAD, possibly from deficiency in the ileal hormone, FGF-19, which normally provides feedback inhibition of BA synthesis. Diagnosis of BAD is typically based on reduced BA retention of radiolabeled BA (75SeHCAT), increased BA synthesis (serum C4) or increased fecal BA loss. In clinical practice, diagnosis is often based on response to BA sequestrants (e.g., cholestyramine or colesevelam). Diagnostic tests for BA malabsorption (BAM) need to be used more extensively in clinical practice. In the future, farnesoid X receptor agonists that stimulate ileal production of FGF-19 may be alternative treatments of BAD. PMID:24410472

  19. Advances in understanding of bile acid diarrhea.

    PubMed

    Camilleri, Michael

    2014-01-01

    Bile acids (BA) are actively reabsorbed in the terminal ileum by the apical Na(+)-dependent bile salt transporter. This review addresses the epidemiology, pathophysiology, diagnosis and treatment of BA diarrhea (BAD). BAD is typically caused by ileal resection or disease; 25-33% of patients with chronic functional diarrhea or irritable bowel syndrome-diarrhea (IBS-D) have BAD, possibly from deficiency in the ileal hormone, FGF-19, which normally provides feedback inhibition of BA synthesis. Diagnosis of BAD is typically based on reduced BA retention of radiolabeled BA ((75)SeHCAT), increased BA synthesis (serum C4) or increased fecal BA loss. In clinical practice, diagnosis is often based on response to BA sequestrants (e.g., cholestyramine or colesevelam). Diagnostic tests for BA malabsorption (BAM) need to be used more extensively in clinical practice. In the future, farnesoid X receptor agonists that stimulate ileal production of FGF-19 may be alternative treatments of BAD. PMID:24410472

  20. Approaches for advancing scientific understanding of macrosystems

    USGS Publications Warehouse

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  1. Recent advances in understanding neurotrophin signaling

    PubMed Central

    Bothwell, Mark

    2016-01-01

    The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75 NTR, a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75 NTR and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems. PMID:27540475

  2. Recent advances in understanding and managing leiomyosarcomas

    PubMed Central

    Ray-Coquard, Isabelle; Salas, Sébastien; Pautier, Patricia

    2015-01-01

    Leiomyosarcomas are malignant mesenchymal tumours that derive from the smooth muscle lineage. They are studied and frequently treated as if they are the same as other soft tissue sarcomas. Recent developments suggest that a different approach may be more appropriate. Their underlying genetic mechanisms remain unclear, and complex. Unbalanced karyotypic defects are the only shared features observed across different leiomyosarcoma subtypes. Unlike other soft tissue sarcomas, leiomyosarcomas are particularly sensitive to the combination of gemcitabine and docetaxel. Furthermore, treatment with trabectedin has shown a good efficacy in leiomyosarcomas, mainly in the form of chronic disease stabilisation. PMID:26097728

  3. Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Yang, Yixiong; White, Michael G.

    2013-06-01

    Advances in theoretical methods, in particular density functional theory (DFT), make it possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare with experiment in a meaningful way. The theoretical studies also describe chemical reaction networks and understand variations in catalytic activity from one catalyst to another. Such understanding allows the theoretical optimization for better catalysts. In the current report we discussed the theoretical studies in the past few years on decomposition and synthesis of methanol and ethanol on various catalyst surfaces. The knowledge of reactions including the intermediates and transition states along different reaction pathways together with kinetic modeling was demonstrated. The theoretical studies on alcohol synthesis help gain better understanding of the complex kinetics and the roles that each component of a catalyst plays. In general, moving from mono-functional catalysts to multi-functional catalysts by increasing the complexity offers new opportunities to tune the behavior of a catalyst. A good multi-functional catalyst is not necessary to compromise the binding strong enough to adsorb and dissociate reactants and weak enough to allow the formation of intermediates and removal of products; instead, it may take advantage of each component, which catalyzes different elementary steps depending on its unique activity. The synergy between the different components can enable the multi-functional catalyst a novel activity in catalysis. This is of great importance for rational design of better catalysts for alcohol renewal synthesis and efficient use.

  4. Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Yang, Yixiong; White, Michael G.

    2013-06-01

    Advances in theoretical methods, in particular density functional theory (DFT), make it possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare with experiment in a meaningful way. The theoretical studies also describe chemical reaction networks and understand variations in catalytic activity from one catalyst to another. Such understanding allows the theoretical optimization for better catalysts.In the current report we discussed the theoretical studies in the past few years on decomposition and synthesis of methanol and ethanol on various catalyst surfaces. The knowledge of reactions including the intermediates and transition states along different reaction pathways together with kinetic modeling was demonstrated. The theoretical studies on alcohol synthesis help gain better understanding of the complex kinetics and the roles that each component of a catalyst plays. In general, moving from mono-functional catalysts to multi-functional catalysts by increasing the complexity offers new opportunities to tune the behavior of a catalyst. A good multi-functional catalyst is not necessary to compromise the binding strong enough to adsorb and dissociate reactants and weak enough to allow the formation of intermediates and removal of products; instead, it may take advantage of each component, which catalyzes different elementary steps depending on its unique activity. The synergy between the different components can enable the multi-functional catalyst a novel activity in catalysis. This is of great importance for rational design of better catalysts for alcohol renewal synthesis and efficient use.

  5. Characterization of advanced electronic materials

    SciTech Connect

    Arko, A.J.; Heffner, R.H.; Hundley, M.F.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Our goal has been to extend the Laboratory`s competency in nuclear and advanced materials by characterizing (measuring and interpreting) physical properties of advanced electronic materials and in this process to bridge the gap between materials synthesis and theoretical understanding. Attention has focused on discovering new physics by understanding the ground states of materials in which electronic correlations dominate their properties. Among several accomplishments, we have discovered and interpreted pressure-induced superconductivity in CeRh{sub 2}Si{sub 2}, boron content in UBe{sub 13-x}B{sub x} and the origin of small gaps in the spin and charge excitation spectra of Ce{sub 3}Bi{sub 4}Pt{sub 3}, and we provided seminal understanding of large magnetoresistive effects in La{sub 1-x}Ca{sub x}MnO{sub 3}. This work has established new research directions at LANL and elsewhere, involved numerous collaborators from throughout the world and attracted several postdoctoral fellows.

