Sample records for advanced airspace concept

  1. Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2002-01-01

    A general overview of the Advanced Airspace Concept (AAC) is presented. The topics include: 1) Limitations of the existing system; 2) The Advanced Airspace Concept; 3) Candidate architecture for the AAC; 4) Separation assurance and conflict avoidance system (TSAFE); and 5) Ground-Air Interactions. This paper is in viewgraph form.

  2. A System Concept for Facilitating User Preferences in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.

    1996-01-01

    The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.

  3. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit

  4. Generic Airspace Concepts and Research

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2010-01-01

    The purpose of this study was to evaluate methods for reducing the training and memorization required to manage air traffic in mid-term, Next Generation Air Transportation System (NextGen) airspace. We contrasted the performance of controllers using a sector information display and NextGen automation tools while working with familiar and unfamiliar sectors. The airspace included five sectors from Oakland and Salt Lake City Centers configured as a "generic center" called "West High Center." The Controller Information Tool was used to present essential information for managing these sectors. The Multi Aircraft Control System air traffic control simulator provided data link and conflict detection and resolution. There were five experienced air traffic controller participants. Each was familiar with one or two of the five sectors, but not the others. The participants rotated through all five sectors during the ten data collection runs. The results addressing workload, traffic management, and safety, as well as controller and observer comments, supported the generic sector concept. The unfamiliar sectors were comparable to the familiar sectors on all relevant measures.

  5. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part III

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgersm Joel M.; Haynes, Brian; Roy, Aloke

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified as part of the study. NASA's NextGen Concepts and Technology Development (CTD) Project integrates solutions for a safe, efficient and high-capacity airspace system through joint research efforts and partnerships with other government agencies. The CTD Project is one of two within NASA's Airspace Systems Program and is managed by the NASA Ames Research Center. Research within the CTD Project is in support the 2011 NASA Strategic Plan Sub-Goal 4.1: Develop innovative solutions and advanced technologies, through a balanced research portfolio, to improve current and future air transportation. The focus of CTD is on developing capabilities in traffic flow management, dynamic airspace configuration, separation assurance, super density operations and airport surface operations. Important to its research is the development of human/automation information requirements and decisionmaking guidelines for human-human and human-machine airportal decision-making. Airborne separation, oceanic intrail climb/descent and interval management applications depend on location and intent information of surrounding aircraft. ADS-B has been proposed to provide the information exchange, but other candidates such as satellite-based receivers, broadband or airborne internet, and cellular communications are possible candidate's.

  6. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  7. Validation Of The Airspace Concept Evaluation System Using Real World Data

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon

    2005-01-01

    This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.

  8. Concept of operations for commercial space transportation in the National Airspace System

    DOT National Transportation Integrated Search

    2001-05-11

    This is a concept document. It provides a conceptual overview of commercial space transportation (CST) : operations in the National Airspace System (NAS) in 2005 and beyond. This document is intended to support : evolution of a fully integrated, mode...

  9. Environmental impact analysis with the airspace concept evaluation system

    NASA Technical Reports Server (NTRS)

    Augustine, Stephen; Capozzi, Brian; DiFelici, John; Graham, Michael; Thompson, Terry; Miraflor, Raymond M. C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center has developed the Airspace Concept Evaluation System (ACES), which is a fast-time simulation tool for evaluating Air Traffic Management (ATM) systems. This paper describes linking a capability to ACES which can analyze the environmental impact of proposed future ATM systems. This provides the ability to quickly evaluate metrics associated with environmental impacts of aviation for inclusion in multi-dimensional cost-benefit analysis of concepts for evolution of the National Airspace System (NAS) over the next several decades. The methodology used here may be summarized as follows: 1) Standard Federal Aviation Administration (FAA) noise and emissions-inventory models, the Noise Impact Routing System (NIRS) and the Emissions and Dispersion Modeling System (EDMS), respectively, are linked to ACES simulation outputs; 2) appropriate modifications are made to ACES outputs to incorporate all information needed by the environmental models (e.g., specific airframe and engine data); 3) noise and emissions calculations are performed for all traffic and airports in the study area for each of several scenarios, as simulated by ACES; and 4) impacts of future scenarios are compared to the current NAS baseline scenario. This paper also provides the results of initial end-to-end, proof-of-concept runs of the integrated ACES and environmental-modeling capability. These preliminary results demonstrate that if no growth is likely to be impeded by significant environmental impacts that could negatively affect communities throughout the nation.

  10. Validating the Airspace Concept Evaluation System for Different Weather Days

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Meyn, Larry

    2006-01-01

    This paper extends the process for validating the Airspace Concept Evaluation System using real-world historical flight operational data. System inputs such as flight plans and airport en-route capacities, are generated and processed to create a realistic reproduction of a single day's operations within the National Airspace System. System outputs such as airport throughput, delays, and en-route sector loads are then compared to real world operational metrics and delay statistics for the reproduced day. The process is repeated for 4 historical days with high and low traffic volume and delay attributed to weather. These 4 days are simulated using default en-route capacities and variable en-route capacities used to emulate weather. The validation results show that default enroute capacity simulations are closer to real-world data for low weather days than high weather days. The use of reduced variable enroute capacities adds a large delay bias to ACES but delay trends between weather days are better represented.

  11. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  12. Enabling Airspace Integration for High Density Urban Air Mobility

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  13. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  14. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  15. A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept

    NASA Technical Reports Server (NTRS)

    Homola, Jeffrey; Lee, Paul U.; Prevot, Thomas; Lee, Hwasoo; Kessell, Angela; Brasil, Connie; Smith, Nancy

    2010-01-01

    An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design.

  16. FACET: Future ATM Concepts Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bilmoria, Karl D.; Banavar, Sridhar; Chatterji, Gano B.; Sheth, Kapil S.; Grabbe, Shon

    2000-01-01

    FACET (Future ATM Concepts Evaluation Tool) is an Air Traffic Management research tool being developed at the NASA Ames Research Center. This paper describes the design, architecture and functionalities of FACET. The purpose of FACET is to provide E simulation environment for exploration, development and evaluation of advanced ATM concepts. Examples of these concepts include new ATM paradigms such as Distributed Air-Ground Traffic Management, airspace redesign and new Decision Support Tools (DSTs) for controllers working within the operational procedures of the existing air traffic control system. FACET is currently capable of modeling system-wide en route airspace operations over the contiguous United States. Airspace models (e.g., Center/sector boundaries, airways, locations of navigation aids and airports) are available from databases. A core capability of FACET is the modeling of aircraft trajectories. Using round-earth kinematic equations, aircraft can be flown along flight plan routes or great circle routes as they climb, cruise and descend according to their individual aircraft-type performance models. Performance parameters (e.g., climb/descent rates and speeds, cruise speeds) are obtained from data table lookups. Heading, airspeed and altitude-rate dynamics are also modeled. Additional functionalities will be added as necessary for specific applications. FACET software is written in Java and C programming languages. It is platform-independent, and can be run on a variety of computers. FACET has been designed with a modular software architecture to enable rapid integration of research prototype implementations of new ATM concepts. There are several advanced ATM concepts that are currently being implemented in FACET airborne separation assurance, dynamic density predictions, airspace redesign (re-sectorization), benefits of a controller DST for direct-routing, and the integration of commercial space transportation system operations into the U.S. National

  17. Common Methodology for Efficient Airspace Operations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar

    2012-01-01

    Topics include: a) Developing a common methodology to model and avoid disturbances affecting airspace. b) Integrated contrails and emission models to a national level airspace simulation. c) Developed capability to visualize, evaluate technology and alternate operational concepts and provide inputs for policy-analysis tools to reduce the impact of aviation on the environment. d) Collaborating with Volpe Research Center, NOAA and DLR to leverage expertise and tools in aircraft emissions and weather/climate modeling. Airspace operations is a trade-off balancing safety, capacity, efficiency and environmental considerations. Ideal flight: Unimpeded wind optimal route with optimal climb and descent. Operations degraded due to reduction in airport and airspace capacity caused by inefficient procedures and disturbances.

  18. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  19. Concept of Operations for Integrating Commercial Supersonic Transport Aircraft into the National Airspace System

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.

    2017-01-01

    Several businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. This document was developed to create a path for research and development that exposes the benefits and barriers of seamlessly integrating a class of CSTs into the NAS, while also serving as a Concept of Operations (ConOps) which posits a mid- to far-term solution (2025-2035) concept for best integrating CST into the NAS. Background research regarding historic supersonic operations in the National Airspace System, assumptions about design aspects and equipage of commercial supersonic transport (CST) aircraft, assumptions concerning the operational environment are described in this document. Results of a simulation experiment to investigate the interactions between CST aircraft and modern-day air traffic are disseminated and are used to generate scenarios for CST operations. Finally, technology needs to realize these operational scenarios are discussed.

  20. Flexible Airspace Management (FAM) Research 2010 Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Brasil, Connie; Homola, Jeffrey; Kessell, Angela; Prevot, Thomas; Smith, Nancy

    2011-01-01

    A human-in-the-Ioop (HITL) simulation was conducted to assess potential user and system benefits of Flexible Airspace Management (FAM) concept, as well as designing role definitions, procedures, and tools to support the FAM operations in the mid-term High Altitude Airspace (HAA) environment. The study evaluated the benefits and feasibility of flexible airspace reconfiguration in response to traffic overload caused by weather deviations, and compared them to those in a baseline condition without the airspace reconfiguration. The test airspace consisted of either four sectors in one Area of Specialization or seven sectors across two Areas. The test airspace was assumed to be at or above FL340 and fully equipped Vvith data communications (Data Comm). Other assumptions were consistent with those of the HAA concept. Overall, results showed that FAM operations with multiple Traffic Management Coordinators, Area Supervisors, and controllers worked remarkably well. The results showed both user and system benefits, some of which include the increased throughput, decreased flight distance, more manageable sector loads, and better utilized airspace. Also, the roles, procedures, airspace designs, and tools were all very well received. Airspace configuration options that resulted from a combination of algorithm-generated airspace configurations with manual modifications were well acceptec and posed little difficuIty and/or workload during airspace reconfiguration process. The results suggest a positive impact of FAM operations in HAA. Further investigation would be needed to evaluate if the benefits and feasibility would extend in either non-HAA or mixed equipage environment.

  1. Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Cotton, William; Kopardekar, Parimal

    2011-01-01

    The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended.

  2. Future ATM Concepts Evaluation Tool (FACET) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data

  3. Guidance concepts for time-based flight operations

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  4. Metrics for the NASA Airspace Systems Program

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.

    2009-01-01

    This document defines an initial set of metrics for use by the NASA Airspace Systems Program (ASP). ASP consists of the NextGen-Airspace Project and the NextGen-Airportal Project. The work in each project is organized along multiple, discipline-level Research Focus Areas (RFAs). Each RFA is developing future concept elements in support of the Next Generation Air Transportation System (NextGen), as defined by the Joint Planning and Development Office (JPDO). In addition, a single, system-level RFA is responsible for integrating concept elements across RFAs in both projects and for assessing system-wide benefits. The primary purpose of this document is to define a common set of metrics for measuring National Airspace System (NAS) performance before and after the introduction of ASP-developed concepts for NextGen as the system handles increasing traffic. The metrics are directly traceable to NextGen goals and objectives as defined by the JPDO and hence will be used to measure the progress of ASP research toward reaching those goals. The scope of this document is focused on defining a common set of metrics for measuring NAS capacity, efficiency, robustness, and safety at the system-level and at the RFA-level. Use of common metrics will focus ASP research toward achieving system-level performance goals and objectives and enable the discipline-level RFAs to evaluate the impact of their concepts at the system level.

  5. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  6. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  7. Identifying Functional Requirements for Flexible Airspace Management Concept Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Bender, Kim; Pagan, Danielle

    2011-01-01

    Flexible Airspace Management (FAM) is a mid- term Next Generation Air Transportation System (NextGen) concept that allows dynamic changes to airspace configurations to meet the changes in the traffic demand. A series of human-in-the-loop (HITL) studies have identified procedures and decision support requirements needed to implement FAM. This paper outlines a suggested FAM procedure and associated decision support functionality based on these HITL studies. A description of both the tools used to support the HITLs and the planned NextGen technologies available in the mid-term are presented and compared. The mid-term implementation of several NextGen capabilities, specifically, upgrades to the Traffic Management Unit (TMU), the initial release of an en route automation system, the deployment of a digital data communication system, a more flexible voice communications network, and the introduction of a tool envisioned to manage and coordinate networked ground systems can support the implementation of the FAM concept. Because of the variability in the overall deployment schedule of the mid-term NextGen capabilities, the dependency of the individual NextGen capabilities are examined to determine their impact on a mid-term implementation of FAM. A cursory review of the different technologies suggests that new functionality slated for the new en route automation system is a critical enabling technology for FAM, as well as the functionality to manage and coordinate networked ground systems. Upgrades to the TMU are less critical but important nonetheless for FAM to be fully realized. Flexible voice communications network and digital data communication system could allow more flexible FAM operations but they are not as essential.

  8. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part I

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke

    2013-01-01

    The National Aviation and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first phase.

  9. A Study of Future Communications Concepts and Technologies for the National Airspace System - Part IV

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present the final results describing the communications challenges and opportunities that have been identified as part of the study.

  10. A Study of Future Communications Concepts and Technologies for the National Airspace System - Part II

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Haynes, Brian; Wichgers, Joel M.; Roy, Aloke

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first year.

  11. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  12. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  13. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  14. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  15. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    NASA Technical Reports Server (NTRS)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  16. U.S. Army Airspace Command and Control at Echelons Above Brigade

    DTIC Science & Technology

    2010-01-01

    Systems TACS Theater Air Control System TAIS Tactical Airspace Integrations System TAGS Theater Air Ground System TBMCS Theater Battle Management...Systems ( TBMCS ) in the C/JAOC. The approved Airspace Control Measure Requests are passed to all the Service’s ACS via the TBMCS . The TAIS receives the...shared between TBMCS and the Advanced Field 42 Artillery Tactical Data System through the Publish and Subscribe Server or via the TAIS. There is

  17. Managing Demand and Capacity Using Multi-Sector Planning and Flexible Airspace: Human-in-the-Loop Evaluation of NextGen

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Smith, Nancy M.; Prevot, Thomas; Homola, Jeffrey R.

    2010-01-01

    When demand for an airspace sector exceeds capacity, the balance can be re-established by reducing the demand, increasing the capacity, or both. The Multi-Sector Planner (MSP) concept has been proposed to better manage traffic demand by modifying trajectories across multiple sectors. A complementary approach to MSP, called Flexible Airspace Management (FAM), reconfigures the airspace such that capacity can be reallocated dynamically to balance the traffic demand across multiple sectors, resulting in fewer traffic management initiatives. The two concepts have been evaluated with a series of human-in-the-loop simulations at the Airspace Operations Laboratory to examine and refine the roles of the human operators in these concepts, as well as their tools and procedural requirements. So far MSP and FAM functions have been evaluated individually but the integration of the two functions is desirable since there are significant overlaps in their goals, geographic/temporal scope of the problem space, and the implementation timeframe. Ongoing research is planned to refine the humans roles in the integrated concept.

  18. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  19. Development and Application of an Integrated Approach toward NASA Airspace Systems Research

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Fong, Robert K.; Abramson, Paul D.; Koenke, Ed

    2008-01-01

    The National Aeronautics and Space Administration's (NASA) Airspace Systems Program is contributing air traffic management research in support of the 2025 Next Generation Air Transportation System (NextGen). Contributions support research and development needs provided by the interagency Joint Planning and Development Office (JPDO). These needs generally call for integrated technical solutions that improve system-level performance and work effectively across multiple domains and planning time horizons. In response, the Airspace Systems Program is pursuing an integrated research approach and has adapted systems engineering best practices for application in a research environment. Systems engineering methods aim to enable researchers to methodically compare different technical approaches, consider system-level performance, and develop compatible solutions. Systems engineering activities are performed iteratively as the research matures. Products of this approach include a demand and needs analysis, system-level descriptions focusing on NASA research contributions, system assessment and design studies, and common systemlevel metrics, scenarios, and assumptions. Results from the first systems engineering iteration include a preliminary demand and needs analysis; a functional modeling tool; and initial system-level metrics, scenario characteristics, and assumptions. Demand and needs analysis results suggest that several advanced concepts can mitigate demand/capacity imbalances for NextGen, but fall short of enabling three-times current-day capacity at the nation s busiest airports and airspace. Current activities are focusing on standardizing metrics, scenarios, and assumptions, conducting system-level performance assessments of integrated research solutions, and exploring key system design interfaces.

  20. 78 FR 72006 - Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... establishes Class D airspace and Class E airspace at Laguna Army Air Field (AAF), (Yuma Proving Ground), Yuma...) within a 3.5- mile radius of Laguna AAF (Yuma Proving Ground), Yuma, AZ; and Class E airspace extending... scope of that authority as it establishes controlled airspace at Laguna AAF, (Yuma Proving Ground), Yuma...

  1. 75 FR 65250 - Proposed Amendment of Class E Airspace and Revocation of Class E Airspace; Easton, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... rulemaking (NPRM). SUMMARY: This action proposes to modify Class E surface airspace and airspace 700 feet... modify Class E surface airspace and Class E airspace extending upward from 700 feet above the surface to... Class E airspace extending upward from 700 feet above the surface are published in Paragraph 6002, 6004...

  2. Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Cotton, William B.

    2011-01-01

    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.

  3. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  4. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated

  5. Fast-time Simulation of an Automated Conflict Detection and Resolution Concept

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Erzberger, Heinz

    2006-01-01

    This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.

  6. 78 FR 33015 - Proposed Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-0136; Airspace Docket No. 13-ASW-4] Proposed Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco Airport, TX AGENCY: Federal Aviation Administration (FAA), DOT... Waco, TX, by separating the Class D airspace at Waco Regional Airport from the Class D airspace at TSTC...

  7. Improved Throughput with Cooperating Futuristic Airspace Management Components

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2013-01-01

    An experiment was conducted to integrate airspace management tools that would typically be confined to either the en route or the terminal airspace to explore the potential benefits of their communication to improve arrival capacity. A NAS-wide simulation was configured with a new concept component that used the information to reconfigure the terminal airspace to the capacity benefit of the airport. Reconfiguration included a dynamically expanding and contracting TRACON area and a varying number of active arrival runways, both automatically selected to accommodate predicted volume of traffic. ATL and DFW were selected for the study. Results showed significant throughput increase for scenarios that are considered to be over-capacity for current day airport configurations. During periods of sustained demand for ATL 2018, throughput increased by 26 operations per hour (30%) and average delay was reduced from 18 minutes to 8 minutes per flight when using the dynamic TRACON. Similar results were obtained for DFW with 2018 traffic levels and for ATL with 2006 traffic levels, but with lower benefits due to lower demand.

  8. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.

  9. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  10. Airspace Control

    DTIC Science & Technology

    2011-02-02

    This Doctrine Update highlights the revision of AFDD 3-52, Airspace Control, dated 2 February 2011. The AFDD was substantially revised...and must be completely reviewed. The format of the publication was changed to adhere to the LeMay Center doctrine document template and increases the...particular airspace control considerations in crisis response and in limited contingency operations. (Page 30) • Introducing to Air Force doctrine

  11. 78 FR 48290 - Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0136; Airspace Docket No. 13-ASW-4] Amendment of Class D Airspace; Waco, TX, and Establishment of Class D Airspace; Waco, TSTC-Waco Airport, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace at Waco, TX, by separating the Class D airspace...

  12. 14 CFR 71.51 - Class C airspace.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class C Airspace § 71.51 Class C airspace. The Class C airspace areas listed in subpart C of FAA Order... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Class C airspace. 71.51 Section 71.51...

  13. 14 CFR 71.51 - Class C airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class C Airspace § 71.51 Class C airspace. The Class C airspace areas listed in subpart C of FAA Order... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class C airspace. 71.51 Section 71.51...

  14. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    This dissertation presents a methodology to estimate the collision risk associated with a future air-transportation concept called the flow corridor. The flow corridor is a Next Generation Air Transportation System (NextGen) concept to reduce congestion and increase throughput in en-route airspace. The flow corridor has the potential to increase throughput by reducing the controller workload required to manage aircraft outside the corridor and by reducing separation of aircraft within corridor. The analysis in this dissertation is a starting point for the safety analysis required by the Federal Aviation Administration (FAA) to eventually approve and implement the corridor concept. This dissertation develops a hybrid risk analysis methodology that combines Monte Carlo simulation with dynamic event tree analysis. The analysis captures the unique characteristics of the flow corridor concept, including self-separation within the corridor, lane change maneuvers, speed adjustments, and the automated separation assurance system. Monte Carlo simulation is used to model the movement of aircraft in the flow corridor and to identify precursor events that might lead to a collision. Since these precursor events are not rare, standard Monte Carlo simulation can be used to estimate these occurrence rates. Dynamic event trees are then used to model the subsequent series of events that may lead to collision. When two aircraft are on course for a near-mid-air collision (NMAC), the on-board automated separation assurance system provides a series of safety layers to prevent the impending NNAC or collision. Dynamic event trees are used to evaluate the potential failures of these layers in order to estimate the rare-event collision probabilities. The results show that the throughput can be increased by reducing separation to 2 nautical miles while maintaining the current level of safety. A sensitivity analysis shows that the most critical parameters in the model related to the overall

  15. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  16. Airspace Technology Demonstration 2 (ATD-2) Integrated Surface and Airspace Simulation - Experiment Plan

    NASA Technical Reports Server (NTRS)

    Verma, Savita Arora; Jung, Yoon Chul

    2017-01-01

    This presentation describes the overview of the ATD-2 project and the integrated simulation of surface and airspace to evaluate the procedures of IADS system and evaluate surface metering capabilities via a high-fidelity human-in-the-loop simulation. Two HITL facilities, Future Flight Central (FFC) and Airspace Operations Laboratory (AOL), are integrated for simulating surface operations of the Charlotte-Douglas International Airport (CLT) and airspace in CLT TRACON and Washington Center.

