Sample records for advanced avionics systems

  1. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  2. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  3. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  4. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  5. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  6. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  7. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  8. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  9. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  10. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  11. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  12. Transcription of the Workshop on General Aviation Advanced Avionics Systems

    NASA Technical Reports Server (NTRS)

    Tashker, M. (Editor)

    1975-01-01

    Papers are presented dealing with the design of reliable, low cost, advanced avionics systems applicable to general aviation in the 1980's and beyond. Sensors, displays, integrated circuits, microprocessors, and minicomputers are among the topics discussed.

  13. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  14. Advanced Avionic Systems for Multimission Applications. Volume I.

    DTIC Science & Technology

    1982-10-01

    technical report are theoretical and in no way reflect Air Fortp-nwnpid qnftwRrp png ramc 19. KEY WORDS (Continue on reveree aide It neceeary and Identify...addressed (1) the Development & Evaluation of Advanced Digital Avionics System Architectures and (2) the Development of a Single Processor Synchronous...29 4.3.2 Memory Technologies . . . . . . . . . . . . . . . . . 30 4.3.3 BIU Technology . . . . . . . . . . . . . . . . . . . 33

  15. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  16. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  17. Digital Avionics Information System (DAIS): Development and Demonstration.

    DTIC Science & Technology

    1981-09-01

    advances in technology. The DAIS architecture results in improved reliability and availability of avionics systems while at the same time reducing life ...DAIS) represents a significant advance in the technology of avionics system architecture. DAIS is a total systems concept, exploiting standardization...configurations and fully capable of accommodating new advances in technology. These fundamental system charac- teristics are described in this report; the

  18. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  19. Flight elements: Advanced avionics systems architectures

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged.

  20. A Demonstration Advanced Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Denery, D. G.; Callas, G. P.; Jackson, C. T.; Berkstresser, B. K.; Hardy, G. H.

    1979-01-01

    A program initiated within NASA has emphasized the use of a data bus, microprocessors, electronic displays and data entry devices for general aviation. A Demonstration Advanced Avionics System (DAAS) capable of evaluating critical and promising elements of an integrating system that will perform the functions of (1) automated guidance and navigation; (2) flight planning; (3) weight and balance performance computations; (4) monitoring and warning; and (5) storage of normal and emergency check lists and operational limitations is described. Consideration is given to two major parts of the DAAS instrument panel: the integrated data control center and an electronic horizontal situation indicator, and to the system architecture. The system is to be installed in the Ames Research Center's Cessna 402B in the latter part of 1980; engineering flight testing will begin in the first part of 1981.

  1. Integrated Avionics System (IAS)

    NASA Technical Reports Server (NTRS)

    Hunter, D. J.

    2001-01-01

    As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.

  2. Avionics System Architecture for the NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of

  3. Demonstration Advanced Avionics System (DAAS) functional description. [Cessna 402B aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive set of general aviation avionics were defined for integration into an advanced hardware mechanization for demonstration in a Cessna 402B aircraft. Block diagrams are shown and system and computer architecture as well as significant hardware elements are described. The multifunction integrated data control center and electronic horizontal situation indicator are discussed. The functions that the DAAS will perform are examined. This function definition is the basis for the DAAS hardware and software design.

  4. The relationship between an advanced avionic system architecture and the elimination of the need for an Avionics Intermediate Shop (AIS)

    NASA Astrophysics Data System (ADS)

    Abraham, S. J.

    While Avionics Intermediate Shops (AISs) have in the past been required for military aircraft, the emerging VLSI/VHSIC technology has given rise to the possibility of novel, well partitioned avionics system architectures that obviate the high spare parts costs that formerly prompted and justified the existence of an AIS. Future avionics may therefore be adequately and economically supported by a two-level maintenance system. Algebraic generalizations are presented for the analysis of the spares costs implications of alternative design partitioning schemes for future avionics.

  5. Avionics System Architecture Tool

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian

    2005-01-01

    Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.

  6. Preliminary candidate advanced avionics system for general aviation

    NASA Technical Reports Server (NTRS)

    Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.

    1977-01-01

    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.

  7. Demonstration Advanced Avionics System (DAAS). Phase 1 report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An integrated avionics system which provides expanded functional capabilities that significantly enhance the utility and safety of general aviation at a cost commensurate with the general aviation market is discussed. Displays and control were designed so that the pilot can use the system after minimum training. Functional and hardware descriptions, operational evaluation and failure modes effects analysis are included.

  8. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  9. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  10. An assessment of General Aviation utilization of advanced avionics technology

    NASA Technical Reports Server (NTRS)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  11. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2003-01-01

    Digital Avionics activities played an important role in the advancements made in civil aviation, military systems, and space applications. This document profiles advances made in each of these areas by the aerospace industry, NASA centers, and the U.S. military. Emerging communication technologies covered in this document include Internet connectivity onboard aircraft, wireless broadband communication for aircraft, and a mobile router for aircraft to communicate in multiple communication networks over the course of a flight. Military technologies covered in this document include avionics for unmanned combat air vehicles and microsatellites, and head-up displays. Other technologies covered in this document include an electronic flight bag for the Boeing 777, and surveillance systems for managing airport operations.

  12. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  13. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  14. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  15. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    DTIC Science & Technology

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  16. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  17. NASA Affordable Vehicle Avionics (AVA): Common Modular Avionics System for Nano-Launchers Offering Affordable Access to Space

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2015-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.

  18. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  19. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  20. Avionic architecture requirements for Space Exploration Initiative systems

    NASA Technical Reports Server (NTRS)

    Herbella, C. G.; Brown, D. C.

    1991-01-01

    The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.

  1. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  2. Basic avionics module design for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Smyth, D. E.

    1978-01-01

    The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.

  3. Reuse and Interoperability of Avionics for Space Systems

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    2007-01-01

    The space environment presents unique challenges for avionics. Launch survivability, thermal management, radiation protection, and other factors are important for successful space designs. Many existing avionics designs use custom hardware and software to meet the requirements of space systems. Although some space vendors have moved more towards a standard product line approach to avionics, the space industry still lacks similar standards and common practices for avionics development. This lack of commonality manifests itself in limited reuse and a lack of interoperability. To address NASA s need for interoperable avionics that facilitate reuse, several hardware and software approaches are discussed. Experiences with existing space boards and the application of terrestrial standards is outlined. Enhancements and extensions to these standards are considered. A modular stack-based approach to space avionics is presented. Software and reconfigurable logic cores are considered for extending interoperability and reuse. Finally, some of the issues associated with the design of reusable interoperable avionics are discussed.

  4. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  5. Digital avionics systems - Principles and practices (2nd revised and enlarged edition)

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1993-01-01

    The state of the art in digital avionics systems is surveyed. The general topics addressed include: establishing avionics system requirements; avionics systems essentials in data bases, crew interfaces, and power; fault tolerance, maintainability, and reliability; architectures; packaging and fitting the system into the aircraft; hardware assessment and validation; software design, assessment, and validation; determining the costs of avionics.

  6. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  7. Software fault tolerance for real-time avionics systems

    NASA Technical Reports Server (NTRS)

    Anderson, T.; Knight, J. C.

    1983-01-01

    Avionics systems have very high reliability requirements and are therefore prime candidates for the inclusion of fault tolerance techniques. In order to provide tolerance to software faults, some form of state restoration is usually advocated as a means of recovery. State restoration can be very expensive for systems which utilize concurrent processes. The concurrency present in most avionics systems and the further difficulties introduced by timing constraints imply that providing tolerance for software faults may be inordinately expensive or complex. A straightforward pragmatic approach to software fault tolerance which is believed to be applicable to many real-time avionics systems is proposed. A classification system for software errors is presented together with approaches to recovery and continued service for each error type.

  8. Avionics System Architecture for NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint

    2010-01-01

    This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.

  9. Assessment of avionics technology in European aerospace organizations

    NASA Technical Reports Server (NTRS)

    Martinec, D. A.; Baumbick, Robert; Hitt, Ellis; Leondes, Cornelius; Mayton, Monica; Schwind, Joseph; Traybar, Joseph

    1992-01-01

    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics.

  10. The Core Avionics System for the DLR Compact-Satellite Series

    NASA Astrophysics Data System (ADS)

    Montenegro, S.; Dittrich, L.

    2008-08-01

    The Standard Satellite Bus's core avionics system is a further step in the development line of the software and hardware architecture which was first used in the bispectral infrared detector mission (BIRD). The next step improves dependability, flexibility and simplicity of the whole core avionics system. Important aspects of this concept were already implemented, simulated and tested in other ESA and industrial projects. Therefore we can say the basic concept is proven. This paper deals with different aspects of core avionics development and proposes an extension to the existing core avionics system of BIRD to meet current and future requirements regarding flexibility, availability, reliability of small satellite and the continuous increasing demand of mass memory and computational power.

  11. System Engineering Issues for Avionics Survival in the Space Environment

    NASA Technical Reports Server (NTRS)

    Pavelitz, Steven

    1999-01-01

    This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.

  12. Preliminary Candidate Advanced Avionics System (PCAAS). [reduction in single pilot workload during instrument flight rules flight

    NASA Technical Reports Server (NTRS)

    Teper, G. L.; Hon, R. H.; Smyth, R. K.

    1977-01-01

    Specifications which define the system functional requirements, the subsystem and interface needs, and other requirements such as maintainability, modularity, and reliability are summarized. A design definition of all required avionics functions and a system risk analysis are presented.

  13. Sail GTS ground system analysis: Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  14. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  15. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    NASA Technical Reports Server (NTRS)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  16. IEEE/AIAA/NASA Digital Avionics Systems Conference, 9th, Virginia Beach, VA, Oct. 15-18, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on digital avionics discusses vehicle-management systems, spacecraft avionics, special vehicle avionics, communication/navigation/identification systems, software qualification and quality assurance, launch-vehicle avionics, Ada applications, sensor and signal processing, general aviation avionics, automated software development, design-for-testability techniques, and avionics-software engineering. Also discussed are optical technology and systems, modular avionics, fault-tolerant avionics, commercial avionics, space systems, data buses, crew-station technology, embedded processors and operating systems, AI and expert systems, data links, and pilot/vehicle interfaces.

  17. Alternate avionics system study and phase B extension

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Results of alternate avionics system studies for the space shuttle are presented that reduce the cost of vehicle avionics without incurring major off-setting costs on the ground. A comprehensive summary is provided of all configurations defined since the completion of the basic Phase B contract and a complete description of the optimized avionics baseline is given. In the new baseline, inflight redundancy management is performed onboard without ground support; utilization of off-the-shelf hardware reduces the cost figure substantially less than for the Phase B baseline. The only functional capability sacrificed in the new approach is automatic landing.

  18. Optical interconnection and packaging technologies for advanced avionics systems

    NASA Astrophysics Data System (ADS)

    Schroeder, J. E.; Christian, N. L.; Cotti, B.

    1992-09-01

    An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.

  19. Advanced software techniques for data management systems. Volume 1: Study of software aspects of the phase B space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1972-01-01

    An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.

  20. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    DTIC Science & Technology

    1987-12-01

    Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS

  1. Panoramic projection avionics displays

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.

    2003-09-01

    Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.

  2. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  3. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  4. Design of an Ada expert system shell for the VHSIC avionic modular flight processor

    NASA Technical Reports Server (NTRS)

    Fanning, F. Jesse

    1992-01-01

    The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.

  5. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  6. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  7. Projection display technology for avionics applications

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  8. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list

  9. Semiautonomous Avionics-and-Sensors System for a UAV

    NASA Technical Reports Server (NTRS)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  10. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  11. An avionics scenario and command model description for Space Generic Open Avionics Architecture (SGOAA)

    NASA Technical Reports Server (NTRS)

    Stovall, John R.; Wray, Richard B.

    1994-01-01

    This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.

  12. Human Exploration and Avionic Technology Challenges

    NASA Technical Reports Server (NTRS)

    Benjamin, Andrew L.

    2005-01-01

    For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.

  13. Implementing the space shuttle data processing system with the space generic open avionics architecture

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.

  14. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  15. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  16. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  17. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  18. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; hide

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware

  19. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  20. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  1. NASA Affordable Vehicle Avionics (AVA). Common Modular Avionics System for Nanolaunchers Offering Affordable Access to Space; [Space Technology: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Aquilina, Rudy

    2017-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just that-the ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA (Affordable Vehicle Avionics) solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single-use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costs-but can low-cost commercial inertial sensors work just as well? NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box (100 millimeters by 120 millimeters by 69 millimeters; 4 inches by 4.7 inches by 2.7 inches), with a mass of less than 0.84 kilogram (2 pounds. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with real-time GPS (Global Positioning Satellite) data. The goal of the AVA project is to produce and light-verify a common suite of avionics and software that

  2. Avionics Instrument Systems Specialist (AFSC 32551).

    ERIC Educational Resources Information Center

    Miller, Lawrence B.; Crowcroft, Robert A.

    This six-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for avionics instrument systems specialists. Covered in the individual volumes are career field familiarization (career field progression and training, security, occupational safety and health, and career field reference material);…

  3. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  4. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  5. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  6. The implementation of fail-operative functions in integrated digital avionics systems

    NASA Technical Reports Server (NTRS)

    Osoer, S. S.

    1976-01-01

    System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.

  7. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  8. Avionics upgrade strategies for the Space Shuttle and derivatives

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.

  9. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  10. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  11. Modular standards for emerging avionics technologies

    NASA Astrophysics Data System (ADS)

    Radcliffe, B.; Boaz, J.

    The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.

  12. Comparison of Communication Architectures for Spacecraft Modular Avionics Systems

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.; Briscoe, J. M.

    2006-01-01

    This document is a survey of publicly available information concerning serial communication architectures used, or proposed to be used, in aeronautic and aerospace applications. It focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field, or appear to be viable for near-term deployment. Eleven different serial communication architectures are considered, and a brief description of each is given with the salient features summarized in a table in appendix A. This survey is a product of the Propulsion High Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, the scope of the project was expanded to include vehicle systems control for human and robotics missions. As such, a section is included presenting the rationale used for selection of a time-triggered architecture for implementation of the avionics demonstration hardware developed by the project team

  13. Automated Synthesis of Architecture of Avionic Systems

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Xu, Joseph; Dang, Van; Lu, James F.

    2006-01-01

    The Architecture Synthesis Tool (AST) is software that automatically synthesizes software and hardware architectures of avionic systems. The AST is expected to be most helpful during initial formulation of an avionic-system design, when system requirements change frequently and manual modification of architecture is time-consuming and susceptible to error. The AST comprises two parts: (1) an architecture generator, which utilizes a genetic algorithm to create a multitude of architectures; and (2) a functionality evaluator, which analyzes the architectures for viability, rejecting most of the non-viable ones. The functionality evaluator generates and uses a viability tree a hierarchy representing functions and components that perform the functions such that the system as a whole performs system-level functions representing the requirements for the system as specified by a user. Architectures that survive the functionality evaluator are further evaluated by the selection process of the genetic algorithm. Architectures found to be most promising to satisfy the user s requirements and to perform optimally are selected as parents to the next generation of architectures. The foregoing process is iterated as many times as the user desires. The final output is one or a few viable architectures that satisfy the user s requirements.

  14. An engineering approach to the use of expert systems technology in avionics applications

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Brazee, M.; Brumbaugh, R. W.

    1986-01-01

    The concept of using a knowledge compiler to transform the knowledge base and inference mechanism of an expert system into a conventional program is presented. The need to accommodate real-time systems requirements in applications such as embedded avionics is outlined. Expert systems and a brief comparison of expert systems and conventional programs are reviewed. Avionics applications of expert systems are discussed before the discussions of applying the proposed concept to example systems using forward and backward chaining.

  15. Advanced Aircraft Interfaces: The Machine Side of the Man-Machine Interface (Les Interfaces sur les Avions de Pointe: L’Aspect Machine de l’Interface Homme-Machine)

    DTIC Science & Technology

    1992-10-01

    Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit

  16. Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio User's Guide -- Advanced Exploration Systems (AES)

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto; Shalkhauser, Mary Jo Windmille

    2017-01-01

    The Integrated Power, Avionics and Software (IPAS) software defined radio (SDR) was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RAICS) platform, for radio development at NASA Johnson Space Center. Software and hardware description language (HDL) code were delivered by NASA Glenn Research Center for use in the IPAS test bed and for development of their own Space Telecommunications Radio System (STRS) waveforms on the RAICS platform. The purpose of this document is to describe how to setup and operate the IPAS STRS Radio platform with its delivered test waveform.

  17. Strategic avionics technology planning

    NASA Technical Reports Server (NTRS)

    Cox, Kenneth J.; Brown, Don C.

    1991-01-01

    NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.