  6. Recent Advances in Quantum Dynamics of Bimolecular Reactions.

    PubMed

    Zhang, Dong H; Guo, Hua

    2016-05-27

    In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects. PMID:26980305

  7. Understanding delusions

    PubMed Central

    Kiran, Chandra; Chaudhury, Suprakash

    2009-01-01

    Delusion has always been a central topic for psychiatric research with regard to etiology, pathogenesis, diagnosis, treatment, and forensic relevance. The various theories and explanations for delusion formation are reviewed. The etiology, classification and management of delusions are briefly discussed. Recent advances in the field are reviewed. PMID:21234155

  8. Understanding Flu

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Understanding Flu Past Issues / Fall 2006 Table of Contents For ... By Bonny McClain Whether the topic is seasonal influenza, bird flu or something called a pandemic, everyone ...

  9. Understanding Alzheimer's

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  10. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  11. Theoretical Problems in Materials Science

    NASA Technical Reports Server (NTRS)

    Langer, J. S.; Glicksman, M. E.

    1985-01-01

    Interactions between theoretical physics and material sciences to identify problems of common interest in which some of the powerful theoretical approaches developed for other branches of physics may be applied to problems in materials science are presented. A unique structure was identified in rapidly quenched Al-14% Mn. The material has long-range directed bonds with icosahedral symmetry which does not form a regular structure but instead forms an amorphous-like quasiperiodic structure. Finite volume fractions of second phase material is advanced and is coupled with nucleation theory to describe the formation and structure of precipitating phases in alloys. Application of the theory of pattern formation to the problem of dendrite formation is studied.

  12. Tau physics 1994: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1994-11-01

    In this paper I describe some recent advances in tau physics and discuss their implications from a theoretical perspective. The examples I have chosen include e-{mu}-{tau} universality, QCD studies, anomalous electroweak dipole moments, and forbidden decays. That list is by no means exhaustive. It should, however, demonstrate the breath of tau physics, describe some interesting new results, and point out the potential for future advances.

  13. Embodied understanding

    PubMed Central

    Johnson, Mark

    2015-01-01

    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner. PMID:26175701

  14. Phenomenological contributions to understanding hypnosis: review of the literature.

    PubMed

    Woodard, Fredrick

    2003-12-01

    This article provides a summary of the available qualitative literature on hypnosis of importance to empirical study of hypnosis. The author advocates a link between phenomenological research and the qualitative research of perceptual theory to deepen an understanding of hypnosis previously missing in the research literature and in debates on the theoretical approaches to hypnosis. The author suggests linking Giorgi's and Wasicsko's research methodologies to advance qualitative research. Researchers could conduct more qualitative research on the experience of hypnosis to expand and explicate subjective experiencing and enhance exploration of individual differences that cannot be captured in artificially controlled environments. PMID:14723451

  15. Learning Physical Domains: Toward a Theoretical Framework.

    ERIC Educational Resources Information Center

    Forbus, Kenneth D.; Gentner, Dedre

    People use and extend their knowledge of the physical world constantly. Understanding how this fluency is achieved would be an important milestone in understanding human learning and intelligence, as well as a useful guide for constructing machines that learn. This paper presents a theoretical framework that is being developed in an attempt to…

  16. Understanding hypernatremia.

    PubMed

    Sam, Ramin; Feizi, Iraj

    2012-01-01

    Understanding hypernatremia is at times difficult for many clinicians. However, hypernatremia can often be deciphered easily with some basic understanding of water and sodium balance. Here, the basic pathophysiological abnormalities underlying the development of sodium disorders are reviewed, and case examples are given. Hypernatremia often arises in the hospital, especially in the intensive care units due to the combination of (1) not being able to drink water; (2) inability to concentrate the urine (most often from having kidney failure); (3) osmotic diuresis from having high serum urea concentrations, and (4) large urine or stool outputs. PMID:22739333

  17. A Theoretical Foundation for Understanding Clergy-Perpetrated Sexual Abuse

    ERIC Educational Resources Information Center

    Fogler, Jason M.; Shipherd, Jillian C.; Rowe, Erin; Jensen, Jennifer; Clarke, Stephanie

    2008-01-01

    Incorporating elements from broadband theories of psychological adaptation to extreme adversity, including Summit's (1983) Child Sexual Abuse Accommodation Syndrome, Finkelhor and Browne's (1986) Traumagenic Dynamics Model of sexual abuse, and Pyszczynski and colleagues' (1997) Terror Management Theory, this paper proposes a unified theoretical…

  18. Understanding Family Role Reallocation Following a Death: A Theoretical Framework.

    ERIC Educational Resources Information Center

    Vess, James; And Others

    1986-01-01

    Examines factors which contribute to reactions and recovery patterns in families in which a parent has died. Discusses influence of stage of family life cycle, roles of deceased, previous patterns of role allocation, and type of death. Compares reallocation of family roles by "person oriented" and "position oriented" families. (Author/NRB)

  19. On gamma-ray bursts spectra: A possible theoretical understanding

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Popov, Mikhail; Chechetkin, Valery; Baranov, Andrey

    2015-12-01

    The study of spectra of gamma-ray burst is certainly a very promising part of the GRB studies. More and more data are available for GRBs and with time-sequence analysis it is possible also to propose a link with the other set of data represented by the light curves. Consequently, the explanation of the spectra requires both the local physical condition of the engine as well as the dynamic of the explosion process. In this view, we have analysed the GRB spectra with a specific model: black-body + thermal Bremsstrahlung. Our results show that this model is consistent with the observed GRB spectra. We can derive the temperature of the hot plasma needed to reproduce this spectrum consistent with the core of a very hot star ˜109 K. We have also found a correlation between the variation in time of this temperature and the variation of the spikes in luminosity of the light curves. This time profile each spike could be the correct fingerprint of the GRB physical process.Each spike, as a fingerprint, could keep the memory of the GRB physical process. If this model find a confirmation for other GRBs, this idea will ask us to open a new paradigm in GRB physics.

