Sample records for advanced breeding clones

  1. Marketing potential of advanced breeding clones

    USDA-ARS?s Scientific Manuscript database

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  2. Advances in cereal genomics and applications in crop breeding.

    PubMed

    Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K

    2006-11-01

    Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.

  3. Effect of recipient breed on delivery rate of cloned miniature pig.

    PubMed

    Koo, Ok Jae; Park, Hee Jung; Kwon, Dae Kee; Kang, Jung Taek; Jang, Goo; Lee, Byeong Chun

    2009-08-01

    The miniature pig is regarded as a better organ donor breed for xenotransplantation than other pig breeds because the size of their organs is similar to that of humans. To improve efficiency of cloned miniature pig production, we analysed the effect of breed difference between donor cells and embryo recipients on pregnancy rate and delivery rate. Cloned porcine embryos derived from domestic or miniature pig donor cells were transferred to domestic or miniature recipient pigs. Delivery rate was significantly higher when embryos reconstructed with miniature pig donor cells were transferred to miniature pig recipients as compared with that of embryos transferred to domestic pig recipients. However, pregnancy rates were similar between the two groups. The breed of donor cells, but not of embryo recipients, seems likely to affect litter size. From a 13 610 gene cDNA microarray, 1551 (11.7%) genes showed significantly different levels of expression between the fetuses of the two breeds. Vascular endothelial growth factor and c-kit ligand genes related to implantation and maintenance of pregnancy were significantly down-regulated in miniature pigs. In conclusion, the differential gene expression in fetuses interferes with proper fetal/maternal interactions, and results in late-stage pregnancy loss. Our results indicate that the miniature pig is the preferred embryo recipient breed than domestic pig for producing cloned miniature piglets.

  4. Top 5 exotic clones for potato breeding

    USDA-ARS?s Scientific Manuscript database

    Wild and cultivated relatives of potato feature prominently in breeding programs. In this short article, I describe five exotic clones that have promising traits for the future of the US potato industry. They include M6, an inbred line of S. chacoense that provides a source of genes for self-compati...

  5. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  6. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    PubMed

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  7. A journey through horse cloning.

    PubMed

    Gambini, Andrés; Maserati, Marc

    2017-01-01

    Interest in equine somatic cell nuclear transfer technology has increased significantly since the first equid clones were produced in 2003. This is demonstrated by the multiple commercial equine cloning companies having produced numerous cloned equids to date; worldwide, more than 370 cloned horses have been produced in at least six different countries. Equine cloning can be performed using several different approaches, each with different rates of success. In this review we cover the history and applications of equine cloning and summarise the major scientific advances in the development of this technology in horses. We explain the advantages and disadvantages of different procedures to produce cloned equine embryos and describe the current status of equine clone commercialisation, along with observations of differences in regional breed association registration regulations.

  8. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    PubMed

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. [A review of the genomic and gene cloning studies in trees].

    PubMed

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  10. Technical advances and pitfalls on the way to human cloning.

    PubMed

    Mollard, Richard; Denham, Mark; Trounson, Alan

    2002-03-01

    There exists a widespread consensus that the cloning of human beings to term would be detrimental to both the mother and child and of little value to society. However, the ambition of a few organisations and the recent advances in cellular and molecular technologies that led to the cloning of Dolly the sheep, for example, have meant that such a procedure will be possible if not illegal in the near future. The science associated with the cloning technologies practiced in other mammalian species reported to date provide important advances in our understanding of how cells function during early developmental processes and commit themselves to specific developmental pathways. However, many technological insufficiencies remain. Both technological advances and several of the associated insufficiencies are outlined in this review.

  11. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.

  12. Artificial cloning of domestic animals

    PubMed Central

    Keefer, Carol L.

    2015-01-01

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research. PMID:26195770

  13. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73.

    PubMed

    Lee, Seung-Chan; Lee, Haesun; Oh, Keon Bong; Hwang, In-Sul; Yang, Hyeon; Park, Mi-Ryung; Ock, Sun-A; Woo, Jae-Seok; Im, Gi-Sun; Hwang, Seongsoo

    2017-06-01

    One of the reasons to causing blood coagulation in the tissue of xenografted organs was known to incompatibility of the blood coagulation and anti-coagulation regulatory system between TG pigs and primates. Thus, overexpression of human CD73 (hCD73) in the pig endothelial cells is considered as a method to reduce coagulopathy after pig-to-non-human-primate xenotransplantation. This study was performed to produce and breed transgenic pigs expressing hCD73 for the studies immune rejection responses and could provide a successful application of xenotransplantation. The transgenic cells were constructed an hCD73 expression vector under control porcine Icam2 promoter (pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them, three live hCD73-pigs were successfully delivered by Caesarean section, but one was dead after birth. The two hCD73 TG cloned pigs had normal reproductive ability. They mated with wild type (WT) MGH (Massachusetts General Hospital) female sows and produced totally 16 piglets. Among them, 5 piglets were identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73 transgenic cloned pigs and produced their litters by natural mating. It can be possible to use a mate for the production of multiple transgenic pigs such as α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.