  17. 75 FR 57848 - Revocation of Class E Airspace, Brunswick, ME; and Establishment of Class E Airspace, Wiscasset, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...-0248; Airspace Docket No. 10-ANE-10] Revocation of Class E Airspace, Brunswick, ME; and Establishment of Class E Airspace, Wiscasset, ME AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E Airspace at Brunswick NAS, Brunswick, ME, as the airport has...

  18. GIS and RDBMS Used with Offline FAA Airspace Databases

    NASA Technical Reports Server (NTRS)

    Clark, J.; Simmons, J.; Scofield, E.; Talbott, B.

    1994-01-01

    A geographic information system (GIS) and relational database management system (RDBMS) were used in a Macintosh environment to access, manipulate, and display off-line FAA databases of airport and navigational aid locations, airways, and airspace boundaries. This proof-of-concept effort used data available from the Adaptation Controlled Environment System (ACES) and Digital Aeronautical Chart Supplement (DACS) databases to allow FAA cartographers and others to create computer-assisted charts and overlays as reference material for air traffic controllers. These products were created on an engineering model of the future GRASP (GRaphics Adaptation Support Position) workstation that will be used to make graphics and text products for the Advanced Automation System (AAS), which will upgrade and replace the current air traffic control system. Techniques developed during the prototyping effort have shown the viability of using databases to create graphical products without the need for an intervening data entry step.

  19. 14 CFR 71.71 - Class E airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class E airspace. 71.71 Section 71.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... (2) The airspace below 1,500 feet above the surface of the earth. (b) The airspace areas designated...

  20. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  1. Advanced Concept

    NASA Image and Video Library

    1997-01-02

    The Advanced Space Transportation Group takes the future of space travel far into the 21st Century. Pictured is an artist's concept of a third generation Reusable Launch Vehicle (RLV). Projected for the year 2025, this third generation RLV will introduce an era of space travel not unlike air travel today.

  2. Generic Airspace Survey

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Bridges, Wayne; Gujarl, Vimmy; Lee, Paul U.; Preston, William

    2013-01-01

    This paper reports on an extension of generic airspace research to explore the amount of memorization and specialized skills required to manage sectors with specific characteristics or factors. Fifty-five retired controllers were given an electronic survey where they rated the amount of memorization or specialized skills needed for sixteen generic airspace factors. The results suggested similarities in the pattern of ratings between different areas of the US (East, Central, and West). The average of the ratings for each area also showed some differences between regions, with ratings being generally higher in the East area. All sixteen factors were rated as moderately to highly important and may be useful for future research on generic airspace, air traffic controller workload, etc.

  3. Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)

    NASA Technical Reports Server (NTRS)

    Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric; hide

    2018-01-01

    This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real

  4. Coalition Airspace Management and Deconfliction

    DTIC Science & Technology

    2008-01-01

    and the Low- Cost Autonomous Attack System (LOCAAS). Current airspace management procedures are inadequate to deal with these types of weapons. As...drawn to this projection. 11 these spaces over a geocentric terrain removes both types of distortion and is inherently easier to understand, as...shown in Figure 8. Figure 8 - Airspaces on a Geocentric Projection - The corridor airspaces in this picture span large distances, yet on this

  5. Shadow Mode Assessment Using Realistic Technologies for the National Airspace (SMART NAS)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Develop a simulation and modeling capability that includes: (a) Assessment of multiple parallel universes, (b) Accepts data feeds, (c) Allows for live virtual constructive distribute environment, (d) Enables integrated examinations of concepts, algorithms, technologies and National Airspace System (NAS) architectures.

  6. 78 FR 7993 - Amendment of Class D and E Airspace; Tri-Cities, TN; Revocation of Class E Airspace; Tri-City, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also updates the geographic coordinates, airport name, and airspace designation. Also, this action corrects... controlled airspace within the National Airspace System. The FAA has determined that this regulation only...

  7. Airspace Systems Program: Next Generation Air Transportation System, NextGen Systems Analysis, Integration and Evaluation Project. Version 1.0; Project Plan

    NASA Technical Reports Server (NTRS)

    Quon, Leighton

    2010-01-01

    The key objectives of the NASA ASP are to: Improve mobility, capacity efficiency and access of the airspace system. Improve collaboration, predictability, and flexibility for the airspace users. Enable accurate modeling and simulation of air transportation systems. Accommodate operations of all classes of aircraft. Maintain system safety and environmental protection. In support of these program objectives, the major goal of the NextGen-SAIE Project is to enable the transition of key capacity and efficiency improvements to the NAS. Since many aspects of the NAS are unique to specific airport or airspace environments, demand on various parts of the NAS is not expected to increase equally as system demand grows. SAIE will provide systems level analysis of the NAS characteristics, constraints, and demands such that a suite of capacity-increasing concepts and technologies for system solutions are enabled and facilitated. The technical objectives in support of this goal are the following: Integration, evaluation, and transition of more mature concepts and technologies in an environment that faithfully emulates real-world complexities. Interoperability research and analysis of ASP technologies across ATM functions is performed to facilitate integration and take ASP concepts and technologies to higher Technology Readiness Level (TRL). Analyses are conducted on the program s concepts to identify the system benefits or impacts. System level analysis is conducted to increase understanding of the characteristics and constraints of airspace system and its domains.

  8. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  9. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major

  10. 76 FR 40598 - Establishment of Class E Airspace; Campbellton, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...-1053; Airspace Docket No. 10-ASW-15] Establishment of Class E Airspace; Campbellton, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... proposed rulemaking to establish Class E airspace for Campbellton, TX, creating controlled airspace at 74...

  11. 76 FR 43822 - Establishment of Class E Airspace; Hearne, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-0214; Airspace Docket No. 11-ASW-2] Establishment of Class E Airspace; Hearne, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... notice of proposed rulemaking to establish Class E airspace for Hearne, TX, creating controlled airspace...

  12. 78 FR 65554 - Establishment of Class E Airspace; Rome, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0533; Airspace Docket No. 13-ANM-19] Establishment of Class E Airspace; Rome, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... (NBAA) supporting the establishment of Class E en route airspace. Class E airspace designations are...

  13. 77 FR 56761 - Amendment of Class E Airspace; Kerrville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ...-1399; Airspace Docket No. 11-ASW-14] Amendment of Class E Airspace; Kerrville, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Class E airspace for the Kerrville, TX, area, creating additional controlled airspace at Kerrville...

  14. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results

  15. Integration into Civil Airspace Airworthiness and Safety

    DTIC Science & Technology

    2003-09-02

    Integration into Civil Airspace Airworthiness and Safety 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER......into civil airspace lPurpose : n to explore and propose French process and means for integrating UAV into civil airspace. lMethod based on : n first

  16. 75 FR 68415 - Amendment of Class E Airspace; Kennett, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...; Airspace Docket No. 10-ACE-8] Amendment of Class E Airspace; Kennett, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Kennett, MO... rulemaking to amend Class E airspace for Kennett, MO, reconfiguring controlled airspace at Kennett Memorial...

  17. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  18. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  19. 76 FR 40597 - Amendment of Class E Airspace; Madison, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...-0135; Airspace Docket No. 11-AGL-4] Amendment of Class E Airspace; Madison, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Madison, SD, to... rulemaking to amend Class E airspace for Madison, SD, creating controlled airspace at Madison Municipal...

  20. 77 FR 46284 - Amendment of Class E Airspace; Lemmon, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-0391; Airspace Docket No. 12-AGL-2] Amendment of Class E Airspace; Lemmon, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Lemmon, SD... rulemaking (NPRM) to amend Class E airspace for the Lemmon, SD, area, creating additional controlled airspace...

  1. 76 FR 44254 - Amendment of Class D Airspace; Denton, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-1327; Airspace Docket No. 10-ASW-19] Amendment of Class D Airspace; Denton, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace for Denton, TX, to... rulemaking to amend Class D airspace for Denton, TX, creating additional controlled airspace at Denton...

  2. 75 FR 18047 - Amendment of Class D Airspace; Hollywood, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...; Airspace Docket No. 10-ASO-17] Amendment of Class D Airspace; Hollywood, FL AGENCY: Federal Aviation... rule published in the Federal Register on July 23, 1997, amending Class D airspace at North Perry... airspace area exclusion as Class D airspace area. This action corrects that error. The FAAs National...

  3. 76 FR 9219 - Amendment of Class E Airspace; Muncie, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-1032; Airspace Docket No. 10-AGL-20] Amendment of Class E Airspace; Muncie, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Muncie, IN, to... proposed rulemaking to amend Class E airspace for Muncie, IN, creating controlled airspace at Ball Memorial...

  4. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector

  5. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  6. 78 FR 52109 - Proposed Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Salisbury, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...]30'34'' W.) That airspace extending upward from the surface within 2.5 miles each side of a 133[deg...-Ocean City Wicomico Regional Airport, MD (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That airspace... (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That airspace extending upward from the surface...

  7. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  8. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate

  9. 75 FR 11475 - Establishment of Class D Airspace, Modification of Class E Airspace; Columbus, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Army Airfield, Columbus, GA, would be removed from the Class E2 and E5 airspace description, and would.... * * * * * ASO GA E5 Columbus, GA [Amended] Columbus Metropolitan Airport, GA (Lat. 32[deg]30'59'' N., long. 84... Airspace; Columbus, GA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed...

  10. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  11. 75 FR 31677 - Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...-0089; Airspace Docket No. 10-ASW-1] Amendment of Class E Airspace; Corpus Christi, TX AGENCY: Federal... the Corpus Christi, TX area. Additional controlled airspace is necessary to accommodate new Standard... E airspace for the Corpus Christi, TX area, reconfiguring controlled airspace at Aransas County...

  12. 77 FR 4459 - Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...-0846; Airspace Docket No. 11-ACE-18] Amendment of Class E Airspace; Greenfield, IA AGENCY: Federal... Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal... rulemaking to amend Class E airspace for Greenfield, IA, reconfiguring controlled airspace at Greenfield...

  13. 76 FR 43610 - Proposed Amendment of Class E Airspace; Spearfish, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...-0431; Airspace Docket No. 11-AGL-11] Proposed Amendment of Class E Airspace; Spearfish, SD AGENCY... action proposes to amend Class E airspace at Spearfish, SD. Additional controlled airspace is necessary... instrument approach procedures at Black Hills Airport-Clyde Ice Field, Spearfish, SD. Controlled airspace is...

  14. 76 FR 43612 - Proposed Amendment of Class E Airspace; Sturgis, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...-0430; Airspace Docket No. 11-AGL-10] Proposed Amendment of Class E Airspace; Sturgis, SD AGENCY... action proposes to amend Class E airspace at Sturgis, SD. Additional controlled airspace is necessary to... instrument approach procedures at Sturgis Municipal Airport, Sturgis, SD. Controlled airspace is needed for...

  15. 78 FR 48298 - Amendment of Class E Airspace; Commerce, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0269; Airspace Docket No. 13-ASW-3] Amendment of Class E Airspace; Commerce, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Commerce, TX. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV...

  16. 76 FR 67058 - Amendment of Class E Airspace; Sturgis, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0430; Airspace Docket No. 11-AGL-10] Amendment of Class E Airspace; Sturgis, SD AGENCY: Federal... Sturgis, SD, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Sturgis... proposed rulemaking to amend Class E airspace for Sturgis, SD, creating controlled airspace at Sturgis...

  17. 77 FR 29920 - Proposed Amendment of Class E Airspace; Lemmon, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...-0391; Airspace Docket No. 12-AGL-2] Proposed Amendment of Class E Airspace; Lemmon, SD AGENCY: Federal... proposes to amend Class E airspace at Lemmon, SD. Additional controlled airspace is necessary to... Municipal Airport, Lemmon, SD. Controlled airspace is needed for the safety and management of IFR operations...

  18. 75 FR 63708 - Establishment of Class E Airspace; Kalaupapa, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ...-0650; Airspace Docket No. 10-AWP-9] Establishment of Class E Airspace; Kalaupapa, HI AGENCY: Federal... airspace at Kalaupapa, HI, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning... Register a notice of proposed rulemaking to establish controlled airspace at Kalaupapa, HI (75 FR 49868...

  19. 76 FR 18041 - Establishment of Class E Airspace; Kahului, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ...-1233; Airspace Docket No. 10-AWP-21] Establishment of Class E Airspace; Kahului, HI AGENCY: Federal... airspace at Kahului Airport, Kahului, HI, to accommodate aircraft using Area Navigation (RNAV) standard... establish controlled airspace at Kahului, HI (76 FR 3571). Interested parties were invited to participate in...

  20. 75 FR 37291 - Amendment of Class E Airspace; Osceola, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...-1183; Airspace Docket No. 09-ASW-38] Amendment of Class E Airspace; Osceola, AR AGENCY: Federal... Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport has... rulemaking to amend Class E airspace for Osceola, AR, reconfiguring controlled airspace at Osceola Municipal...

  1. 78 FR 48302 - Establishment of Class E Airspace; Wagner, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0004; Airspace Docket No. 13-AGL-1] Establishment of Class E Airspace; Wagner, SD AGENCY: Federal... at Wagner, SD. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace for the Wagner, SD...

  2. 78 FR 41685 - Amendment of Class E Airspace; Worthington, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ...-1139; Airspace Docket No. 12-AGL-12] Amendment of Class E Airspace; Worthington, MN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... rulemaking (NPRM) to amend Class E airspace for the Worthington, MN, area, creating additional controlled...

  3. 76 FR 43821 - Establishment of Class E Airspace; Ranger, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-1240; Airspace Docket No. 10-ASW-18] Establishment of Class E Airspace; Ranger, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... Register a notice of proposed rulemaking to establish Class E airspace for Ranger, TX, creating controlled...

  4. 75 FR 13668 - Amendment of Class E Airspace; Georgetown, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-0934; Airspace Docket No. 09-ASW-29] Amendment of Class E Airspace; Georgetown, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking to amend Class E airspace for Georgetown Municipal Airport...

  5. 76 FR 16530 - Establishment of Class E Airspace; Creighton, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...-1170; Airspace Docket No. 10-ACE-13] Establishment of Class E Airspace; Creighton, NE AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... Federal Register a notice of proposed rulemaking to establish Class E airspace for Creighton, NE, creating...

  6. 76 FR 47061 - Amendment of Class E Airspace; Lakeland, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...-0005; Airspace Docket No. 10-ASO-42] Amendment of Class E Airspace; Lakeland, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace at Lakeland Linder Regional Airport, Lakeland, FL (75...

  7. 76 FR 80232 - Establishment of Class E Airspace; Oneonta, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...-0744; Airspace Docket No. 11-ASO-33] Establishment of Class E Airspace; Oneonta, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace... published in the Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace at...

  8. 78 FR 11980 - Amendment of Class E Airspace; Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-0509; Airspace Docket No. 12-ANM-15] Amendment of Class E Airspace; Casper, WY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace areas at Casper... were received. Class E airspace designations are published in paragraphs 6004, 6005 and 6006...

  9. 75 FR 65225 - Amendment of Class E Airspace; Youngstown, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-267; Airspace Docket No. 10-AGL-5] Amendment of Class E Airspace; Youngstown, OH AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for... Federal Register a notice of proposed rulemaking to amend Class E airspace for Youngstown, OH, creating...

  10. 78 FR 54413 - Proposed Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...-0440; Airspace Docket No. 13-ASO-10] Proposed Establishment of Class E Airspace; Star, NC AGENCY... action proposes to establish Class E Airspace at Star, NC, to accommodate a new Area Navigation (RNAV... establish Class E airspace at Star, NC, providing the controlled airspace required to support the new RNAV...

  11. 14 CFR 71.33 - Class A airspace areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class A airspace areas. 71.33 Section 71.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... of the earth and the Alaska Peninsula west of longitude 160°00′00″ West. (c) The airspace areas...

  12. Joint Airspace Control, Doctrine Update 10-06

    DTIC Science & Technology

    2010-05-20

    Doctrine Update 10-06 Joint Publication 3-52, Joint Airspace Control JP 3-52 provides joint doctrine for airspace control across the full range...identification, combined operations, and unmanned aerial vehicle If you want read the complete new doctrine document, dated 20 May 2010, click here: JP 3-52...Joint Airspace Control. For more information, visit the LeMay Center for Doctrine Development and Education, call us at DSN 493-7442, or e-mail

  13. 77 FR 66069 - Amendment of Class E Airspace; Perry, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1435; Airspace Docket No. 11-ACE-28] Amendment of Class E Airspace; Perry, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Perry, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Perry, IA, area, creating additional...

  14. 77 FR 66067 - Amendment of Class E Airspace; Boone, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ...-1432; Airspace Docket No. 11-ACE-25] Amendment of Class E Airspace; Boone, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Boone, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Boone, IA, area, creating additional...

  15. 77 FR 12992 - Amendment of Class E Airspace; Jacksonville, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... the airport to aid in the navigation of our National Airspace System. The airport dimensions and... amending Class E surface airspace, and Class E airspace extending upward from 700 feet above the surface... change, and does not involve a change in the dimensions or operating requirements of that airspace...

  16. 76 FR 39259 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ...-0116; Airspace Docket No. 11-ANE-1] Establishment of Class E Airspace; Brunswick, ME AGENCY: Federal... Class E airspace at Brunswick Executive Airport, Brunswick, ME. DATES: The effective date is moved from... Class E airspace at Brunswick Executive Airport, Brunswick, ME. This action will move up the effective...

  17. 75 FR 13667 - Amendment of Class E Airspace; Huntingburg, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...; Airspace Docket No. 09-AGL-21] Amendment of Class E Airspace; Huntingburg, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Huntingburg, IN... rulemaking to amend Class E airspace for Huntingburg Airport, Huntingburg, IN (74 FR 66592) Docket No. FAA...

  18. 75 FR 18403 - Amendment of Class E Airspace; Rifle, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...-1014; Airspace Docket No. 09-ANM-10] Amendment of Class E Airspace; Rifle, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will establish Class E airspace at Rifle, CO.... This action also changes the airport name in the existing Class E airspace description. DATES...

  19. 77 FR 46282 - Amendment of Class E Airspace; Sweetwater, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-0829; Airspace Docket No. 11-ASW-9] Amendment of Class E Airspace; Sweetwater, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Sweetwater, TX, area...

  20. 77 FR 51464 - Amendment of Class E Airspace; Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ...-1334; Airspace Docket No. 11-ASO-43] Amendment of Class E Airspace; Augusta, GA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace in... amend Class E airspace in the Augusta, GA area (77 FR 21506). Interested parties were invited to...

  1. 75 FR 65224 - Amendment of Class E Airspace; Williston, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0407; Airspace Docket No. 10-AGL-7] Amendment of Class E Airspace; Williston, ND AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace for Williston...

  2. 78 FR 27031 - Amendment of Class E Airspace; Kingston, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...-0831; Airspace Docket No. 12-AEA-13] Amendment of Class E Airspace; Kingston, NY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Kingston, NY...

  3. 75 FR 41075 - Amendment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-1220; Airspace Docket No. 09-ANM-30] Amendment of Class E Airspace; Bozeman, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at... proposed rulemaking to amend Class E airspace at Bozeman, MT (75 FR 20321). Interested parties were invited...

  4. 76 FR 55554 - Amendment of Class E Airspace; Rutherfordton, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-1330; Airspace Docket No. 10-ASO-41] Amendment of Class E Airspace; Rutherfordton, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace 700 feet above...

  5. 76 FR 70865 - Modification of Class E Airspace; Driggs, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-0837; Airspace Docket No. 11-ANM-17] Modification of Class E Airspace; Driggs, ID AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... were received. Class E airspace designations are published in paragraph 6005, of FAA Order 7400.9V...

  6. 77 FR 10649 - Modification of Class E Airspace; Douglas, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-1313; Airspace Docket No. 11-AWP-17] Modification of Class E Airspace; Douglas, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... airport, and corrects a typographical error in the legal description for the Class E 700 foot airspace...

  7. 77 FR 32896 - Modification of Class E Airspace; Billings, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ...-0316; Airspace Docket No. 12-ANM-1] Modification of Class E Airspace; Billings, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... were received. Class E airspace designations are published in paragraph 6005, of FAA Order 7400.9V...