  18. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Astrophysics Data System (ADS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-09-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  19. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Technical Reports Server (NTRS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-01-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  20. HLLV avionics requirements study and electronic filing system database development

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report provides a summary of achievements and activities performed under Contract NAS8-39215. The contract's objective was to explore a new way of delivering, storing, accessing, and archiving study products and information and to define top level system requirements for Heavy Lift Launch Vehicle (HLLV) avionics that incorporate Vehicle Health Management (VHM). This report includes technical objectives, methods, assumptions, recommendations, sample data, and issues as specified by DPD No. 772, DR-3. The report is organized into two major subsections, one specific to each of the two tasks defined in the Statement of Work: the Index Database Task and the HLLV Avionics Requirements Task. The Index Database Task resulted in the selection and modification of a commercial database software tool to contain the data developed during the HLLV Avionics Requirements Task. All summary information is addressed within each task's section.

  1. Generalized Training Devices for Avionic Systems Maintenance.

    ERIC Educational Resources Information Center

    Parker, Edward L.

    A research study was conducted to determine the feasibility and desirability of developing generalized training equipment for use in avionic systems maintenance training. The study consisted of a group of survey and analytic tasks to provide useful guidance to serve the needs of the Naval Aviation community in future years. The study had four…

  2. Electronic/electric technology benefits study. [avionics

    NASA Technical Reports Server (NTRS)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  3. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  4. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  5. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  6. The effect of requirements prioritization on avionics system conceptual design

    NASA Astrophysics Data System (ADS)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  7. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    NASA Technical Reports Server (NTRS)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  8. Micro-Scale Avionics Thermal Management

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  9. Applying Ada to Beech Starship avionics

    NASA Technical Reports Server (NTRS)

    Funk, David W.

    1986-01-01

    As Ada solidified in its development, it became evident that it offered advantages for avionics systems because of it support for modern software engineering principles and real time applications. An Ada programming support environment was developed for two major avionics subsystems in the Beech Starship. The two subsystems include electronic flight instrument displays and the flight management computer system. Both of these systems use multiple Intel 80186 microprocessors. The flight management computer provides flight planning, navigation displays, primary flight display of checklists and other pilot advisory information. Together these systems represent nearly 80,000 lines of Ada source code and to date approximately 30 man years of effort. The Beech Starship avionics systems are in flight testing.

  10. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  11. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  12. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  13. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  14. Digital Avionics Information System (DAIS): Impact of DAIS Concept on Life Cycle Cost. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    Designed to identify and quantify the potential impacts of the Digital Avionics Information System (DAIS) on weapon system personnel requirements and life cycle cost (LCC), this study postulated a typical close-air-support (CAS) mission avionics suite to serve as a basis for comparing present day and DAIS configuration specifications. The purpose…

  15. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES

  16. Using ARINC 818 Avionics Digital Video Bus (ADVB) for military displays

    NASA Astrophysics Data System (ADS)

    Alexander, Jon; Keller, Tim

    2007-04-01

    ARINC 818 Avionics Digital Video Bus (ADVB) is a new digital video interface and protocol standard developed especially for high bandwidth uncompressed digital video. The first draft of this standard, released in January of 2007, has been advanced by ARINC and the aerospace community to meet the acute needs of commercial aviation for higher performance digital video. This paper analyzes ARINC 818 for use in military display systems found in avionics, helicopters, and ground vehicles. The flexibility of ARINC 818 for the diverse resolutions, grayscales, pixel formats, and frame rates of military displays is analyzed as well as the suitability of ARINC 818 to support requirements for military video systems including bandwidth, latency, and reliability. Implementation issues relevant to military displays are presented.

  17. Avionics System Design for High Energy Fields

    DTIC Science & Technology

    1988-07-01

    this report describes design practices which will lead to reducc electromagnetic susceptibility of avionics systems in high energy fields . A second...nuclear reactions. Tn most cases the radiation which causes electromagnetic interference Is completely harmless to humans . Many techniqteq are used in...variety of electromagnetic compatibility problems. 1,e fIrst use EMCad to preeict the field strength from a discharge. Next, we usc’e r. a second

  18. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  19. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  20. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  1. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  2. V/STOLAND avionics system flight-test data on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Baker, F. A.; Jaynes, D. N.; Corliss, L. D.; Liden, S.; Merrick, R. B.; Dugan, D. C.

    1980-01-01

    The flight-acceptance test results obtained during the acceptance tests of the V/STOLAND (versatile simplex digital avionics system) digital avionics system on a Bell UH-1H helicopter in 1977 at Ames Research Center are presented. The system provides navigation, guidance, control, and display functions for NASA terminal area VTOL research programs and for the Army handling qualities research programs at Ames Research Center. The acceptance test verified system performance and contractual acceptability. The V/STOLAND hardware navigation, guidance, and control laws resident in the digital computers are described. Typical flight-test data are shown and discussed as documentation of the system performance at acceptance from the contractor.

  3. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  4. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  5. Avionics of the Cyclone Global Navigation Satellite System (CYGNSS) microsat constellation

    NASA Astrophysics Data System (ADS)

    Dickinson, John R.; Alvarez, Jennifer L.; Rose, Randall J.; Ruf, Christopher S.; Walls, Buddy J.

    The Cyclone Global Navigation Satellite System (CYGNSS), which was recently selected as the Earth Venture-2 investigation by NASA's Earth Science System Pathfinder (ESSP) Program, measures the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a tropical cyclone (TC). The CYGNSS flight segment consists of 8 microsatellite-class observatories, which represent SwRI's first spacecraft bus design, installed on a Deployment Module for launch. They are identical in design but provide their own individual contribution to the CYGNSS science data set. Subsystems include the Attitude Determination and Control System (ADCS), the Communication and Data Subsystem (CDS), the Electrical Power Supply (EPS), and the Structure, Mechanisms, and Thermal Subsystem (SMT). This paper will present an overview of the mission and the avionics, including the ADCS, CDS, and EPS, in detail. Specifically, we will detail how off-the-shelf components can be utilized to do ADCS and will highlight how SwRI's existing avionics solutions will be adapted to meet the requirements and cost constraints of microsat applications. Avionics electronics provided by SwRI include a command and data handling computer, a transceiver radio, a low voltage power supply (LVPS), and a peak power tracker (PPT).

  6. Spacecraft Avionics Software Development Then and Now: Different but the Same

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  7. Digital Avionics Information System (DAIS): Training Requirements Analysis Model (TRAMOD).

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    The training requirements analysis model (TRAMOD) described in this report represents an important portion of the larger effort called the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study. TRAMOD is the second of three models that comprise an LCC impact modeling system for use in the early stages of system development. As…

  8. Space Generic Open Avionics Architecture (SGOAA): Overview

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1992-01-01

    A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.

  9. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  10. Wireless avionics for space applications of fundamental physics

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  11. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  12. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  13. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  14. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  15. Avionics system design for high energy fields: A guide for the designer and airworthiness specialist

    NASA Technical Reports Server (NTRS)

    Mcconnell, Roger A.

    1987-01-01

    Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included.

  16. An Open Avionics and Software Architecture to Support Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2017-01-01

    The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.

  17. Highly Survivable Avionics Systems for Long-Term Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Alkalai, L.; Chau, S.; Tai, A. T.

    2001-01-01

    The design of highly survivable avionics systems for long-term (> 10 years) exploration of space is an essential technology for all current and future missions in the Outer Planets roadmap. Long-term exposure to extreme environmental conditions such as high radiation and low-temperatures make survivability in space a major challenge. Moreover, current and future missions are increasingly using commercial technology such as deep sub-micron (0.25 microns) fabrication processes with specialized circuit designs, commercial interfaces, processors, memory, and other commercial off the shelf components that were not designed for long-term survivability in space. Therefore, the design of highly reliable, and available systems for the exploration of Europa, Pluto and other destinations in deep-space require a comprehensive and fresh approach to this problem. This paper summarizes work in progress in three different areas: a framework for the design of highly reliable and highly available space avionics systems, distributed reliable computing architecture, and Guarded Software Upgrading (GSU) techniques for software upgrading during long-term missions. Additional information is contained in the original extended abstract.

  18. Recovery of the Space Shuttle Columbia Avionics

    NASA Technical Reports Server (NTRS)

    Hames, Kevin L.

    2003-01-01

    Lessons Learned: a) Avionics data can playa critical role in the investigation of a "close call" or accident. b) Avionics designers should think about the role their systems might play in an investigation. c) Know your data, down to the bit level. d) Know your spacecraft - follow the data. e) Internal placement of circuit cards can affect their survivability. f) Think about how to reconstruct nonvolatile memory (e.g. serialize IC's, etc.) g) Use of external assets can aid in extracting data from avionics.

  19. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  20. An electronic flight bag for NextGen avionics

    NASA Astrophysics Data System (ADS)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  1. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    NASA Technical Reports Server (NTRS)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  2. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of

  3. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  4. The MGS Avionics System Architecture: Exploring the Limits of Inheritance

    NASA Technical Reports Server (NTRS)

    Bunker, R.

    1994-01-01

    Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.

  5. Digital avionics systems - Overview of FAA/NASA/industry-wide briefing

    NASA Technical Reports Server (NTRS)

    Larsen, William E.; Carro, Anthony

    1986-01-01

    The effects of incorporating digital technology into the design of aircraft on the airworthiness criteria and certification procedures for aircraft are investigated. FAA research programs aimed at providing data for the functional assessment of aircraft which use digital systems for avionics and flight control functions are discussed. The need to establish testing, assurance assessment, and configuration management technologies to insure the reliability of digital systems is discussed; consideration is given to design verification, system performance/robustness, and validation technology.

  6. The Space Technology 5 Avionics System

    NASA Technical Reports Server (NTRS)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  7. Space Shuttle avionics upgrade - Issues and opportunities

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.

  8. VCSEL optical subassembly for avionics fiber optic modules

    NASA Astrophysics Data System (ADS)

    Hager, Harold E.; Chan, Eric Y.; Beranek, Mark W.; Hong, Chi-Shain

    1996-04-01

    With the growing maturation of vertical cavity surface emitting laser (VCSEL) technology as a source of commercial off-the-shelf components, the question of VCSEL suitability for use in avionics-qualifiable fiber-optic systems naturally follows. This paper addresses avionics suitability from two perspectives. First, measured performance and burn-in reliability results, determined from characterization of Honeywell VCSELs, are compared with application-based military and commercial avionics environmental requirements. Second, design guidelines for developing a cost-effective VCSEL optical subassembly (VCSEL/OSA) are outlined.

  9. Optoelectronic advancements in analog avionics networking systems

    NASA Astrophysics Data System (ADS)

    Wilgus, Joseph S.

    1996-12-01

    Over the past two decades, the types of networks used in both commercial and military systems to route information throughout a designated platform have essentially remained unchanged. Traditionally, digital networks have been used to route low data rate, low-bandwidth signals usually not exceeding 2 Ghz, amongst a variety of sensors, digital and signal processors and video displays. On the other hand, analog networks have been responsible for routing broad- banded radio-frequency signals, those ranging from 2 Ghz to well beyond 100 Ghz, between a specific antenna aperture and its designated receiver type. Current analog systems use one of either two approaches to transfer this signal information. The first approach uses microwave waveguides. This design is very efficient, albeit bulky, and has typically been used in ground-based systems. HOwever, it does not lend itself very well to airborne platforms where size and weight constraint are of primary concern. The second approach uses coaxial cable, which tends to exhibit excessive loss at higher frequencies and is much heavier than optical fiber. Like its counterpart the microwave waveguide, it too is not ideally suited for airborne platforms. However, up to now it has been the technology of choice for this particular application. This has led to other alternatives to be sought. With recent advancements being made in optoelectronics, optical fiber is becoming a viable alternative to the above mentioned approaches. It is the intent of this paper to identify airborne applications for photonic technology in analog networks and discuss the needed building blocks to implement this particular type of system.

  10. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  11. The single event upset environment for avionics at high latitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.

    1994-12-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end,more » it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.« less

  12. Rendezvous strategy impacts on CTV avionics design, system reliability requirements, and available collision avoidance maneuvers

    NASA Technical Reports Server (NTRS)

    Donovan, William J.; Davis, John E.

    1991-01-01

    Rockwell International is conducting an ongoing program to develop avionics architectures that provide high intrinsic value while meeting all mission objectives. Studies are being conducted to determine alternative configurations that have low life-cycle cost and minimum development risk, and that minimize launch delays while providing the reliability level to assure a successful mission. This effort is based on four decades of providing ballistic missile avionics to the United States Air Force and has focused on the requirements of the NASA Cargo Transfer Vehicle (CTV) program in 1991. During the development of architectural concepts it became apparent that rendezvous strategy issues have an impact on the architecture of the avionics system. This is in addition to the expected impact on propulsion and electrical power duration, flight profiles, and trajectory during approach.

  13. Space shuttle low cost/risk avionics study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.

  14. Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.

    2009-01-01

    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).

  15. Critical issues regarding SEU in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; McNulty, P.J.

    1993-01-01

    The energetic neutrons in the atmosphere cause microelectronics in avionic system to malfunction through a mechanism called single-event upsets (SEUs), and single-event latchup is a potential threat. Data from military and experimental flights as well as laboratory testing indicate that typical non-radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant SEU rate at aircraft altitudes. Microelectronics in avionics systems have been demonstrated to be susceptible to SEU. Of all device types, RAMs are the most sensitive because they have the largest number of bits on a chip (e.g., an SRAM may have from 64K to 1Mmore » bits, a microprocessor 3K to 10K bits, and a logic device like an analog-to-digital converter, 12 bits). Avionics designers will need to take this susceptibility into account in current and future designs. A number of techniques are available for dealing with SEU: EDAC, redundancy, use of SEU-hard parts, reset and/or watchdog timer capability, etc. Specifications should be developed to guide avionics vendors in the analysis, prevention, and verification of neutron-induced SEU. Areas for additional research include better definition of the atmospheric neutrons and protons, development of better calculational models (e.g., those used for protons[sup 11]), and better characterization of neutron-induced latchup.« less

  16. Towards a distributed information architecture for avionics data

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  17. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  18. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  19. General aviation avionics equipment maintenance

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1978-01-01

    Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.

  20. Crew Launch Vehicle (CLV) Avionics and Software Integration Overview

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny

    2006-01-01

    On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation

  1. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  2. Digital Avionics Information System (DAIS): Mid-1980's Maintenance Task Analysis. Final Report.

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    The fundamental objective of the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study is to provide the Air Force with an enhanced in-house capability to incorporate LCC considerations during all stages of the system acquisition process. The purpose of this report is to describe the technical approach, results, and conclusions…

  3. Cockpit avionics integration and automation

    NASA Technical Reports Server (NTRS)

    Pischke, Keith M.

    1990-01-01

    Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.

  4. Avionics Instrument Systems Specialist Career Ladder: AFSCs 32531, 32551, 31571, and 32591. Occupational Survey Report.

    ERIC Educational Resources Information Center

    Air Force Occupational Measurement Center, Lackland AFB, TX.

    The Avionics Instrument Systems career ladder (AFSC 325X1) provides flight line and shop maintenance training on aircraft instrument systems, electromechancial instruments, components, and test equipment. Duties involve inspecting, removing, installing, repairing, operating, troubleshooting, overhauling, and modifying systems such as flight and…

  5. Software-Defined Avionics and Mission Systems in Future Vertical Lift Aircraft

    DTIC Science & Technology

    2015-03-01

    military rotorcraft in the service of the United States Joint services have yet to benefit significantly from this technology. At long last, that may...Despite the demonstrated success of IMA systems in commercial airliners such as the Airbus A380 and the Boeing 787, military rotorcraft in the...8 4. Integrated Modular Avionics (IMA) – Generation One ..................9 5. Military IMA

  6. The X-38 Spacecraft Fault-Tolerant Avionics System

    NASA Technical Reports Server (NTRS)

    Kouba,Coy; Buscher, Deborah; Busa, Joseph

    2003-01-01

    In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware

  7. Time Triggered Protocol (TTP) for Integrated Modular Avionics

    NASA Technical Reports Server (NTRS)

    Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard

    2006-01-01

    Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.

  8. Air Force highly integrated photonics program: development and demonstration of an optically transparent fiber optic network for avionics applications

    NASA Astrophysics Data System (ADS)

    Whaley, Gregory J.; Karnopp, Roger J.

    2010-04-01

    The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.

  9. Avionics Reliability, Its Techniques and Related Disciplines.

    DTIC Science & Technology

    1979-10-01

    USAF F-16s. C.J.P.Haynes, UK You said that if one of the 5 nations consumes more than its fair share of the combined spares pool then the item manager ... MANAGEMENT OF THE AVIONIC SYSTEM OF A MILITARY STRIKE AIRCRAFT by A.P.White and J.D.Pavier 29 SESSION IV - SOFTWARE RELIABILITY’ INTRODUCTION TO...ASPECT by D.J.Harris 37 SESSION V - AVIONICS LOGISTICS SUPPORT ASPECTS INTEGRATED LOGISTICS SUPPORT ADDS ANOTHER DIMENSION TO MATRIX MANAGEMENT by

  10. Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology

    DTIC Science & Technology

    1993-11-01

    interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a

  11. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  12. Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling

    NASA Technical Reports Server (NTRS)

    Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam

    2013-01-01

    Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.

  13. Comparison of custom versus COTS AMLCDs for military and avionic applications

    NASA Astrophysics Data System (ADS)

    Angelo, Van

    1997-07-01

    AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.