  20. A theoretical framework for understanding recovered memory experiences.

    PubMed

    Brewin, Chris R

    2012-01-01

    If recovered memory experiences appear counter-intuitive, this is in part due to misconceptions about trauma and memory, and to a failure to adopt a comprehensive model of memory that distinguishes personal semantic memory, autobiographical event memory, and memory appraisal. Memory performance is generally superior when events, including traumas, are central to identity. Prolonged trauma in childhood, however, can produce severe identity disturbances that may interfere with the encoding and later retrieval of personal semantic and autobiographical event information. High levels of emotion either at encoding or recall can also interfere with the creation of coherent narrative memories. For example, high levels of shock and fear when memories are recovered unexpectedly may lead to the experience of vivid flashbacks. Memory appraisals may also influence the sense that an event has been forgotten for a long time. Recovered memories, although unusual, do not contradict what we know about how memory works. PMID:22303766

  1. Understanding Educational Transfer: Theoretical Perspectives and Conceptual Frameworks

    ERIC Educational Resources Information Center

    Perry, Laura B.; Tor, Geok-hwa

    2008-01-01

    Educational transfer is an important and growing body of literature in the field of comparative education. Work from the last decade has focused on the stages of the borrowing cycle, and the context, causes and rationales for education borrowing. This recent work has contributed to earlier research on the role of multilateral organizations in…

  2. Understanding Leukemia

    MedlinePlus

    ... a second cancer, including melanoma, sarcoma, colorectal cancer, lung cancer, basal cell cancer, squamous cell skin cancer or myeloma. {{ See your primary care doctor to keep up with other healthcare needs. Understanding Leukemia I page 21 {{ Talk with family and friends about how ...

  3. Understanding Death.

    ERIC Educational Resources Information Center

    Heath, Charles P.

    1986-01-01

    Bibliotherapy can help children prepare for and understand the death of a loved one. An annotated bibliography lists references with age level information on attitudes toward death and deaths of a father, friend, grandparent, mother, pet, and sibling. (Author/CL)

  4. Understanding Artworlds.

    ERIC Educational Resources Information Center

    Erickson, Mary; Clover, Faith

    This curriculum unit consists of four lessons that are designed to broaden students' understanding of art and culture; each lesson can stand alone or be used in conjunction with the others. The introduction offers a conceptual framework of the Artworlds unit, which takes an inquiry-based approach. The unit's first lesson, "Worlds within Worlds,"…

  5. Understanding Prejudice.

    ERIC Educational Resources Information Center

    Babcock, David

    1967-01-01

    To help students understand prejudice, teachers in Verona, New York, planned a unit which incorporated the use of fiction, television, and film. Students were asked to select and read books in the general area of prejudice. A sample reading list of works under the headings of Negro, Jew, Italian, and Irish was provided. After writing extensive…

  6. Understanding Instructions.

    ERIC Educational Resources Information Center

    Milburn, Val

    This guide is intended to help adult basic education (ABE) teachers teach their students to understand instructions in their daily lives. The 25 learning activities included all develop students' skills in the area of following directions by using basic situations drawn from everyday life. The following activities are included: sequencing pictures…

  7. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. PMID:22560346

  8. Theoretical and experimental studies of electrified interfaces relevant to energy storage.

    SciTech Connect

    Templeton, Jeremy Alan; Jones, Reese E.; Lee, Jonathan W.; Mandadapu, Kranthi Kiran; Kliewer, Christopher Jesse; Sasaki, Darryl Yoshio; Kane, Marie C.; Reyes, Karla Rosa; Hayden, Carl C.

    2013-12-01

    Advances in technology for electrochemical energy storage require increased understanding of electrolyte/electrode interfaces, including the electric double layer structure, and processes involved in charging of the interface, and the incorporation of this understanding into quantitative models. Simplified models such as Helmholtz's electric double-layer (EDL) concept don't account for the molecular nature of ion distributions, solvents, and electrode surfaces and therefore cannot be used in predictive, high-fidelity simulations for device design. This report presents theoretical results from models that explicitly include the molecular nature of the electrical double layer and predict critical electrochemical quantities such as interfacial capacitance. It also describes development of experimental tools for probing molecular properties of electrochemical interfaces through optical spectroscopy. These optical experimental methods are designed to test our new theoretical models that provide descriptions of the electric double layer in unprecedented detail.

  9. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  10. Goals Set in the Land of the Living/Dying: A Longitudinal Study of Patients Living with Advanced Cancer

    ERIC Educational Resources Information Center

    Nissim, Rinat; Rennie, David; Fleming, Stephen; Hales, Sarah; Gagliese, Lucia; Rodin, Gary

    2012-01-01

    A longitudinal qualitative research study was undertaken to provide an understanding of a prolonged experience of advanced cancer, as seen through the eyes of dying individuals. Using a variant of the grounded theory method, the authors theoretically sampled, from outpatient clinics in a large comprehensive cancer treatment center, 27 patients…

  11. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  12. Understanding: "Knowledge", "Belief", and "Understanding"

    ERIC Educational Resources Information Center

    Davson-Galle, Peter

    2004-01-01

    The following paper is intended as an exercise in "friendly criticism" of one of Harvey Siegel's and Mike Smith's ("Knowing, Believing and Understanding", this volume). I'm in substantial sympathy with the general thrust of their paper and my remarks merely provide some criticism of their discussion's conceptual coherence and clarity and a…

  13. Theoretical issues in Spheromak research

    SciTech Connect

    Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

    1997-04-01

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

  14. Advance Care Planning.

    PubMed

    Stallworthy, Elizabeth J

    2013-04-16

    Advance care planning should be available to all patients with chronic kidney disease, including end-stage kidney disease on renal replacement therapy. Advance care planning is a process of patient-centred discussion, ideally involving family/significant others, to assist the patient to understand how their illness might affect them, identify their goals and establish how medical treatment might help them to achieve these. An Advance Care Plan is only one useful outcome from the Advance Care Planning process, the education of patient and family around prognosis and treatment options is likely to be beneficial whether or not a plan is written or the individual loses decision making capacity at the end of life. Facilitating Advance Care Planning discussions requires an understanding of their purpose and communication skills which need to be taught. Advance Care Planning needs to be supported by effective systems to enable the discussions and any resulting Plans to be used to aid subsequent decision making. PMID:23586906

  15. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  16. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides.

    PubMed

    Halls, Michelle L; Bathgate, Ross A D; Sutton, Steve W; Dschietzig, Thomas B; Summers, Roger J

    2015-01-01

    Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics. PMID:25761609

  17. International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides

    PubMed Central

    Halls, Michelle L.; Bathgate, Ross A. D.; Sutton, Steve W.; Dschietzig, Thomas B.

    2015-01-01

    Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1–4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gαs, Gαi, and Gαo proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gαs- and Gαo-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gαi/Gαo proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1–4, the challenges facing the field, and current prospects for new therapeutics. PMID:25761609

  18. Advances in surgery. Volume 18

    SciTech Connect

    Shires, G.T.