  8. 75 FR 65226 - Establishment of Class E Airspace; Bamberg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0685; Airspace Docket No. 10-ASO-27] Establishment of Class E Airspace; Bamberg, SC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace... Register a notice of proposed rulemaking to establish Class E airspace at Bamberg, SC (75 FR 52654) Docket...

  9. 75 FR 65227 - Revocation of Class E Airspace; Franklin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0603; Airspace Docket No. 10-ASW-9] Revocation of Class E Airspace; Franklin, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace for... published in the Federal Register a notice of proposed rulemaking to remove Class E airspace for Franklin...

  10. 77 FR 38472 - Amendment of Class D Airspace; Pontiac, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-1142; Airspace Docket No. 11-AGL-22] Amendment of Class D Airspace; Pontiac, MI AGENCY: Federal... Class D airspace within the Pontiac, MI, area by changing the name of the airport from [[Page 38473... County International Airport and adjusting the geographic coordinates within Class D airspace to coincide...

  11. 75 FR 43814 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0095; Airspace Docket No. 10-ASO-18] Amendment of Class D Airspace; Goldsboro, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends the Class D Airspace at... published in the Federal Register a notice of proposed rulemaking to amend Class D airspace for Seymour...

  12. 78 FR 67296 - Establishment of Class D Airspace; Mesquite, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...-0580; Airspace Docket No. 12-ASW-2] Establishment of Class D Airspace; Mesquite, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class D airspace... establish Class D airspace for Mesquite Metro Airport, Mesquite, TX (78 FR 48842) Docket No. FAA-2012- 0580...

  13. 77 FR 5 - Amendment of Class E Airspace; Kipnuk, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0866; Airspace Docket No. 11-AAL-15] Amendment of Class E Airspace; Kipnuk, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Kipnuk, AK. The... a notice of proposed rulemaking (NPRM) to amend controlled airspace at Kipnuk, AK (76 FR 54149...

  14. 78 FR 57788 - Amendment of Class E Airspace; Everett, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ...-0434; Airspace Docket No. 13-ANM-1] Amendment of Class E Airspace; Everett, WA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Everett, WA, to... the FAA. No comments were received. Class E airspace designations are published in paragraph 6004, of...

  15. 77 FR 68067 - Establishment of Class E Airspace; Coaldale, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ...-0705; Airspace Docket No. 12-AWP-4] Establishment of Class E Airspace; Coaldale, NV AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace... forth in the NPRM for lowering the Class E airspace down to 1,200 feet above the surface was vague and...

  16. 76 FR 2800 - Establishment of Class E Airspace; Lucin, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...-2010-1208; Airspace Docket No. 10-ANM-16] Establishment of Class E Airspace; Lucin, UT AGENCY: Federal... E en route domestic airspace for the Lucin VORTAC, Lucin, UT. DATES: Effective 0901 UTC, February 17..., UT, incorrectly referenced the existing Class E en route domestic airspace exclusion above 8,500 feet...

  17. 78 FR 33963 - Amendment of Class E Airspace; Atwood, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ...; Airspace Docket No. 11-ACE-24] Amendment of Class E Airspace; Atwood, KS AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Atwood, KS... published in the Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the...

  18. 77 FR 68681 - Amendment of Class E Airspace; Anthony, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0652; Airspace Docket No. 12-ACE-4] Amendment of Class E Airspace; Anthony, KS AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Anthony, KS... the Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Anthony...

  19. 77 FR 5169 - Amendment of Class D Airspace; Saginaw, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-1144; Airspace Docket No. 11-AGL-24] Amendment of Class D Airspace; Saginaw, MI AGENCY: Federal... Class D airspace within the Saginaw, MI, area by changing the name of the airport from Tri-City... International Airport and updating the geographic coordinates within Class D airspace to coincide with the FAA's...

  20. 77 FR 5170 - Amendment of Class D Airspace; Jackson, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-1143; Airspace Docket No. 11-AGL-23] Amendment of Class D Airspace; Jackson, MI AGENCY: Federal... Class D airspace within the Jackson, MI, area by changing the name of the airport from Jackson County... Class D airspace to coincide with the FAA's aeronautical database. This is an administrative change and...

  1. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  2. 76 FR 55555 - Amendment of Class E Airspace; Shelby, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-0280; Airspace Docket No. 11-ASO-16] Amendment of Class E Airspace; Shelby, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Shelby, NC, to... rulemaking to amend Class E airspace at Shelby, NC (76 FR 35799) Docket No. FAA-2011-0280. Interested parties...

  3. 76 FR 28887 - Revocation of Class E Airspace; Ozark, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...-0432; Airspace Docket No. 11-ACE-8] Revocation of Class E Airspace; Ozark, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace at Ozark, MO... Regulations (14 CFR) Part 71 by removing Class E airspace in the Ozark, MO, area. Abandonment of the former...

  4. 75 FR 13669 - Amendment of Class E Airspace; Dumas, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...-1151; Airspace Docket No. 09-ASW-30] Amendment of Class E Airspace; Dumas, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Dumas, TX, adding... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace for Dumas, TX...

  5. 76 FR 35966 - Amendment of Class E Airspace; Cocoa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ...-0070; Airspace Docket No. 10-ASO-43] Amendment of Class E Airspace; Cocoa, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Cocoa, FL, as the... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Merritt...

  6. 76 FR 53049 - Amendment of Class E Airspace; Shelby, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...-0536; Airspace Docket No. 11-ANM-13] Amendment of Class E Airspace; Shelby, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Shelby, MT, to... E airspace designations are published in paragraph 6005 of FAA Order 7400.9U dated August 18, 2010...

  7. 75 FR 17891 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...-0095; Airspace Docket No. 10-ASO-18] Amendment of Class D Airspace; Goldsboro, NC AGENCY: Federal... proposes to amend the Class D airspace at Seymour Johnson AFB, Goldsboro, NC, to reflect the part-time... amend Class D airspace at Seymour Johnson AFB, Goldsboro, NC, to reflect the part-time operations of the...

  8. 78 FR 48291 - Amendment of Class D Airspace; Sparta, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0165; Airspace Docket No. 13-AGL-6] Amendment of Class D Airspace; Sparta, WI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace at Sparta, WI... Register a notice of proposed rulemaking (NPRM) to amend Class D airspace for Sparta/Fort McCoy Airport (78...

  9. 75 FR 39145 - Amendment of Class C Airspace; Flint, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...-0599; Airspace Docket No. 10-AWA-3] RIN 2120-AA66 Amendment of Class C Airspace; Flint, MI AGENCY... description of the Bishop International Airport, Flint, MI, Class C airspace area by amending the airport... defines the Class C airspace area's center point. The Rule This action amends Title 14 Code of Federal...

  10. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  11. 78 FR 26243 - Amendment of Class E Airspace; Easton, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ...-0394; Airspace Docket No. 12-AEA-8] Amendment of Class E Airspace; Easton, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at Easton, PA, as the... (NPRM) to amend Class E airspace at Easton, PA (78 FR 5152) Docket No. FAA-2012-0394. Interested parties...

  12. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  13. 76 FR 9965 - Amendment of Class E Airspace and Revocation of Class E Airspace; Easton, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ...-5588. SUPPLEMENTARY INFORMATION: History On October 22, 2010, the FAA published in the Federal Register...] * * * * * Paragraph 6005 Class E Airspace Areas Extending Upward from 700 feet or More Above the Surface of the Earth...]04'08'' W.) That airspace extending upward from 700 feet above the surface of the Earth within a 6.5...

  14. Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.

    2010-01-01

    A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.

  15. 14 CFR 61.95 - Operations in Class B airspace and at airports located within Class B airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... unless: (1) The student pilot has received both ground and flight training from an authorized instructor on that Class B airspace area, and the flight training was received in the specific Class B airspace... the authorized instructor who gave the student pilot flight training, and the endorsement is dated...

  16. 14 CFR 61.95 - Operations in Class B airspace and at airports located within Class B airspace.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... unless: (1) The student pilot has received both ground and flight training from an authorized instructor on that Class B airspace area, and the flight training was received in the specific Class B airspace... the authorized instructor who gave the student pilot flight training, and the endorsement is dated...

  17. A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David

    2016-01-01

    The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of

  18. 78 FR 65208 - Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-1174; Airspace Docket No. 12-AAL-12] Modification of Class D and E Airspace; Kenai, AK AGENCY: Federal... airspace at Kenai Municipal Airport, Kenai, AK. Controlled airspace is necessary to accommodate aircraft... (NPRM) to modify controlled airspace at Kenai Municipal Airport, Kenai, AK (78 FR 34609). Interested...

  19. 78 FR 47237 - Proposed Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...-0255; Airspace Docket No. 13-ACE-4] Proposed Amendment of Class E Airspace; Chariton, IA AGENCY... action proposes to amend Class E airspace at Chariton, IA. Decommissioning of the Chariton non... for standard instrument approach procedures at Chariton Municipal Airport, Chariton, IA. Airspace...

  20. 78 FR 48299 - Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0433; Airspace Docket No. 12-AAL-5] Establishment of Class D Airspace; Bryant AAF, Anchorage, AK AGENCY... airspace at Bryant Army Airfield (AAF), Anchorage AK. This action provides controlled airspace to improve... proposed rulemaking (NPRM) to establish Class D airspace at Bryant AAF, Anchorage AK (77 FR 50646...

  1. 77 FR 71362 - Proposed Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1433; Airspace Docket No. 11-ACE-26] Proposed Amendment of Class E Airspace; Decorah, IA AGENCY... action proposes to amend Class E airspace at Decorah, IA. Decommissioning of the Decorah non-directional... instrument approach procedures at Decorah Municipal Airport, Decorah, IA. Airspace reconfiguration is...

  2. 76 FR 14824 - Proposed Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...-0116; Airspace Docket No. 11-ANE-1] Proposed Establishment of Class E Airspace; Brunswick, ME AGENCY... action proposes to establish Class E Airspace at Brunswick, ME, to accommodate new Standard Instrument... Brunswick, ME to provide airspace required to support the standard instrument approach procedures developed...

  3. 76 FR 78180 - Proposed Modification of Class E Airspace; Douglas, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...-1313; Airspace Docket No. 11-AWP-17] Proposed Modification of Class E Airspace; Douglas, AZ AGENCY... action proposes to modify Class E airspace at Bisbee Douglas International Airport, Douglas, AZ... feet above the surface at Douglas, AZ. Additional controlled airspace is necessary to accommodate...

  4. 76 FR 21828 - Proposed Amendment of Class E Airspace; Mobridge, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ...-0134; Airspace Docket No. 11-AGL-3] Proposed Amendment of Class E Airspace; Mobridge, SD AGENCY... action proposes to amend Class E airspace at Mobridge, SD. Additional controlled airspace is necessary to... accommodate new standard instrument approach procedures at Mobridge Municipal Airport, Mobridge, SD...

  5. 77 FR 37569 - Establishment of Class D Airspace and Amendment of Class E Airspace; East Hampton, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... accommodate the new mobile airport traffic control tower (ATCT) at East Hampton Airport. Controlled airspace... helicopter operators to enter into a Letter of Agreement (LOA) with the FAA. Use of these rules will allow the helicopter operators to minimize any delays they may experience due to the airspace, as well as...

  6. 75 FR 13453 - Proposed Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...-0089; Airspace Docket No. 10-ASW-1] Proposed Amendment of Class E Airspace; Corpus Christi, TX AGENCY... action proposes to amend Class E airspace in the Corpus Christi, TX area. Additional controlled airspace... adding additional Class E airspace extending upward from 700 feet above the surface in the Corpus Christi...

  7. 76 FR 5302 - Proposed Amendment of Class E Airspace; Terre Haute, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ...-1034; Airspace Docket No. 10-AGL-22] Proposed Amendment of Class E Airspace; Terre Haute, IN AGENCY... action proposes to amend Class E airspace at Terre Haute, IN. Controlled airspace is necessary to... (POINT-IN-SPACE) SIAP at Union Hospital Heliport, Terre Haute, IN. Controlled airspace is needed for the...

  8. 76 FR 53360 - Proposed Establishment of Class E Airspace; Stuart, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0831; Airspace Docket No. 11-ACE-17] Proposed Establishment of Class E Airspace; Stuart, IA AGENCY... action proposes to establish Class E airspace at Stuart, IA. Controlled airspace is necessary to... surface for new standard instrument approach procedures at the City of Stuart Helistop, Stuart, IA...

  9. 76 FR 31510 - Proposed Amendment of Class E Airspace; Rutherfordton, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...; Airspace Docket No. 10-ASO-41) and be submitted in triplicate to the Docket Management System (see... airspace required to support new standard instrument approach procedures for Rutherford County Airport. The... action proposes to amend Class E Airspace at Rutherfordton, NC, to accommodate the additional airspace...

  10. 77 FR 16783 - Proposed Amendment of Class E Airspace; Orlando, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...-0503; Airspace Docket No. 11-ASO-19] Proposed Amendment of Class E Airspace; Orlando, FL AGENCY... action proposes to amend Class E Airspace at Orlando, FL, as new Standard Instrument Approach Procedures have been developed at Orlando Executive Airport. This action would enhance the safety and airspace...

  11. 78 FR 73751 - Proposed Amendment of Class E Airspace; Philip, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...-0916; Airspace Docket No. 13-AGL-30] Proposed Amendment of Class E Airspace; Philip, SD AGENCY: Federal... proposes to amend Class E airspace at Philip, SD. Additional controlled airspace is necessary to... the surface to accommodate new standard instrument approach procedures at Philip Airport, Philip, SD...

  12. 78 FR 65237 - Proposed Establishment of Class E Airspace; Central, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0017; Airspace Docket No. 13-AAL-1] Proposed Establishment of Class E Airspace; Central, AK AGENCY... action proposes to establish Class E airspace at Central Airport, Central, AK. Controlled airspace is... of aircraft operations at Central Airport, Central, AK. DATES: Comments must be received on or before...

  13. 77 FR 9840 - Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-1191; Airspace Docket No. 11-ANM-21] Amendment of Class E Airspace; Colorado Springs, CO AGENCY... airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black... controlled airspace at Colorado Springs, CO (76 FR 70920). Interested parties were invited to participate in...

  14. 76 FR 44288 - Establishment of Class E Airspace; New Market, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-380; Airspace Docket No. 11-AEA-12] Establishment of Class E Airspace; New Market, VA AGENCY: Federal... proposes to establish Class E Airspace at New Market, VA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures developed for New Market Airport. This action would...

  15. 76 FR 30299 - Proposed Establishment of Class E Airspace; Kayenta, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...-0393; Airspace Docket No. 11-AWP-2] Proposed Establishment of Class E Airspace; Kayenta, AZ AGENCY... action proposes to establish Class E Airspace at Kayenta Airport, Kayenta, AZ. Controlled airspace is...) standard instrument approach procedures at Kayenta Airport. The FAA is proposing this action to enhance the...

  16. 77 FR 5169 - Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-0250; Airspace Docket No. 11-AGL-6] Amendment of Class E Airspace; South Bend, IN AGENCY: Federal... South Bend, IN, area. Additional controlled airspace is necessary to accommodate new Area Navigation... South Bend, IN, area, creating additional controlled airspace at Jerry Tyler Memorial Airport (76 FR...

  17. 75 FR 17851 - Amendment of Class E Airspace; Dallas-Fort Worth, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...-0926; Airspace Docket No. 09-ASW-26] Amendment of Class E Airspace; Dallas-Fort Worth, TX AGENCY... airspace in the Dallas-Fort Worth, TX area. Additional controlled airspace is necessary to accommodate new... proposed rulemaking to amend Class E airspace for the Dallas- Fort Worth, TX area (74 FR 57617) Docket No...

  18. 78 FR 52422 - Amendment of Class D and E Airspace; Wrightstown, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ...-0565; Airspace Docket No. 13-AEA-11] Amendment of Class D and E Airspace; Wrightstown, NJ AGENCY... amends Class D and E Airspace at Wrightstown, NJ, by updating the geographic coordinates and changing the... (14 CFR) part 71 amends Class D airspace and E airspace designated as an extension to a Class D...

  19. An evolving-requirements technology assessment process for advanced propulsion concepts

    NASA Astrophysics Data System (ADS)

    McClure, Erin Kathleen

    The following dissertation investigates the development of a methodology suitable for the evaluation of advanced propulsion concepts. At early stages of development, both the future performance of these concepts and their requirements are highly uncertain, making it difficult to forecast their future value. Developing advanced propulsion concepts requires a huge investment of resources. The methodology was developed to enhance the decision-makers understanding of the concepts, so that they could mitigate the risks associated with developing such concepts. A systematic methodology to identify potential advanced propulsion concepts and assess their robustness is necessary to reduce the risk of developing advanced propulsion concepts. Existing advanced design methodologies have evaluated the robustness of technologies or concepts to variations in requirements, but they are not suitable to evaluate a large number of dissimilar concepts. Variations in requirements have been shown to impact the development of advanced propulsion concepts, and any method designed to evaluate these concepts must incorporate the possible variations of the requirements into the assessment. In order to do so, a methodology was formulated to be capable of accounting for two aspects of the problem. First, it had to systemically identify a probabilistic distribution for the future requirements. Such a distribution would allow decision-makers to quantify the uncertainty introduced by variations in requirements. Second, the methodology must be able to assess the robustness of the propulsion concepts as a function of that distribution. This dissertation describes in depth these enabling elements and proceeds to synthesize them into a new method, the Evolving Requirements Technology Assessment (ERTA). As a proof of concept, the ERTA method was used to evaluate and compare advanced propulsion systems that will be capable of powering a hurricane tracking, High Altitude, Long Endurance (HALE) unmanned

  20. 76 FR 3571 - Proposed Establishment of Class E Airspace; Kahului, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1233; Airspace Docket No. 10-AWP-21] Proposed Establishment of Class E Airspace; Kahului, HI AGENCY... action proposes to establish Class E airspace at Kahului Airport, Kahului, HI. Controlled airspace is... procedures at Kahului Airport, Kahului, HI. The FAA is proposing this action to enhance the safety and...

  1. 75 FR 6592 - Proposed Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1153; Airspace Docket No. 09-ACE-13] Proposed Amendment of Class E Airspace; Emmetsburg, IA AGENCY... action proposes to amend Class E airspace at Emmetsburg, IA. Additional controlled airspace is necessary..., Emmetsburg, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  2. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0654; Airspace Docket No. 12-ACE-3] Amendment of Class E Airspace; Forest City, IA AGENCY: Federal... Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City, IA...

  3. 77 FR 45985 - Proposed Amendment of Class E Airspace; Lincoln, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-0764; Airspace Docket No. 12-ANE-12] Proposed Amendment of Class E Airspace; Lincoln, ME AGENCY... action proposes to amend Class E Airspace at Lincoln, ME, as the Lincoln Non-Directional Radio Beacon..., Lincoln, ME. Airspace reconfiguration is necessary due to the decommissioning of the Lincoln NDB and...

  4. 78 FR 65238 - Proposed Establishment of Class E Airspace; Eagle, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0777; Airspace Docket No. 12-AAL-16] Proposed Establishment of Class E Airspace; Eagle, AK AGENCY... action proposes to establish Class E airspace at Eagle Airport, Eagle, AK. Controlled airspace is... management of aircraft operations at Eagle Airport, Eagle, AK. DATES: Comments must be received on or before...

  5. 78 FR 69787 - Proposed Modification of Class E Airspace; Sitka, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ...-0921; Airspace Docket No. 13-AAL-4] Proposed Modification of Class E Airspace; Sitka, AK AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to modify Class E airspace at Sitka, AK, to [[Page 69788... Gutierrez, AK. After review of the airspace, the FAAs Western Terminal Products Office found modification of...

  6. 78 FR 74006 - Amendment of Class E Airspace; Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-0941; Airspace Docket No. 13-AGL-32] Amendment of Class E Airspace; Green Bay, WI AGENCY: Federal... Class E airspace within the Green Bay, WI, area by updating the geographic coordinates for Austin... coordinates, within Class E airspace, of Austin-Straubel International Airport, Green Bay, WI, to coincide...

  7. 75 FR 15360 - Proposed Amendment of Class E Airspace; Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ...-1152; Airspace Docket No. 09-ASW-31] Proposed Amendment of Class E Airspace; Austin, TX AGENCY: Federal... proposes to amend Class E airspace in the Austin, TX area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Austin Executive Airport, Austin, TX. The...

  8. UTM Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2017-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.

  9. UTM Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.

  10. Virtual Airspace Modeling and Simulation (VAMS) Project First Technical Interchange Meeting

    NASA Technical Reports Server (NTRS)

    Beard, Robert; Kille, Robert; Kirsten, Richard; Rigterink, Paul; Sielski, Henry; Gratteau, Melinda F. (Editor)

    2002-01-01

    A three-day NASA Virtual Airspace and Modeling Project (VAMS) Technical Interchange Meeting (TIM) was held at the NASA Ames Research Center in Mountain View, CA. on May 21 through May 23,2002. The purpose of this meeting was to share initial concept information sponsored by the VAMS Project. An overall goal of the VAMS Project is to develop validated, blended, robust and transition-able air transportation system concepts over the next five years that will achieve NASA's long-term Enterprise Aviation Capacity goals. This document describes the presentations at the TIM, their related questions and answers, and presents the TIM recommendations.