  14. Description of a dual fail-operational redundant strapdown inertial measurement unit for integrated avionics systems research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Morrell, F. R.

    1981-01-01

    Attention is given to a redundant strapdown inertial measurement unit for integrated avionics. The system consists of four two-degree-of-freedom turned rotor gyros and four two-degree-of-freedom accelerometers in a skewed and separable semi-octahedral array. The unit is coupled through instrument electronics to two flight computers which compensate sensor errors. The flight computers are interfaced to the microprocessors and process failure detection, isolation, redundancy management and flight control/navigation algorithms. The unit provides dual fail-operational performance and has data processing frequencies consistent with integrated avionics concepts presently planned.

  15. General Aviation Avionics Statistics : 1974

    DOT National Transportation Integrated Search

    1977-08-01

    The primary objectives of this study were to (1) provide a framework for viewing the general aviation (GA) aircraft fleet, which would relate airborne avionics equipment to the capability for an aircraft to perform in the National Airspace System, an...

  16. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2006-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  17. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  18. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  19. Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.

    DTIC Science & Technology

    1983-07-01

    will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration

  20. Custom avionics-grade AM LCDs for high performance military and avionics applications

    NASA Astrophysics Data System (ADS)

    Niemczyk, James

    2003-09-01

    American Panel Corporation in Alpharetta Georgia and LG-Philips-LCD in Seoul South Korea have a strategic alliance for the design and manufacture of custom AMLCD products targeted for the military vehicle and avionics sector. As part of this relationship, new innovations in AMLCD technology specifically aimed at the rugged and avionics applications have been developed and are now brought to the marketplace

  1. General Aviation Avionics Statistics : 1975

    DOT National Transportation Integrated Search

    1978-06-01

    This report presents avionics statistics for the 1975 general aviation (GA) aircraft fleet and updates a previous publication, General Aviation Avionics Statistics: 1974. The statistics are presented in a capability group framework which enables one ...

  2. Digital avionics design and reliability analyzer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The description and specifications for a digital avionics design and reliability analyzer are given. Its basic function is to provide for the simulation and emulation of the various fault-tolerant digital avionic computer designs that are developed. It has been established that hardware emulation at the gate-level will be utilized. The primary benefit of emulation to reliability analysis is the fact that it provides the capability to model a system at a very detailed level. Emulation allows the direct insertion of faults into the system, rather than waiting for actual hardware failures to occur. This allows for controlled and accelerated testing of system reaction to hardware failures. There is a trade study which leads to the decision to specify a two-machine system, including an emulation computer connected to a general-purpose computer. There is also an evaluation of potential computers to serve as the emulation computer.

  3. Reconfigurable fault tolerant avionics system

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  4. Avionic Architecture for Model Predictive Control Application in Mars Sample & Return Rendezvous Scenario

    NASA Astrophysics Data System (ADS)

    Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.

    2013-08-01

    Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.

  5. Sunlight readable avionics displays

    NASA Astrophysics Data System (ADS)

    Visinski, Joseph R.

    1998-09-01

    The theme of the Cockpit Displays V Conference of 'Custom versus Consumer -- Grade Displays in Defense Applications' reflects the Raytheon Systems Company field emission display (FED) development effort. Raytheon chose to license commercial FED technology and subsequently participate in a commercial industry 'FED Alliance' to insert this technology into commercial and avionics defense applications. The unaffordability of custom military displays makes them an unfeasible choice to build a business upon. The major differences between consumer FEDs and those adapted for military/avionics installations are: (1) high brightness for sunlight visibility; (2) extended environmental range; (3) high resolution; (4) wider dimming range for sunlight to NVIS operation; (5) extended gray scales; (6) lifetime product support well beyond two year consumer market life. The transition to defense applications is further being accomplished via industry/government partnerships as the DARPA Technology Reinvestment Project (TRP) and BAA 97-31. FEDs combine cathode ray tube (CRT) and matrix addressed flat panel display technology, parts, manufacturing, and test equipment, plus open systems interfaces into a new display.

  6. Digital avionics susceptibility to high energy radio frequency fields

    NASA Astrophysics Data System (ADS)

    Larsen, William E.

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  7. General Aviation Avionics Statistics : 1976

    DOT National Transportation Integrated Search

    1979-11-01

    This report presents avionics statistics for the 1976 general aviation (GA) aircraft fleet and is the third in a series titled "General Aviation Avionics Statistics." The statistics are presented in a capability group framework which enables one to r...

  8. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  9. General aviation avionics statistics : 1977.

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents avionics statistics for the 1977 general aviation (GA) aircraft fleet and is the fourth in a series. The statistics are presented in a capability group framework which enables one to relate airborne avionics equipment to the capa...

  10. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  11. Digital avionics: A cornerstone of aviation

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1990-01-01

    Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.

  12. B-1B Avionics/Automatic Test Equipment: Maintenance Queueing Analysis.

    DTIC Science & Technology

    1983-12-01

    analysis (which is logistics terminology for an avionics/ATE queueing analysis). To allow each vendor the opportunity to perform such an analysis...for system performance measures may be found for the queueing system in Figure 7. This is due to the preemptive blocking caused by ATE failures. The...D-R14l1i75 B-iB AVIONICS/AUTOMPTIC TEST EQUIPMENT: MRINTENRNCE 1/2 QUEUEING RNRLYSIS(U) RIP FORCE INST OF TECH HRIGHT-PRTTERSON RFB OH SCHOOL OF

  13. Reference Specifications for SAVOIR Avionics Elements

    NASA Astrophysics Data System (ADS)

    Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup

    2012-08-01

    Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.

  14. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    NASA Technical Reports Server (NTRS)

    Lum, Ben T. F.; Pond, Charles; Dermott, William

    1993-01-01

    This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.

  15. Systems Engineering and Reusable Avionics

    NASA Technical Reports Server (NTRS)

    Conrad, James M.; Murphy, Gloria

    2010-01-01

    One concept for future space flights is to construct building blocks for a wide variety of avionics systems. Once a unit has served its original purpose, it can be removed from the original vehicle and reused in a similar or dissimilar function, depending on the function blocks the unit contains. For example: Once a lunar lander has reached the moon's surface, an engine controller for the Lunar Decent Module would be removed and used for a lunar rover motor control unit or for a Environmental Control Unit for a Lunar Habitat. This senior design project included the investigation of a wide range of functions of space vehicles and possible uses. Specifically, this includes: (1) Determining and specifying the basic functioning blocks of space vehicles. (2) Building and demonstrating a concept model. (3) Showing high reliability is maintained. The specific implementation of this senior design project included a large project team made up of Systems, Electrical, Computer, and Mechanical Engineers/Technologists. The efforts were made up of several sub-groups that each worked on a part of the entire project. The large size and complexity made this project one of the more difficult to manage and advise. Typical projects only have 3-4 students, but this project had 10 students from five different disciplines. This paper describes the difference of this large project compared to typical projects, and the challenges encountered. It also describes how the systems engineering approach was successfully implemented so that the students were able to meet nearly all of the project requirements.

  16. Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.

  17. Avionic Data Bus Integration Technology

    DTIC Science & Technology

    1991-12-01

    address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that

  18. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  19. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  20. 2000 Digital Avionics Highlights

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    2000-01-01

    This article summarizes the highlights of recent events and developments in digital avionics in commercial aviation, military systems, and space. This article is about 1,200 words long. Information for the article was collected from other NASA centers, DoD, and industry. All information was previously cleared by the originating organizations. Information for the article was also gathered from Aviation Week and Space Technology and similar sources.

  1. A method of distributed avionics data processing based on SVM classifier

    NASA Astrophysics Data System (ADS)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  2. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.

    2011-01-01

    .). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.

  3. Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications

    NASA Astrophysics Data System (ADS)

    Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves

    2015-09-01

    The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.

  4. General Aviation Avionics Statistics : 1979 Data

    DOT National Transportation Integrated Search

    1981-04-01

    This report presents avionics statistics for the 1979 general aviation (GA) aircraft fleet and is the sixth in a series titled General Aviation Avionics Statistics. The statistics preseneted in a capability group framework which enables one to relate...

  5. Digital Avionics Information System (DAIS): Impact of DAIS Concept on Life Cycle Cost--Supplement. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    This supplement to a technical report providing the results of a preliminary investigation of the potential impact of the Digital Avionics Information System (DAIS) concept on system support personnel requirements and life cycle cost (LCC) includes: (1) additional details of the cost comparison of a hypothetical application of a conceptual…

  6. An Analysis of the Modes and States for Generic Avionics

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1993-01-01

    The objective of this study was to develop a topology for describing the behavior of mission, vehicle and system/substem entities in new flight vehicle designs based on the use of open standards. It also had to define and describe the modes and states which may be used in generic avionics behavioral descriptions, describe their interrelationships, and establish a method for applying generic avionics to actual flight vehicle designs.

  7. Validation Methods for Fault-Tolerant avionics and control systems, working group meeting 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The proceedings of the first working group meeting on validation methods for fault tolerant computer design are presented. The state of the art in fault tolerant computer validation was examined in order to provide a framework for future discussions concerning research issues for the validation of fault tolerant avionics and flight control systems. The development of positions concerning critical aspects of the validation process are given.

  8. Analysis of technology requirements and potential demand for general aviation avionics systems for operation in the 1980's

    NASA Technical Reports Server (NTRS)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.

  9. Low-Cost Avionics Simulation for Aircrew Training.

    ERIC Educational Resources Information Center

    Edwards, Bernell J.

    This report documents an experiment to determine the training effectiveness of a microcomputer-based avionics system trainer as a cost-effective alternative to training in the actual aircraft. Participants--26 operationally qualified C-141 pilots with no prior knowledge of the Fuel Saving Advisory System (FSAS), a computerized fuel management…

  10. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  11. Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.

  12. NextGen Avionics Roadmap Version 2.0

    DTIC Science & Technology

    2011-09-30

    Avoid system (e.g. self -separation system) to be specifically authorized and delegated authority by the air traffic service provider in...provide any traffic flow management services within self -separation airspace. Aircraft must meet equi- page requirements to enter self -separation... traffic management systems and aircraft avionics systems. Aviation stakeholders will also benefit from reading this document because it provides a

  13. Application of industry-standard guidelines for the validation of avionics software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  14. Role of neural networks for avionics

    NASA Astrophysics Data System (ADS)

    Bowman, Christopher L.; DeYong, Mark R.; Eskridge, Thomas C.

    1995-08-01

    Neural network (NN) architectures provide a thousand-fold speed-up in computational power per watt along with the flexibility to learn/adapt so as to reduce software life-cycle costs. Thus NNs are posed to provide a key supporting role to meet the avionics upgrade challenge for affordable improved mission capability especially near hardware where flexible and powerful smart processing is needed. This paper summarizes the trends for air combat and the resulting avionics needs. A paradigm for information fusion and response management is then described from which viewpoint the role for NNs as a complimentary technology in meeting these avionics challenges is explained along with the key obstacles for NNs.

  15. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  16. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  17. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  18. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  19. NextGen Avionics Roadmap Version 1.0

    DTIC Science & Technology

    2008-10-24

    monetized benefit streams when available. Since the source analyses had been conducted at different times using a range of operational and economic...Mrkoci BAE Systems Dave Nakamura Boeing Rob Pappas FAA Dharmesh Patel Honeywell Art Politano FAA Jean- Claude Richard Thales Avionics Brian E. Smith

  20. 1977 General Aviation Activity and Avionics Survey

    DOT National Transportation Integrated Search

    1979-04-01

    This report presents the results and a description of the 1977 General Aviation Activity and Avionics Survey. The survey was conducted during early 1978 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  1. Nonoperating Failure Rates for Avionics Study.

    DTIC Science & Technology

    1980-04-01

    Missile, 1 August 1973. Temperature Readings at Three Indicated Locations ............................ 3-10 3-7 Operating vs . Nonoperating Failure...Failures vs . Mission Duration for Jet Aircraft Equipment ... ...................... ... 4-39 4-17 Cumulative Total Failures vs . Mission Duration for Jet...AVIONIC EQUIPMENT FIELD CHARACTERISTICS To better understand the type of service exposure avionic equipment must withstand , several aspects of the

  2. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  3. System requirements for head down and helmet mounted displays in the military avionics environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, M.F.; Kalmanash, M.; Sethna, V.

    1996-12-31

    The introduction of flat panel display technologies into the military avionics cockpit is a challenging proposition, due to the very difficult system level requirements which must be met. These relate to environmental extremes (temperature and vibrational), sever ambient lighting conditions (10,000 fL to nighttime viewing), night vision system compatibility, and wide viewing angle. At the same time, the display system must be packaged in minimal space and use minimal power. The authors will present details on the display system requirements for both head down and helmet mounted systems, as well as information on how these challenges may be overcome.

  4. Non-functional Avionics Requirements

    NASA Astrophysics Data System (ADS)

    Paulitsch, Michael; Ruess, Harald; Sorea, Maria

    Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.

  5. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  6. Remarks on Sentinel-1 Avionic SW Qualification

    NASA Astrophysics Data System (ADS)

    Candia, Sante; Pascucci, Dario

    2013-08-01

    The GMES Sentinel-1 Earth Radar Observatory, a projects co-funded by the European Union and the European Space Agency (ESA), is a constellation of C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational application such as mapping of global landmasses, coastal zones and monitoring of shipping routes. ESA is responsible for the development of the Sentinel-1 satellites that are built by an industrial consortium headed by Thales Alenia Space Italy (TASI) as Prime Contractor. TAS-I is also directly responsible for the production of the Spacecraft Bus and the Avionic S/S including the Avionic SW (ASW), which is characterized by: · The high performances of its attitude and orbit determination and control function; · Scheduling of the imaging activity on position basis with high geo-location performances; · High on board autonomy both in routine and contingency situations. This paper is focused on the Sentinel-1 Avionic SW, which has currently been qualified by TAS-I for Flight. It covers both the SW architecture and development process areas: · Avionic SW context; · Avionic SW architecture; · Flexibility of PUS-based on-board autonomy and FDIR; · Validation and Qualification activities;

  7. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  8. Algorithmic support for graphic images rotation in avionics

    NASA Astrophysics Data System (ADS)

    Kniga, E. V.; Gurjanov, A. V.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The avionics device designing has an actual problem of development and research algorithms to rotate the images which are being shown in the on-board display. The image rotation algorithms are a part of program software of avionics devices, which are parts of the on-board computers of the airplanes and helicopters. Images to be rotated have the flight location map fragments. The image rotation in the display system can be done as a part of software or mechanically. The program option is worse than the mechanic one in its rotation speed. The comparison of some test images of rotation several algorithms is shown which are being realized mechanically with the program environment Altera QuartusII.

  9. Design Description of the X-33 Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Reichenfeld, Curtis J.; Jones, Paul G.

    1999-01-01

    In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides

  10. Investigation of RF Emissions From Wireless Networks as a Threat to Avionic Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2002-01-01

    The paper focuses on understanding and obtaining preliminary measurements of radiated field (RF) emissions of laptop/wireless local area network (WLAN) systems. This work is part of a larger research project to measure radiated emissions of wireless devices to provide a better understanding for potential interference with crucial aircraft avionics systems. A reverberation chamber data collection process is included, as well as recommendations for additional tests. Analysis of measurements from devices under test (DUTs) proved inconclusive for addressing potential interference issues. Continued effort is expected to result in a complete easily reproducible test protocol. The data and protocol presented here are considered preliminary.

  11. A COTS-Based Replacement Strategy for Aging Avionics Computers

    DTIC Science & Technology

    2001-12-01

    Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace

  12. Military display market segment: avionics (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2005-05-01

    The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.

  13. ARINC 818 specification revisions enable new avionics architectures

    NASA Astrophysics Data System (ADS)

    Grunwald, Paul

    2014-06-01

    The ARINC 818 Avionics Digital Video Bus is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits. The Boeing 787, A350XWB, A400M, KC-46A, and many other aircraft use it. The ARINC 818 specification, which was initially release in 2006, has recently undergone a major update to address new avionics architectures and capabilities. Over the seven years since its release, projects have gone beyond the specification due to the complexity of new architectures and desired capabilities, such as video switching, bi-directional communication, data-only paths, and camera and sensor control provisions. The ARINC 818 specification was revised in 2013, and ARINC 818-2 was approved in November 2013. The revisions to the ARINC 818-2 specification enable switching, stereo and 3-D provisions, color sequential implementations, regions of interest, bi-directional communication, higher link rates, data-only transmission, and synchronization signals. This paper discusses each of the new capabilities and the impact on avionics and display architectures, especially when integrating large area displays, stereoscopic displays, multiple displays, and systems that include a large number of sensors.

  14. Integrated performance and reliability specification for digital avionics systems

    NASA Technical Reports Server (NTRS)

    Brehm, Eric W.; Goettge, Robert T.

    1995-01-01

    This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.

  15. Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Atwell, William; Boeder, Paul

    2014-01-01

    NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for

  16. Rotorcraft technology at Boeing Vertol: Recent advances

    NASA Technical Reports Server (NTRS)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  17. AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.

    DTIC Science & Technology

    1986-07-11

    Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data

  18. Digital Avionics Information System (DAIS): Reliability and Maintainability Model Users Guide. Final Report, May 1975-July 1977.