    1984-01-01

    This book discusses the recent advancements made in surgery. Specifically discussed are--NMR imaging--its uses in diagnostic radiology; anal tumors and surgical therapy; aneurysms and theoretical aspects of NMR imaging.

  19. Understanding Planetesimals

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, Linda T.

    2014-03-01

    Planetesimals represent turning points in planetary formation, when the materials required for building planets are first incorporated into bodies with radii from tens to hundreds of kilometers or larger, and are sometimes differentiated into metallic cores and silicate mantles. These early celestial bodies are the accretionary step between the dust of the planetary nebula and the cadre of rocky planets. Thus, planetesimals hold the keys to understanding how Earth was formed, when water was deposited on Earth, and why Earth and other rocky planets may differ in composition.

  20. Highlights of theoretical progress related to the International Magnetospheric Study

    NASA Technical Reports Server (NTRS)

    Hill, T. W.

    1982-01-01

    U.S. theoretical research efforts have addressed three areas within the International Magnetospheric Study. The first, solar wind/magnetosphere interaction, is presently concerned with the suggestion that magnetic merging may predominantly occur near the polar cusps rather than near the subsolar point. Mechanisms have been proposed for noncollisional diffusion of solar wind plasma across the closed magnetopause entailed by such a phenomenon. The second area considers the importance to magnetotail dynamics of a continuous source of solar wind plasma, and of sporadic plasma loss associated with an unsteady convection cycle. In the third area, the electrodynamic magnetosphere/ionosphere interaction, an advanced state has been reached in the understanding of the relevant physics, with respect both to coupling in the subauroral region and the large scale structure of auroral zone electric fields parallel, and perpendicular to, the magnetic field.

  1. [Resilience: evolution of theoretical concepts and clinical applications].

    PubMed

    Anaut, Marie

    2015-06-01

    The conceptual approach of resilience is part of a perspective of understanding and support to people facing situations of risk or traumatic events. This approach has transformed clinical practices by offering an alternative to the psychopathological model initially focused on vulnerability, allowing it to take into account the resources and skills of people and their environment. It has applications in many clinical fields: psychology, psychiatry, education, social work, health... The concept of resilience, which now has been studied for more than forty years, is met with growing interest, as is evident by the large number of research and publications that refer to it on the international stage. Over the decades, its theoretical contours evolved and have been more specified. Resilience is now considered a complex process resulting from a balance between risk factors and protective factors. This article puts into perspective the major advances that have been made since its emergence to contemporary research and its applications. PMID:26411240

  2. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  3. Theoretical underpinnings for women's health.

    PubMed

    McBride, A B; McBride, W L

    1981-01-01

    A theoretical framework for considerations of women's health is proposed, the central premise of which is that "women's health" at the core means taking women's lived experience as the starting point for all health efforts. Elaboration of this thesis involves: (1) surveying our philosophical roots for an understanding of what the lived experience means, (2) exploring the methodological consequences of a focus on the lived experience, and (3) applying these insights to the situations of woman as mother and of the overweight woman. PMID:7052984

  4. Understanding resilience.

    PubMed

    Wu, Gang; Feder, Adriana; Cohen, Hagit; Kim, Joanna J; Calderon, Solara; Charney, Dennis S; Mathé, Aleksander A

    2013-01-01

    Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma, and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of posttraumatic stress disorder (PTSD), depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial, and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences. PMID:23422934

  5. Understanding resilience

    PubMed Central

    Wu, Gang; Feder, Adriana; Cohen, Hagit; Kim, Joanna J.; Calderon, Solara; Charney, Dennis S.; Mathé, Aleksander A.

    2013-01-01

    Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma, and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of posttraumatic stress disorder (PTSD), depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial, and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences. PMID:23422934

  6. Understanding osteoporosis.

    PubMed Central

    Marcus, R.

    1991-01-01

    Considerable progress has been achieved recently in our understanding of the normal process by which bone mass is regulated. Age-related trabecular bone loss is characterized not simply by a global loss of bone but also by cortical porosity and loss of trabecular connections. Because bone strength depends on architectural as well as material properties, bone quantity alone cannot define fracture risk with precision. Traditional therapies for osteoporosis increase bone mass, and estrogen therapy, in particular, profoundly decreases fracture risk. The pharmacologic restoration of bone quantity and quality, however, remains elusive. Modern biotechnology offers the hope that progress may come about through the development of growth factors and other osteotropic compounds for clinical use. Images PMID:1877231

  7. Understanding Motivation of Plaque Control.

    ERIC Educational Resources Information Center

    Beck, Kenneth H.

    1982-01-01

    A theoretical model for understanding motivation of plaque control is presented. The belief in this model is that, if people can be convinced of their ability to control a health threat, they would be encouraged to take responsibility for their health. (CJ)

  8. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    NASA Astrophysics Data System (ADS)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  9. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.

    PubMed

    Pratheek, B M; Suryawanshi, Amol R; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2015-04-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus, responsible for acute febrile infection. The high morbidity and socio-economic loss associated with the recent CHIKV epidemics worldwide have raised a great public health concern and emphasize the need to study the immunological basis of CHIKV infection to control the disease. MHC-I restricted CD8(+) T cell response represent one of the major anti-viral immune responses. Accordingly, it is essential to have a detailed understanding towards CHIKV specific MHC-I restricted immunogenic epitopes for anti-viral CD8(+) CTL immunogenicity. In the present study, a computational approach was used to predict the conserved MHC-I epitopes for mouse haplotypes (H2-Db and H2-Dd) and some alleles of the major HLA-I supertypes (HLA-A2, -A3, -A24, -B7, -B15) of all CHIKV proteins. Further, an in-depth computational analysis was carried out to validate the selected epitopes for their nature of conservation in different global CHIKV isolates to assess their binding affinities to the appropriate site of respective MHC-I molecules and to predict anti-CHIKV CD8(+) CTL immunogenicity. Our analyses resulted in fifteen highly conserved epitopes for H2-Db and H2-Dd and fifty epitopes for different HLA-I supertypes. Out of these, the MHC-I epitopes VLLPNVHTL and MTPERVTRL were found to have highest predictable CTL immunogenicities and least binding energies for H2-Db and H2-Dd, whereas, for HLA-I, the epitope FLTLFVNTL was with the highest population coverage, CTL immunogenicity and least binding energy. Hence, our study has identified MHC-I restricted epitopes that may help in the advancement of MHC-I restricted epitope based anti-CHIKV immune responses against this infection and this will be useful towards the development of epitope based anti-CHIKV immunotherapy in the future. However, further experimental investigations for cross validation and evaluation are warranted to establish the ability of epitopes to induce CD8(+) T cell

  10. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  11. Understanding delusions.