  11. 77 FR 7525 - Revision of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ...-0610; Airspace Docket No. 11-AWP-10] Revision of Class D and Class E Airspace; Hawthorne, CA AGENCY... Part 71.1. The Class D airspace and Class E airspace designations listed in this document will be... CFR) Part 71 by revising Class D airspace and Class E surface airspace designated as an extension to...

  12. 76 FR 38580 - Proposed Amendment of Class D Airspace; Eglin AFB, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...-0087; Airspace Docket No. 11-ASO-12] Proposed Amendment of Class D Airspace; Eglin AFB, FL AGENCY... action proposes to amend Class D Airspace in the Eglin Air Force Base (AFB), FL airspace area. The Destin... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to amend Class D airspace in the Eglin...

  13. 75 FR 6595 - Proposed Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1155; Airspace Docket No. 09-ACE-14] Proposed Amendment of Class E Airspace; Mapleton, IA AGENCY... action proposes to amend Class E airspace at Mapleton, IA. Additional controlled airspace is necessary to..., Mapleton, IA. The FAA is taking this action to enhance the safety and management of Instrument Flight Rules...

  14. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  15. 78 FR 17083 - Amendment of Class E Airspace; Scammon Bay, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-0121; Airspace Docket No. 12-AAL-2] Amendment of Class E Airspace; Scammon Bay, AK AGENCY: Federal... Scammon Bay Airport, Scammon Bay, AK. Controlled airspace is necessary to accommodate aircraft using a new... Federal Register a notice of proposed rulemaking to modify controlled airspace at Scammon Bay, AK (77 FR...

  16. 76 FR 39038 - Proposed Establishment of Class E Airspace; Lebanon, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...-0558; Airspace Docket No. 11-AEA-13] Proposed Establishment of Class E Airspace; Lebanon, PA AGENCY... action proposes to establish Class E Airspace at Lebanon, PA, to accommodate new Standard Instrument... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to establish Class E airspace at Lebanon...

  17. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  18. 77 FR 40488 - Amendment of Class D and Class E Airspace; Lakehurst, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-0456; Airspace Docket No. 12-AEA-9] Amendment of Class D and Class E Airspace; Lakehurst, NJ AGENCY... changes the name of the airport associated with the Class D and Class E airspace at Lakehurst, NJ. The... associated with the Class D airspace and Class E airspace designated as an extension to a Class D airspace...

  19. Interaction of Airspace Partitions and Traffic Flow Management Delay

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2010-01-01

    To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.

  20. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  1. 77 FR 28243 - Amendment of Class D Airspace; Cocoa Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-0099; Airspace Docket No. 12-ASO-11] Amendment of Class D Airspace; Cocoa Beach, FL AGENCY: Federal... Federal Register on April 11, 2012 that amends Class D airspace at Cocoa Beach, FL. DATES: Effective 0901...), amends Class D airspace at Cape Canaveral Skid Strip, Cocoa Beach, FL. A typographical error was made in...

  2. 78 FR 25229 - Proposed Establishment of Class E Airspace; Stockton, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ...-0274; Airspace Docket No. 13-ACE-2] Proposed Establishment of Class E Airspace; Stockton, KS AGENCY... the docket number FAA-2013-0274/Airspace Docket No. 13- ACE-2, at the beginning of your comments. You... No. FAA-2013-0274/ Airspace Docket No. 13-ACE-2.'' The postcard will be date/time stamped and...

  3. 75 FR 81518 - Proposed Establishment of Class E Airspace; Wolfeboro, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ...-1007; Airspace Docket No. 10-ANE-109] Proposed Establishment of Class E Airspace; Wolfeboro, NH AGENCY...-1007; Airspace Docket No. 10-ANE-109, at the beginning of your comments. You may also submit and review... is made: ``Comments to Docket No. FAA-2010-1007; Airspace Docket No. 10-ANE-109.'' The postcard will...

  4. 77 FR 4712 - Proposed Establishment of Class E Airspace; Pender, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ...-1103; Airspace Docket No. 11-ACE-14] Proposed Establishment of Class E Airspace; Pender, NE AGENCY... the docket number FAA-2011-1103/Airspace Docket No. 11- ACE-14, at the beginning of your comments. You... made: ``Comments to Docket No. FAA-2011-1103/ Airspace Docket No. 11-ACE-14.'' The postcard will be...

  5. 77 FR 17362 - Proposed Modification of Class D and Class E Airspace and Revocation of Class E Airspace...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... (IFR) at Bellingham International Airport. This action also would remove Class E airspace designated as an extension to a Class D or E surface area at Bellingham International Airport. This action, initiated by the biennial review of the Bellingham airspace area, would enhance the safety and management of...

  6. 78 FR 6261 - Proposed Amendment of Class E Airspace; Griffin, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Airport, Griffin, GA (Lat. 33[deg]13'37'' N., long. 84[deg]16'30'' W.) That airspace extending upward from...-1219; Airspace Docket No. 12-ASO-43] Proposed Amendment of Class E Airspace; Griffin, GA AGENCY... action proposes to amend Class E Airspace at Griffin, GA, as the Griffin Non-Directional Beacon (NDB) has...

  7. 78 FR 52114 - Proposed Amendment of Class E Airspace; Macon, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ..., GA (Lat. 32[deg]41'34'' N., long. 83[deg]38'57'' W.) Macon Downtown Airport (Lat. 32[deg]49'18'' N...-0552; Airspace Docket No. 13-ASO-14] Proposed Amendment of Class E Airspace; Macon, GA AGENCY: Federal... proposes to amend Class E Airspace at Macon, GA, as the Bay Creek NDB has been decommissioned and airspace...

  8. 75 FR 23581 - Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1153; Airspace Docket No. 09-ACE-13] Amendment of Class E Airspace; Emmetsburg, IA AGENCY: Federal... Emmetsburg, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at Emmetsburg Municipal Airport, Emmetsburg, IA. The FAA is taking...

  9. 75 FR 4270 - Establishment of Class E Airspace; Tompkinsville, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0604; Airspace Docket No. 09-ASO-18] Establishment of Class E Airspace; Tompkinsville, KY AGENCY... September 14, 2009 that establishes Class E Airspace at Tompkinsville--Monroe County Airport, Tompkinsville...

  10. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...

  11. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...

  12. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...

  13. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...

  14. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the airspace...

  15. 75 FR 23580 - Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ...-1155; Airspace Docket No. 09-ACE-14] Amendment of Class E Airspace; Mapleton, IA AGENCY: Federal... Mapleton, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at James G. Whiting Memorial Field Airport, Mapleton, IA. The FAA is...

  16. 75 FR 12678 - Revision of Class E Airspace; Dillingham, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1055; Airspace Docket No. 09-AAL-16] Revision of Class E Airspace; Dillingham, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...

  17. 76 FR 73505 - Establishment of Class E Airspace; Nashville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...-0497; Airspace Docket No. 11-ASW-4] Establishment of Class E Airspace; Nashville, AR AGENCY: Federal... for Nashville, AR, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures... a notice of proposed rulemaking to amend Class E airspace for Nashville, AR, creating additional...

  18. 76 FR 44257 - Amendment of Class E Airspace; Mobridge, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...-0134; Airspace Docket No. 11-AGL-3] Amendment of Class E Airspace; Mobridge, SD AGENCY: Federal... Mobridge, SD, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Mobridge... notice of proposed rulemaking to amend Class E airspace for Mobridge, SD, creating additional controlled...

  19. 76 FR 14800 - Establishment of Class E Airspace; Wolfeboro, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1007; Airspace Docket No. 10-ANE-109] Establishment of Class E Airspace; Wolfeboro, NH AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace...

  20. 75 FR 4269 - Establishment of Class E Airspace; Clayton, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0605; Airspace Docket No. 09-ASO-19] Establishment of Class E Airspace; Clayton, GA AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Heaven's Landing Airport, Clayton, GA. DATES...

  1. 75 FR 4270 - Modification of Class E Airspace; Anniston, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0653; Airspace Docket 09-ASO-22] Modification of Class E Airspace; Anniston, AL AGENCY: Federal... October 28, 2009 that modifies the Class E airspace at Anniston Metropolitan Airport, Anniston, AL. DATES...

  2. 76 FR 9220 - Establishment of Class E Airspace; Martinsville, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-1031; Airspace Docket No. 10-AGL-19] Establishment of Class E Airspace; Martinsville, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking to establish Class E airspace for Martinsville, IN...

  3. 78 FR 5128 - Amendment of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...-0323; Airspace Docket No. 12-AAL-4] Amendment of Class E Airspace; Savoonga, AK AGENCY: Federal... Savoonga, AK, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) standard... modify controlled airspace at Savoonga, AK (77 FR 61304). Interested parties were invited to participate...

  4. 75 FR 62460 - Revocation and Establishment of Class E Airspace; Northeast Alaska, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0445; Airspace Docket No. 10-AAL-13] Revocation and Establishment of Class E Airspace; Northeast Alaska... removes redundant Class E airspace in Northeast Alaska and establishes Class E airspace near Eagle, Alaska... proposed rulemaking in the Federal Register to remove some Class E airspace in Northeast Alaska and...

  5. 76 FR 22011 - Amendment of Class E Airspace; Carizzo Springs, Glass Ranch Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ...-0877; Airspace Docket No. 10-ASW-13] Amendment of Class E Airspace; Carizzo Springs, Glass Ranch... amends Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace area, to accommodate... rulemaking to amend Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace area...

  6. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  7. 77 FR 64889 - Amendment of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ...-2012-1092; Airspace Docket No. 12-AWP-6] Amendment of Class D and Class E Airspace; Hawthorne, CA...: This action amends the airspace description for Class D and Class E airspace at Jack Northrop Field... the legal description of the existing Class D and E airspace at Jack Northrop Field/Hawthorne...

  8. 75 FR 27494 - Proposed Amendment of Class E Airspace; Pauls Valley, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... 0182; Airspace Docket No. 10-ASW-4] Proposed Amendment of Class E Airspace; Pauls Valley, OK AGENCY... action proposes to amend Class E airspace at Pauls Valley, OK. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Pauls Valley Municipal...

  9. 75 FR 64971 - Proposed Establishment of Class E Airspace; Central City, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...-0837; Airspace Docket No. 10-ACE-10] Proposed Establishment of Class E Airspace; Central City, NE...: This action proposes to establish Class E airspace at Central City, NE. Controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Central City Municipal--Larry...

  10. 78 FR 48301 - Establishment of Class E Airspace; Walker, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0266; Airspace Docket No. 13-AGL-11] Establishment of Class E Airspace; Walker, MN AGENCY: Federal... at Walker, MN. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Walker Municipal Airport. The FAA is taking this action to enhance the...

  11. 77 FR 68682 - Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-1436; Airspace Docket No. 11-ACE-29] Amendment of Class E Airspace; Guthrie, IA AGENCY: Federal... Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County... proposed rulemaking (NPRM) to amend Class E airspace for the Guthrie, IA, area, creating additional...

  12. 78 FR 76053 - Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...-0255; Airspace Docket No. 13-ACE-4] Amendment of Class E Airspace; Chariton, IA AGENCY: Federal... Chariton, IA. Decommissioning of the Chariton non-directional beacon (NDB) at Chariton Municipal Airport... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Chariton, IA, area...

  13. 75 FR 51177 - Revocation of Class E Airspace; Eastsound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... airspace at Orcas Island Airport, Eastsound, WA. Controlled airspace already exists in the Eastsound, WA area that accommodates the safety and management of aircraft operations at Orcas Island Airport. DATES... Regulations (14 CFR) part 71 by removing Class E surface airspace at Orcas Island Airport, Eastsound, WA...

  14. 76 FR 43575 - Amendment of Class E Airspace; Staunton, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... airspace extending upward from 700 feet above the surface at Shenandoah Valley Regional Airport, Staunton... airspace extending upward from 700 feet above the surface to support new SIAPs developed at Shenandoah... E airspace areas extending upward from 700 feet or more above the surface of the earth...

  15. 76 FR 36285 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...-0116; Airspace Docket No. 11-ANE-1] Establishment of Class E Airspace; Brunswick, ME AGENCY: Federal... at Brunswick, ME, to accommodate the additional airspace needed for the Standard Instrument Approach... Executive Airport, Brunswick, ME (75 FR 14824) Docket No. FAA-2011-0116. Interested parties were invited to...

  16. 75 FR 29656 - Amendment of Class E Airspace; Magnolia, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1179; Airspace Docket No. 09-ASW-35] Amendment of Class E Airspace; Magnolia, AR AGENCY: Federal... airspace for Magnolia, AR. Decommissioning of the Magnolia non-directional beacon (NDB) at Magnolia Municipal Airport, Magnolia, AR has made this action necessary to enhance the safety and management of...

  17. 78 FR 8962 - Establishment of Class E Airspace; Kasigluk, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...-0952; Airspace Docket No. 12-AAL-6] Establishment of Class E Airspace; Kasigluk, AK AGENCY: Federal... at Kasigluk, AK, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS... rulemaking to modify controlled airspace at Kasigluk, AK (77 FR 60660). Interested parties were invited to...

  18. 78 FR 45849 - Amendment of Class E Airspace; Gustavus, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ...-0282; Airspace Docket No. 13-AAL-3] Amendment of Class E Airspace; Gustavus, AK AGENCY: Federal... Gustavus Airport, Gustavus, AK. Decommissioning of the Gustavus Nondirectional Radio Beacon (NDB) has made... Register a notice of proposed rulemaking (NPRM) to amend controlled airspace at Gustavus, AK (78 FR 31871...

  19. 77 FR 6 - Amendment of Class E Airspace; Kwigillingok, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0881; Airspace Docket No. 11-AAL-18] Amendment of Class E Airspace; Kwigillingok, AK AGENCY: Federal... Kwigillingok, AK. The revision of two standard instrument approach procedures at the Kwigillingok Airport has... airspace at Kwigillingok, AK (76 FR 54151). Interested parties were invited to participate in this...

  20. 75 FR 65228 - Revocation of Class E Airspace; Chilicothe, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0268; Airspace Docket No. 10-ACE-2] Revocation of Class E Airspace; Chilicothe, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace for Chilicothe, MO. Airport management and air traffic control facility managers have determined that the Class E...

  1. 75 FR 4270 - Establishment of Class E Airspace; Saluda, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0603; Airspace Docket No. 09-ASO-16] Establishment of Class E Airspace; Saluda, SC AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Saluda County Airport, Saluda, SC. DATES: Effective...

  2. 75 FR 4269 - Establishment of Class E Airspace; Hertford, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0705; Airspace Docket No. 09-ASO-25] Establishment of Class E Airspace; Hertford, NC AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Harvey Point Defense Testing Activity, Hertford, NC...

  3. 75 FR 4269 - Establishment of Class E Airspace; Lewisport, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0706; Airspace Docket No. 09-ASO-26] Establishment of Class E Airspace; Lewisport, KY AGENCY: Federal... September 14, 2009 that establishes Class E Airspace at Hancock Co.--Ron Lewis Field, Lewisport, KY. DATES...

  4. 75 FR 13670 - Amendment of Class E Airspace; Gadsden, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0955; Airspace Docket No. 09-ASO-28] Amendment of Class E Airspace; Gadsden, AL AGENCY: Federal... December 29, 2009 that amends Class E airspace at Northeast Alabama Regional, Gadsden, AL. DATES: Effective...

  5. 75 FR 20773 - Establishment of Class E Airspace; Jackson, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0937; Airspace Docket No. 09-ASO-27] Establishment of Class E Airspace; Jackson, AL AGENCY: Federal... December 7, 2009 that establishes Class E airspace at Jackson Muni, Jackson, AL. DATES: Effective Date...

  6. 14 CFR 73.3 - Special use airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special use airspace. 73.3 Section 73.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE... defined dimensions identified by an area on the surface of the earth wherein activities must be confined...

  7. 75 FR 63709 - Revocation of Class C Airspace, Establishment of Class D Airspace, and Modification of Class E...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... foot Class E airspace at Columbus, GA. The FAA is taking this action because Columbus Metropolitan... area and the 700 foot Class E airspace area at Columbus, GA (75 FR 27670). Interested parties were... from 700 feet above the surface at Columbus, Ga. The radius of the Class E surface area at the airport...

  8. 75 FR 62461 - Revocation and Establishment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0660; Airspace Docket No. 10-ANM-4] Revocation and Establishment of Class E Airspace; St. George, UT... Class E airspace at St. George, UT, as the airport will be closing, eliminating the need for controlled airspace. This action will establish Class E airspace for the new St. George Municipal Airport located to...

  9. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  10. Benefits Assessment of the Interaction Between Traffic Flow Management Delay and Airspace Partitions in the Presence of Weather

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Lee, Hak-Tae; Chatterji, Gano

    2011-01-01

    The concept of re-partitioning the airspace into a new set of sectors for allocating capacity rather than delaying flights to comply with the capacity constraints of a static set of sectors is being explored. The reduction in delay, a benefit, achieved by this concept needs to be greater than the cost of controllers and equipment needed for the additional sectors. Therefore, tradeoff studies are needed for benefits assessment of this concept.

  11. 75 FR 43886 - Proposed Amendment of Class E Airspace; Corpus Christi, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0404; Airspace Docket No. 10-ASW-7] Proposed Amendment of Class E Airspace; Corpus Christi, TX AGENCY... action proposes to amend Class E airspace in the Corpus Christi, TX area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Corpus Christi...

  12. 78 FR 65239 - Proposed Establishment of Class E Airspace; Brevig Mission, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0078; Airspace Docket No. 12-AAL-1] Proposed Establishment of Class E Airspace; Brevig Mission, AK...: This action proposes to establish Class E airspace at Brevig Mission Airport, Brevig Mission, AK... at Brevig Mission Airport, Brevig Mission, AK. Controlled airspace extending 2 miles north, 6 miles...

  13. 78 FR 27029 - Modification of Class C Airspace; Nashville International Airport; TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...-0031; Airspace Docket No. 12-AWA-7] Modification of Class C Airspace; Nashville International Airport... modifies the Nashville International Airport, TN, Class C airspace area by removing a cutout from the... modify the Nashville International Airport, TN, Class C airspace area (78 FR 6257). Interested parties...

  14. 78 FR 18800 - Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1433; Airspace Docket No. 11-ACE-26] Amendment of Class E Airspace; Decorah, IA AGENCY: Federal... Decorah, IA. Decommissioning of the Decorah non-directional beacon (NDB) at Decorah Municipal Airport has... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Decorah, IA, area...

  15. 76 FR 75447 - Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-0830; Airspace Docket No. 11-ACE-16] Amendment of Class E Airspace; Centerville, IA AGENCY: Federal... Centerville, IA. Decommissioning of the Centerville non-directional beacon (NDB) and cancellation of the NDB... Federal Register a notice of proposed rulemaking to amend Class E airspace for the Centerville, IA, area...

  16. 77 FR 42427 - Amendment of Class E Airspace; Grinnell, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...-1430; Airspace Docket No. 11-ACE-23] Amendment of Class E Airspace; Grinnell, IA AGENCY: Federal... Class E airspace at Grinnell Regional Airport, Grinnell, IA, by removing reference to the Grinnell NDB... Regional Airport, Grinnell, IA, and amends the geographic coordinates of the airport to coincide with the...

  17. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  18. 78 FR 48294 - Amendment of Class E Airspace; Mason, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-1141; Airspace Docket No. 12-ASW-12] Amendment of Class E Airspace; Mason, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Mason, TX... Approach Procedures at Mason County Airport. This action enhances the safety and management of Instrument...

  19. 78 FR 6727 - Amendment of Class E Airspace; Lincoln, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...-0764; Airspace Docket No. 12-ANE-12] Amendment of Class E Airspace; Lincoln, ME AGENCY: Federal... Lincoln, ME, as the Lincoln Non-Directional Beacon (NDB) has been decommissioned and new Standard... in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Lincoln, ME (77...

  20. 78 FR 72009 - Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...-0440; Airspace Docket No. 13-ASO-10] Establishment of Class E Airspace; Star, NC AGENCY: Federal... at Star, NC, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS) Standard... Federal Register a notice of proposed rulemaking to establish Class E airspace at Star, NC (78 FR 54413...

  1. 77 FR 4458 - Amendment of Class E Airspace; Rugby, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...-0433; Airspace Docket No. 11-AGL-12] Amendment of Class E Airspace; Rugby, ND AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Rugby, ND. Decommissioning of the Rugby non-directional beacon (NDB) at Rugby Municipal Airport has made this action...

  2. 75 FR 41076 - Establishment of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-1030; Airspace Docket No. 09-AWP-8] Establishment of Class E Airspace; Monterey, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will establish Class E... area. Class E airspace designations are published in paragraph 6002 of FAA Order 7400.9T signed August...