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    This report provides a complete guide to the stand alone mode operation of the reliability and maintenance (R&M) model, which was developed to facilitate the performance of design versus cost trade-offs within the digital avionics information system (DAIS) acquisition process. The features and structure of the model, its input data…

  19. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  20. Digital map databases in support of avionic display systems

    NASA Astrophysics Data System (ADS)

    Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.

    1991-08-01

    The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.

  1. 78 FR 68687 - Final Additional Airworthiness Design Standards: Advanced Avionics Under the Special Class (JAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... under Sec. 21.17(b), to Day-VFR operations. Additionally, the FAA also published design criteria to allow expansion of the Aquila AT01-100 airplane to include Night-VFR as shown in NPRM 75 FR 32576. In conjunction with the expansion to Night-VFR operations integrated avionic displays are to be installed on the...

  2. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  3. Vertical Guidance Performance Analysis of the L1–L5 Dual-Frequency GPS/WAAS User Avionics Sensor

    PubMed Central

    Jan, Shau-Shiun

    2010-01-01

    This paper investigates the potential vertical guidance performance of global positioning system (GPS)/wide area augmentation system (WAAS) user avionics sensor when the modernized GPS and Galileo are available. This paper will first investigate the airborne receiver code noise and multipath (CNMP) confidence (σair). The σair will be the dominant factor in the availability analysis of an L1–L5 dual-frequency GPS/WAAS user avionics sensor. This paper uses the MATLAB Algorithm Availability Simulation Tool (MAAST) to determine the required values for the σair, so that an L1–L5 dual-frequency GPS/WAAS user avionics sensor can meet the vertical guidance requirements of APproach with Vertical guidance (APV) II and CATegory (CAT) I over conterminous United States (CONUS). A modified MAAST that includes the Galileo satellite constellation is used to determine under what user configurations WAAS could be an APV II system or a CAT I system over CONUS. Furthermore, this paper examines the combinations of possible improvements in signal models and the addition of Galileo to determine if GPS/WAAS user avionics sensor could achieve 10 m Vertical Alert Limit (VAL) within the service volume. Finally, this paper presents the future vertical guidance performance of GPS user avionics sensor for the United States’ WAAS, Japanese MTSAT-based satellite augmentation system (MSAS) and European geostationary navigation overlay service (EGNOS). PMID:22319263

  4. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  5. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  6. Multi-gigabit WDM optical networking for next generation avionics system communications

    NASA Astrophysics Data System (ADS)

    Gardner, Robert D.; Andonovic, I.; Hunter, D. K.; Hamoudi, A.; McLaughlin, A. J.; Aitchison, J. S.; Marsh, J. H.

    2000-04-01

    It is envisaged that photonic networking will play a significant role in improving performance and reliability in both civil and military avionics systems. Of all the available photonic multiplexing technologies, wavelength-division multiplexing (WDM) has been the primary focus of attention within mainstream telecommunications offering increased throughput at a reasonable cost, with scope for enhanced routing flexibility, connectivity and network survivability. A direct mapping of techniques and devices from the maturing telecommunications sector is, however, not possible because of the stringent requirements of systems operating in the hostile aerospace environment. This paper gives an outline of these requirements and discusses, in detail, the design and development of a multi-gigabit, broadband optical WDM network architecture, specifically for use on aerospace platforms. The paper will also discuss a key element in the system, the arrayed-waveguide grating (AWG) wavelength multiplexing component, which has been designed to allow operation over the full military temperature specification without environmental conditioning.

  7. Hardware survey for the avionics test bed

    NASA Technical Reports Server (NTRS)

    Cobb, J. M.

    1981-01-01

    A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.

  8. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  9. Outlook at the Future of the Airline Avionics Industry

    DOT National Transportation Integrated Search

    1998-01-01

    The aviation industry is slowly but surely changing its character. As airlines restructure, what they ask of, and how they relate to their suppliers (including avionics manufacturers) will greatly change as well. The avionics industry is currently fa...

  10. Avionics for a Small Robotic Inspection Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbott, Larry; Shuler, Robert L., Jr.

    2005-01-01

    A report describes the tentative design of the avionics of the Mini-AERCam -- a proposed 7.5-in. (approximately 19-cm)-diameter spacecraft that would contain three digital video cameras to be used in visual inspection of the exterior of a larger spacecraft (a space shuttle or the International Space Station). The Mini-AERCam would maneuver by use of its own miniature thrusters under radio control by astronauts inside the larger spacecraft. The design of the Mini-AERCam avionics is subject to a number of constraints, most of which can be summarized as severely competing requirements to maximize radiation hardness and maneuvering, image-acquisition, and data-communication capabilities while minimizing cost, size, and power consumption. The report discusses the design constraints, the engineering approach to satisfying the constraints, and the resulting iterations of the design. The report places special emphasis on the design of a flight computer that would (1) acquire position and orientation data from a Global Positioning System receiver and a microelectromechanical gyroscope, respectively; (2) perform all flight-control (including thruster-control) computations in real time; and (3) control video, tracking, power, and illumination systems.

  11. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  12. IXV avionics architecture: Design, qualification and mission results

    NASA Astrophysics Data System (ADS)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  13. A Formal Model of Partitioning for Integrated Modular Avionics

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.

    1998-01-01

    The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.

  14. Development of Avionics Installation Interface Standards. Revision.

    DTIC Science & Technology

    1981-08-01

    requirements for new avionics in the Navy during the period 1985 to 1990, however, will be the F-18 programa , which is design-committed (and which will probably...programs that will continue late into the 1980s. Avionics programs currently in development will establish a de facto func- tional baseline as well...the equip- ment, appropriate sensors must be included at the cooling-air inlet to de - tect air-flow conditions directly, or to detect excessive heat

  15. Technical Workshop: Advanced Helicopter Cockpit Design

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C. (Editor); Callas, G. P. (Editor)

    1984-01-01

    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.

  16. Validation Methods Research for Fault-Tolerant Avionics and Control Systems Sub-Working Group Meeting. CARE 3 peer review

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S. (Editor); Clary, J. B. (Editor)

    1980-01-01

    A computer aided reliability estimation procedure (CARE 3), developed to model the behavior of ultrareliable systems required by flight-critical avionics and control systems, is evaluated. The mathematical models, numerical method, and fault-tolerant architecture modeling requirements are examined, and the testing and characterization procedures are discussed. Recommendations aimed at enhancing CARE 3 are presented; in particular, the need for a better exposition of the method and the user interface is emphasized.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The integrated application of active controls (IAAC) technology to an advanced subsonic transport is reported. Supplementary technical data on the following topics are included: (1) 1990's avionics technology assessment; (2) function criticality assessment; (3) flight deck system for total control and functional features list; (4) criticality and reliability assessment of units; (5) crew procedural function task analysis; and (6) recommendations for simulation mechanization.

  18. Infrared Avionics Signal Distribution Using WDM

    NASA Technical Reports Server (NTRS)

    Atiquzzaman, Mohammed; Sluss, James J., Jr.

    2004-01-01

    Supporting analog RF signal transmission over optical fibers, this project demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment. We characterize the simultaneous transmission of four RF signals (channels) over a single optical fiber. At different points along a fiber optic backbone, these four analog channels are sequentially multiplexed and demultiplexed to more closely emulate the conditions in existing onboard aircraft. We present data from measurements of optical power, transmission response (loss and gain), reflection response, group delay that defines phase distortion, signal-to-noise ratio (SNR), and dynamic range that defines nonlinear distortion. The data indicate that WDM is very suitable for avionics applications.

  19. Common modular avionics - Partitioning and design philosophy

    NASA Astrophysics Data System (ADS)

    Scott, D. M.; Mulvaney, S. P.

    The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.

  20. Generalized approach for identification and evaluation of technology-insertion options for military avionics systems

    NASA Astrophysics Data System (ADS)

    Harkness, Linda L.; Sjoberg, Eric S.

    1996-06-01

    The Georgia Tech Research Institute, sponsored by the Warner Robins Air Logistics Center, has developed an approach for efficiently postulating and evaluating methods for extending the life of radars and other avionics systems. The technique identified specific assemblies for potential replacement and evaluates the system level impact, including performance, reliability and life-cycle cost of each action. The initial impetus for this research was the increasing obsolescence of integrated circuits contained in the AN/APG-63 system. The operational life of military electronics is typically in excess of twenty years, which encompasses several generations of IC technology. GTRI has developed a systems approach to inserting modern technology components into older systems based upon identification of those functions which limit the system's performance or reliability and which are cost drivers. The presentation will discuss the above methodology and a technique for evaluating and ranking the different potential system upgrade options.

  1. Reliable optical card-edge (ROC) connector for avionics applications

    NASA Astrophysics Data System (ADS)

    Darden, Bruce V.; Pimpinella, Richard J.; Seals, John D.

    1994-10-01

    The Reliable Optical Card-Edge (ROC) Connector is a blind-mate backplane unit designed to meet military stress requirements for avionics applications. Its modular design represents the first significant advance in connector optics since the biconic butt-coupled connector was introduced twenty years ago. This multimode connector utilizes beam optics, micro-machined silicon, and a floating, low mass subassembly design to maintain low coupling loss under high levels of shock and vibration. The ROC connector also incorporates retracting doors to protect the unmated termini from environmental contamination and abusive handling. Design features and test results for the ROC connector are presented in this paper.

  2. 78 FR 65183 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Airworthiness Directives; ATR--GIE Avions de Transport R[eacute]gional Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain ATR--GIE Avions de Transport R[eacute]gional Model ATR72-101, -201... service information identified in this AD, contact ATR--GIE Avions de Transport R[eacute]gional, 1, All...

  3. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  4. Avionics Maintenance Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the avionics maintenance technology program in Georgia. The standards are divided into the following categories: foundations, diploma/degree (philosophy, purpose, goals, program objectives, availability, evaluation); admissions, diploma/degree (admission requirements, provisional admission…

  5. High-performance large-area AMLCD avionic display module

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.; Hansen, Glenn A.

    1995-06-01

    There is a need for a reliable source of high performance large area sunlight readable active matrix liquid crystal displays (AMLCDs) for avionic and military land vehicle applications. Image Quest has developed an avionic display module (ADM) to demonstrate the capability to produce high performance avionic displays to satisfy this need. The ADM is a large area (6.24 X 8.32 inch) display with VGA compatible interface, 640 X 480 color pixels and 64 gray shades per primary color. The display features excellent color discrimination in full sunlight due to a saturated color gamut, very low specular reflectance (< 1%) and high output white luminance (200 fL). The ADM is designed from the glass up to fully meet the avionic and military application and environment. Control over all the display performance parameters including contrast, transmission, chroma, resolution, active size and packaging configuration is ensured because Image Quest produces all of the critical elements of the display. These elements include the a-Si TFT AMLCD glass, RGB color filter matrix, bonding of folded back driver TABs, anti-reflective cover glass, LC heater and integration of high luminance hot cathode backlight with thermal controls. The display features rugged compact packaging, 2000:1 luminance dimming range and wide operating temperature range (-40 to +71 $DRGC). In the immediate future Image Quest plans to expand the development efforts to other similar custom high resolution and high performance avionic display module configurations including 4 X 4 inch delta triad, 6.7 X 6.7 inch delta triad and 16.5 inch diagonal with 1280 X 1024 pixels. Image Quest can deliver up to 10,000 displays per year on a timely basis at a reasonable cost.

  6. Single-event effects in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.

    1996-04-01

    The occurrence of single-event upset (SEU) in aircraft electronics has evolved from a series of interesting anecdotal incidents to accepted fact. A study completed in 1992 demonstrated that SEU`s are real, that the measured in-flight rates correlate with the atmospheric neutron flux, and that the rates can be calculated using laboratory SEU data. Once avionics DEU was shown to be an actual effect, it had to be dealt with in avionics designs. The major concern is in random access memories (RAM`s), both static (SRAM`s) and dynamic (DRAM`s), because these microelectronic devices contain the largest number of bits, but other parts,more » such as microprocessors, are also potentially susceptible to upset. In addition, other single-event effects (SEE`s), specifically latch-up and burnout, can also be induced by atmospheric neutrons.« less

  7. General Aviation Activity and Avionics Survey (Annual Summary Report - 1985 data)

    DOT National Transportation Integrated Search

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  8. General aviation activity and avionics survey : annual summary report 1983 data.

    DOT National Transportation Integrated Search

    1984-10-01

    This report presents the results and a description of the 1983 General Aviation Activity and Avionics Survey. The survey was conducted during 1984 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  9. General Aviation Activity and Avionics Survey (Annual Summary Report - 1978 data)

    DOT National Transportation Integrated Search

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  10. General Aviation Activity and Avionics Survey (Annual Summary Report - 1986 Data)

    DOT National Transportation Integrated Search

    1987-12-01

    This report presents the results and description of the 1986 General Aviation Activity and Avionics Survey. The survey was conducted during 1987 by the FAA to obtain information on the activity and avionics of the United States registered general avi...

  11. General Aviation Activity and Avionics Survey (Annual Summary Report - 1984 data)

    DOT National Transportation Integrated Search

    1985-10-01

    This report presents the results and a description of the 1984 General Aviation Activity and Avionics Survey. The survey was conducted during 1985 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  12. General Aviation Activity and Avionics Survey (Annual Summary Report - 1987 data).

    DOT National Transportation Integrated Search

    1988-11-01

    This report presents the results and a description of the 1987 General Aviation Activity and Avionics Survey. The survey was conducted during 1988 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  13. General Aviation Activity and Avionics Survey (Annual Summary Report - 1982 data).

    DOT National Transportation Integrated Search

    1983-12-01

    This report presents the results and a description of the 1982 General Aviation Activity and Avionics Survey. The survey was conducted during 1983 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  14. FSC LCD technology for military and avionics applications

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Schmidt, John; Roush, Jerry

    2009-05-01

    Field sequential color (FSC) liquid crystal displays (LCD) using a high speed LCD mode and an R, G, B LED backlight, offers a significant potential for lower power consumption, higher resolution, higher brightness and lower cost compared to the conventional R, G, B color filter based LCD, and thus is of interest to various military and avionic display applications. While the DLP projection TVs, and Camcorder LCD view finder type displays using the FSC technology have been introduced in the consumer market, large area direct view LCD displays based on the FSC technology have not reached the commercial market yet. Further, large area FSC LCDs can present unique operational issues in avionic and military environments particularly for operation in a broad temperature range and with respect to its susceptibility for the color breakup image artifact. In this paper we will review the current status of the FSC LCD technology and then discuss the results of our efforts on the FSC LCD technology evaluation for the avionic applications.

  15. A fault-tolerant avionics suite for an entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, Mark; Stone, Howard

    1988-01-01

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  16. A fault-tolerant avionics suite for an entry research vehicle

    NASA Astrophysics Data System (ADS)

    Dzwonczyk, Mark; Stone, Howard

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  17. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Ingham, John C. (Inventor); Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Kuhn, III, Theodore R. (Inventor); Babel, III, Walter C. (Inventor); Fox, legal representative, Christopher L. (Inventor); Adams, James K. (Inventor); Laughter, Sean A. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  18. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  19. Orbiter Avionics Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon D.

    1999-01-01

    This handbook was assembled to document he radiation environment for design of Orbiter avionics. It also maps the environment through vehicle shielding and mission usage into discrete requirements such as total dose. Some details of analytical techniques for calculating radiation effects are provided. It is anticipated that appropriate portions of this document will be added to formal program specifications.

  20. An overview of the F-117A avionics flight test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silz, R.

    1992-02-01

    This paper is an overview of the history of the F-117A avionics flight test program. System design concepts and equipment selections are explored followed by a review of full scale development and full capability development testing. Flight testing the Weapon System Computational Subsystem upgrade and the Offensive Combat Improvement Program are reviewed. Current flight test programs and future system updates are highlighted.

  1. Measurement of fault latency in a digital avionic miniprocessor

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Swern, F. L.

    1981-01-01

    The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.

  2. Avionics Maintenance Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide presents the avionics maintenance technology curriculum for technical institutes in Georgia. The general information section contains the following for both the diploma program and the associate degree program: purpose and objectives; program description, including admissions, typical job titles, and accreditation and…

  3. Cross channel dependency requirements of the multi-path redundant avionics suite

    NASA Astrophysics Data System (ADS)

    Martin, Fred; Adams, Darryl

    Requirements for cross channel dependencies in the multipath redundant avionics suite (MPRAS) architecture are described. MPRAS is a data synchronous avionics architecture for space launch vehicle applications. The MPRAS cross channel data link (CCDL) provides the mechanism, required by data synchronous architectures, to exchange data and maintain synchronization among redundant channels. MPRAS architectural requirements impose a variety of characteristics for cross channel dependencies which make traditional CCDL solutions unacceptable for MPRAS target applications. The MPRAS CCDL requirements have led to a CCDL design which maintains resilience to faults, does not introduce large cross channel bandwidth reductions, and meets the other established MPRAS CCDL requirements. A review of fault-tolerant system principles applicable to CCDL issues is presented as well as a top-level functional description of the MPRAS CCDL design.