    PubMed

    Sedler, M J

    1995-06-01

    Delusions traditionally have been considered as fixed, false beliefs, born of morbidity. Whereas this definition serves to orient the clinician to the phenomena at hand, each element breaks down under scrutiny. It has been shown that delusions are not necessarily false, although in some sense they are discordant with reality. When delusions coincide with actual events their judgements can be shown to be independent of this evidential basis; when they refer to disorders of experience, such as first rank symptoms, the experience usually contains a distorted meaning. The supposition that delusions are a variety of belief has itself been questioned. On the one hand, they do not always refer in a meaningful way to anything, or when they do they fail to function as evaluative judgments; instead, delusions are experienced subjectively in ways that are characteristic of knowing rather than believing. On the other hand, delusions are not ascertained clinically by surveying the patient's belief system; rather their failure to achieve the status of objective knowledge leads to the post hoc relegation of delusions to the epistemologic waste basket of beliefs. To treat delusions as necessarily the product of morbidity is essentially tautologous insofar as delusions are, by definition, pathologic; that is, as defective judgments delusions are not simply erroneous, they are disordered. Finally, the fixity of delusions is an empirical matter and varies widely. Underlying this perceived intractability, however, are the subjective certainty and incorrigibility that Jaspers identified and which Spitzer has recast in the form of "epistemological asymmetry" misapplied to external reality. Although delusions typically have been recognized and categorized according to their manifest content, these formal considerations are crucial to understanding the nature of delusions. PMID:7659597

  12. AIRS Level 1b Algorithm Theoretical Basis Document

    NASA Technical Reports Server (NTRS)

    Aumann, H.; Gregorich, D.; Gaiser, S.; Hagan, D.; Pagano, T.; Ting, D.

    2000-01-01

    The level 1b Algorithm Theoretical Basis Document (ATBD) describes the theoretical bases of the algorithms used to convert the raw detector output (data numbers) from the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder Brazil (HSB) to physical radiance units and, in the case of AIRS, perform in-orbit spectral calibrations.

  13. Advances in compressible turbulent mixing

    SciTech Connect

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  14. Theoretical Characterizaiton of Visual Signatures

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  15. Knot theory in understanding proteins.

    PubMed

    Mishra, Rama; Bhushan, Shantha

    2012-12-01

    This paper aims to enthuse mathematicians, especially topologists, knot theorists and geometers to examine problems in the study of proteins. We have highlighted those advances and breakthroughs in knot theory that directly and indirectly help in understanding proteins. We have discussed the phenomena of knotting of protein backbone. This paper also provides a few open questions for knot theorists, the answers to which will help in further understanding of proteins. PMID:22105789

  16. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  17. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  18. Development of Probabilistic Understanding in Fourth Grade

    ERIC Educational Resources Information Center

    English, Lyn D.; Watson, Jane M.

    2016-01-01

    The authors analyzed the development of 4th-grade students' understanding of the transition from experimental relative frequencies of outcomes to theoretical probabilities with a focus on the foundational statistical concepts of variation and expectation. After observing the decreasing variation from the theoretical probability as the sample size…

  19. Rethinking Theoretical Approaches to Stigma

    PubMed Central

    Martin, Jack K; Lang, Annie; Olafsdottir, Sigrun

    2008-01-01

    A resurgence of research and policy efforts on stigma both facilitates and forces a reconsideration of the levels and types of factors that shape reactions to persons with conditions that engender prejudice and discrimination. Focusing on the case of mental illness but drawing from theories and studies of stigma across the social sciences, we propose a framework that brings together theoretical insights from micro, meso and macro level research: Framework Integrating Normative Influences on Stigma (FINIS) starts with Goffman’s notion that understanding stigma requires a language of social relationships, but acknowledges that individuals do not come to social interaction devoid of affect and motivation. Further, all social interactions take place in a context in which organizations, media and larger cultures structure normative expectations which create the possibility of marking “difference”. Labelling theory, social network theory, the limited capacity model of media influence, the social psychology of prejudice and discrimination, and theories of the welfare state all contribute to an understanding of the complex web of expectations shaping stigma. FINIS offers the potential to build a broad-based scientific foundation based on understanding the effects of stigma on the lives of persons with mental illness, the resources devoted to the organizations and families who care for them, and policies and programs designed to combat stigma. We end by discussing the clear implications this framework holds for stigma reduction, even in the face of conflicting results. PMID:18436358

  20. The Foundations of Psychological Understanding

    ERIC Educational Resources Information Center

    Goswami, Usha

    2006-01-01

    In this paper, I review some recent submissions to "Developmental Science" that advance our understanding of psychological development. More and more submissions to the journal explore the origins of knowledge and, for psychological knowledge, such origins are multiple. Here I consider the contribution of mechanisms such as contingency detection,…

  1. A Theoretical Trombone

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2014-01-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that…

  2. Job embeddedness: a multifoci theoretical extension.

    PubMed

    Kiazad, Kohyar; Holtom, Brooks C; Hom, Peter W; Newman, Alexander

    2015-05-01

    Integrating the expanding job embeddedness (JE) literature, in this article we advance a multifoci model of JE that is theoretically grounded in conservation of resources (COR) theory. From COR theory, we posit that employees' motivation to acquire and protect resources explains why they become embedded and how they behave once embedded. Our COR-based JE model highlights contextual antecedents that clarify how employees become embedded within different foci. Its multifoci theoretical lens also illustrates how different forms of work-focused embeddedness differentially affect work outcomes and how they interact with nonwork foci to influence those outcomes. Along with directions for further research, we further discuss theoretical and practical implications of our integrative formulation. PMID:25774569