  3. 75 FR 41077 - Revision of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ...-0633; Airspace Docket No. 10-AWP-12] Revision of Class E Airspace; Monterey, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...: History The FAA received a request from NACO to clarify the legal description of the existing Class E...

  4. 78 FR 50323 - Amendment of Class E Airspace; Lexington, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ...-0272; Airspace Docket No. 13-ASW-10] Amendment of Class E Airspace; Lexington, OK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Class E surface area to a Class E transition area. This action enhances the safety and management of...

  5. 78 FR 38828 - Establishment of Class E Airspace; Captiva, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ...-1335; Airspace Docket No. 12-ASO-19] Establishment of Class E Airspace; Captiva, FL AGENCY: Federal...: History On June 6, 2013, the FAA published a final rule, in the Federal Register establishing Class E... aeronautical data charting service, thereby making this action necessary. The Class E airspace designations are...

  6. En route Spacing Tool: Efficient Conflict-free Spacing to Flow-Restricted Airspace

    NASA Technical Reports Server (NTRS)

    Green, S.

    1999-01-01

    This paper describes the Air Traffic Management (ATM) problem within the U.S. of flow-restricted en route airspace, an assessment of its impact on airspace users, and a set of near-term tools and procedures to resolve the problem. The FAA is committed, over the next few years, to deploy the first generation of modem ATM decision support tool (DST) technology under the Free-Flight Phase-1 (FFp1) program. The associated en route tools include the User Request Evaluation Tool (URET) and the Traffic Management Advisor (TMA). URET is an initial conflict probe (ICP) capability that assists controllers with the detection and resolution of conflicts in en route airspace. TMA orchestrates arrivals transitioning into high-density terminal airspace by providing controllers with scheduled times of arrival (STA) and delay feedback advisories to assist with STA conformance. However, these FFPl capabilities do not mitigate the en route Miles-In-Trail (MIT) restrictions that are dynamically applied to mitigate airspace congestion. National statistics indicate that en route facilities (Centers) apply Miles-In-Trail (MIT) restrictions for approximately 5000 hours per month. Based on results from this study, an estimated 45,000 flights are impacted by these restrictions each month. Current-day practices for implementing these restrictions result in additional controller workload and an economic impact of which the fuel penalty alone may approach several hundred dollars per flight. To mitigate much of the impact of these restrictions on users and controller workload, a DST and procedures are presented. The DST is based on a simple derivative of FFP1 technology that is designed to introduce a set of simple tools for flow-rate (spacing) conformance and integrate them with conflict-probe capabilities. The tool and associated algorithms are described based on a concept prototype implemented within the CTAS baseline in 1995. A traffic scenario is used to illustrate the controller's use of

  7. 77 FR 49399 - Proposed Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-0654; Airspace Docket No. 12-ACE-3] Proposed Amendment of Class E Airspace; Forest City, IA AGENCY... action proposes to amend Class E airspace at Forest City, IA. Additional controlled airspace is necessary... accommodate new standard instrument approach procedures at Forest City Municipal Airport, Forest City, IA. The...

  8. 77 FR 71361 - Proposed Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-1434; Airspace Docket No. 11-ACE-27] Proposed Amendment of Class E Airspace; West Union, IA AGENCY... action proposes to amend Class E airspace at West Union, IA. Decommissioning of the West Union non... instrument approach procedures at George L. Scott Municipal Airport, West Union, IA. Airspace reconfiguration...

  9. 77 FR 49712 - Amendment to Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... operating in the vicinity of SLC. The modified Class B airspace areas were designed to ensure all instrument... final Salt Lake City Class B airspace design provides operational and safety benefits to all airspace... Salt Lake City Class B airspace design also incorporated reductions to the northern and southern...

  10. 77 FR 17363 - Proposed Establishment of Class E Airspace; West Memphis, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ...-0155; Airspace Docket No. 12-ASW-1] Proposed Establishment of Class E Airspace; West Memphis, AR AGENCY... action proposes to establish Class E airspace at West Memphis, AR. Separation of existing Class E... surface at West Memphis, AR, to accommodate the separation of existing Class E airspace surrounding West...

  11. 78 FR 73749 - Proposed Amendment of Class D Airspace; St. Joseph, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...-0917; Airspace Docket No. 13-ACE-16] Proposed Amendment of Class D Airspace; St. Joseph, MO AGENCY... action proposes to amend Class D airspace at St. Joseph, MO. Additional controlled airspace is necessary... Rosecrans Municipal Airport, St. Joseph, MO. Accordingly, additional segments would extend from the 4.3-mile...

  12. 78 FR 30797 - Proposed Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-1175; Airspace Docket No. 12-AAL-11] Proposed Amendment of Class E Airspace; Point Thomson, AK AGENCY... action proposes to modify the airspace at Point Thomson, AK by establishing Class E Airspace at Point Thomson Airstrip Airport, Point Thomson, AK. This will accommodate aircraft using a new Area Navigation...

  13. 76 FR 80230 - Amendment of Class D and E Airspace; Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... November 28, 2011, amending controlled airspace at Martin State Airport, Baltimore, MD. DATES: Effective... published a final rule in the Federal Register amending Class D and E airspace at Martin State Airport... the airspace designation for the Class D and Class E airspace areas at Martin State Airport, Baltimore...

  14. 76 FR 49385 - Proposed Amendment of Class E Airspace; South Bend, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...-0250; Airspace Docket No. 11-AGL-6] Proposed Amendment of Class E Airspace; South Bend, IN AGENCY... action proposes to amend Class E airspace in the South Bend, IN area. Additional controlled airspace is... (IFR) operations for SIAPs at the airport. The geographic coordinates for South Bend Regional Airport...

  15. 78 FR 72001 - Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Salisbury, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ...'' W.) That airspace extending upward from the surface to and including 2,500 feet MSL [[Page 72002...] Salisbury-Ocean City Wicomico Regional Airport, MD (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That... (Lat. 38[deg]20'25'' N., long. 75[deg]30'34'' W.) That airspace extending upward from the surface...

  16. 75 FR 51171 - Amendment of Class D and Class E Airspace; Kaneohe, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ...; Airspace Docket No. 10-AWP-10] Amendment of Class D and Class E Airspace; Kaneohe, HI AGENCY: Federal... Class D and Class E airspace at Kaneohe Bay Marine Corps Air Station (MCAS), Kaneohe, HI. The FAA is... airspace and Class E airspace upward from 700 feet above the surface at Kaneohe Bay MCAS, Kaneohe Bay, HI...

  17. 75 FR 16333 - Establishment of Class E Airspace; Quitman, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ...-0053; Airspace Docket No. 10-ASO-12] Establishment of Class E Airspace; Quitman, GA AGENCY: Federal... establishes Class E Airspace at Quitman, GA, to accommodate Standard Instrument Approach Procedures (SIAPs) at... inclusion in the Rules Docket must be received on or before May 17, 2010. The Director of the Federal...

  18. 78 FR 25382 - Amendment of Class E Airspace; Griffin, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... County Airport, Griffin, GA (Lat. 33[deg]13'37'' N., long. 84[deg]16'30'' W.) That airspace extending...-1219; Airspace Docket No. 12-ASO-43] Amendment of Class E Airspace; Griffin, GA AGENCY: Federal... Griffin, GA, as the Griffin Non-Directional Beacon (NDB) has been decommissioned and new Standard...

  19. 75 FR 66300 - Amendment of Class E Airspace; Searcy, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...-1182; Airspace Docket No. 09-ASW-37] Amendment of Class E Airspace; Searcy, AR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Searcy, AR. Decommissioning of the Searcy non-directional beacon (NDB) at Searcy Municipal Airport, Searcy, AR, has made this...

  20. 75 FR 29654 - Amendment of Class E Airspace; Manila, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1184; Airspace Docket No. 09-ASW-39] Amendment of Class E Airspace; Manila, AR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Manila, AR. Decommissioning of the Manila non-directional beacon (NDB) at Manila Municipal Airport, Manila, AR has made this...

  1. 75 FR 32271 - Revision of Class E Airspace; Nenana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...-0081; Airspace Docket No. 10-AAL-3] Revision of Class E Airspace; Nenana, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Nenana, AK, to..., Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number...

  2. 75 FR 12679 - Revision of Class E Airspace; Iliamna, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...-1036; Airspace Docket No. 09-AAL-17] Revision of Class E Airspace; Iliamna, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Iliamna, AK, to..., Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number...

  3. 75 FR 33165 - Revision of Class E Airspace; Galena, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...-0299; Airspace Docket No. 10-AAL-9] Revision of Class E Airspace; Galena, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final Rule. SUMMARY: This action revises Class E airspace at Galena, AK, to...-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone...

  4. 75 FR 72939 - Modification of Class E Airspace; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ...-0719; Airspace Docket No. 10-ANM-8] Modification of Class E Airspace; Portland, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will modify existing Class E.... Class E airspace designations are published in paragraph 6005 of FAA Order 7400.9U dated August 18, 2010...

  5. 75 FR 31677 - Amendment of Class E Airspace; Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...-1152; Airspace Docket No. 09-ASW-31] Amendment of Class E Airspace; Austin, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for the Austin, TX... Procedures (SIAPs) at Austin Executive Airport, Austin, TX. The FAA is taking this action to enhance the...

  6. 77 FR 27666 - Proposed Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...-1366; Airspace Docket No. 11-ANE-13] Proposed Amendment of Class E Airspace; Bar Harbor, ME AGENCY... action proposes to amend Class E Airspace at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon... Airport, Bar Harbor, ME. Airspace reconfiguration is necessary due to the decommissioning of the Surry NDB...

  7. 78 FR 52112 - Proposed Amendment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...-0664; Airspace Docket No. 13-ANM-22] Proposed Amendment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to modify Class E airspace at Cut Bank Municipal Airport, Cut Bank, MT. Controlled... from 700/1,200 feet above the surface at Cut Bank Municipal Airport, Cut Bank, MT. Controlled airspace...

  8. 75 FR 32652 - Revocation and Establishment of Class E Airspace; Nuiqsut, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ...-0502; Airspace Docket No. 10-AAL-15] Revocation and Establishment of Class E Airspace; Nuiqsut, AK... establishes Class E airspace on the north slope of Alaska near Nuiqsut, AK, to provide controlled airspace to..., Pioneer Heliport (AA27), Nuiqsut, AK, and Oooguruk Island Heliport (AK32), Nuiqsut, AK, both formerly...

  9. 76 FR 66662 - Proposed Amendment of Class D Airspace; Santa Monica, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ...-0611; Airspace Docket No. 11-AWP-11] Proposed Amendment of Class D Airspace; Santa Monica, CA AGENCY... action proposes to modify Class D airspace at Santa Monica Municipal Airport, CA, to accommodate aircraft... an amendment to Title 14 Code of Federal Regulations (14 CFR) Part 71 by modifying Class D airspace...

  10. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  11. 75 FR 62458 - Revision of Class E Airspace; Tanana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0588 Airspace Docket No. 10-AAL-16] Revision of Class E Airspace; Tanana, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Tanana, AK. The... West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850...

  12. 76 FR 66178 - Revision of Class E Airspace; Umiat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...-0750; Airspace Docket No. 11-AAL-08] Revision of Class E Airspace; Umiat, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Umiat, AK, due to...-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone...

  13. 75 FR 32272 - Revision of Class E Airspace; Kaltag, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...-0082; Airspace Docket No. 10-AAL-4] Revision of Class E Airspace; Kaltag, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Kaltag, AK, to..., Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e-mail: [email protected

  14. 78 FR 58158 - Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...-2012-0433; Airspace Docket No. 12-AAL-5] Establishment of Class D Airspace; Bryant AAF, Anchorage, AK... corrects a final rule published in the Federal Register August 8, 2013 that establishes Class D airspace at... Bryant AAF, in that the language indicating Class D airspace as part time was left out. DATES: Effective...

  15. 78 FR 11115 - Proposed Amendment of Class E Airspace; Atwood, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ...-1431; Airspace Docket No. 11-ACE-24] Proposed Amendment of Class E Airspace; Atwood, KS AGENCY: Federal..., Washington, DC 20590-0001. You must identify the docket number FAA-2011-1431/Airspace Docket No. 11- ACE-24... [[Page 11116

  16. Legal aspects of the utilization of highway airspace.

    DOT National Transportation Integrated Search

    1974-01-01

    The report provides a general exposition of the legal implications of the utilization of the airspace above the highways of the Commonwealth, examines Virginia's legislation in this area, and suggests improvements in the form of the Model Airspace Ac...

  17. Concepts of advanced practice: what does it mean?

    PubMed

    Pearson, Helen

    'Advanced practice nursing' may be a familiar concept, but a definition of advanced practice, its scope and its responsibilities, remains elusive. This article discusses the origins of advanced practice, and its practical meaning for nurses working in the NHS today.

  18. 75 FR 64972 - Proposed Revocation of Class E Airspace; Lone Star, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...-0772; Airspace Docket No. 10-ASW-10] Proposed Revocation of Class E Airspace; Lone Star, TX AGENCY... action proposes to remove Class E airspace at Lone Star, TX. Abandonment of the former Lone Star Steel... need for controlled airspace in the Lone Star, TX, area. The FAA is taking this action to ensure the...

  19. Diagnostic throughput factor analysis for en-route airspace and optimal aircraft trajectory generation based on capacity prediction and controller workload

    NASA Astrophysics Data System (ADS)

    Shin, Sanghyun

    Today's National Airspace System (NAS) is approaching its limit to efficiently cope with the increasing air traffic demand. Next Generation Air Transportation System (NextGen) with its ambitious goals aims to make the air travel more predictable with fewer delays, less time sitting on the ground and holding in the air to improve the performance of the NAS. However, currently the performance of the NAS is mostly measured using delay-based metrics which do not capture a whole range of important factors that determine the quality and level of utilization of the NAS. The factors affecting the performance of the NAS are themselves not well defined to begin with. To address these issues, motivated by the use of throughput-based metrics in many areas such as ground transportation, wireless communication and manufacturing, this thesis identifies the different factors which majorly affect the performance of the NAS as demand (split into flight cancellation and flight rerouting), safe separation (split into conflict and metering) and weather (studied as convective weather) through careful comparison with other applications and performing empirical sensitivity analysis. Additionally, the effects of different factors on the NAS's performance are quantitatively studied using real traffic data with the Future ATM Concepts Evaluation Tool (FACET) for various sectors and centers of the NAS on different days. In this thesis we propose a diagnostic tool which can analyze the factors that have greater responsibility for regions of poor and better performances of the NAS. Based on the throughput factor analysis for en-route airspace, it was found that weather and controller workload are the major factors that decrease the efficiency of the airspace. Also, since resources such as air traffic controllers, infrastructure and airspace are limited, it is becoming increasingly important to use the available resources efficiently. To alleviate the impact of the weather and controller

  20. For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Cotton, William B.

    2011-01-01

    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.

  1. 78 FR 16399 - Amendment of Class E Airspace; Unalakleet, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ..., AK (Lat. 63[deg]53'19'' N., long. 160[deg]47'57'' W.) That airspace within a 4.2-mile radius of.... * * * * * AAL AK E5 Unalakleet, AK [Modified] Unalakleet Airport, AK (Lat. 63[deg]53'19'' N., long. 160[deg]47...; Airspace Docket No. 12-AAL-3] Amendment of Class E Airspace; Unalakleet, AK AGENCY: Federal Aviation...

  2. Investigation, Modeling, and Analysis of Integrated Metroplex Arrival and Departure Coordination Concepts

    NASA Technical Reports Server (NTRS)

    Clarke, John-Paul B.; Brooks, James; McClain, Evan; Paladhi, Anwesha Roy; Li, Leihong; Schleicher, David; Saraf, Aditya; Timar, Sebastian; Crisp, Don; Bertino, Jason; hide

    2012-01-01

    This work involves the development of a concept that enhances integrated metroplex arrival and departure coordination, determines the temporal (the use of time separation for aircraft sharing the same airspace resources) and spatial (the use of different routes or vertical profiles for aircraft streams at any given time) impact of metroplex traffic coordination within the National Airspace System (NAS), and quantifies the benefits of the most desirable metroplex traffic coordination concept. Researching and developing metroplex concepts is addressed in this work that broadly applies across the range of airspace and airport demand characteristics envisioned for NextGen metroplex operations. The objective of this work is to investigate, formulate, develop models, and analyze an operational concept that mitigates issues specific to the metroplex or that takes advantage of unique characteristics of metroplex airports to improve efficiencies. The concept is an innovative approach allowing the NAS to mitigate metroplex interdependencies between airports, optimize metroplex arrival and departure coordination among airports, maximize metroplex airport throughput, minimize delay due to airport runway configuration changes, increase resiliency to disruptions, and increase the tolerance of the system to degrade gracefully under adverse conditions such as weather, traffic management initiatives, and delays in general.

  3. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  4. 76 FR 53358 - Proposed Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0830; Airspace Docket No. 11-ACE-16] Proposed Amendment of Class E Airspace; Centerville, IA AGENCY... action proposes to amend Class E airspace at Centerville, IA. Decommissioning of the Centerville non... Centerville Municipal Airport, Centerville, IA. Decommissioning of the Centerville NDB and cancellation of the...

  5. 77 FR 64919 - Proposed Establishment of Class E Airspace; Princeton, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... Class E Airspace; Princeton, KY AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class E Airspace at Princeton, KY to... serving the Princeton-Caldwell County Airport. This action would enhance the safety and airspace...

  6. 78 FR 5129 - Amendment of Class E Airspace; Wilkes-Barre, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Wilkes-Barre, PA, creating controlled airspace to accommodate new area navigation (RNAV) Standard... Wilkes-Barre, PA, area by creating controlled airspace at Wilkes-Barre/ Wyoming Valley Airport, Wilkes... in the Wilkes-Barre, PA, area by creating controlled airspace extending upward form 700 feet above...

  7. 77 FR 64714 - Modification of Class E Airspace; Wolf Point, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ...-0569; Airspace Docket No. 12-ANM-17] Modification of Class E Airspace; Wolf Point, MT AGENCY: Federal... Wolf Point, MT. Controlled airspace is necessary to accommodate aircraft using Nondirectional Radio Beacon (NDB) standard instrument approach procedures at L M Clayton Airport, Wolf Point, MT. This...

  8. 76 FR 44285 - Proposed Amendment of Class E Airspace; Fayette, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Class E Airspace; Fayette, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E Airspace at Fayette, AL, as the... at Richard Arthur Field, Fayette, AL. Airspace reconfiguration is necessary due to the...

  9. 76 FR 67103 - Proposed Revision of Class D and Class E Airspace; Hawthorne, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0610; Airspace Docket No. 11-AWP-10] Proposed Revision of Class D and Class E Airspace; Hawthorne, CA...: This action proposes to revise Class D and E airspace at Jack Northrop Field/Hawthorne Municipal... (14 CFR) Part 71 by revising Class D airspace and Class E airspace designated as an extension to Class...

  10. Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Dutle, Aaron; Narkawicz, Anthony; Upchurch, Jason

    2016-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations.

  11. An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the

  12. 76 FR 53356 - Proposed Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0846; Airspace Docket No. 11-ACE-18] Proposed Amendment of Class E Airspace; Greenfield, IA AGENCY... action proposes to amend Class E airspace at Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal Airport, Greenfield, IA, has made this action necessary for...

  13. 78 FR 48840 - Proposed Amendment of Class E Airspace; Hampton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...-0585; Airspace Docket No. 13-ACE-7] Proposed Amendment of Class E Airspace; Hampton, IA AGENCY: Federal... proposes to amend Class E airspace at Hampton, IA. Decommissioning of the Hampton non-directional beacon... for standard instrument approach procedures at Hampton Municipal Airport, Hampton, IA. A segment would...

  14. 76 FR 56127 - Proposed Amendment of Class E Airspace; Mercury, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...-0894; Airspace Docket No. 11-AWP-14] Proposed Amendment of Class E Airspace; Mercury, NV AGENCY... action proposes to amend Class E airspace at Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non- Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action...

  15. 75 FR 65251 - Proposed Amendment of Class E Airspace; Charleston, WV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...; Airspace Docket No. 10-AEA-24) and be submitted in triplicate to the Docket Management System (see... action proposes to modify Class E Airspace at Charleston, WV, to accommodate the additional airspace needed for the holding pattern associated with the new Standard Instrument Approach Procedures (SIAPs...

  16. 77 FR 42430 - Establishment of Class E Airspace; West Memphis, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Airport from the Class E airspace of Memphis International Airport, Memphis, TN, has made this action necessary to enhance the safety and management of Instrument Flight Rules (IFR) operations at the airport... airspace surrounding West Memphis Municipal Airport from the Class E airspace area of Memphis International...

  17. 78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-0956; Airspace Docket No. 13-AWP-17] Proposed Establishment of Class E Airspace; Phoenix, AZ AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of...

  18. 76 FR 28685 - Proposed Amendment of Class E Airspace; Hannibal, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...-0046; Airspace Docket No. 11-ACE-1] Proposed Amendment of Class E Airspace; Hannibal, MO AGENCY... action proposes to amend Class E airspace at Hannibal, MO. Decommissioning of the Hannibal non-directional beacon (NDB) at Hannibal Regional Airport, Hannibal, MO, has made this action necessary for the...