  4. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  5. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  6. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  7. Human Factors Assessment of the UH-60M Common Avionics Architecture System (CAAS) Crew Station During the Limited User Evaluation (LEUE)

    DTIC Science & Technology

    2005-12-01

    weapon system evaluation as a high-level architecture and distributed interactive simulation 6 compliant, human-in-the-loop, virtual environment...Directorate to participate in the Limited Early User Evaluation (LEUE) of the Common Avionics Architecture System (CAAS) cockpit. ARL conducted a human...CAAS, the UH-60M PO conducted a limited early user evaluation (LEUE) to evaluate the integration of the CAAS in the UH-60M crew station. The

  8. Programmable Logic Device (PLD) Design Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. At the conclusion of the development, the software and hardware description language (HDL) code was delivered to JSC for their use in their iPAS test bed to get hands-on experience with the STRS standard, and for development of their own STRS Waveforms on the now STRS compliant platform.The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe the design of the HDL code for the FPGA portion of the iPAS STRS Radio particularly the design of the FPGA wrapper and the test waveform.

  9. Military Curriculum Materials for Vocational and Technical Education. Avionics Instrument Systems Specialist. POI C3ABR32531 000. Classroom Course 2-7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This high school-postsecondary-level course for avionics instrument systems specialist is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. A plan of instruction outlines five blocks of instruction (281 hours of instruction). Block 1,…

  10. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  11. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  12. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  13. General Aviation Avionics Statistics : 1978 Data

    DOT National Transportation Integrated Search

    1980-12-01

    The report presents avionics statistics for the 1978 general aviation (GA) aircraft fleet and is the fifth in a series titled "General Aviation Statistics." The statistics are presented in a capability group framework which enables one to relate airb...

  14. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal

  15. A study of software standards used in the avionics industry

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1994-01-01

    Within the past decade, software has become an increasingly common element in computing systems. In particular, the role of software used in the aerospace industry, especially in life- or safety-critical applications, is rapidly expanding. This intensifies the need to use effective techniques for achieving and verifying the reliability of avionics software. Although certain software development processes and techniques are mandated by government regulating agencies, no one methodology has been shown to consistently produce reliable software. The knowledge base for designing reliable software simply has not reached the maturity of its hardware counterpart. In an effort to increase our understanding of software, the Langley Research Center conducted a series of experiments over 15 years with the goal of understanding why and how software fails. As part of this program, the effectiveness of current industry standards for the development of avionics is being investigated. This study involves the generation of a controlled environment to conduct scientific experiments on software processes.

  16. MECHANIZATION STUDY OF THE TECHNICAL LIBRARY U.S. NAVAL AVIONICS FACILITY, INDIANAPOLIS, INDIANA.

    ERIC Educational Resources Information Center

    KERSHAW, G.A.; AND OTHERS

    THE NAVAL AVIONICS FACILITY, INDIANAPOLIS (NAFI) TECHNICAL LIBRARY IS PLANNING A MECHANIZED SYSTEM TO PRODUCE A PERMUTED INDEX OF PERTINENT PERIODICAL REFERENCES AND PROCEEDINGS, WITH BOOKS AND DOCUMENTS TO BE ADDED LATER. INPUT TO THE SYSTEM IS PUNCHED PAPER TAPE PREPARED FROM THE SOURCE MATERIAL, AND THE PRIMARY PROGRAM IS A "CANNED"…

  17. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  18. Validation of fault-free behavior of a reliable multiprocessor system - FTMP: A case study. [Fault-Tolerant Multi-Processor avionics

    NASA Technical Reports Server (NTRS)

    Clune, E.; Segall, Z.; Siewiorek, D.

    1984-01-01

    A program of experiments has been conducted at NASA-Langley to test the fault-free performance of a Fault-Tolerant Multiprocessor (FTMP) avionics system for next-generation aircraft. Baseline measurements of an operating FTMP system were obtained with respect to the following parameters: instruction execution time, frame size, and the variation of clock ticks. The mechanisms of frame stretching were also investigated. The experimental results are summarized in a table. Areas of interest for future tests are identified, with emphasis given to the implementation of a synthetic workload generation mechanism on FTMP.

  19. Multi-Purpose Avionic Architecture for Vision Based Navigation Systems for EDL and Surface Mobility Scenarios

    NASA Astrophysics Data System (ADS)

    Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.

    2015-09-01

    Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.

  20. Avionics Configuration Assessment for Flightdeck Interval Management: A Comparison of Avionics and Notification Methods

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.

    2015-01-01

    Flightdeck Interval Management is one of the NextGen operational concepts that FAA is sponsoring to realize requisite National Airspace System (NAS) efficiencies. Interval Management will reduce variability in temporal deviations at a position, and thereby reduce buffers typically applied by controllers - resulting in higher arrival rates, and more efficient operations. Ground software generates a strategic schedule of aircraft pairs. Air Traffic Control (ATC) provides an IM clearance with the IM spacing objective (i.e., the TTF, and at which point to achieve the appropriate spacing from this aircraft) to the IM aircraft. Pilots must dial FIM speeds into the speed window on the Mode Control Panel in a timely manner, and attend to deviations between actual speed and the instantaneous FIM profile speed. Here, the crew is assumed to be operating the aircraft with autothrottles on, with autopilot engaged, and the autoflight system in Vertical Navigation (VNAV) and Lateral Navigation (LNAV); and is responsible for safely flying the aircraft while maintaining situation awareness of their ability to follow FIM speed commands and to achieve the FIM spacing goal. The objective of this study is to examine whether three Notification Methods and four Avionics Conditions affect pilots' performance, ratings on constructs associated with performance (workload, situation awareness), or opinions on acceptability. Three Notification Methods (alternate visual and aural alerts that notified pilots to the onset of a speed target, conformance deviation from the required speed profile, and reminded them if they failed to enter the speed within 10 seconds) were examined. These Notification Methods were: VVV (visuals for all three events), VAV (visuals for all three events, plus an aural for speed conformance deviations), and AAA (visual indications and the same aural to indicate all three of these events). Avionics Conditions were defined by the instrumentation (and location) used to

  1. Tanker avionics and aircrew complement evaluation.

    PubMed

    Moss, R W; Barbato, G J

    1982-11-01

    This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.

  2. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  3. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  4. An autonomous rendezvous and docking system using cruise missile technologies

    NASA Technical Reports Server (NTRS)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  5. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  6. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  7. Evolution of shuttle avionics redundancy management/fault tolerance

    NASA Technical Reports Server (NTRS)

    Boykin, J. C.; Thibodeau, J. R.; Schneider, H. E.

    1985-01-01

    The challenge of providing redundancy management (RM) and fault tolerance to meet the Shuttle Program requirements of fail operational/fail safe for the avionics systems was complicated by the critical program constraints of weight, cost, and schedule. The basic and sometimes false effectivity of less than pure RM designs is addressed. Evolution of the multiple input selection filter (the heart of the RM function) is discussed with emphasis on the subtle interactions of the flight control system that were found to be potentially catastrophic. Several other general RM development problems are discussed, with particular emphasis on the inertial measurement unit RM, indicative of the complexity of managing that three string system and its critical interfaces with the guidance and control systems.

  8. Cycle O (CY 1991) NLS trade studies and analyses, book 2. Part 1: Avionics and systems

    NASA Technical Reports Server (NTRS)

    Harris, Richard; Kirkland, Zach

    1992-01-01

    An assessment was conducted to determine the maximum LH2 tank stretch capability based on the constraints of the manufacturing, tooling and facilities at the Michoud Assembly Facility in New Orleans, Louisiana. The maximum tank stretch was determined to be 5 ft. with minor or no modifications, a stretch of 11 ft. with some possible facility modifications and beyond 11 ft. significant new facilities are required. A cost analysis was performed to evaluate the impacts for various stretch lengths. Tasks that were defined to perform trades and studies regarding the best approach to meet requirements for the National Launch System Avionics are also discussed.

  9. Fly-by-Light Advanced Systems Hardware (FLASH) program

    NASA Astrophysics Data System (ADS)

    Bedoya, Carlos A.

    1995-05-01

    Fiber optics are immune to electromagnetic emissions and have the potential to eliminate this concern especially in flight critical applications if they can be developed to the same level of technology as current systems using wire to carry the signals. As aircraft become more and more dependent of digital signals to control all systems, the Electromagnetic Environment (EME) will become more and more a concern for the safe long term operation. The International Severe HIRF electromagnetic environment (EME) is less than 2000 Volts per meter below 400 MHz and reaches a maximum of 6,850 Volts per meter in the 4-6 GHz range. The normal assumption is that a metal or composite aircraft skin with appropriate seals provides 20 dB attenuation of the external environment. This reduces peak levels at the avionics boxes to less than 200 Volts per meter below 400 MHz and a maximum of 685 Volts per meter in the 406 GHz range. MIL-STD-461D imposed an additional box level requirement to 200 Volts per meter from 10 KHz to 40 GHz. This requirement equals or surpasses the attenuated HIRF environment over significant portions of the spectrum and implies that the aircraft must be designed to achieve and maintain this value throughout its service life. Although wires can be shielded and designed to achieve these requirements, it is a more expensive process, adds the weight of shielding and requires maintenance of the shielding integrity at all times. The very light weight and high bandwidth of fiber optics also offer the potential of eliminating the number of connections and weight savings in aircraft. For example on a one to one replacement of wire by fiber, it is estimated that fiber would weight about 1/20 the weight of wire. Current wire buses used for duplex communications in aircraft applications have a bandwidth of about 1 MHz while equivalent buses using fiber optics have a bandwidth of 20 MHz. For other applications such as video and avionics interfaces, fiber buses in the

  10. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  11. Avionics architecture studies for the entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.

    1989-01-01

    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.

  12. An overview of autonomous rendezvous and docking system technology development at General Dynamics

    NASA Technical Reports Server (NTRS)

    Kuenzel, Fred

    1991-01-01

    The Centaur avionics suite is undergoing a dramatic modernization for the commercial, DoD Atlas and Titan programs. The system has been upgraded to the current state-of-the-art in ring laser gyro inertial sensors and Mil-Std-1750A processor technology. The Cruise Missile avionic system has similarly been evolving for many years. Integration of GPS into both systems has been underway for over five years with a follow-on cruise missile system currently in flight test. Rendezvous and Docking related studies have been conducted for over five years in support of OMV, CTV, and Advanced Upper Stages, as well as several other internal IR&D's. The avionics system and AR&D simulator demonstrated to the SATWG in November 1990 has been upgraded considerably under two IR&D programs in 1991. The Centaur modern avionics system is being flown in block upgrades which started in July of 1990. The Inertial Navigation Unit will fly in November of 1991. The Cruise Missile avionics systems have been fully tested and operationally validated in combat. The integrated AR&D system for space vehicle applications has been under development and testing since 1990. A Joint NASA / GD ARD&L System Test Program is currently being planned to validate several aspects of system performance in three different NASA test facilities in 1992.

  13. General aviation activity and avionics survey. Annual report for CY81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.; Carter, P.W.

    1982-12-01

    This report presents the results and a description of the 1981 General Aviation Activity and Avionics Survey. The survey was conducted during 1982 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 8.9 percent of the general aviation fleet and obtained a response rate of 61 percent. Survey results are based upon response but are expanded upward to represent the total population. Survey results revealed that during 1981 anmore » estimated 40.7 million hours of flying time were logged by the 213,226 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 188.1 hours. The active aircraft represented about 83 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates. In addition, tables are included for detailed analysis of the avionics capabilities of GA fleet.« less

  14. Avionic technology testing by using a cognitive neurometric index: A study with professional helicopter pilots.

    PubMed

    Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Salinari, Serenella; Colosimo, Alfredo; Bonelli, Stefano; Napoletano, Linda; Ferreira, Ana; Babiloni, Fabio

    2015-01-01

    In this study, we investigated the possibility to evaluate the impact of different avionic technologies on the mental workload of helicopter's pilots by measuring their brain activity with the EEG during a series of simulated missions carried out at AgustaWestland facilities in Yeovil (UK). The tested avionic technologies were: i) Head-Up Display (HUD); ii) Head-Mounted Display (HMD); iii) Full Conformal symbology (FC); iv) Flight Guidance (FG) symbology; v) Synthetic Vision System (SVS); and vi) Radar Obstacles (RO) detection system. It has been already demonstrated that in cognitive tasks, when the cerebral workload increases the EEG power spectral density (PSD) in theta band over frontal areas increases, and the EEG PSD in alpha band decreases over parietal areas. A mental workload index (MWL) has been here defined as the ratio between the frontal theta and parietal alpha EEG PSD values. Such index has been used for testing and comparing the different avionic technologies. Results suggested that the HUD provided a significant (p<;.05) workload reduction across all the flight scenarios with respect to the other technologies. In addition, the simultaneous use of FC and FG technologies (FC+FG) produced a significant decrement of the workload (p<;.01) with respect to the use of only the FC. Moreover, the use of the SVS technology provided on Head Down Display (HDD) with the simultaneous use of FC+FG and the RO seemed to produce a lower cerebral workload when compared with the use of only the FC. Interestingly, the workload estimation by means of subjective measures, provided by pilots through a NASA-TLX questionnaire, did not provide any significant differences among the different flight scenarios. These results suggested that the proposed MWL cognitive neurometrics could be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and the test of different avionic technologies.

  15. Autonomous safety and reliability features of the K-1 avionics system

    NASA Astrophysics Data System (ADS)

    Mueller, George E.; Kohrs, Dick; Bailey, Richard; Lai, Gary

    2004-03-01

    Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K-1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least 3 consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1.

  16. Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Krishnakumar, Kalmaje

    2005-01-01

    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.

  17. High-resolution AM LCD development for avionic applications

    NASA Astrophysics Data System (ADS)

    Lamberth, Larry S.; Laddu, Ravindra R.; Harris, Doug; Sarma, Kalluri R.; Li, Wang-Yang; Chien, C. C.; Chu, C. Y.; Lee, C. S.; Kuo, Chen-Lung

    2003-09-01

    For the first time, an avionic grade MVA AM LCD with wide viewing angle has been developed for use in either landscape or portrait mode. The development of a high resolution Multi-domain Vertical Alignment (MVA) Active Matrix Liquid Crystal Display (AM LCD) is described. Challenges met in this development include achieving the required performance with high luminance and sunlight readability while meeting stringent optical (image quality) and environmental performance requirements of avionics displays. In this paper the optical and environmental performance of this high resolution 14.1" MVA-AM-LCD are discussed and some performance comparisons to conventional AM-LCDs are documented. This AM LCD has found multiple Business Aviation and Military display applications and cockpit pictures are presented.

  18. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  19. Space Tug avionics definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.

  20. 78 FR 42898 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... identified in this proposed AD, contact ATR-GIE Avions de Transport R[eacute]gional, 1, All[eacute]e Pierre... Transport R[eacute]gional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-GIE Avions de Transport R[eacute]gional Model ATR72-101, - 201, -102, -202, -211, -212, and -212A...

  1. Avionics. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in avionics that is intended to prepare students for employment in the field of aerospace electronics. Included among the topics addressed in the course are the following: shop practices, aircraft and the theory of flight, electron physics,…

  2. Single event upset in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber, A.; Normand, E.

    1993-04-01

    Data from military/experimental flights and laboratory testing indicate that typical non radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant soft upset rate at aircraft altitudes due to energetic neutrons created by cosmic ray interactions in the atmosphere. It is suggested that error detection and correction (EDAC) circuitry be considered for all avionics designs containing large amounts of semi-conductor memory.

  3. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    NASA Astrophysics Data System (ADS)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  4. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    NASA Astrophysics Data System (ADS)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  5. An independent review of the Multi-Path Redundant Avionics Suite (MPRAS) architecture assessment and characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.R.

    1991-02-01

    In recent years the NASA Langley Research Center has funded several contractors to conduct conceptual designs defining architectures for fault tolerant computer systems. Such a system is referred to as a Multi-Path Redundant Avionics Suite (MPRAS), and would form the basis for avionics systems that would be used in future families of space vehicles in a variety of missions. The principal contractors were General Dynamics, Boeing, and Draper Laboratories. These contractors participated in a series of review meetings, and submitted final reports defining their candidate architectures. NASA then commissioned the Research Triangle Institute (RTI) to perform an assessment of thesemore » architectures to identify strengths and weaknesses of each. This report is a separate, independent review of the RTI assessment, done primarily to assure that the assessment was comprehensive and objective. The report also includes general recommendations relative to further MPRAS development.« less

  6. Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems - Part II

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    An accurate prediction of spacecraft avionics single event effect (SEE) radiation susceptibility is key to ensuring a safe and reliable vehicle. This is particularly important for long-duration deep space missions for human exploration where there is little or no chance for a quick emergency return to Earth. Monte Carlo nuclear reaction and transport codes such as FLUKA can be used to generate very accurate models of the expected in-flight radiation environment for SEE analyses. A major downside to using a Monte Carlo-based code is that the run times can be very long (on the order of days). A more popular choice for SEE calculations is the CREME96 deterministic code, which offers significantly shorter run times (on the order of seconds). However, CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Another modeling option to consider is the deterministic code HZETRN 20104, which includes updates to address secondary particle shower effects more accurately. This paper builds on previous work by Rojdev, et al. to compare the use of HZETRN 2010 against CREME96 as a tool to verify spacecraft avionics system reliability in a space flight SEE environment. This paper will discuss modifications made to HZETRN 2010 to improve its performance for calculating SEE rates and compare results with both in-flight SEE rates and other calculation methods.