  3. Understand, Predict, and Design

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    Electronic-structure approaches are changing dramatically the way much theoretical and computational research is done. This success derives from the ability to characterize from first-principles many material properties with an accuracy that complements or even augments experimental observations. This accuracy can extend beyond the properties for which a real-life experiment is either feasible or just cost-effective, and it is based on our ability to compute and understand the quantum-mechanical behavior of interacting electrons and nuclei. Density-functional theory, for which the Nobel prize in chemistry was awarded in 1998, has been instrumental to this success, together with the availability of computers that are now routinely able to deal with the complexity of realistic problems. The extent of such revolution should not be underestimated, notwithstanding the many algorithmic and theoretical bottlenecks that await resolution, and the existence of hard problems rarely amenable to direct simulations. Since ab-initio methods combine fundamental predictive power with atomic resolution, they provide a quantitatively-accurate first step in the study and characterization of new materials, and the ability to describe with unprecedented control molecular architectures exactly at those scales (hundreds to thousands of atoms) where some of the most promising and undiscovered properties are to be engineered. In the current effort to control and design the properties of novel molecules, materials, and devices, first-principles approaches constitute thus a unique and very powerful instrument. Complementary strategies emerge: Insight: First-principles simulations provide a unique connection between microscopic and macroscopic properties. When partnered with experimental tools — from spectroscopies to microscopies — they can deliver unique insight and understanding on the detailed arrangements of atoms and molecules, and on their relation to the observed phenomena

  4. Evolution of Theoretical Perspectives in My Research

    NASA Astrophysics Data System (ADS)

    Otero, Valerie K.

    2009-11-01

    Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.

  5. Understanding gas hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Lapham, Laura; Chanton, Jeffrey; MacDonald, Ian; Martens, Christopher

    2010-05-01

    In order to understand the role gas hydrates play in climate change or their potential as an energy source, we must first understand their basic behaviors. One such behavior not well understood is their dissolution and the factors that control it. Theoretically, hydrates are stable in areas of high pressure, low temperature, moderate salt concentrations, and saturated methane. Yet in nature, we observe hydrate to outcrop seafloor sediments into overlying water that is under-saturated with respect to methane. How do these hydrates not dissolve away? To address this question, we combine both field and laboratory experiments. In the field, we have collected pore-waters directly surrounding gas hydrate outcrops and measured for in situ methane concentrations. This gives us an understanding of the concentration gradients, and thus methane flux, directly from the hydrate to the surrounding environment. From these samples, we found that methane concentrations decreased further from hydrate yet are always under-saturated with respect to methane hydrate. The resulting low methane gradients were then used to calculate low dissolution rates. This result suggests that hydrates are meta-stable in the environment. What controls their apparent meta-stability? We hypothesize that surrounding oils or microbial slimes help protect the hydrate and slow down their dissolution. To test this hypothesis, we conducted a series of laboratory experiments where hydrate was formed at in situ pressure and temperature and the source gas removed; first with no oils, then with oils. Dissolved methane concentrations were then measured in surrounding fluids over time and dissolution rates calculated. To date, both methane and mixed gas hydrate (methane, ethane, and propane) have similar dissolution rates of 0.12 mM/hr. Future experiments will add oils to determine how different hydrate dissolves with such contaminants. This study will further our understanding of factors that control hydrate

  6. Advances in attosecond science

    NASA Astrophysics Data System (ADS)

    Calegari, Francesca; Sansone, Giuseppe; Stagira, Salvatore; Vozzi, Caterina; Nisoli, Mauro

    2016-03-01

    Attosecond science offers formidable tools for the investigation of electronic processes at the heart of important physical processes in atomic, molecular and solid-state physics. In the last 15 years impressive advances have been obtained from both the experimental and theoretical points of view. Attosecond pulses, in the form of isolated pulses or of trains of pulses, are now routinely available in various laboratories. In this review recent advances in attosecond science are reported and important applications are discussed. After a brief presentation of various techniques that can be employed for the generation and diagnosis of sub-femtosecond pulses, various applications are reported in atomic, molecular and condensed-matter physics.

  7. ALICE physics --- Theoretical overview

    SciTech Connect

    Alessandro, B.; Aurenche, P.; Baier, R.; Becattini, F.; Botje, M.; Csorgo, T.; de Cataldo, G.; Foka, Y.; Giovannini, A.; Giubellino, P.; Guillet, J.Ph.; Heinz, U.; Hencken, K.; Iancu, E.; Kaidalov, A.B.; Kajantie, K.; Karsch, F.; Koch, V.; Kopeliovich, B.Z.; Kurepin, A.B.; Laine, M.; Lednicky, R.; Mangano, M.; Monteno, M.; Paic, G.; Pilon, E.; Pshenichnov, I.A.; Redlich, K.; Revol, J.-P.; Riggi, F.; Safarik, K.; Salgado, C.A.; Schukraft, J.; Sinyukov, Y.; Tomasik, B.; Treleani, D.; Ugoccioni, R.; Venugopalan, R.; Vogt, R.; Wiedemann, U.A.

    2002-09-15

    ALICE is the dedicated heavy ion experiment at the LHC. This note summarizes theoretical developments in the field of hot and dense matter and their relevance for observables accessible to ALICE in nucleus-nucleus, proton-nucleus and proton-proton collisions. In addition, aspects of specific interest for proton-proton, proton-nucleus, ultraperipheral collisions and cosmic ray physics, which can be addressed by ALICE, are also discussed.

  8. A theoretical trombone

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2014-09-01

    What follows is a description of a theoretical model designed to calculate the playing frequencies of the musical pitches produced by a trombone. The model is based on quantitative treatments that demonstrate the effects of the flaring bell and cup-shaped mouthpiece sections on these frequencies and can be used to calculate frequencies that compare well to both the desired frequencies of the musical pitches and those actually played on a real trombone.

  9. Theoretical Approaches to Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof

    Nanoparticles can be viewed as wave resonators. Involved waves are, for example, carrier waves, plasmon waves, polariton waves, etc. A few examples of successful theoretical treatments that follow this approach are given. In one, an effective medium theory of a nanoparticle composite is presented. In another, plasmon polaritonic solutions allow to extend concepts of radio technology, such as an antenna and a coaxial transmission line, to the visible frequency range.

  10. Theoretical Developments in SUSY

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2009-01-01

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.