  19. 78 FR 59806 - Establishment of Class E Airspace; White Mountain, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ...-1185; Airspace Docket No. 12-AAL-8] Establishment of Class E Airspace; White Mountain, AK AGENCY... airspace at White Mountain Airport, White Mountain, AK, to accommodate aircraft using new Area Navigation..., Airport, White Mountain, AK (77 FR 75598). Interested parties were invited to participate in this...

  20. 78 FR 14911 - Amendment of Class E Airspace; Hot Springs, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ...-0655; Airspace Docket No. 12-AGL-6] Amendment of Class E Airspace; Hot Springs, SD AGENCY: Federal... Springs, SD. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Hot Springs Municipal Airport. The FAA is taking this action to...

  1. 75 FR 20774 - Establishment of Class E Airspace; Mountain City, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-0061; Airspace Docket No. 09-ASO-10] Establishment of Class E Airspace; Mountain City, TN AGENCY... December 7, 2009 that establishes Class E airspace at Johnson County Airport, Mountain City, TN. DATES...

  2. 78 FR 45478 - Proposed Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0531; Airspace Docket No. 13-ANM-20] Proposed Establishment of Class E Airspace; Salmon, ID AGENCY... action proposes to establish Class E airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules...

  3. 75 FR 18402 - Amendment of Class E Airspace; North Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...-0831; Airspace Docket No. 09-ANM-13] Amendment of Class E Airspace; North Bend, OR AGENCY: Federal... at Southwest Oregon Regional Airport, North Bend, OR, to allow aircraft at Sunnyhill Airport to... rulemaking to establish additional controlled airspace at North Bend, OR (74 FR 57616). Interested parties...

  4. Evaluation of advanced airship concepts

    NASA Technical Reports Server (NTRS)

    Joner, B. A.; Schneider, J. J.

    1975-01-01

    A historical overview of the airship, technical and operational characteristics of conventional and hybrid concepts, and the results of a parametric design analysis and evaluation are presented. The lift capabilities of certain buoyant fluids for a hypothetical 16 million cu.ft. volume airship are compared. The potential advanced airship concepts are surveyed, followed by a discussion of the six configurations: conventional nonrigid, conventional rigid, Deltoid (Dynairship), Guppoid (Megalifter), Helipsoid, and Heli-Stat. It is suggested that a partially buoyant Helipsoid concept of the optimum buoyancy ratio has the potential to solve the problems facing future airship development, such as Ballast and Ballast Recovery System, Full Low-Speed Controllability, Susceptibility to Wind/Gusting, Weather/Icing Constraints, Ground Handling/Hangaring, and Direct/Indirect Operating Costs.

  5. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  6. 77 FR 50646 - Proposed Establishment of Class D Airspace; Bryant AAF, Anchorage, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...-0433; Airspace Docket No. 12-AAL-5] Proposed Establishment of Class D Airspace; Bryant AAF, Anchorage...). SUMMARY: This action proposes to establish Class D airspace at Bryant Army Airfield (AAF), Anchorage AK... 71 by establishing Class D airspace extending upward from the surface at Bryant AAF, Anchorage AK...

  7. 78 FR 57545 - Proposed Amendment of Class D Airspace; Dallas, Addison Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...-0749; Airspace Docket No. 13-ASW-16] Proposed Amendment of Class D Airspace; Dallas, Addison Airport... airspace ceiling at Addison Airport, Dallas, TX, is being withdrawn. Upon review, the FAA determined that the proposed rulemaking action is premature in that an existing Dallas/Fort Worth Class B airspace...

  8. Advanced Sensor Concepts

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Howard, D. E.; Smith, D. A.

    2005-01-01

    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.

  9. 77 FR 45987 - Proposed Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-1436; Airspace Docket No. 11-ACE-29] Proposed Amendment of Class E Airspace; Guthrie, IA AGENCY... action proposes to amend Class E airspace at Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County Regional Airport, Guthrie, IA, has made this action necessary...

  10. 76 FR 5471 - Amendment of Class E Airspace; La Porte, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1030; Airspace Docket No. 10-AGL-18] Amendment of Class E Airspace; La Porte, IN AGENCY: Federal... controlled airspace at La Porte Hospital Heliport (75 FR 68556) Docket No. FAA-2010-1030. Interested parties...

  11. 76 FR 57633 - Amendment of Class E Airspace; Miles City, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ...-0515; Airspace Docket No. 11-ANM-11] Amendment of Class E Airspace; Miles City, MT AGENCY: Federal... Miles City, MT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System... proposed rulemaking to modify controlled airspace at Miles City, MT (76 FR 41725). Interested parties were...

  12. 77 FR 21662 - Amendment of Class D Airspace; Cocoa Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...-0099; Airspace Docket No. 12-ASO-11] Amendment of Class D Airspace; Cocoa Beach, FL AGENCY: Federal... Class D airspace at Cape Canaveral Skid Strip, Cocoa Beach, FL, by correcting the geographic coordinates... of Cape Canaveral Skid Strip, Cocoa Beach, FL. Also, the geographic coordinates for the airport need...

  13. 76 FR 30298 - Proposed Amendment of Class E Airspace; Cocoa, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...-0070; Airspace Docket No. 10-ASO-43] Proposed Amendment of Class E Airspace; Cocoa, FL AGENCY: Federal... proposes to amend Class E Airspace at Cocoa, FL, as the Merritt Island Non-Directional Beacon (NDB) has... surface to support new standard instrument approach procedures developed at Merritt Island Airport, Cocoa...

  14. 75 FR 6594 - Proposed Amendment of Class E Airspace; Osceola, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-1183; Airspace Docket No. 09-ASW-38] Proposed Amendment of Class E Airspace; Osceola, AR AGENCY... action proposes to amend Class E airspace at Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport, Osceola, AR, has made this action necessary for the safety and...

  15. 75 FR 65584 - Proposed Amendment of Class E Airspace; Savannah, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...-1047; Airspace Docket No. 10-ASO-37] Proposed Amendment of Class E Airspace; Savannah, TN AGENCY...; Telephone: 1- 800-647-5527; Fax: 202-493-2251. You must identify the Docket Number FAA-2010-1047; Airspace... the proposal. Communications should identify both docket numbers (FAA Docket No. FAA-2010-1047...

  16. 77 FR 61248 - Establishment of Class E Airspace; Deer Lodge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ...-0379; Airspace Docket No. 12-ANM-7 Establishment of Class E Airspace; Deer Lodge, MT AGENCY: Federal... at Deer Lodge-City- County Airport, Deer Lodge, MT. Controlled airspace is necessary to accommodate... procedures at Deer Lodge-City-County Airport. This improves the safety and management of Instrument Flight...

  17. 78 FR 63380 - Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...-0600; Airspace Docket No. 13-ANM-18] Amendment of Class E Airspace; St. George, UT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at St. George Municipal Airport, St. George, UT, by removing the operating hours established by a Notice to...

  18. 76 FR 49387 - Proposed Amendment of Class E Airspace; Umiat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...-0750 Airspace Docket No. 11-AAL-08] Proposed Amendment of Class E Airspace; Umiat, AK AGENCY: Federal... proposes to revise Class E airspace at Umiat, AK. The cancellation of two special Instrument Approach... Operations, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR...

  19. 75 FR 77573 - Proposed Revision of Class E Airspace; Shungnak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...-1104 Airspace Docket No. 10-AAL-19] Proposed Revision of Class E Airspace; Shungnak, AK AGENCY: Federal... proposes to revise Class E airspace at Shungnak, AK. The amendment of Standard Instrument Approach... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Martha...

  20. 77 FR 6 - Amendment of Class E Airspace; Galbraith Lake, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ...-0865; Airspace Docket No. 11-AAL-14] Amendment of Class E Airspace; Galbraith Lake, AK AGENCY: Federal... Galbraith Lake, AK. The creation of two standard instrument approach procedures at the Galbraith Lake... airspace at Galbraith Lake, AK (76 FR 54152). Interested parties were invited to participate in this...

  1. 78 FR 13843 - Proposed Amendment of Class E Airspace; Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ...-0026; Airspace Docket No. 13-ANM-3] Proposed Amendment of Class E Airspace; Bend, OR AGENCY: Federal... proposes to modify Class E airspace at Bend, OR to accommodate aircraft departing and arriving under Instrument Flight Rules (IFR) at Bend Municipal Airport. This action would enhance the safety and management...

  2. 76 FR 28888 - Revocation of Class E Airspace; Gruver Cluck Ranch Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...-0272; Airspace Docket No. 11-ASW-3] Revocation of Class E Airspace; Gruver Cluck Ranch Airport, TX... Class E airspace at Gruver, Cluck Ranch Airport, TX. The airport has been abandoned, thereby eliminating the need for controlled airspace in the Gruver, Cluck Ranch Airport, TX, area. The FAA is taking this...

  3. 76 FR 53353 - Proposed Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0845; Airspace Docket No. 11-ACE-19] Proposed Amendment of Class E Airspace; Carroll, IA AGENCY... action proposes to amend Class E airspace at Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll, IA, has made this action necessary for the safety and...

  4. 78 FR 18798 - Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...-1434; Airspace Docket No. 11-ACE-27] Amendment of Class E Airspace; West Union, IA AGENCY: Federal... West Union, IA. Decommissioning of the West Union non-directional beacon (NDB) at George L. Scott... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the West Union, IA...

  5. 76 FR 13505 - Amendment of Class E Airspace; La Porte, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2010-1030; Airspace Docket No. 10-AGL-18] Amendment of Class E Airspace; La Porte, IN AGENCY: Federal... amending Class E airspace in the La Porte, IN area (76 FR 5471), Docket No. FAA-2010-1030. Subsequent to...

  6. 77 FR 40834 - Proposed Amendment of Class E Airspace; Dillon, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... further expand the previous proposed amendment of Class E airspace extending upward from 700 feet above... an amendment of Class E airspace extending upward from 700 feet above the surface. DATES: Comments... published a NPRM to modify Class E airspace, extending upward from 700 feet or more above the surface, at...

  7. 75 FR 14381 - Amendment of Class E Airspace; Mount Airy, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may also... proposes to amend Class E Airspace at Mount Airy, NC, to accommodate the additional airspace needed for the... enhances the safety and airspace management of Instrument Flight Rules (IFR) operations at the airport...

  8. 75 FR 43884 - Proposed Amendment of Class E Airspace; Searcy, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-1182; Airspace Docket No. 09-ASW-37] Proposed Amendment of Class E Airspace; Searcy, AR AGENCY: Federal... proposes to amend Class E airspace at Searcy, AR. Decommissioning of the Searcy non-directional beacon (NDB) at Searcy Municipal Airport, Searcy, AR, has made this action necessary for the safety and management...

  9. 75 FR 77574 - Proposed Revision of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...-1103Airspace Docket No. 10-AAL-18] Proposed Revision of Class E Airspace; Savoonga, AK AGENCY: Federal Aviation... proposes to revise Class E airspace at Savoonga, AK. The amendment of three Standard Instrument Approach... Operations, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR...

  10. 76 FR 3011 - Establishment of Class E Airspace; Port Clarence, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...-0354, Airspace Docket No. 10-AAL-10] Establishment of Class E Airspace; Port Clarence, AK AGENCY... Coast Guard Station (CGS) Airport, Port Clarence, AK. The charting of this airspace has been delayed... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907...

  11. 78 FR 48303 - Establishment of Class E Airspace; Tuba City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-2013-0147; Airspace Docket No. 13-AWP-1] Establishment of Class E Airspace; Tuba City, AZ AGENCY... airspace at the Tuba City VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC), Tuba City, AZ. In that rule, an error was made in the legal description for Tuba City, identifying the...

  12. 76 FR 21832 - Proposed Revision of Class E Airspace; Yakutat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ...-0244 Airspace Docket No. 11-AAL-05] Proposed Revision of Class E Airspace; Yakutat, AK AGENCY: Federal... proposes to revise Class E airspace at Yakutat, AK. The revision of eight Standard Instrument Approach... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Martha...

  13. Freight advanced traveler information system : concept of operations.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...

  14. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  15. 75 FR 52484 - Proposed Removal and Amendment of Class E Airspace, Oxford, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Class E airspace extending upward from 700 feet at Oxford, CT. Decommissioning of the Waterbury Non... extension to Class D airspace and amend the description of the Class E airspace extending upward 700 feet... extension to Class D and the Class E 700 foot airspace designations are published in Paragraph 6004 and 6005...

  16. 78 FR 40382 - Modification of Class D and E Airspace; Twin Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ...-0258; Airspace Docket No. 13-ANM-12] Modification of Class D and E Airspace; Twin Falls, ID AGENCY... Class D airspace, omitted from the Title in the notice of proposed rulemaking is included in this rule... were received. Subsequent to publication, the FAA found that the Class D airspace reference was omitted...

  17. 76 FR 77383 - Amendment of Class C Airspace; Palm Beach International Airport, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...-0527; Airspace Docket No. 11-AWA-2] Amendment of Class C Airspace; Palm Beach International Airport, FL... action modifies the Palm Beach International Airport, FL, Class C airspace area by raising the floor of Class C airspace over Palm Beach County Park Airport. The FAA is taking this action to enhance safety...

  18. 77 FR 34208 - Amendment of Class D and Class E Airspace; Leesburg, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... amends Class D and Class E airspace at Leesburg, FL, changing the airport's name to Leesburg... and public procedures under 5 U.S.C. 553(b) are unnecessary. The Class D airspace, Class E surface...-0445; Airspace Docket No. 12-ASO-27] Amendment of Class D and Class E Airspace; Leesburg, FL AGENCY...

  19. 76 FR 54689 - Amendment of Class E Airspace; Hawaiian Islands, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ...; Airspace Docket No. 11-AWP-12] Amendment of Class E Airspace; Hawaiian Islands, HI AGENCY: Federal Aviation... for the Hawaiian Islands, HI. The FAA is taking this action in response to a request from the Honolulu... E airspace extending upward from 1,200 feet above the surface for the Hawaiian Islands, HI. This...

  20. 77 FR 1429 - Proposed Amendment of Class E Airspace; Springfield, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ...-1247; Airspace Docket No. 11-ANM-24] Proposed Amendment of Class E Airspace; Springfield, CO AGENCY... received on or before February 24, 2012. ADDRESSES: Send comments on this proposal to the U.S. Department...- 1247; Airspace Docket No. 11-ANM-24, at the beginning of your comments. You may also submit comments...

  1. 77 FR 45239 - Amendment of Class E Airspace; Bar Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...-1366; Airspace Docket No. 11-ANE-13] Amendment of Class E Airspace; Bar Harbor, ME AGENCY: Federal... area at Bar Harbor, ME, as the Surry Non-Directional Radio Beacon (NDB) has been decommissioned and new... airspace at Bar Harbor, ME (77 FR 27666) Docket No. FAA-2011-1366. Interested parties were invited to...

  2. 78 FR 47239 - Proposed Amendment of Class E Airspace; Washington, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...-0584; Airspace Docket No. 13-ACE-6] Proposed Amendment of Class E Airspace; Washington, KS AGENCY.../Airspace Docket No. 13- ACE-6, at the beginning of your comments. You may also submit comments through the... No. 13-ACE-6.'' The postcard will be date/time stamped and returned to the commenter. Availability of...

  3. 76 FR 53361 - Proposed Revocation and Amendment of Class E Airspace; Olathe, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...-0748; Airspace Docket No. 11-ACE-13] Proposed Revocation and Amendment of Class E Airspace; Olathe, KS... docket number FAA-2011-0748/Airspace Docket No. 11- ACE-13, at the beginning of your comments. You may... No. FAA-2011-0748/ Airspace Docket No. 11-ACE-13.'' The postcard will be date/time stamped and...

  4. 75 FR 20323 - Proposed Amendment to and Establishment of Restricted Areas and Other Special Use Airspace...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Restricted Areas and Other Special Use Airspace; Razorback Range Airspace Complex, AR AGENCY: Federal... special use airspace in the Razorback Range Airspace Complex, AR. The airspace docket number in that NPRM...

  5. 78 FR 63860 - Amendment of Class D Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...This action amends the Kwajalein Island Class D airspace description by amending the geographic coordinates for Bucholz Army Airfield (AAF), Kwajalein Island, Marshall Islands, RMI. The Bucholz AAF geographic coordinates information was updated in the Kwajalein Island Class E airspace descriptions in 2011, but was inadvertently overlooked in the Kwajalein Island Class D airspace description. This action ensures the safety of aircraft operating in the Kwajalein Island airspace area. This is an administrative action and does not affect the operating requirements of the airspace.

  6. 75 FR 30689 - Modification of Class C Airspace; Beale Air Force Base, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...-0367; Airspace Docket No. 10-AWA-2] RIN 2120-AA66 Modification of Class C Airspace; Beale Air Force... modifies the legal description of the Beale Air Force Base (AFB), CA, Class C airspace area by allowing the... Beale AFB Class C airspace area will be consistent with the actual hours of operation of the Beale AFB...

  7. 78 FR 22416 - Amendment of Class E Airspace; St. Helena, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ...-2013-0283; Airspace Docket No. 13-AWP-3 Amendment of Class E Airspace; St. Helena, CA AGENCY: Federal... the name of the heliport listed in the Class E airspace for St. Helena, CA. St. Helena Fire Department Heliport has been changed to Napa County Fire Department Heliport, St. Helena, CA. This action does not...

  8. 76 FR 54148 - Proposed Amendment of Class E Airspace; Emmonak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... AK E5 Emmonak, AK [Revised] Emmonak Airport, AK (Lat. 62[deg]47'10'' N., long. 164[deg]29'27'' W...-0880 Airspace Docket No. 11-AAL-17] Proposed Amendment of Class E Airspace; Emmonak, AK AGENCY: Federal... proposes to revise Class E airspace at Emmonak, AK. The amendment of two standard instrument approach...

  9. 14 CFR 71.33 - Class A airspace areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airspace overlying the waters within 12 nautical miles of the coast of the 48 contiguous States, from 18,000 feet MSL to and including FL600 excluding the states of Alaska and Hawaii, Santa Barbara Island... Alaska, including that airspace overlying the waters within 12 nautical miles of the coast, from 18,000...

  10. 14 CFR 71.33 - Class A airspace areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airspace overlying the waters within 12 nautical miles of the coast of the 48 contiguous States, from 18,000 feet MSL to and including FL600 excluding the states of Alaska and Hawaii, Santa Barbara Island... Alaska, including that airspace overlying the waters within 12 nautical miles of the coast, from 18,000...

  11. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  12. Preliminary Airspace Operations Simulations Findings Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Provides preliminary findings of the initial series (normal operations and contingency management) of airspace operations simulations. The key elements of this report discuss feedback from controller subjects for UAS flight above FL430. Findings provide initial evaluation of routine UAS operations above dense ARTCC airspace (ZOB), and identify areas of further research, policy direction and procedural development. This document further serves as an addendum to the detailed AOS simulation plan (Deliverable SIM001), incorporating feedback from FAA air traffic personnel and Access 5 IPTs.

  13. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  14. 76 FR 53328 - Airspace Designations; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... proposed changes of the airspace listings in FAA Order 7400.9U in full text as proposed rule documents in the Federal Register. Likewise, all amendments of these listings were published in full text as final... the airspace listings in FAA Order 7400.9V in full text as proposed rule documents in the Federal...

  15. Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett

    2013-01-01

    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.

  16. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  17. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  18. 77 FR 29918 - Proposed Amendment of Class E Airspace; Battle Creek, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at W. K. Kellogg.... Kellogg Airport, Battle Creek, MI. Controlled airspace is needed for the safety and management of IFR... controlled airspace at W.K. Kellogg Airport, Battle Creek, MI. Environmental Review This proposal will be...

  19. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...

  20. 75 FR 65255 - Proposed Modification of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...-0903; Airspace Docket No. 10-AWP-16] Proposed Modification of Class E Airspace; Show Low, AZ AGENCY... action proposes to modify Class E airspace at Show Low, AZ to accommodate new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Show Low Regional...

  1. 77 FR 50907 - Airspace Designations; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... FAA processed all proposed changes of the airspace listings in FAA Order 7400.9V in full text as... in full text as final rules in the Federal Register. This rule reflects the periodic integration of... changes of the airspace listings in FAA Order 7400.9W in full text as proposed rule documents in the...

  2. 78 FR 52847 - Airspace Designations; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... FAA processed all proposed changes of the airspace listings in FAA Order 7400.9W in full text as... in full text as final rules in the Federal Register. This rule reflects the periodic integration of... changes of the airspace listings in FAA Order 7400.9X in full text as proposed rule documents in the...

  3. 75 FR 44727 - Proposed Revocation and Establishment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...-0660; Airspace Docket No. 10-ANM-4] Proposed Revocation and Establishment of Class E Airspace; St... (NPRM). SUMMARY: This action proposes to remove Class E airspace at St. George Municipal Airport, St... also would establish Class E airspace for the new St. George Municipal Airport located to the south of...