  7. Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics

    NASA Technical Reports Server (NTRS)

    Myers, Harvey Dean

    1990-01-01

    The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.

  8. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 1.

    DTIC Science & Technology

    1982-11-01

    Avionic Systems Integration Facilities, Mark van den Broek 1113 and Paul M. Vicen, AFLC/LOE Planning of Operational Software Implementation Tool...classified as software tools, including: * o" Operating System " Language Processors (compilers, assem’blers, link editors) o Source Editors " Debug Systems ...o Data Base Systems o Utilities o Etc . This talk addresses itself to the current set of tools provided JOVIAL iJ73 1750A application programmners by

  9. A tutorial on the CARE III approach to reliability modeling. [of fault tolerant avionics and control systems

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S.; Geist, R. M.

    1981-01-01

    The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically.

  10. Avionics Systems Laboratory/Building 16. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are

  11. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  12. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    NASA Technical Reports Server (NTRS)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  13. General aviation activity and avionics survey. Annual summary report, CY 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less

  14. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Major Accomplishments and Lessons Learned Detail Historical Timeline Analysis

    NASA Technical Reports Server (NTRS)

    Orr, James K.

    2010-01-01

    This presentation focuses on the Space Shuttle Primary Avionics Software System (PASS) and the people who developed and maintained this system. One theme is to provide quantitative data on software quality and reliability over a 30 year period. Consistent data relates to code break discrepancies. Requirements were supplied from external sources. Requirement inspections and measurements not implemented until later, beginning in 1985. Second theme is to focus on the people and organization of PASS. Many individuals have supported the PASS project over the entire period while transitioning from company to company and contract to contract. Major events and transitions have impacted morale (both positively and negatively) across the life of the project.

  15. Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.

    2017-01-01

    The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.

  16. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  17. Transmission of RF Signals Over Optical Fiber for Avionics Applications

    NASA Technical Reports Server (NTRS)

    Slaveski, Filip; Sluss, James, Jr.; Atiquzzaman, Mohammed; Hung, Nguyen; Ngo, Duc

    2002-01-01

    During flight, aircraft avionics transmit and receive RF signals to/from antennas over coaxial cables. As the density and complexity of onboard avionics increases, the electromagnetic interference (EM) environment degrades proportionately, leading to decreasing signal-to-noise ratios (SNRs) and potential safety concerns. The coaxial cables are inherently lossy, limiting the RF signal bandwidth while adding considerable weight. To overcome these limitations, we have investigated a fiber optic communications link for aircraft that utilizes wavelength division multiplexing (WDM) to support the simultaneous transmission of multiple signals (including RF) over a single optical fiber. Optical fiber has many advantages over coaxial cable, particularly lower loss, greater bandwidth, and immunity to EM. In this paper, we demonstrate that WDM can be successfully used to transmit multiple RF signals over a single optical fiber with no appreciable signal degradation. We investigate the transmission of FM and AM analog modulated signals, as well as FSK digital modulated signals, over a fiber optic link (FOL) employing WDM. We present measurements of power loss, delay, SNR, carrier-to-noise ratio (CNR), total harmonic distortion (THD), and bit error rate (BER). Our experimental results indicate that WDM is a fiber optic technology suitable for avionics applications.

  18. A highly reliable, autonomous data communication subsystem for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Masotto, Thomas; Alger, Linda

    1990-01-01

    The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.

  19. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  20. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  1. Development of Avionics Installation Interface Standards.

    DTIC Science & Technology

    1981-12-01

    design and manufacturing process routinely used to minimize the susceptibility of the equipment to corrosion . 4.2.7 Form/Fit Working Group The Form...since it would include both the LRU repack- aging and the required aircraft reconfiguration. The smallest impact is achieved when an avionics or...Smith ARINC Research Corporation X D. Snell Boeing Aerospace Corporation .. Steele Masterite Industries E. Straub ARINC Research Corporation X 1

  2. An Integrated Approach to Functional Engineering: An Engineering Database for Harness, Avionics and Software

    NASA Astrophysics Data System (ADS)

    Piras, Annamaria; Malucchi, Giovanni

    2012-08-01

    In the design and development phase of a new program one of the critical aspects is the integration of all the functional requirements of the system and the control of the overall consistency between the identified needs on one side and the available resources on the other side, especially when both the required needs and available resources are not yet consolidated, but they are evolving as the program maturity increases.The Integrated Engineering Harness Avionics and Software database (IDEHAS) is a tool that has been developed to support this process in the frame of the Avionics and Software disciplines through the different phases of the program. The tool is in fact designed to allow an incremental build up of the avionics and software systems, from the description of the high level architectural data (available in the early stages of the program) to the definition of the pin to pin connectivity information (typically consolidated in the design finalization stages) and finally to the construction and validation of the detailed telemetry parameters and commands to be used in the test phases and in the Mission Control Centre. The key feature of this approach and of the associated tool is that it allows the definition and the maintenance / update of all these data in a single, consistent environment.On one side a system level and concurrent approach requires the feasibility to easily integrate and update the best data available since the early stages of a program in order to improve confidence in the consistency and to control the design information.On the other side, the amount of information of different typologies and the cross-relationships among the data imply highly consolidated structures requiring lot of checks to guarantee the data content consistency with negative effects on simplicity and flexibility and often limiting the attention to special needs and to the interfaces with other disciplines.

  3. Study objectives: Will commercial avionics do the job? Improvements needed?

    NASA Technical Reports Server (NTRS)

    Nasr, Hatem

    1992-01-01

    Improvements in commercial avionics are covered in a viewgraph format. Topics include the following: computer architecture, user requirements, Boeing 777 aircraft, cost effectiveness, and implemention.

  4. Future manned systems advanced avionics study

    NASA Technical Reports Server (NTRS)

    Sawamura, Bob; Radke, Kathie

    1992-01-01

    COTS+ was defined in this study as commercial off-the-shelf (COTS) products, ruggedized and militarized components, and COTS technology. This study cites the benefits of integrating COTS+ in space, postulates a COTS+ integration methodology, and develops requirements and an architecture to achieve integration. Developmental needs and concerns were identified throughout the study; these needs, concerns, and recommendations relative to their abatement are subsequently presented for further action and study. The COTS+ concept appears workable in part or in totality. No COTS+ technology gaps were identified; however, radiation tolerance was cited as a concern, and the deferred maintenance issue resurfaced. Further study is recommended to explore COTS+ cost-effectiveness, maintenance philosophy, needs, concerns, and utility metrics. The generation of a development plan to further investigate and integrate COTS+ technology is recommended. A COTS+ transitional integration program is recommended. Sponsoring and establishing technology maturation programs and COTS+ engineering and standards committees are deemed necessary and are recommended for furthering COTS+ integration in space.

  5. Visual characteristics of LED display pushbuttons for avionic applications

    NASA Astrophysics Data System (ADS)

    Vanni, Paolo; Isoldi, Felice

    1991-08-01

    Programmable LED matrix display push buttons may greatly increase the performances of the computer-based avionic systems. The number of switches in a control panel can be reduced by a factor of 10 or more. This leads to a reduction in weight and size of the control instrumentations and in shorter response time of pilots. This work deals with the study and the optimization of visual performances of these displays in a configuration requiring a low- power consumption and Night Vision Goggles (NVG) compatibility. In considering displays for avionic applications, it is important to take into account sunlight readability. Visibility problems may arise in high ambient illumination. Up to now the only contributions usually considered for reduction of visibility are the diffused and specular reflected luminances that predominate with the sun behind the pilot. But there is another critical condition--the sun in front of the pilot. In this case the equivalent veiling glare predominates. Display performances and contrast enhancement filter characteristics must be optimized to find a compromise between these two extreme ambient conditions. Considering a keyboard with 10 push buttons, with two lines of four characters each and a power consumption less than 14 W with 40 of LEDs on, the authors have obtained good sunlight readability, choosing an optimized combination of NVG and contrast enhancement filter and LED matrix display.

  6. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  7. Integrated Target Acquisition and Fire Control Systems: Avionics Panel Symposium Held in Ottawa, Canada on 7-10 October 1991 (Systemes Integres d’Acquisition d’Objectifs et de Conduite de Tir)

    DTIC Science & Technology

    1992-02-01

    Designation with the CL-227 Sea Sentinel 31 byH SotadS.Joes SESSION V - LONGER TERM SYSTEMS Avionic System Improvement Proposal for the TORNADO...18’s fire control capability to deliver some types of smart munitions. Yet we also noted that while we lacked the target designators and control...source of lines came qystems designed to deny the information about the tactical enemy the use of height. Sophisticated situation they are facing. Enemy

  8. VCSEL-based fiber optic link for avionics: implementation and performance analyses

    NASA Astrophysics Data System (ADS)

    Shi, Jieqin; Zhang, Chunxi; Duan, Jingyuan; Wen, Huaitao

    2006-11-01

    A Gb/s fiber optic link with built-in test capability (BIT) basing on vertical-cavity surface-emitting laser (VCSEL) sources for military avionics bus for next generation has been presented in this paper. To accurately predict link performance, statistical methods and Bit Error Rate (BER) measurements have been examined. The results show that the 1Gb/s fiber optic link meets the BER requirement and values for link margin can reach up to 13dB. Analysis shows that the suggested photonic network may provide high performance and low cost interconnections alternative for future military avionics.

  9. The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics

    NASA Technical Reports Server (NTRS)

    Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.

    2004-01-01

    This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.

  10. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  11. Evaluation of optical connectors for consideration in military avionics

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Brian L.; Drexler, Gregory M.; Nelson, Ryan L.; Stevens, Rick C.

    2006-08-01

    This paper describes the method used to evaluate single-mode optical connectors under consideration for military avionics platforms. This testing is described in terms of the appropriate fiber optics test procedures (FOTPs) from the TIA/EIA-455 series.

  12. NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions

    NASA Technical Reports Server (NTRS)

    He, Yutao; Shalom, Eddy; Chau, Savio N.; Some, Raphael R.; Bolotin, Gary S.

    2011-01-01

    A paper discusses NEXUS, a common, next-generation avionics interconnect that is transparently compatible with wired, fiber-optic, and RF physical layers; provides a flexible, scalable, packet switched topology; is fault-tolerant with sub-microsecond detection/recovery latency; has scalable bandwidth from 1 Kbps to 10 Gbps; has guaranteed real-time determinism with sub-microsecond latency/jitter; has built-in testability; features low power consumption (< 100 mW per Gbps); is lightweight with about a 5,000-logic-gate footprint; and is implemented in a small Bus Interface Unit (BIU) with reconfigurable back-end providing interface to legacy subsystems. NEXUS enhances a commercial interconnect standard, Serial RapidIO, to meet avionics interconnect requirements without breaking the standard. This unified interconnect technology can be used to meet performance, power, size, and reliability requirements of all ranges of equipment, sensors, and actuators at chip-to-chip, board-to-board, or box-to-box boundary. Early results from in-house modeling activity of Serial RapidIO using VisualSim indicate that the use of a switched, high-performance avionics network will provide a quantum leap in spacecraft onboard science and autonomy capability for science and exploration missions.

  13. Flight Deck Interval Management Avionics: Eye-Tracking Analysis

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Harden, John W.

    2015-01-01

    Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).

  14. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  15. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1999-01-01

    Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.

  16. New Technologies for Space Avionics, 1993

    NASA Technical Reports Server (NTRS)

    Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray

    1993-01-01

    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.

  17. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  18. Identification des parametres du moteur de l'avion Cessna Citation X pour la phase de croisiere a partir des tests en vol et a base des reseaux de neurones =

    NASA Astrophysics Data System (ADS)

    Zaag, Mahdi

    La disponibilite des modeles precis des avions est parmi les elements cles permettant d'assurer leurs ameliorations. Ces modeles servent a ameliorer les commandes de vol et de concevoir de nouveaux systemes aerodynamiques pour la conception des ailes deformables des avions. Ce projet consiste a concevoir un systeme d'identification de certains parametres du modele du moteur de l'avion d'affaires americain Cessna Citation X pour la phase de croisiere a partir des essais en vol. Ces essais ont ete effectues sur le simulateur de vol concu et fabrique par CAE Inc. qui possede le niveau D de la dynamique de vol. En effet, le niveau D est le plus haut niveau de precision donne par l'autorite federale de reglementation FAA de l'aviation civile aux Etats-Unis. Une methodologie basee sur les reseaux de neurones optimises a l'aide d'un algorithme intitule le "grand deluge etendu" est utilisee dans la conception de ce systeme d'identification. Plusieurs tests de vol pour differentes altitudes et differents nombres de Mach ont ete realises afin de s'en servir comme bases de donnees pour l'apprentissage des reseaux de neurones. La validation de ce modele a ete realisee a l'aide des donnees du simulateur. Malgre la nonlinearite et la complexite du systeme, les parametres du moteur ont ete tres bien predits pour une enveloppe de vol determinee. Ce modele estime pourrait etre utilise pour des analyses de fonctionnement du moteur et pourrait assurer le controle de l'avion pendant cette phase de croisiere. L'identification des parametres du moteur pourrait etre realisee aussi pour les autres phases de montee et de descente afin d'obtenir son modele complet pour toute l'enveloppe du vol de l'avion Cessna Citation X (montee, croisiere, descente). Cette methode employee dans ce travail pourrait aussi etre efficace pour realiser un modele pour l'identification des coefficients aerodynamiques du meme avion a partir toujours des essais en vol. None None None

  19. Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab

    NASA Technical Reports Server (NTRS)

    Strachan, Russell L.; Evans, James M.

    1991-01-01

    The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.

  20. Aerospace and electronic systems - Advanced concepts and pioneering perspectives; Proceedings of the Sixth Symposium, Dayton, OH, November 14, 15, 1984

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: the PRAM approach to technology transfer; all-electric aircraft development; and electronic enhancements for the combat aircraft cockpit. Consideration is also given to application of AI systems to military aircraft; ECM and ECCM technology; and the history of monolithic ICs. Developments in the USAF Avionics Integrity Program (AVIP) are reviewed, with emphasis given to: preventive measures for electrostatic discharges; corrosion prevention to increase avionics integrity; and criteria for stress screening temperature levels.

  1. Performance analysis of a fault inferring nonlinear detection system algorithm with integrated avionics flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.

    1985-01-01

    This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.

  2. The Unmanned Mission Avionics Test Heliciopter - a Flexible and Versatile Vtol-Uas Experimental System

    NASA Astrophysics Data System (ADS)

    Schulz, H.-W., , Dr.

    2011-09-01

    civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT), its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). It is integrated by ESG together with the industrial partner SWISS UAV.

  3. Prediction Tables for Avionics Fundamentals Course, Class A.

    ERIC Educational Resources Information Center

    Baldwin, Robert O.; Johnson, Kirk A.

    This study was conducted in 1966 to provide the avionics fundamentals course, class A, with a number of tables for predicting academic performance, either by precourse variables or by grades made early in the course. A means of identifying potential setbacks and potential failures was also desired. In September 1966 a 16 week course replaced the…

  4. COTS displays applied to cockpit avionics applications

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Lorimer, S.

    2007-04-01

    Avionics displays, particularly for cockpit applications are associated with high performance and high cost solutions. COTS displays have well acknowledged limitations but provide a potential high value for money solution if this performance can be stretched to a level compatible with "fit for use". This paper will describe the initial design tradeoffs and decisions that formed the basis for development of a low-cost cockpit display for a military helicopter.

  5. General aviation activity and avionics survey. 1978. Annual summary report cy 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 13.3 percent of the general aviation fleet and obtained a response rate of 74 percent. Survey results are based upon responses but are expanded upward to represent the total population. Survey results revealed that during 1978more » an estimated 39.4 million hours of flying time were logged by the 198,778 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 197.7 hours. The active aircraft represented 85 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates.« less

  6. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  7. Astronaut Frederick Gregory vacuums air filters in avionics bay

    NASA Image and Video Library

    1985-05-03

    51B-13-008 (29 April-6 May 1985) --- Astronaut Frederick D. Gregory vacuums air filters in avionics bay. The 51-B pilot is physically located in the overhead area of the middeck on Challenger, but his activity is only a few meters away from the flight deck.

  8. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    NASA Astrophysics Data System (ADS)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  9. Corrosion Control Test Method for Avionic Components

    DTIC Science & Technology

    1981-09-25

    pin conn’ecLor adsemblies *Electronic test articles exposed in an avionic box The following test parameters were used: Environment A - Modified Sulfur Dic...carrier correlation criteria in Table IV. The modified sulfur dioxide/salt fog test showed the best correlation with the carrier exposed test arti...capacitor. The HCl/H 2 SO3 environment and the S2C12 environment, as expected, produced more electrical failures than the modified sulfur dioxide test

  10. Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.