  11. Theoretical studies of molecular processes

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    1997-09-01

    The current thesis concerns with theoretical studies of molecular processes and consists of two parts. The first part includes theoretical studies of dynamics of unimolecular and bimolecular reactions, in particular those involving non-adiabatic processes. In chapter 2 and 3, we have presented our studies of detailed mechanisms for the photodissociation of C2H2 and C2H, and the ion-molecule reactions of C2H2+ + CH4 or NH3, respectively. In chapter 4, we have presented our study that extends TST to non-adiabatic reactions, and an application of the theory of the spin-forbidden reaction of CH(2/Pi)+N2. In chapter 5, we have included our analyses on the photodissociation of triplet ketene, where an extensive seam has been found all along the reaction coordinate. Finally, in Chapter 6, we have presented our study on the photodissociation of O3/sp-, which includes qualitative electronic structure calculations and construction of global potential energy functions for coupled electronic states. The second part of the thesis deals with theoretical studies of organometallic reactions, metal clusters, and gas-surface interactions. With theoretical calculations, one can study the reactivities of transition metal compounds systematically, which allows one to understand the key parameters that control the reactivities of those compounds. In chapter 2, we have presented our implementation of analytical hessian for effective core potential, which makes normal mode analysis possible for large organometallic systems and has proven to be very useful in the study of systems containing transition metals. In chapter 3-5, we have included our studies on the detailed mechanisms of several interesting reactions including platinum/palladium(0) catalyzed diboration and thioboration reactions of acetylene and olefin, and H- H/C-H bond activation on small metal clusters Pt/Pdn(n = 1[-]3). For truly large systems such as surfaces or proteins, full quantum mechanical treatments are

  12. Towards understanding methyllysine readout☆

    PubMed Central

    Musselman, Catherine A.; Khorasanizadeh, Sepideh; Kutateladze, Tatiana G.

    2015-01-01

    Lysine methylation is the most versatile covalent posttranslational modification (PTM) found in histones and non-histone proteins. Over the past decade a number of methyllysine-specific readers have been discovered and their interactions with histone tails have been structurally and biochemically characterized. More recently innovative experimental approaches have emerged that allow for studying reader interactions in the context of the full nucleosome and nucleosomal arrays. New studies reveal various reader-nucleosome contacts outside the methylated histone tail, thus offering a better model for the association of histone readers to chromatin and broadening our understanding of the functional implications of these interactions. In this review we give a brief overview of the known mechanisms of histone lysine methylation readout, summarize progress recently made in exploring interactions with methylated nucleosomes, and discuss the latest advances in the development of small molecule inhibitors of the methyllysine-specific readers. PMID:24727128

  13. Theoretical aspects of light meson spectroscopy

    SciTech Connect

    Barnes, T. |

    1995-12-31

    In this pedagogical review the authors discuss the theoretical understanding of light hadron spectroscopy in terms of QCD and the quark model. They begin with a summary of the known and surmised properties of QCD and confinement. Following this they review the nonrelativistic quark potential model for q{anti q} mesons and discuss the quarkonium spectrum and methods for identifying q{anti q} states. Finally, they review theoretical expectations for non-q{anti q} states (glueballs, hybrids and multiquark systems) and the status of experimental candidates for these states.

  14. [Explaining and understanding in psychiatry].

    PubMed

    Wölk, W

    1998-05-01

    The philosophical debate on explanation and understanding also led to basic methodological reflections in psychiatry. Subsuming one fact under a general law is the characteristic feature of scientific explanations. In this way, deductive conclusions can be achieved with a high degree of objectivity. Hermeneutical understanding makes way for interpretations in front of a given theoretical matrix. On the other hand, sympathetic understanding is a matter of conceiving single-part items as a consequence of other singular aspects (e.g., tracing back an action to an intention). If one understands the growth of knowledge as a rational and critical process, it seems no more justified to insist on exclusive methodologically based positions. PMID:9629554

  15. Studies in theoretical particle physics

    NASA Astrophysics Data System (ADS)

    Kaplan, D. B.

    1991-07-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter, which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal.

  16. Studies in theoretical particle physics

    SciTech Connect

    Kaplan, D.B.

    1991-07-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal.

  17. Advances in Soil Biology: What does this mean for assessing soil change?

    NASA Astrophysics Data System (ADS)

    Black, Helaina; Mele, Pauline

    2015-07-01

    Our interests in soil change are moving away from soil properties and increasingly towards changes in the processes and functioning of soils. Soil organisms are fundamental to dynamics and change in soils through their fundamental role in soil processes [1]. However it is only with recent technical and theoretical advances that we have started to establish quantitative relationships between soil biology and soil change (c.f. [2]). It is this predictive understanding that will enable us to fully integrate soil biology into the effective monitoring and sustainable management of soils. This paper outlines some of the recent advances in soil biology and discusses their relevance to monitoring and management.

  18. Future advances.

    PubMed

    Celesia, Gastone G; Hickok, Gregory

    2015-01-01

    Future advances in the auditory systems are difficult to predict, and only educated guesses are possible. It is expected that innovative technologies in the field of neuroscience will be applied to the auditory system. Optogenetics, Brainbow, and CLARITY will improve our knowledge of the working of neural auditory networks and the relationship between sound and language, providing a dynamic picture of the brain in action. CLARITY makes brain tissue transparent and offers a three-dimensional view of neural networks, which, combined with genetically labeling neurons with multiple, distinct colors (Optogenetics), will provide detailed information of the complex brain system. Molecular functional magnetic resonance imaging (MRI) will allow the study of neurotransmitters detectable by MRI and their function in the auditory pathways. The Human Connectome project will study the patterns of distributed brain activity that underlie virtually all aspects of cognition and behavior and determine if abnormalities in the distributed patterns of activity may result in hearing and behavior disorders. Similarly, the programs of Big Brain and ENIGMA will improve our understanding of auditory disorders. New stem-cell therapy and gene therapies therapy may bring about a partial restoration of hearing for impaired patients by inducing regeneration of cochlear hair cells. PMID:25726297

  19. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    PubMed

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír

    2016-09-01

    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods. PMID:27229513

  20. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  1. Advanced Theoretical Studies for Chemical Identification of the Heaviest Elements

    NASA Astrophysics Data System (ADS)

    Pershina, V.

    2015-06-01

    Both relativistic Dirac-Fock (DF) correlated, CCSD(T), and the density-functional theory (DFT) methods with various GGA exchange-correlation potentials agree on an increase in the M-Au bond strength from M = Cn to Fl. This means that the adsorption energy of Fl on gold, as measured by gas-phase chromatography experiments, must be larger for Fl than for Cn. For the weak (van der Waals) interactions, the trend to an increase in bonding from Cn2 to Fl2 obtained at the DFT level of theory is also confirmed by the DF CCSD(T) calculations. Thus, for comparative studies, relativistic DFT is a very reliable and efficient tool. First calculations of adsorption of TlOH and element 113OH on a hydroxylated quartz surface are reported.