  4. 78 FR 18268 - Proposed Establishment of Class E Airspace; Blue Mesa, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-0193; Airspace Docket No. 13-ANM-9] Proposed Establishment of Class E Airspace; Blue Mesa, CO AGENCY... action proposes to establish Class E airspace at the Blue Mesa VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Blue Mesa, CO to facilitate vectoring of Instrument Flight Rules (IFR...

  5. 76 FR 41725 - Proposed Amendment of Class E Airspace; Miles City, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Class E Airspace; Miles City, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Miles City, MT, to accommodate aircraft using new Area Navigation (RNAV) Global Positioning System (GPS... airspace and Class E airspace extending upward from 700 feet above the surface at Frank Wiley Field, Miles...

  6. 77 FR 41939 - Proposed Establishment of Class E Airspace; Deer Lodge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...-0379; Airspace Docket No. 12-ANM-7 Proposed Establishment of Class E Airspace; Deer Lodge, MT AGENCY... action proposes to establish Class E airspace at Deer Lodge-City-County Airport, Deer Lodge, MT... System (GPS) standard instrument approach procedures at Deer Lodge-City-County Airport, Deer Lodge, MT...

  7. 78 FR 45474 - Proposed Establishment of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0532; Airspace Docket No. 13-ANM-21] Proposed Establishment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to establish Class E airspace at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument...

  8. 78 FR 25383 - Amendment of Class E Airspace; West Palm Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ...-0922; Airspace Docket No. 12-ASO-38] Amendment of Class E Airspace; West Palm Beach, FL AGENCY: Federal... West Palm Beach, FL area, as new Standard Instrument Approach Procedures (SIAPs) have been developed at Palm Beach County Park Airport. Airspace reconfiguration is necessary for the continued safety and...

  9. 76 FR 64041 - Proposed Amendment of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...-1023; Airspace Docket No. 11-AWP-15] Proposed Amendment of Class E Airspace; Show Low, AZ AGENCY... action proposes to modify Class E airspace at Show Low Regional Airport, Show Low, AZ. Controlled...) standard instrument approach procedures at Show Low Regional Airport. The FAA is proposing this action to...

  10. 75 FR 17322 - Proposed Revocation of Class D and E Airspace; Big Delta, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...-0083 Airspace Docket No. 10-AAL-5] Proposed Revocation of Class D and E Airspace; Big Delta, AK AGENCY... action proposes to revoke Class D and E airspace at Big Delta, AK. This airspace duplicates the... NASSIF Building at the above address. An informal docket may also be examined during normal business...

  11. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  12. 77 FR 11796 - Proposed Amendment of Class E Airspace; Rock Springs, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...-0131; Airspace Docket No. 12-ANM-2 Proposed Amendment of Class E Airspace; Rock Springs, WY AGENCY... action proposes to amend Class E airspace at Rock Springs-Sweetwater County Airport, Rock Springs, WY. Decommissioning of the Rock Springs Tactical Air Navigation System (TACAN) has made this action necessary for the...

  13. 75 FR 8485 - Revocation of Class D and E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...-0981; Airspace Docket No. 09-ANE-105] Revocation of Class D and E Airspace; Brunswick, ME AGENCY... and E Airspace at Brunswick NAS Airport, Brunswick, ME, as the airport has closed and the associated... Brunswick NAS Airport in Brunswick, ME has closed in compliance with the 2005 Base Realignment and Closure...

  14. 78 FR 25227 - Proposed Amendment of Class E Airspace; Live Oak, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... action proposes to amend Class E Airspace in the Live Oak, FL area, as new Standard Instrument Approach...-0001; Airspace Docket No. 12-ASO-45] Proposed Amendment of Class E Airspace; Live Oak, FL AGENCY... continued safety and management of instrument flight rules (IFR) operations for SIAPs within the Live Oak...

  15. 78 FR 45473 - Proposed Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0600; Airspace Docket No. 13-ANM-18 Proposed Amendment of Class E Airspace; St. George, UT AGENCY... action proposes to amend Class E airspace at St. George Municipal Airport, St. George, UT, by removing... aircraft operations at St. George Municipal Airport, St. George, UT. DATES: Comments must be received on or...

  16. 76 FR 54152 - Proposed Amendment of Class E Airspace Galbraith Lake, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ..., AK [Revised] Galbraith Lake Airport, AK (Lat. 68[deg]28'47'' N., long. 149[deg]29'24'' W) That...-0865; Airspace Docket No. 11-AAL-14] Proposed Amendment of Class E Airspace Galbraith Lake, AK AGENCY... action proposes to amend Class E airspace at Galbraith Lake AK. The creation of two special instrument...

  17. Interaction of Airspace Partitions and Traffic Flow Management Delay with Weather

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae; Chatterji, Gano B.; Palopo, Kee

    2011-01-01

    The interaction of partitioning the airspace and delaying flights in the presence of convective weather is explored to study how re-partitioning the airspace can help reduce congestion and delay. Three approaches with varying complexities are employed to compute the ground delays.In the first approach, an airspace partition of 335 high-altitude sectors that is based on clear weather day traffic is used. Routes are then created to avoid regions of convective weather. With traffic flow management, this approach establishes the baseline with per-flight delay of 8.4 minutes. In the second approach, traffic flow management is used to select routes and assign departure delays such that only the airport capacity constraints are met. This results in 6.7 minutes of average departure delay. The airspace is then partitioned with a specific capacity. It is shown that airspace-capacity-induced delay can be reduced to zero ata cost of 20percent more sectors for the examined scenario.

  18. 75 FR 26151 - Proposed Revision of Class E Airspace; Kulik Lake, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-0270 Airspace Docket No. 10-AAL-8] Proposed Revision of Class E Airspace; Kulik Lake, AK AGENCY... action proposes to revise Class E airspace at Kulik Lake, AK. This action would correct an error in the... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Gary Rolf...

  19. Advance (Advanced Driver and Vehicle Advisory Navigation ConcEpt) Project: Insights and Achievements Compendium

    DOT National Transportation Integrated Search

    1996-10-23

    ADVANCE (Advanced Driver and Vehicle Advisory Navigation ConcEpt) was a public/private partnership developed by the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Nor...

  20. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  1. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  2. 77 FR 771 - Proposed Establishment of Class E Airspace; Marion, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Vaiden Field. This action... airspace at Marion, AL, providing the controlled airspace required to support the new RNAV GPS standard...

  3. Optimizing Integrated Terminal Airspace Operations Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Bosson, Christabelle; Xue, Min; Zelinski, Shannon

    2014-01-01

    In the terminal airspace, integrated departures and arrivals have the potential to increase operations efficiency. Recent research has developed geneticalgorithm- based schedulers for integrated arrival and departure operations under uncertainty. This paper presents an alternate method using a machine jobshop scheduling formulation to model the integrated airspace operations. A multistage stochastic programming approach is chosen to formulate the problem and candidate solutions are obtained by solving sample average approximation problems with finite sample size. Because approximate solutions are computed, the proposed algorithm incorporates the computation of statistical bounds to estimate the optimality of the candidate solutions. A proof-ofconcept study is conducted on a baseline implementation of a simple problem considering a fleet mix of 14 aircraft evolving in a model of the Los Angeles terminal airspace. A more thorough statistical analysis is also performed to evaluate the impact of the number of scenarios considered in the sampled problem. To handle extensive sampling computations, a multithreading technique is introduced.

  4. 76 FR 55232 - Establishment of Class E Airspace; Copperhill, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...) Standard Instrument Approach Procedures serving Martin Campbell Field Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace... Positioning System (GPS) Standard Instrument Approach Procedures developed for Martin Campbell Field Airport...

  5. 78 FR 33965 - Establishment of Class E Airspace; Immokalee-Big Cypress Airfield, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2012-1051; Airspace Docket No. 12-ASO-39] Establishment of Class E Airspace; Immokalee-Big Cypress Airfield...: History Federal Register document FAA-2012-1051, Airspace Docket No. 12- ASO-39, published May 1, 2013...

  6. 75 FR 61993 - Amendment of Class E Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ...) System from the legal description of the Class E airspace areas for Kwajalein Island, Bucholz AAF... action corrects the legal descriptions for the Class E airspace areas in the vicinity of the Marshall... and Rules Group, Office of System Operations Airspace and AIM, Federal Aviation Administration, 800...

  7. 76 FR 42471 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2011-0116; Airspace Docket No. 11-ANE-1] Establishment of Class E Airspace; Brunswick, ME AGENCY: Federal Aviation Administration (FAA) DOT. ACTION: Final rule; correction. SUMMARY: This action corrects the...

  8. 78 FR 32085 - Amendment of Class E Airspace; Eureka, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... instrument approach procedures at the airport. This improves the safety and management of Instrument Flight... aircraft using the RNAV (GPS) standard instrument approach procedures at Eureka Airport. Class E airspace...) standard instrument approach procedures at the airport. Additional controlled airspace extending upward...

  9. 76 FR 52230 - Establishment of Class E Airspace; Forest, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Instrument Approach Procedures serving New London Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES: Effective... to support the new RNAV GPS standard instrument approach procedures developed for New London Airport...

  10. 77 FR 34210 - Amendment of Class E Airspace; Orlando, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ...-0503; Airspace Docket No. 11-ASO-19] Amendment of Class E Airspace; Orlando, FL AGENCY: Federal... Orlando, FL, as new Standard Instrument Approach Procedures have been developed at Orlando Executive... coordinates of Orlando Executive Airport, Orlando International Airport, and Kissimmee Municipal Airport...

  11. 77 FR 45240 - Establishment of Class E Airspace; Quakertown, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... at Quakertown, PA, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Quakertown Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. [[Page 45241...

  12. 77 FR 45241 - Establishment of Class E Airspace; Apopka, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... at Apopka, FL, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Orlando Apopka Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES: Effective...

  13. 77 FR 45240 - Establishment of Class E Airspace; Arcadia, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... at Arcadia, FL, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Arcadia Municipal Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES...

  14. 75 FR 34624 - Revocation of Class D and E Airspace; Big Delta, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-0083; Airspace Docket No. 10-AAL-5] Revocation of Class D and E Airspace; Big Delta, AK AGENCY: Federal... at Big Delta, AK, to eliminate duplicated controlled airspace serving Allen Army Airfield. The FAA is.../systemops/fs/alaskan/rulemaking/ . SUPPLEMENTARY INFORMATION: History On Tuesday April 6, 2010, the FAA...

  15. 75 FR 43885 - Proposed Amendment of Class E Airspace; Kaiser/Lake Ozark, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...-0604; Airspace Docket No. 10-ACE-5] Proposed Amendment of Class E Airspace; Kaiser/Lake Ozark, MO...: This action proposes to amend Class E airspace for the Kaiser/ Lake Ozark, MO, area. Additional... for the Kaiser/Lake Ozark, MO area, to accommodate SIAPs at Camdenton Memorial Airport, Camdenton, MO...

  16. Solid propulsion advanced concepts

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Shafer, J. I.

    1972-01-01

    The feasibility and application of a solid propulsion powered spacecraft concept to implement high energy missions independent of multiplanetary swingby opportunities are assessed and recommendations offered for future work. An upper stage, solid propulsion launch vehicle augmentation system was selected as the baseline configuration in view of the established program goals of low cost and high reliability. Spacecraft and propulsion system data that characterize mission performance capabilities were generated to serve as the basis for subsequent tradeoff studies. A cost effectiveness model was used for the preliminary feasibility assessment to provide a meaningful comparative effectiveness measure of the various candidate designs. The results substantiated the feasibility of the powered spacecraft concept when used in conjunction with several intermediate-sized launch vehicles as well as the existence of energy margins by which to exploit the attainment of extended mission capabilities. Additionally, in growth option applications, the employment of advanced propulsion systems and alternate spacecraft approaches appear promising.

  17. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  18. 75 FR 20774 - Establishment of Class E Airspace; Fort A.P. Hill, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...-0739; Airspace Docket No. 09-AEA-14] Establishment of Class E Airspace; Fort A.P. Hill, VA AGENCY... December 7, 2009 that establishes Class E airspace at Fort A.P. Hill, VA. DATES: Effective Date: 0901 UTC... Service Center, Federal Aviation Administration, P.O. Box 20636, Atlanta, Georgia 30320; telephone (404...

  19. 78 FR 34609 - Proposed Modification of Class D and E Airspace; Kenai, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...-1174; Airspace Docket No. 12-AAL-12] Proposed Modification of Class D and E Airspace; Kenai, AK AGENCY... action proposes to modify Class D and E airspace at Kenai, AK, to accommodate aircraft departing and..., at Kenai Municipal Airport, Kenai, AK. Also, the geographic coordinates of the airport would be...

  20. 77 FR 45237 - Amendment of Class D and E Airspace; Fort Rucker, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...; Airspace Docket No. 12-ASO-30] Amendment of Class D and E Airspace; Fort Rucker, AL AGENCY: Federal... Class D and E Airspace at Fort Rucker, AL, by updating the geographic coordinates of Cairns Army Air... continued safety and management of instrument flight rules (IFR) operations within the Fort Rucker, AL...

  1. 78 FR 41837 - Establishment of Class E Airspace; Parkston, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Instrument Approach Procedures at Parkston Municipal Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the airport. DATES: Effective date... airspace exists to contain new standard instrument approach procedures at the airport. Controlled airspace...

  2. 76 FR 14799 - Amendment of Class E Airspace; Newport, VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... cancellation of the NDB approach. Controlled airspace is necessary for the safety and management of IFR... Instrument Approach Procedures (SIAPs) have been developed for Newport State Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations at the airport. DATES...

  3. 75 FR 29655 - Amendment of Class E Airspace; Batesville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-1177; Airspace Docket No. 09-ASW-34] Amendment of Class E Airspace; Batesville, AR AGENCY: Federal... Batesville, AR. Decommissioning of the Independence County non-directional beacon (NDB) at Batesville Regional Airport, Batesville, AR, has made this action necessary to enhance the safety and management of...

  4. 75 FR 68416 - Establishment of Class E Airspace; Berryville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...-0690; Airspace Docket No. 10-ASW-2] Establishment of Class E Airspace; Berryville, AR AGENCY: Federal... for Berryville, AR, to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAP) at Carroll County Airport, Berryville, AR. The FAA is taking this action to enhance the safety...

  5. 75 FR 30295 - Amendment of Class E Airspace; Hoquiam, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1063; Airspace Docket No. 09-ANM-22] Amendment of Class E Airspace; Hoquiam, WA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend existing Class E...

  6. 78 FR 1750 - Establishment of Class E Airspace; Princeton, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also makes a minor adjustment to the geographic coordinates of the airport... action qualifies for categorical exclusion under the National Environmental Policy Act in accordance with...

  7. 78 FR 72010 - Establishment of Class E Airspace; Magee, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also updates the geographic coordinates of the airport. DATES: Effective 0901 UTC.... Subsequent to publication, the FAA found an error in the geographic coordinates of Magee Municipal Airport...

  8. 78 FR 41290 - Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... 10, 2013, establishing controlled airspace at Sanibel Island Heliport, Sanibel, FL. DATES: Effective..., Georgia 30320; telephone (404) 305-6364. SUPPLEMENTARY INFORMATION: History On June 10, 2013, the FAA published a final rule, in the Federal Register establishing Class E airspace at Sanibel Island Heliport...

  9. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  10. Preliminary Investigation of Civil Tiltrotor in NextGen Airspace

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Salvano, Dan; Wright, Ken; Chung, William; Young, Ray; Miller, David; Paris, Alfanso; Gao, Huina; Cheng, Victor

    2010-01-01

    Presentation intro: Tiltrotor aircraft have long been envisioned as being a potentially viable means of commercial aviation transport. Preliminary results from an ongoing study into the operational and technological considerations of Civil Tiltrotor (CTR) operation in the Next Generation airspace, circa the 2025 time-frame, are presented and discussed. In particular, a fleet of CTR aircraft has been conceptually designed. The performance characteristics of this CTR fleet was subsequently translated into BADA (Base of Aircraft DAta) models that could be used as input to emulate CTR aircraft operations in the ACES and AvTerminal airspace and terminal area simulation tools. A network of nine North-Eastern corridor airports is the focus of the airspace simulation effort; the results from this airport network viII then be extrapolated to provide insights into systemic impact of CTRs on the National Airspace System (NAS). Future work will also be detailed as to attempts to model the systemic effects of noise and emissions from this fleet of new aircraft as well as assess their leveraged impact on public service missions, in time of need, such as major regional/national disaster relief efforts. The ideal outcome of this study is a set of results whereby Next Gen airspace CONOPs can be refined to reflect potential CTR capabilities and, conversely, CTR technology development efforts can be better informed as to key performance requirement thresholds needed to be met in order to successfully introduce these aircraft into civilian aviation operation.

  11. Loss of controller-pilot voice communications in domestic en route airspace

    DOT National Transportation Integrated Search

    2017-02-10

    With the planned implementation of ControllerPilot Data Link Communications (CPDLC) in en route airspace, information on voice communication performance in this airspace can help to predict specific benefits associated with CPDLC, identify adjustm...

  12. Modeling the internal dynamics of energy and mass transfer in an imperfectly mixed ventilated airspace.

    PubMed

    Janssens, K; Van Brecht, A; Zerihun Desta, T; Boonen, C; Berckmans, D

    2004-06-01

    The present paper outlines a modeling approach, which has been developed to model the internal dynamics of heat and moisture transfer in an imperfectly mixed ventilated airspace. The modeling approach, which combines the classical heat and moisture balance differential equations with the use of experimental time-series data, provides a physically meaningful description of the process and is very useful for model-based control purposes. The paper illustrates how the modeling approach has been applied to a ventilated laboratory test room with internal heat and moisture production. The results are evaluated and some valuable suggestions for future research are forwarded. The modeling approach outlined in this study provides an ideal form for advanced model-based control system design. The relatively low number of parameters makes it well suited for model-based control purposes, as a limited number of identification experiments is sufficient to determine these parameters. The model concept provides information about the air quality and airflow pattern in an arbitrary building. By using this model as a simulation tool, the indoor air quality and airflow pattern can be optimized.

  13. 78 FR 54795 - Proposed Amendment of Class D Airspace; Dallas, Addison Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ...-0749; Airspace Docket No. 13-ASW-16] Proposed Amendment of Class D Airspace; Dallas, Addison Airport...). SUMMARY: This action proposes to amend Class D airspace at Addison Airport, Dallas, TX. Changes to air traffic flows in the Dallas-Fort Worth metropolitan area has made it necessary to lower the ceiling of the...

  14. 78 FR 76781 - Proposed Modification of Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... City, UT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... City Class B airspace area by raising the floor of a small portion of Class B airspace between the Salt Lake City Class B surface area and the Hill Air Force Base (AFB) Class D airspace area. This action...

  15. 75 FR 37292 - Amendment of Class E Airspace; Cherokee, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...-0085; Airspace Docket No. 10-ACE-1] Amendment of Class E Airspace; Cherokee, IA AGENCY: Federal... Cherokee, IA. Decommissioning of the Pilot Rock non-directional beacon (NDB) at Cherokee County Regional Airport, Cherokee, IA has made this action necessary to enhance the safety and management of Instrument...

  16. 76 FR 75446 - Amendment of Class E Airspace; Mercury, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-0894; Airspace Docket No. 11-AWP-14] Amendment of Class E Airspace; Mercury, NV AGENCY: Federal... Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non-Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action necessary for the safety and management of Instrument...

  17. 75 FR 42 - Establishment of Class E Airspace; Spencer, WV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... Aviation Administration (FAA), DOT. ACTION: Direct final rule; confirmation of effective date. SUMMARY: This action confirms the effective date of a direct final rule published in the Federal Register that establishes Class E Airspace at Spencer, WV. This action enhances the safety and airspace management of Boggs...

  18. 77 FR 29873 - Establishment of Class E Airspace; Eldon, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... at Eldon, MO. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Eldon Model Airpark. The FAA is taking this action to enhance the safety... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace at Eldon Model...

  19. 76 FR 59013 - Amendment of Class E Airspace; Burlington, VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also makes a minor adjustment to the geographic coordinates of the airport and recognizes the name... modified for the safety and management of IFR operations at the airport. The geographic coordinates for...

  20. 77 FR 1012 - Establishment of Class E Airspace; Inverness, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also makes a minor adjustment to the geographic coordinates of the airport. DATES: Effective 0901.... Subsequent to publication, the FAA found that the geographic coordinates for Inverness Airport needed to be...

  1. 76 FR 43576 - Amendment of Class E Airspace; Hannibal, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...-0046; Airspace Docket No. 11-ACE-1] Amendment of Class E Airspace; Hannibal, MO AGENCY: Federal... Hannibal, MO. Decommissioning of the Hannibal non-directional beacon (NDB) at Hannibal Regional Airport, Hannibal, MO, has made this action necessary to enhance the safety and management of Instrument Flight Rule...