  11. On-demand stereoscopic 3D displays for avionic and military applications

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri; Lu, Kanghua; Larson, Brent; Schmidt, John; Cupero, Frank

    2010-04-01

    High speed AM LCD flat panels are evaluated for use in Field Sequential Stereoscopic (FSS) 3D displays for military and avionic applications. A 120 Hz AM LCD is used in field-sequential mode for constructing eyewear-based as well as autostereoscopic 3D display demonstrators for test and evaluation. The COTS eyewear-based system uses shutter glasses to control left-eye/right-eye images. The autostereoscopic system uses a custom backlight to generate illuminating pupils for left and right eyes. It is driven in synchronization with the images on the LCD. Both displays provide 3D effect in full-color and full-resolution in the AM LCD flat panel. We have realized luminance greater than 200 fL in 3D mode with the autostereoscopic system for sunlight readability. The characterization results and performance attributes of both systems are described.

  12. Developpements numeriques recents realises en aeroelasticite chez Dassault Aviation pour la conception des avions de combat modernes et des avions d’affaires

    DTIC Science & Technology

    2003-03-01

    combat modernes et des avions d’affaires E. Garrigues, Th. Percheron DASSAULT AVIATION DGT/DTA/IAP F-922 14, Saint-Cloud Cedex France 1. Introduction ...de vol, des acedidrations rigides et des rdponses de la structure ( jauges et acedidrations). Struturl Premdicton Grdjustments n~~~ligh Testsn~n Fig4ure

  13. Development of advanced avionics systems applicable to terminal-configured vehicles

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.; Lee, H. P.; Leffler, M. F.

    1980-01-01

    A technique to add the time constraint to the automatic descent feature of the existing L-1011 aircraft Flight Management System (FMS) was developed. Software modifications were incorporated in the FMS computer program and the results checked by lab simulation and on a series of eleven test flights. An arrival time dispersion (2 sigma) of 19 seconds was achieved. The 4 D descent technique can be integrated with the time-based metering method of air traffic control. Substantial reductions in delays at today's busy airports should result.

  14. Current state of OLED technology relative to military avionics requirements

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.; Hufnagel, Bruce D.; Bahadur, Birendra

    2014-06-01

    The paper will review optical and environmental performance thresholds required for OLED technology to be used on various military platforms. Life study results will be summarized to highlight trends while identifying remaining performance gaps to make this technology viable for future military avionics platforms.

  15. Operations management system

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  16. Spacelab payload accommodation handbook. Appendix A: Avionics interface definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Spacelab side of the electrical interface between Spacelab subsystem equipment and experiments is presented. The electrical hardware which interfaces with the experiments is defined and the signal/load characteristics are stated. Major subsystems considered include: electrical power and distribution; command and data management subsystem; orbiter avionics via dedicated connectors of Spacelab; and electrical ground support equipment.

  17. Reliability and the design process at Honeywell Avionics Division

    NASA Technical Reports Server (NTRS)

    Bezat, A.

    1981-01-01

    The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.

  18. Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space

    NASA Astrophysics Data System (ADS)

    Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin

    2014-08-01

    This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.

  19. Intermediate Experimental Vehicle (IXV): Avionics and Software of the ESA Reentry Demonstrator

    NASA Astrophysics Data System (ADS)

    Malucchi, Giovanni; Dussy, Stephane; Camuffo, Fabrizio

    2012-08-01

    The IXV project is conceived as a technology platform that would perform the step forward with respect to the Atmospheric Reentry Demonstrator (ARD), by increasing the system maneuverability and verifying the critical technology performances against a wider re- entry corridor.The main objective is to design, develop and to perform an in-flight verification of an autonomous lifting and aerodynamically controlled (by a combined use of thrusters and aerodynamic surfaces) reentry system.The project also includes the verification and experimentation of a set of critical reentry technologies and disciplines:Thermal Protection System (TPS), for verification and characterization of thermal protection technologies in representative operational environment;Aerodynamics - Aerthermodynamics (AED-A TD), for understanding and validation of aerodynamics and aerothermodyamics phenomena with improvement of design tools;Guidance, Navigation and Control (GNC), for verification of guidance, navigation and control techniques in representative operational environment (i.e. reentry from Low Earth Orbit);Flight dynamics, to update and validate the vehicle model during actual flight, focused on stability and control derivatives.The above activities are being performed through the implementation of a strict system design-to-cost approach with a proto-flight model development philosophy.In 2008 and 2009, the IXV project activities reached the successful completion of the project Phase-B, including the System PDR, and early project Phase-C.In 2010, following a re-organization of the industrial consortium, the IXV project successfully completed a design consolidation leading to an optimization of the technical baseline including the GNC, avionics (i.e. power, data handling, radio frequency and telemetry), measurement sensors, hot and cold composite structures, thermal protections and control, with significant improvements of the main system budgets.The project has successfully closed the

  20. SAR Aircrew--HH-3F Avionics and HH-3F Flight Preparation. ACH3AV-0442. Second Edition, Revised.

    ERIC Educational Resources Information Center

    Coast Guard Inst., Oklahoma City, OK.

    This document contains two U.S. Coast Guard self-study pamphlets that provide training in helicopter flight preparation and avionics duties. Each pamphlet consists of a number of lessons that include objectives, information illustrated with line drawings and/or photographs, and self-quizzes with answers. The avionics course covers the following…

  1. 75 FR 8476 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Model ATR42 and ATR72 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Airworthiness Directives; ATR-GIE Avions de Transport R[eacute]gional Model ATR42 and ATR72 Airplanes AGENCY... FURTHER INFORMATION CONTACT: Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport... including but not limited to those listed in Table 1 of that AD. Although ATR-GIE Avions de Transport R...

  2. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  3. Application of cellular automatons and ant algorithms in avionics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.

    2018-03-01

    The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.

  4. Surface operations usability study utilizing Capstone phase I avionics : quick look report

    DOT National Transportation Integrated Search

    2000-10-07

    Evaluate usability, suitability and acceptability of of the surface moving map implemented within Capstone Phase 1 Avionics for surface operations : Task 1: Airport Surface Situational Awareness (ASSA) : Task 2: Surface-Final Approach Runway Occupanc...

  5. Review and analysis of avionic helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Li, Hua; Zhang, Xin; Shi, Guangwei; Qu, Hemeng; Wu, Yanxiong; Zhang, Jianping

    2013-11-01

    With the development of new concepts and principles over the past century, helmet-mounted displays (HMDs) have been widely applied. This paper presents a review of avionic HMDs and shows some areas of active and intensive research. This review is focused on the optical design aspects and is divided into three sections to explore new optical design methods, which include an off-axis design, design with freeform optical surface, and design with holographic optical waveguide technology. Building on the fundamentals of optical design and engineering, the principles section primarily expounds on the five optical system parameters, which include weight, field of view, modulation transfer function, exit pupil size, and eye relief. We summarized the previous design works using new components to achieve compact and lightweight HMDs. Moreover, the paper presents a partial summary of the more notable experimental, prototype, fielded, and future HMD fixed-wing and rotary-wing programs.

  6. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  7. Silicon Carbide Mixers Demonstrated to Improve the Interference Immunity of Radio-Based Aircraft Avionics

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Concern over the interference of stray radiofrequency (RF) emissions with key aircraft avionics is evident during takeoff and landing of every commercial flight when the flight attendant requests that all portable electronics be switched off. The operation of key radio-based avionics (such as glide-slope and localizer approach instruments) depends on the ability of front-end RF receivers to detect and amplify desired information signals while rejecting interference from undesired RF sources both inside and outside the aircraft. Incidents where key navigation and approach avionics malfunction because of RF interference clearly represent an increasing threat to flight safety as the radio spectrum becomes more crowded. In an initial feasibility experiment, the U.S. Army Research Laboratory and the NASA Lewis Research Center recently demonstrated the strategic use of silicon carbide (SiC) semiconductor components to significantly reduce the susceptibility of an RF receiver circuit to undesired RF interference. A pair of silicon carbide mixer diodes successfully reduced RF interference (intermodulation distortion) in a prototype receiver circuit by a factor of 10 (20 dB) in comparison to a pair of commercial silicon-based mixer diodes.

  8. Avionics Technology Contract Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Squires, Shiela S.

    This document reports on Phase I of a project that examined the occupation of avionics technician, established appropriate committees, and conducted task verification. Results of this phase provide the basic information required to develop the program standards and to guide and set up the committee structure to guide the project. Section 1…

  9. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  10. New capabilities for older aircraft: A study of pilot integration of retro-fit digital avionics to analog-instrumented flight decks

    NASA Astrophysics Data System (ADS)

    Breuer, Glynn E.

    The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.

  11. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1991-01-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  12. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Astrophysics Data System (ADS)

    Wray, Richard B.

    1991-12-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  13. Description of a dual fail operational redundant strapdown inertial measurement unit for integrated avionics systems research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Morrell, F. R.

    1981-01-01

    An experimental redundant strapdown inertial measurement unit (RSDIMU) is developed as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit includes four two degree-of-freedom tuned rotor gyros, and four accelerometers in a skewed and separable semioctahedral array. These sensors are coupled to four microprocessors which compensate sensor errors. These microprocessors are interfaced with two flight computers which process failure detection, isolation, redundancy management, and general flight control/navigation algorithms. Since the RSDIMU is a developmental unit, it is imperative that the flight computers provide special visibility and facility in algorithm modification.

  14. Automatic design of IMA systems

    NASA Astrophysics Data System (ADS)

    Salomon, U.; Reichel, R.

    During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.

  15. Advanced Caution and Warning System, Final Report - 2011

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Aaseng, Gordon; Iverson, David; McCann, Robert S.; Robinson, Peter; Dittemore, Gary; Liolios, Sotirios; Baskaran, Vijay; Johnson, Jeremy; Lee, Charles; hide

    2013-01-01

    The work described in this report is a continuation of the ACAWS work funded in fiscal year (FY) 2010 under the Exploration Technology Development Program (ETDP), Integrated Systems Health Management (ISHM) project. In FY 2010, we developed requirements for an ACAWS system and vetted the requirements with potential users via a concept demonstration system. In FY 2011, we developed a working prototype of aspects of that concept, with placeholders for technologies to be fully developed in future phases of the project. The objective is to develop general capability to assist operators with system health monitoring and failure diagnosis. Moreover, ACAWS was integrated with the Discrete Controls (DC) task of the Autonomous Systems and Avionics (ASA) project. The primary objective of DC is to demonstrate an electronic and interactive procedure display environment and multiple levels of automation (automatic execution by computer, execution by computer if the operator consents, and manual execution by the operator).

  16. Aerospace Software Engineering for Advanced Systems Architectures (L’Ingenierie des Logiciels Pour les Architectures des Systemes Aerospatiaux)

    DTIC Science & Technology

    1993-11-01

    Eliezer N. Solomon Steve Sedrel Westinghouse Electronic Systems Group P.O. Box 746, MS 432, Baltimore, Maryland 21203-0746, USA SUMMARY The United States...subset of the Joint Intergrated Avionics NewAgentCollection which has four Working Group (JIAWG), Performance parameters: Acceptor, of type Task._D...Published Noember 1993 Distribution and Availability on Back Cover SAGARD-CP54 ADVISORY GROUP FOR AERSACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200

  17. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  18. Space shuttle orbiter avionics software: Post review report for the entry FACI (First Article Configuration Inspection). [including orbital flight tests integrated system

    NASA Technical Reports Server (NTRS)

    Markos, H.

    1978-01-01

    Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.

  19. Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2015-01-01

    Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.

  20. Advanced and tendencies in the development of display technologies

    NASA Astrophysics Data System (ADS)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  1. The Conflicting Forces Driving Future Avionics Acquisition (Les Arguments Contradictoires pour les Futurs Achats d’Equipements d’Avionique)

    DTIC Science & Technology

    1991-09-01

    Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics

  2. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    NASA Astrophysics Data System (ADS)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  3. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; hide

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  4. STS-128 EVA 3 Node 3 Tranquility Avionics Cable Routing OPS

    NASA Image and Video Library

    2009-09-05

    S128-E-007720 (5 Sept. 2009) --- NASA astronaut John “Danny” Olivas (left) and European Space Agency astronaut Christer Fuglesang, both STS-128 mission specialists, participate in the mission's third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, one-minute spacewalk, Olivas and Fuglesang deployed the Payload Attachment System (PAS), replaced the Rate Gyro Assembly #2, installed two GPS antennae and did some work to prepare for the installation of Node 3 next year. During connection of one of two sets of avionics cables for Node 3, one of the connectors could not be mated. This cable and connector were wrapped in a protective sleeve and safed. All other cables were mated successfully.

  5. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  6. Avionics-compatible video facial cognizer for detection of pilot incapacitation.

    PubMed

    Steffin, Morris

    2006-01-01

    High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.

  7. Development of Integrated Modular Avionics Application Based on Simulink and XtratuM

    NASA Astrophysics Data System (ADS)

    Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons

    2013-08-01

    This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.

  8. RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT

    NASA Image and Video Library

    2015-01-08

    RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.

  9. Profile of an Effective Engineering Manager at the Naval Avionics Center

    DTIC Science & Technology

    1991-06-01

    GROUP Leadership ; Engineering Management Effectiveness; Engineers; Engineering Managers ; Naval Avionics Center 19 ABSTR. T (Continue on reverse if...Personnel. The purpose of the Institute is to support the implementation of the NAC Leadership / Management Principles throughout NAC. The Leadership ... Management Principles are as follows: - Develc 2 and Maintain a Corporate Outlook. - Communicate the Organizational Vision through Positive Leadership

  10. High speed bus technology development

    NASA Astrophysics Data System (ADS)

    Modrow, Marlan B.; Hatfield, Donald W.

    1989-09-01

    The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.

  11. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  12. Applications of Formal Methods to Specification and Safety of Avionics Software

    NASA Technical Reports Server (NTRS)

    Hoover, D. N.; Guaspari, David; Humenn, Polar

    1996-01-01

    This report treats several topics in applications of formal methods to avionics software development. Most of these topics concern decision tables, an orderly, easy-to-understand format for formally specifying complex choices among alternative courses of action. The topics relating to decision tables include: generalizations fo decision tables that are more concise and support the use of decision tables in a refinement-based formal software development process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables for users of decision tables; and test coverage criteria and decision tables. We outline features of a revised version of ORA's decision table tool, Tablewise, which will support many of the new ideas described in this report. We also survey formal safety analysis of specifications and software.

  13. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  14. Miniature high-let radiation spectrometer for space and avionics applications

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    This paper reports on the design and characterization of a small, low-power, and low-weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HiLRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HiLRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) platform on a shuttle mission.

  15. Miniature High-Let Radiation Spectrometer for Space and Avionics Applications

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    1998-01-01

    This paper reports on the design and characterization of a small, low power, and low weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HILRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HILRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) Platform on a shuttle mission.

  16. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  17. Vehicle health management for guidance, navigation and control systems

    NASA Technical Reports Server (NTRS)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  18. Strategically Planning Avionics Laboratory’s Facilities for the Future

    DTIC Science & Technology

    1993-09-01

    Goldsboro Road Bethesda, Maryland 20817-5886 93 12 22 02 DISCLAIMII NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHLD TO DTIC CONTAINED A...Avionics Laboratory establish a multiyear strategy for improving its facility utilization nearly 7 years ago. That plan, which is still being implemented...experi- mental data transmission delays caused when on-line equipment is separated by as much as a mile. The plan - now nearly 7 years old - initiated

  19. Workshop on Avionics Corrosion Control: Meeting of the Structures and Materials Panel of AGARD (62nd) Held in Hovik (Norway) on 16-17 April 1986.

    DTIC Science & Technology

    1987-09-01

    CORROSOIN IN AVIONICS AND ASSOCIATED EQUIPMENT; CAUSE. EFFECT AND PREVENTION by R.GIkmte ,m E.GEdpr 4 ROYAL NAVY EXPERIENCE OF CORROSION IN AVIONICS...and the preventative maintenance was the application of copious quantities of petroleum jelly , also known as vaseline. Incidentally, the same mthods

  20. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  1. Portable Automated Test Station: Using Engineering-Design Partnerships to Replace Obsolete Test Systems

    DTIC Science & Technology

    2015-04-01

    troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability

  2. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    NASA Technical Reports Server (NTRS)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  3. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Sievers, Michael; Standley, Shaun

    2012-01-01

    Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.

  4. Shuttle avionics and the goal language including the impact of error detection and redundancy management

    NASA Technical Reports Server (NTRS)

    Flanders, J. H.; Helmers, C. T.; Stanten, S. F.

    1973-01-01

    The relationship is examined between the space shuttle onboard avionics and the ground test computer language GOAL when used in the onboard computers. The study is aimed at providing system analysis support to the feasibility analysis of a GOAL to HAL translator, where HAL is the language used to program the onboard computers for flight. The subject is dealt with in three aspects. First, the system configuration at checkout, the general checkout and launch sequences, and the inventory of subsystems are described. Secondly, the hierarchic organization of onboard software and different ways of introducing GOAL-derived software onboard are described. Also the flow of commands and test data during checkout is diagrammed. Finally, possible impact of error detection and redundancy management on the GOAL language is discussed.