  2. Theoretical tools for semiconductors devices

    SciTech Connect

    Hagan, P.; Cox, R.; Randall, E.; Reyna, L.

    1996-10-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Future generations of Very Large Scale Integrated (VLSI) circuits require semiconducting devices that are much faster and smaller than current devices. Three-dimensional and transient effects are critical to the performance of these devices. Yet using Monte Carlo (MC) codes to perform time-dependent, three-dimensional simulations will not be feasible in the foreseeable future. Here we re-analyze the physics of semiconductors; use singular perturbation techniques to derive the reduced-dimensionality equations that accurately describe the semiconductor in the regimes corresponding to ultra-small ultra-fast devices; and validate the resulting theoretical models against MC simulations and experimental data. The objective of this project was to gain the capability of accurately simulating ultra-small ultra-fast devices in three spatial dimensions with the ultimate goal of transforming the design of advanced devices.

  3. Advancement in understanding the central pathways that underlie the effects of exteroceptive signals on the gonadotropic axis of the female for initiation of puberty and maintenance of normal reproductive cycles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neural circuits within the brain regulate the proper temporal release of GnRH from hypothalamic neurons for the initiation of puberty and maintenance of normal reproductive cycles in the female. This process involves feedback from gonadal steroids and is metabolically gated. Full understanding of ...

  4. Helicopter impulsive noise - Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1986-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanism is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanism of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.

  5. Helicopter impulsive noise - Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1986-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanisms is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanisms of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory/experiment are suggested.

  6. Helicopter impulsive noise: Theoretical and experimental status

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Yu, Y. H.

    1983-01-01

    The theoretical and experimental status of helicopter impulsive noise is reviewed. The two major source mechanisms of helicopter impulsive noise are addressed: high-speed impulsive noise and blade-vortex interaction impulsive noise. A thorough physical explanation of both generating mechanism is presented together with model and full-scale measurements of the phenomena. Current theoretical prediction methods are compared with experimental findings of isolated rotor tests. The noise generating mechanism of high speed impulsive noise are fairly well understood - theory and experiment compare nicely over Mach number ranges typical of today's helicopters. For the case of blade-vortex interaction noise, understanding of noise generating mechanisms and theoretical comparison with experiment are less satisfactory. Several methods for improving theory-experiment are suggested.

  7. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  8. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  9. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  10. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  11. Theoretical ecology without species

    NASA Astrophysics Data System (ADS)

    Tikhonov, Mikhail

    The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.

  12. Understanding the Surface Hopping View of Electronic Transitions and Decoherence

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Jain, Amber; Landry, Brian; Petit, Andrew; Ouyang, Wenjun; Bellonzi, Nicole

    2016-05-01

    We present a current, up-to-date review of the surface hopping methodology for solving nonadiabatic problems, 25 years after Tully published the fewest switches surface hopping algorithm. After reviewing the original motivation for and failures of the algorithm, we give a detailed examination of modern advances, focusing on both theoretical and practical issues. We highlight how one can partially derive surface hopping from the Schrödinger equation in the adiabatic basis, how one can change basis within the surface hopping algorithm, and how one should understand and apply the notions of decoherence and wavepacket bifurcation. The question of time reversibility and detailed balance is also examined at length. Recent applications to photoexcited conjugated polymers are discussed briefly.

  13. Emotion understanding from the perspective of autonomous robots research.

    PubMed

    Cañamero, Lola

    2005-05-01

    In this paper, I discuss some of the contributions that modeling emotions in autonomous robots can make towards understanding human emotions-'as sited in the brain' and as used in our interactions with the environment-and emotions in general. Such contributions are linked, on the one hand, to the potential use of such robotic models as tools and 'virtual laboratories' to test and explore systematically theories and models of human emotions, and on the other hand to a modeling approach that fosters conceptual clarification and operationalization of the relevant aspects of theoretical notions and models. As illustrated by an overview of recent advances in the field, this area is still in its infancy. However, the work carried out already shows that we share many conceptual problems and interests with other disciplines in the affective sciences and that sound progress necessitates multidisciplinary efforts. PMID:15963689

  14. Technological advances transforming rheumatology

    PubMed Central

    Robinson, William H.; Mao, Rong

    2016-01-01

    Technological advances over the past decade have revolutionized many areas of rheumatology, ranging from diagnosis, prognosis and therapeutic development to the mechanistic understanding of rheumatic diseases. This overview highlights key technological innovations and discusses the major impact that these developments are having on research and clinical practice. PMID:26439404

  15. Infant Development: Recent Advances.

    ERIC Educational Resources Information Center

    Bremner, Gavin, Ed.; Slater, Alan, Ed.; Butterworth, George, Ed.

    Noting that the last 30 years have seen enormous increases in the understanding of infancy, this book examines the current state of knowledge regarding infant development. The book's contents stem from meetings of the British Infancy Research Group. Although the book was intended for advanced undergraduates, it would also be useful for advanced…

  16. Where Advancement Fails.

    ERIC Educational Resources Information Center

    Trachtman, Leon E.

    1987-01-01

    Faculty members and advancement officers tend to come from different environments and to inhabit different worlds. The failure of the two to understand one another and work together in the interest of their institutions is discussed. The central administration must serve as a bridge between the two. (MLW)

  17. Advances in the management of Barrett’s esophagus and early esophageal adenocarcinoma

    PubMed Central

    Singh, Ajaypal; Chak, Amitabh

    2015-01-01

    The incidence of esophageal adenocarcinoma (EAC) has markedly increased in the United States over the last few decades. Barrett’s esophagus (BE) is the most significant known risk factor for this malignancy. Theoretically, screening and treating early BE should help prevent EAC but the exact incidence of BE and its progression to EAC is not entirely known and cost-effectiveness studies for Barrett’s screening are lacking. Over the last few years, there have been major advances in our understanding of the epidemiology, pathogenesis and endoscopic management of BE. These developments focus on early recognition of advanced histology and endoscopic treatment of high-grade dysplasia. Advanced resection techniques now enable us to endoscopically treat early esophageal cancer. In this review, we will discuss these recent advances in diagnosis and treatment of Barrett’s esophagus and early esophageal adenocarcinoma. PMID:26486568

  18. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  19. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  20. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.