  2. 77 FR 6463 - Amendment of Class E Airspace; Kwigillingok, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ...; Airspace Docket No. 11-AAL-18] Amendment of Class E Airspace; Kwigillingok, AK AGENCY: Federal Aviation..., Kwigillingok, AK. In that rule, errors were made in the geographic coordinates and legal description for... Airport, AK. Subsequent to publication, an error was found in the latitude coordinate for Kwigillingok...

  3. 76 FR 8626 - Revision of Class E Airspace; Shungnak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-1104; Airspace Docket No. 10-AAL-19] Revision of Class E Airspace; Shungnak, AK AGENCY: Federal... Shungnak, AK, to accommodate amended Standard Instrument Approach Procedures (SIAPs) at the Shungnak..., Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e- mail...

  4. 75 FR 12676 - Establishment of Class E Airspace; Koyukuk, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...-0692; Airspace Docket No. 09-AAL-13] Establishment of Class E Airspace; Koyukuk, AK AGENCY: Federal... at Koyukuk, AK, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures...-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone...

  5. 75 FR 12677 - Establishment of Class E Airspace; Shaktoolik, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...-0142; Airspace Docket No. 09-AAL-2] Establishment of Class E Airspace; Shaktoolik, AK AGENCY: Federal... at Shaktoolik, AK, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures...: Gary Rolf, AAL-538G, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513...

  6. 76 FR 80230 - Amendment of Class E Airspace; Huntington, WV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2011-1057; Airspace Docket No. 11-AEA-21] Amendment of Class E Airspace; Huntington, WV AGENCY: Federal...) Docket No. FAA-2011-1057. Interested parties were invited to participate in this rulemaking effort by...

  7. 77 FR 41259 - Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Plentywood Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate aircraft using... Plentywood Sher-Wood Airport. This improves the safety and management of Instrument Flight Rules (IFR... modifying Class E airspace extending upward from 700 feet above the surface at Plentywood Sher-Wood Airport...

  8. 78 FR 65555 - Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ...-0531; Airspace Docket No. 13-ANM-20] Establishment of Class E Airspace; Salmon, ID AGENCY: Federal... at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Salmon, ID, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  9. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  10. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  11. Patterns in diurnal airspace use by migratory landbirds along an ecological barrier.

    PubMed

    Peterson, Anna C; Niemi, Gerald J; Johnson, Douglas H

    2015-04-01

    Migratory bird populations and survival are affected by conditions experienced during migration. While many studies and conservation and management efforts focus on terrestrial stoppage and staging areas, the aerial environment through which migrants move also is subjected to anthropogenic impacts with potential consequences to migratory movement and survival. During autumn migration, the northern coastline of Lake Superior acts as an ecological barrier for many landbirds migrating out of the boreal forests of North America. From 24 observation points, we assessed the diurnal movements of birds throughout autumn migration, 2008-2010, within a 210 × 10 km coastal region along the northern coast of Lake Superior. Several raptor species showed patterns in airspace associated with topographic features such as proximity to the coastline and presence of ridgelines. Funneling movement, commonly used to describe the concentration of raptors along a migratory diversion line that either prevents or enhances migration progress, occurred only for Bald and Golden Eagles. This suggests a "leaky" migration funnel for most migratory raptors (e.g., migrating birds exiting the purported migration corridor). Passerines migrating during the late season showed more spatial and temporal structure in airspace distribution than raptors did, including funneling and an association with airspace near the coast. We conclude that (1) the diurnal use of airspace by many migratory landbirds is patterned in space and time, (2) autumn count sites situated along ecological barriers substantially underestimate the number of raptors due to "leakage" out of these concentration areas, and (3) the magnitude and structure of diurnal passerine movements in airspace have been overlooked. The heavy and structured use of airspace by migratory landbirds, especially the airspace associated with anthropogenic development (e.g., buildings, towers, turbines) necessitates a shift in focus to airspace management

  12. Patterns in diurnal airspace use by migratory landbirds along an ecological barrier

    USGS Publications Warehouse

    Peterson, Anna C.; Niemi, Gerald J.; Johnson, Douglas H.

    2015-01-01

    Migratory bird populations and survival are affected by conditions experienced during migration. While many studies and conservation and management efforts focus on terrestrial stoppage and staging areas, the aerial environment through which migrants move also is subjected to anthropogenic impacts with potential consequences to migratory movement and survival. During autumn migration, the northern coastline of Lake Superior acts as an ecological barrier for many landbirds migrating out of the boreal forests of North America. From 24 observation points, we assessed the diurnal movements of birds throughout autumn migration, 2008-2010, within a 210 km by 10 km coastal region along the northern coast of Lake Superior. Several raptor species showed patterns in airspace associated with topographic features such as proximity to the coastline and presence of ridgelines. Funneling movement, commonly used to describe the concentration of raptors along a migratory diversion line that either prevents or enhances migration progress, occurred only for Bald and Golden Eagles. This suggests a "leaky" migration funnel for most migratory raptors (e.g., migrating birds exiting the purported migration corridor). Passerines migrating during the late season showed more spatial and temporal structure in airspace distribution than raptors, including funneling and an association with airspace near the coast. We conclude that a) the diurnal use of airspace by many migratory landbirds is patterned in space and time, b) autumn count sites situated along ecological barriers substantially underestimate the number of raptors due to 'leakage' out of these concentration areas, and c) the magnitude and structure of diurnal passerine movements in airspace have been overlooked. The heavy and structured use of airspace by migratory landbirds, especially the airspace associated with anthropogenic development (e.g., buildings, towers, turbines) necessitates a shift in focus to airspace management and

  13. 78 FR 20846 - Proposed Establishment of Class E Airspace; Leesburg, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... action proposes to establish Class E surface airspace at Leesburg, VA, to aid Potomac TRACON in the safe... airspace required to aid Potomac TRACON in the safe and orderly flow of air traffic at Leesburg Executive...

  14. 75 FR 44719 - Amendment and Establishment of Restricted Areas and Other Special Use Airspace, Razorback Range...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... airspace needed for military aircraft to conduct medium to high altitude standoff weapon delivery profiles... existing restricted area, and amends the boundaries description of the Special Use Airspace (SUA) Hog High..., MOAs are not rulemaking airspace actions. However, since the proposed R-2402B airspace and the Hog High...

  15. 76 FR 73501 - Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...-0845; Airspace Docket No. 11-ACE-19] Amendment of Class E Airspace; Carroll, IA AGENCY: Federal... Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll, IA, has made this action necessary to enhance the safety and management of Instrument Flight Rule...

  16. 76 FR 8281 - Amendment to Class B Airspace; Cleveland, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... submissions, including comments from Aircraft Owners and Pilots Association (AOPA) and the Soaring Society of... B airspace directly over the airspace Fun Country Soaring (FCS) currently flies in and would... indicated that a soaring club would be forced to consider shutting down or relocating operations as a result...

  17. 75 FR 32269 - Revision of Class E Airspace; Wainwright, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...-0080; Airspace Docket No. 10-AAL-2] Revision of Class E Airspace; Wainwright, AK AGENCY: Federal... Wainwright, AK, to accommodate amended Standard Instrument Approach Procedures (SIAPs), and one new Obstacle... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907...

  18. 76 FR 43823 - Revision of Class E Airspace; Yakutat, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-0244 Airspace Docket No. 11-AAL-05] Revision of Class E Airspace; Yakutat, AK AGENCY: Federal Aviation... Airport, Yakutat, AK. The amendment of eight Standard Instrument Approach Procedures (SIAPs) has made this... INFORMATION CONTACT: Martha Dunn, Federal Aviation Administration, 222 West 7th Avenue, Box 14, Anchorage, AK...

  19. Tactical Conflict Detection in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Tang, Huabin; Robinson, John E.; Denery, Dallas G.

    2010-01-01

    Air traffic systems have long relied on automated short-term conflict prediction algorithms to warn controllers of impending conflicts (losses of separation). The complexity of terminal airspace has proven difficult for such systems as it often leads to excessive false alerts. Thus, the legacy system, called Conflict Alert, which provides short-term alerts in both en-route and terminal airspace currently, is often inhibited or degraded in areas where frequent false alerts occur, even though the alerts are provided only when an aircraft is in dangerous proximity of other aircraft. This research investigates how a minimal level of flight intent information may be used to improve short-term conflict detection in terminal airspace such that it can be used by the controller to maintain legal aircraft separation. The flight intent information includes a site-specific nominal arrival route and inferred altitude clearances in addition to the flight plan that includes the RNAV (Area Navigation) departure route. A new tactical conflict detection algorithm is proposed, which uses a single analytic trajectory, determined by the flight intent and the current state information of the aircraft, and includes a complex set of current, dynamic separation standards for terminal airspace to define losses of separation. The new algorithm is compared with an algorithm that imitates a known en-route algorithm and another that imitates Conflict Alert by analysis of false-alert rate and alert lead time with recent real-world data of arrival and departure operations and a large set of operational error cases from Dallas/Fort Worth TRACON (Terminal Radar Approach Control). The new algorithm yielded a false-alert rate of two per hour and an average alert lead time of 38 seconds.

  20. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  1. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  2. 75 FR 57846 - Amendment of Class E Airspace; Brewton, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... involve a change in the dimensions or operating requirements of that airspace, notice and public... Class E airspace areas extending upward from 700 feet above the surface of the earth. * * * * * ASO AL... feet above the surface within a 7-mile radius of the Brewton Municipal Airport and within 4 miles each...

  3. 76 FR 8627 - Revision of Class E Airspace; Platinum, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-1105; Airspace Docket No. 10-AAL-20] Revision of Class E Airspace; Platinum, AK AGENCY: Federal... Platinum, AK, to accommodate the addition of a Standard Instrument Approach Procedure (SIAP), at the... 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e...

  4. 76 FR 8625 - Revision of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-1103 Airspace Docket No. 10-AAL-18] Revision of Class E Airspace; Savoonga, AK AGENCY: Federal Aviation... Airport, Savoonga, AK. The amendment of three Standard Instrument Approach Procedures (SIAPs) plus the... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907...

  5. 76 FR 43821 - Amendment of Class E Airspace; Ava, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    .... Decommissioning of the Bilmart non-directional beacon (NDB) at Ava Bill Martin Memorial Airport, Ava, MO, has made... Register approves this incorporation by reference action under 1 CFR part 51, subject to the annual... to amend Class E airspace for Ava, MO, reconfiguring controlled airspace at Ava Bill Martin Memorial...

  6. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  7. Managing the integration and harmonization of national airspace for unmanned and manned systems

    NASA Astrophysics Data System (ADS)

    Mumm, Hans

    This dissertation examines the leadership challenge created by the requirement to integrate unmanned aerial vehicles (UAVs) into the national airspace system (NAS). The lack of UAV-related federal rules and regulations is a primary factor prolonging this integration. This effort focuses primarily on the leadership portion of the solution and not the technological requirements. The research explores an adaptation of the complexity theory that offers a potential leadership framework for the government, industry, and academia to use for achieving the full integration of UAVs into the NAS. Due to the large number of stakeholders and the multitude of interrelated issues, a complexity-theory-leadership methodology was created and examined as a potential way to help the FAA accelerate their rule-making efforts. This dissertation focuses on United States UAV issues. The United States is one of the leaders in the unmanned systems arena, to include the first significant use of recoverable autonomous weaponized systems in combat. Issues such as airspace, airworthiness, social issues, privacy issues, regulations, and the lack of policies, procedures, or governance are universal for all countries that are active in this technology area. This qualitative dissertation makes use of the grounded theory methodology as it combines a literature review and research along with interviews with subject matter experts, and information gained from attending UAV related gatherings/discussions. The investigation uncovered significant FAA process impediments as well as some possible break through concepts that could work well with the complexity-theory-leadership methodology. Keywords: Complexity theory, leadership, change management, UAV, unmanned aerial vehicle, National Airspace, NAS, FAA, Federal Aviation Administration.

  8. An Assessment of Civil Tiltrotor Concept of Operations in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Chung, William W.; Salvano, Dan; Rinehart, David; Young, Ray; Cheng, Victor; Lindsey, James

    2012-01-01

    Based on a previous Civil Tiltrotor (CTR) National Airspace System (NAS) performance analysis study, CTR operations were evaluated over selected routes and terminal airspace configurations assuming noninterference operations (NIO) and runway-independent operations (RIO). This assessment aims to further identify issues associated with these concepts of operations (ConOps), and their dependency on the airspace configuration and interaction with conventional fixed-wing traffic. Safety analysis following a traditional Safety Management System (SMS) methodology was applied to CTR-unique departure and arrival failures in the selected airspace to identify any operational and certification issues. Additional CTR operational cases were then developed to get a broader understanding of issues and gaps that will need to be addressed in future CTR operational studies. Finally, needed enhancements to National Airspace System performance analysis tools were reviewed, and recommendations were made on improvements in these tools that are likely to be required to support future progress toward CTR fleet operations in the Next Generation Air Transportation System (NextGen).

  9. 76 FR 64235 - Establishment of Class E Airspace; Nahunta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    .... * * * * * ASO GA E5 Nahunta, GA [New] Brantley County Airport, GA (Lat. 31[deg]12'22'' N., long. 81[deg]54'22...-0727; Airspace Docket No. 11-ASO-32] Establishment of Class E Airspace; Nahunta, GA AGENCY: Federal... at Nahunta, GA, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS...

  10. 76 FR 8624 - Revision of Class E Airspace; Barrow, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-0722 Airspace Docket No. 10-AAL-17] Revision of Class E Airspace; Barrow, AK AGENCY: Federal Aviation... Rogers Memorial Airport in Barrow, AK, in order to accommodate the amendment of five Standard Instrument... Administration, 222 West 7th Avenue, Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907...

  11. 78 FR 74004 - Amendment of Class D and Class E Airspace; Lake Charles, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-0948; Airspace Docket No. 13-ASW-25] Amendment of Class D and Class E Airspace; Lake Charles, LA AGENCY... amends Class D and Class E airspace within the Lake Charles, LA, area by updating the geographic coordinates for Lake Charles Regional Airport, and the airport name and geographic coordinates for Chennault...

  12. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  13. 78 FR 52115 - Proposed Amendment of Class E Airspace; Olean, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action... decommissioned, requiring airspace redesign at Cattaraugus County-Olean Airport. This action would enhance the safety and airspace management of Instrument Flight Rules (IFR) operations at the airport. This action...

  14. 77 FR 56586 - Proposed Amendment of Class E Airspace; Gaylord, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Gaylord, MI. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at Gaylord Regional Airport. Also, this action...

  15. 78 FR 14475 - Proposed Establishment of Class E Airspace; Cleveland, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Cleveland Regional Jetport. This action would enhance the safety and airspace management of Instrument Flight Rules (IFR...; Airspace Docket No. 12-ASO-47) and be submitted in triplicate to the Docket Management System (see...

  16. 75 FR 38753 - Proposed Revision of Class E Airspace; Tanana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... E Airspace; Tanana, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to revise Class E airspace at Tanana, AK. The..., Anchorage, AK 99513-7587. FOR FURTHER INFORMATION CONTACT: Gary Rolf, Federal Aviation Administration, 222...

  17. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  18. 76 FR 75447 - Amendment of Class E Airspace; Emmonak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    .... * * * * * AAL AK E5 Emmonak, AK [Modified] Emmonak Airport, AK (Lat. 62[deg]47'10'' N., long. 164[deg]29'27'' W...-0880; Airspace Docket No. 11-AAL-17] Amendment of Class E Airspace; Emmonak, AK AGENCY: Federal... Emmonak, AK. The revision of two standard instrument approach procedures at the Emmonak Airport has made...

  19. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2017-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability

  20. Wake Vortex Advisory System (WakeVAS) Evaluation of Impacts on the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2005-01-01

    This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.

  1. 76 FR 28306 - Amendment of Class D and Class E Airspace; Idaho Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ...-0023; Airspace Docket No. 11-ANM-2] Amendment of Class D and Class E Airspace; Idaho Falls, ID AGENCY... D and Class E airspace at Idaho Falls, ID, by changing the name of the airport to Idaho Falls... Performance (RNP) standard instrument approach procedures at Idaho Falls Regional Airport. This improves the...

  2. 77 FR 75593 - Proposed Amendment of Class D and E Airspace; Portland-Hillsboro, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...-1142; Airspace Docket No. 12-ANM-25] Proposed Amendment of Class D and E Airspace; Portland-Hillsboro... action also would make a minor adjustment to the airport's geographic coordinates listed in Class D and... Federal Regulations (14 CFR) Part 71 by modifying Class E airspace designated as an extension to Class D...

  3. 76 FR 54153 - Proposed Amendment of Class D and Class E Airspace; Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ...: This action proposes to amend Class D and Class E Airspace at Baltimore, MD, as the Martin Non... developed at Martin State Airport. This action would also update the geographic coordinates of the Baltimore... Federal Regulations (14 CFR) part 71 to amend Class D airspace and Class E surface airspace at Martin...

  4. 77 FR 75596 - Proposed Amendment of Class E Airspace; Morrisville, VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E Airspace at Morrisville, VT, as the Morrisville-Stowe Non-Directional... developed at Morrisville-Stowe State Airport. This action would enhance the safety and airspace management...

  5. 78 FR 48841 - Proposed Amendment of Class E Airspace; Kankakee, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Kankakee, IL. Additional controlled airspace is necessary to... taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for...

  6. 77 FR 75597 - Proposed Establishment of Class E Airspace; Wilbur, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at Wilbur Airport, Wilbur, WA. Controlled airspace is...) standard instrument approach procedures at Wilbur Airport, Wilbur, WA. The FAA is proposing this action to...

  7. 77 FR 49400 - Proposed Amendment of Class E Airspace; Marysville, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Marysville, OH. Additional controlled airspace is necessary... taking this action to enhance the safety and management of Instrument Flight Rules (IFR) operations for...

  8. 75 FR 29963 - Proposed Revocation of Class E Airspace; Eastsound, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... action proposes to remove Class E surface airspace at Orcas Island Airport, Eastsound, WA. Controlled... operations at Orcas Island Airport. DATES: Comments must be received on or before July 12, 2010. ADDRESSES... at Orcas Island Airport, Eastsound, WA. The controlled airspace is unnecessary because existing...

  9. 75 FR 57216 - Proposed Establishment of Class E Airspace; Bamberg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number... action proposes to establish Class E Airspace at Bamberg, SC, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Bamberg County Airport. This...

  10. 75 FR 57215 - Proposed Establishment of Class E Airspace; Crewe, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number... action proposes to establish Class E Airspace at Crewe, VA, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Crewe Municipal Airport. This...

  11. 77 FR 48476 - Proposed Amendment to Class B Airspace; Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... primary instrument approach configuration to meet demand at that time. These procedures today require that... approaches once again extended 5 to 10 miles beyond the lateral limits of today's Class B airspace design. In...-0661 and Airspace Docket No. 09-AWA-4.'' The [[Page 48477

  12. 76 FR 34196 - Proposed Establishment of Class E Airspace; Forest, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures serving New London Airport. This action would enhance the safety and airspace management of Instrument Flight Rules (IFR) operations...; Airspace Docket No. 11-AEA-11) and be submitted in triplicate to the Docket Management System (see...

  13. 78 FR 14473 - Proposed Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...) Global Positioning System (GPS) special Standard Instrument Approach Procedure (SIAP) serving Sanibel Island Heliport. This action would enhance the safety and airspace management of Instrument Flight Rules...; Airspace Docket No. 12-ASO-18) and be submitted in triplicate to the Docket Management System (see...

  14. 76 FR 49390 - Proposed Establishment of Class E Airspace; Palmyra, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...) Global Positioning System (GPS) Standard Instrument Approach Procedures at Reigle Field. This action would enhance the safety and airspace management of Instrument Flight Rules (IFR) operations at the...; Airspace Docket No. 11-ASO-17) and be submitted in triplicate to the Docket Management System (see...

  15. 78 FR 52111 - Proposed Establishment of Class E Airspace; Aliceville, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) serving George Downer Airport. This action would enhance the safety and airspace management of Instrument Flight Rules...; Airspace Docket No. 13-ASO-7) and be submitted in triplicate to the Docket Management System (see ADDRESSES...

  16. 77 FR 65462 - Establishment of Class E Airspace; La Belle, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ...) Standard Instrument Approach Procedures at La Belle Municipal Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES... accommodate the new RNAV GPS Standard Instrument Approach Procedures developed for La Belle Municipal Airport...

  17. 76 FR 79564 - Proposed Establishment of Class E Airspace; Bellefonte, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... action proposes to establish Class E Airspace at Bellefonte, PA, to accommodate the Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Bellefonte Airport. This...; Airspace Docket No. 11-AEA-23) and be submitted in triplicate to the Docket Management System (see...

  18. 75 FR 12975 - Establishment of Class E Airspace; Battle Mountain, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2009-1057; Airspace Docket No. 09-AWP-9] Establishment of Class E Airspace; Battle Mountain, NV AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will establish Class...

  19. 77 FR 24159 - Proposed Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... action proposes to modify Class E airspace at Plentywood Sher-Wood Airport, Plentywood, MT. Controlled...) standard instrument approach procedures at Plentywood Sher-Wood Airport. The FAA is proposing this action... Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate aircraft using RNAV...

  20. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.