  5. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  6. Distributed Micro-Processor Applications to Guidance and Control Systems.

    DTIC Science & Technology

    1982-07-01

    nanoseconds compared with 22 milliseconds for the older type of NMOS non-volatile RAM. This non-volatile RAM is estimated to hold its memory for 100 years...illustrated in figure 1.4.3.3 and compared with the traditional permalog chevron bubble structure. The contiguous element bubble structure is being developed ...M for its 8086 based Digital Advanced Avionics System (DAAS) developed for NASA Ames, but rejected it as being unsuitable. Ada is the new DoD

  7. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  8. Coming cockpit avionics

    NASA Technical Reports Server (NTRS)

    Mciver, D.; Hatfield, J. J.

    1978-01-01

    Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.

  9. Industry perspectives on Plug-& -Play Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  10. The implementation and use of Ada on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    The general inadequacy of Ada for programming systems that must survive processor loss was shown. A solution to the problem was proposed in which there are no syntatic changes to Ada. The approach was evaluated using a full-scale, realistic application. The application used was the Advanced Transport Operating System (ATOPS), an experimental computer control system developed for a modified Boeing 737 aircraft. The ATOPS system is a full authority, real-time avionics system providing a large variety of advanced features. Methods of building fault tolerance into concurrent systems were explored. A set of criteria by which the proposed method will be judged was examined. Extensive interaction with personnel from Computer Sciences Corporation and NASA Langley occurred to determine the requirements of the ATOPS software. Backward error recovery in concurrent systems was assessed.

  11. Inter-computer communication architecture for a mixed redundancy distributed system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Adams, Stuart J.

    1987-01-01

    The triply redundant intercomputer network for the Advanced Information Processing System (AIPS), an architecture developed to serve as the core avionics system for a broad range of aerospace vehicles, is discussed. The AIPS intercomputer network provides a high-speed, Byzantine-fault-resilient communication service between processing sites, even in the presence of arbitrary failures of simplex and duplex processing sites on the IC network. The IC network contention poll has evolved from the Laning Poll. An analysis of the failure modes and effects and a simulation of the AIPS contention poll, demonstrate the robustness of the system.

  12. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  13. The Design of Model-Based Training Programs

    NASA Technical Reports Server (NTRS)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  14. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  15. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  16. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  17. Advanced Distribution Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Advanced Distribution Management Systems Advanced Distribution Management Systems Electric utilities are investing in updated grid technologies such as advanced distribution management systems to management testbed for cyber security in power systems. The "advanced" elements of advanced

  18. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  19. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    NASA Technical Reports Server (NTRS)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  20. The vulnerability of commercial aircraft avionics to carbon fibers

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.; Salmirs, S.

    1980-01-01

    Avionics components commonly used in commercial aircraft were tested for vulnerability to failure when operated in an environment with a high density of graphite fibers. The components were subjected to a series of exposures to graphite fibers of different lengths. Lengths used for the tests were (in order) 1 mm, 3 mm, and 10 mm. The test procedure included subjecting the equipment to characteristic noise and shock environments. Most of the equipment was invulnerable or did not fail until extremely high average exposures were reached. The single exception was an air traffic control transponder produced in the early 1960's. It had the largest case open area through which fibers could enter and it had no coated boards.

  1. Avionics Integrity Program (AVIP). Volume 1. Procurement Phase Issues - Design, Manufacturing, and Integration

    DTIC Science & Technology

    1984-03-01

    Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19

  2. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  3. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  4. NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  5. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  6. NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  7. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  8. An autonomous rendezvous and docking system using cruise missile technology

    NASA Technical Reports Server (NTRS)

    Jones, ED; Nicholson, Bruce

    1991-01-01

    In November 1990 General Dynamics demonstrated an AR&D system for members of the Strategic Avionics Technology Working Group. This simulation utilized prototype hardware derived from the Cruise Missile and Centaur avionics systems. The object of this proof of concept demonstration was to show that all the accuracy, reliability, and operational requirements established for a spacecraft to dock with Space Station Freedom could be met by the proposed AR&D system.

  9. Enabling Wireless Avionics Intra-Communications

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    to model the propagation of a system in a "deployed" configuration versus a "stowed" configuration. The differences in relative field strength provide valuable information about the distribution of the field that can be used to engineer RF links with optimal radiated power and antenna configuration that accomplish the intended system reliability. Such modeling will be necessary in subsequent studies for managing multipath propagation characteristics inside a main cabin and to understand more complex environments, such as the inside wings, landing gear bays, cargo bays, avionics bays, etc. The results of the short research effort are described in the present document. The team puts forth a set of recommendations with the intention of informing the project and program leadership of the future work that, in the opinion of the EWAIC team, would assist the ECON team reach the intended goal of developing an all-wireless aircraft.

  10. Addressing System Reconfiguration and Incremental Integration within IMA Systems

    NASA Astrophysics Data System (ADS)

    Ferrero, F.; Rodríques, A. I.

    2009-05-01

    Recently space industry is paying special attention to Integrated Modular Avionics (IMA) systems due to the benefits that modular concepts could bring to the development of space applications, especially in terms of interoperability, flexibility and software reuse. Two important IMA goals to be highlighted are system reconfiguration, and incremental integration of new functionalities into a pre-existing system. The purpose of this paper is to show how system reconfiguration is conducted based on Allied Standard Avionics Architecture Council (ASAAC) concepts for IMA Systems. Besides, it aims to provide a proposal for addressing the incremental integration concept supported by our experience gained during European Technology Acquisition Program (ETAP) TDP1.7 programme. All these topics will be discussed taking into account safety issues and showing the blueprint as an appropriate technique to support these concepts.

  11. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  12. Continuing Efforts to Upgrade the Aeronautics Curriculum at Jacksonville University

    ERIC Educational Resources Information Center

    Terrell, Jerry L.; Merkt, Juan; Harrison, Jeffrey; Yates, Rhett

    2012-01-01

    The aviation industry is exceptionally dynamic. Advances in technology have enabled the industry to change drastically in a short period of time. The transition to jet propulsion advances in aerodynamics, avionics improvements, and introduction of revolutionary navigation systems have all occurred within the past 60 years. These advances have…

  13. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  14. NAVAIR Avionics Master Plan.

    DTIC Science & Technology

    1981-02-26

    data rates, sufficient to handle radio frequency infor- mation. It also diminishes the vulnerability of the data paths to extraneous interferences from...The 1990 system will be unusable if Electromagnetic Interference (EMI)/Electromagnetic Pulse (EMP)/temperature/shock environments are not successfully...direct result of technological advancements driven by over utilization of the lower frequency spectrum (resulting in signal interference ) as well as

  15. NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Shull, Sarah A.

    2017-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.

  16. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of the project is to design , build and demonstrate an underwater advanced time -domain...Description The overall objective of the project is to design , build and demonstrate an underwater advanced time - domain electromagnetic (TEM) system...Electromagnetic System Design (July, 2015), and in the Underwater Advanced Time -Domain Electromagnetic System Evaluation Plan (October, 2016). A

  17. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  18. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  19. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  20. Use of Field Programmable Gate Array Technology in Future Space Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  1. State-of-the-art cockpit design for the HH-65A helicopters

    NASA Technical Reports Server (NTRS)

    Castleberry, D. E.; Mcelreath, M. Y.

    1982-01-01

    In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.

  2. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  3. Advanced FIREFLY Assessment Generalized Mechanization Requirements Report

    DTIC Science & Technology

    1979-06-01

    Systems; Fire Control Computers ; Weapon Control 20. ABSTRACT (Continue on reverse side If necessary end tdentify by blockc number) -The requirements for...airborne digital computer which can be specialized to per- form successfully in a variety of tactical aircraft with differing avionics sensors, fire...AGG ........................................... 27 13 Time of Flight Computation Using a Modified (China Lake) Numerical Integration Algorithm

  4. Impact of Advanced Avionics Technology on Ground Attack Weapon Systems.

    DTIC Science & Technology

    1982-02-01

    as the relevant feature. 3.0 Problem The task is to perform the automatic cueing of moving objects in a natural environment . Additional problems...views on this subject to the American Defense Preparedness Association (ADPA) on 11 February 1981 in Orlando, Florida. ENVIRONMENTAL CONDITIONS OUR...the operating window or the environmental conditions of combat that our forces may encounter worldwide. The three areas selected were Europe, the

  5. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    effective dose rate measurements and a thermal neutron monitor to characterize Single Event Effects (SEEs) in avionics. In this presentation we describe recent ARMAS and USEWX advances that will ultimately provide operational users with real-time dose and dose rate data for human tissue and avionics exposure risk mitigation.

  6. An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.

  7. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  8. Safe and Secure Partitioning with Pikeos: Towards Integrated Modular Avionics in Space

    NASA Astrophysics Data System (ADS)

    Almeida, J.; Prochazka, M.

    2009-05-01

    This paper presents our approach to logical partitioning of spacecraft onboard software. We present PikeOS, a separation micro-kernel which applies the state-of-the- art techniques and widely recognised standards such as ARINC 653 and MILS in order to guarantee safety and security properties of partitions executing software with different criticality and confidentiality. We provide an overview of our approach, also used in the Securely Partitioning Spacecraft Computing Resources project, an ESA TRP contract, which shifts spacecraft onboard software development towards the Integrated Modular Avionics concept with relevance for dual-use military and civil missions.

  9. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  10. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Epp, Chirold; Robertson, Edward

    2013-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  11. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  12. An Assessment of Technical and Production Risks of Candidate Low-Cost Attitude/Heading Reference Systems(AHRS)

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel; Burgess, Malcolm; Hammers, William

    1999-01-01

    This report provides an assessment of technical and production risks of candidate low-cost attitude/heading reference systems (AHRS) for use in the Advanced General Aviation Transport Experiments (AGATE) airplanes. A low-cost AHRS is a key component of modem "glass cockpit" flight displays for General Aviation (GA) aircraft. The technical capabilities of several candidate low-cost AHRS were examined and described along with the technical issues involved with using all solid-state components for attitude measurement. An economic model was developed which describes the expected profit, rate of return, and volume requirements for the manufacture of low-cost AHRS for GA aircraft in the 2000 to 2020 time frame. The model is the result of interviews with GA airframe manufacturers, avionics manufacturers and historical analysis of avionics of similar complexity. The model shows that a manufacturer will break even after three years of AHRS production, realizing an 18 percent rate of return (23 percent profit) on an investment of $3.5M over the 20 year period. A start-up production estimate showed costs of $6-12M for a new company to build and certify an AHRS from scratch, considered to be a high-risk proposition, versus $0.25-0.75M for an experienced avionics manufacturer to manufacture a design under license, a low-risk proposition.

  13. How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.

    2005-01-01

    For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.

  14. Validation of multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Siewiorek, D. P.; Segall, Z.; Kong, T.

    1982-01-01

    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.

  15. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  16. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  17. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  18. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  19. Time and frequency transfer by the Master-Slave Returnable Timing System technique - Application to solar power transmission

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1979-01-01

    The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.

  20. Search and Rescue Aircrewman/HH3F Avionics, 2-11. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become a qualified avionics worker and aircrew rescuer on the HH-3F helicopter. The course materials consist of four pamphlets: two student workbooks and two student syllabuses. The…

  1. AMLCD head-down displays for avionic applications

    NASA Astrophysics Data System (ADS)

    Davis, Alan J.

    1997-02-01

    Smiths Industries has been involved in the design, manufacture and supply of products used for the presentation of information, in one form or another, from its early pioneering years through to the present day. In the mid 1980s Smiths Industries began to invest in the then emerging active matrix liquid crystal display (AMLCD) technology which the company believed would eventually take over from the cathode ray tube. To date Smiths Industries has made a significant investment in acquiring the enabling technology needed to produce active matrix liquid crystal color head- down displays for fast jet, helicopter and civil aircraft applications. The significant improvement in AMLCD product quality and manufacturing capability over recent years has enabled market penetration of AMLCD technology products to be achieved in military and civil avionic markets. Virtually all new contracts for head-down displays are now demanding the use of AMLCD technology rather than the cathode ray tube. A significant decision to move to AMLCD technology was made by McDonnell Douglas Helicopters in 1995, when a contract to supply over 4000 head-down display products for the Apache Helicopter was let. This has paved the way for the future of AMLCD technology.

  2. A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials

    DTIC Science & Technology

    1978-07-01

    MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the

  3. USAF Development Of Optical Correlation Missile Guidance

    NASA Astrophysics Data System (ADS)

    Kaehr, Ronald; Spector, Marvin

    1980-12-01

    In 1965, the Advanced Development Program (ADP)-679A of the Avionics Laboratory initiated development of guidance systems for stand-off tactical missiles. Employing project engineering support from the Aeronautical Systems Division, WPAFB, the Avionics Laboratory funded multiple terminal guidance concepts and related midcourse navigation technology. Optical correlation techniques which utilize prestored reference information for autonomous target acquisition offered the best near-term opportunity for meeting mission goals. From among the systems studied and flight tested, Aimpoint* optical area guidance provided the best and most consistent performance. Funded development by the Air Force ended in 1974 with a MK-84 guided bomb drop test demonstration at White Sands Missile Range and the subsequent transfer of the tactical missile guidance development charter to the Air Force Armament Laboratory, Eglin AFB. A historical review of optical correlation development within the Avionics Laboratory is presented. Evolution of the Aimpoint system is specifically addressed. Finally, a brief discussion of trends in scene matching technology is presented.

  4. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  5. Advances in Vehicle Systems Concepts and Integration. (les Avancees en concepts systemes pour vehicules et en integration)

    DTIC Science & Technology

    2000-04-01

    the electronics manufacturers who have made avionics upgrades a profitable line-of- business . However, this observation is not in the best interest of...in encouraging communica- both the AH-lZ and UH-IY airframes, for example). tion between all IPT members. These TIMs were held Technical leaders from...aircraft operating in the maritime and placed strategically on the airframes to increase their environment experienced by the Navy and Marines are

  6. Global system data bus using the Digital Autonomous Terminal Access Communication protocol

    NASA Technical Reports Server (NTRS)

    Holmes, David C. E.

    1986-01-01

    Modern digital avionic systems with distributed processing require networking to connect the many elements. Digital Autonomous Terminal Access Communication (DATAC) is one of many such networks. DATAC has been implemented on the Transport Systems Research Vehicle (TSRV), a Boeing 737 aircraft operated by the National Aeronautics and Space Administration's Advanced Transport Operating Systems Program Office (ATOPS). This paper presents the TSRV implementation of the DATAC bus, a description of the DATAC system, a synchronization mechanism, details of data flow throughout the system, and a discussion of the modes available with DATAC. Numerous flight tests have been conducted using DATAC as the only means of communication between systems with outstanding results. DATAC is now an integral part of the TSRV and is expected to satisfy near term as well as future requirements for growth and flexibility.

  7. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  8. TechEdSat - An Educational 1U CubeSat Architecture Using Plug-and-Play Avionics

    NASA Technical Reports Server (NTRS)

    Frost, Chad

    2015-01-01

    Mission Objectives: build a 1U cubesat within 6 months from kickoff to launch. Demonstrate and evaluate the Space Plug-and-Play avionics hardware and software from ÅAC Microtec; investigate both Iridium and Orbcomm intersatellite communication as a method of eliminating the requirement for a physical ground station in Nano satellite missions; demonstrate the capabilities of the JAXA J-SSOD aboard the ISS, and be one of the first cubesats to be deployed from the ISS.

  9. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  10. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  11. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  12. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  13. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  14. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  15. Advanced Telemetry System Development.

    DTIC Science & Technology

    Progress in advanced telemetry system development is described. Discussions are included of studies leading to the specification for design...characteristics of adaptive and analytical telemetry systems in which the information efficiently utilizes the data channel capacity. Also discussed are...Progress indicates that further sophistication of existing designs in telemetry will be less advantageous than the development of new systems of

  16. 2.49 GHz low phase-noise optoelectronic oscillator using 1.55μm VCSEL for avionics and aerospace applications

    NASA Astrophysics Data System (ADS)

    Hayat, Ahmad; Bacou, Alexandre; Rissons, Angelique; Mollier, Jean-Claude

    2009-02-01

    We present here a 1.55 μm single mode Vertical-Cavity Surface-Emitting Laser (VCSEL) based low phasenoise ring optoelectronic (OEO) oscillator operating at 2.49 GHz for aerospace, avionics and embedded systems applications. Experiments using optical fibers of different lengths have been carried out to obtain optimal results. A phase-noise measurement of -107 dBc/Hz at an offset of 10 kHz from the carrier is obtained. A 3-dB linewidth of 16 Hz for this oscillator signal has been measured. An analysis of lateral mode spacing or Free Spectral Range (FSR) as a function of fiber length has been carried out. A parametric comparison with DFB Laser-based and multimode VCSEL-based opto-electronic oscillators is also presented.

  17. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  18. Ares I First Stage Propulsion System Status

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.

    2010-01-01

    With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares

  19. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-01

    distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

  20. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.