  14. Bridging the gap between genome analysis and precision breeding in potato.

    PubMed

    Gebhardt, Christiane

    2013-04-01

    Efficiency and precision in plant breeding can be enhanced by using diagnostic DNA-based markers for the selection of superior cultivars. This technique has been applied to many crops, including potatoes. The first generation of diagnostic DNA-based markers useful in potato breeding were enabled by several developments: genetic linkage maps based on DNA polymorphisms, linkage mapping of qualitative and quantitative agronomic traits, cloning and functional analysis of genes for pathogen resistance and genes controlling plant metabolism, and association genetics in collections of tetraploid varieties and advanced breeding clones. Although these have led to significant improvements in potato genetics, the prediction of most, if not all, natural variation in agronomic traits by diagnostic markers ultimately requires the identification of the causal genes and their allelic variants. This objective will be facilitated by new genomic tools, such as genomic resequencing and comparative profiling of the proteome, transcriptome, and metabolome in combination with phenotyping genetic materials relevant for variety development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Recent advances in peanut breeding and genetics

    USDA-ARS?s Scientific Manuscript database

    Most previous advances in peanut cultivar development have been made using conventional breeding methods for self-pollinated crops. Peanut has lagged behind many other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low le...

  16. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    PubMed

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  17. Cost and accuracy of advanced breeding trial designs in apple

    PubMed Central

    Harshman, Julia M; Evans, Kate M; Hardner, Craig M

    2016-01-01

    Trialing advanced candidates in tree fruit crops is expensive due to the long-term nature of the planting and labor-intensive evaluations required to make selection decisions. How closely the trait evaluations approximate the true trait value needs balancing with the cost of the program. Designs of field trials of advanced apple candidates in which reduced number of locations, the number of years and the number of harvests per year were modeled to investigate the effect on the cost and accuracy in an operational breeding program. The aim was to find designs that would allow evaluation of the most additional candidates while sacrificing the least accuracy. Critical percentage difference, response to selection, and correlated response were used to examine changes in accuracy of trait evaluations. For the quality traits evaluated, accuracy and response to selection were not substantially reduced for most trial designs. Risk management influences the decision to change trial design, and some designs had greater risk associated with them. Balancing cost and accuracy with risk yields valuable insight into advanced breeding trial design. The methods outlined in this analysis would be well suited to other horticultural crop breeding programs. PMID:27019717

  18. Monte Carlo simulation models of breeding-population advancement.

    Treesearch

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  19. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2012

    USDA-ARS?s Scientific Manuscript database

    A total of 38 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2012 for yield, seed grade and size, and resistance to Sclerotinia minor and Sclerotium rolfsii. Among the 14 Spanish entries, the cultivar Tamnut 06 (3258 lbs/acre) and breeding line 140-1O...

  20. Validation and Implementation of Marker-Assisted Selection (MAS) for PVY Resistance (Ryadg gene) in a Tetraploid Potato Breeding Program

    USDA-ARS?s Scientific Manuscript database

    The gene Ryadg from S. tuberosum ssp. andigena provides extreme resistance to PVY. This gene has been mapped to chromosome XI and linked PCR-based DNA markers have been identified. Advanced tetraploid russeted potato clones developed by the U.S. Pacific Northwest Potato Breeding Program with Ryadg P...

  1. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    PubMed

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  2. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.

  3. Effects of Donor Fibroblast Cell Type and Transferred Cloned Embryo Number on the Efficiency of Pig Cloning

    PubMed Central

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan

    2013-01-01

    Abstract Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150–199, 200–249, 250–299, 300–349, or 350–450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53±0.34) was similar with that associated with P,D,L,Y-FFBs (2.72±0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47±0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and

  4. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding.

    PubMed

    Teixeira da Silva, Jaime A; Jin, Xiaohua; Dobránszki, Judit; Lu, Jiangjie; Wang, Huizhong; Zotz, Gerhard; Cardoso, Jean Carlos; Zeng, Songjun

    2016-02-01

    Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Statistical inference for classification of RRIM clone series using near IR reflectance properties

    NASA Astrophysics Data System (ADS)

    Ismail, Faridatul Aima; Madzhi, Nina Korlina; Hashim, Hadzli; Abdullah, Noor Ezan; Khairuzzaman, Noor Aishah; Azmi, Azrie Faris Mohd; Sampian, Ahmad Faiz Mohd; Harun, Muhammad Hafiz

    2015-08-01

    RRIM clone is a rubber breeding series produced by RRIM (Rubber Research Institute of Malaysia) through "rubber breeding program" to improve latex yield and producing clones attractive to farmers. The objective of this work is to analyse measurement of optical sensing device on latex of selected clone series. The device using transmitting NIR properties and its reflectance is converted in terms of voltage. The obtained reflectance index value via voltage was analyzed using statistical technique in order to find out the discrimination among the clones. From the statistical results using error plots and one-way ANOVA test, there is an overwhelming evidence showing discrimination of RRIM 2002, RRIM 2007 and RRIM 3001 clone series with p value = 0.000. RRIM 2008 cannot be discriminated with RRIM 2014; however both of these groups are distinct from the other clones.

  6. Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep.

    PubMed

    García-Sancho, Miguel

    2015-09-01

    This paper addresses the 1996 cloning of Dolly the sheep, locating it within a long-standing tradition of animal breeding research in Edinburgh. Far from being an end in itself, the cell-nuclear transfer experiment from which Dolly was born should be seen as a step in an investigative pathway that sought the production of medically relevant transgenic animals. By historicising Dolly, I illustrate how the birth of this sheep captures a dramatic redefinition of the life sciences, when in the 1970s and 1980s the rise of neo-liberal governments and the emergence of the biotechnology market pushed research institutions to show tangible applications of their work. Through this broader interpretative framework, the Dolly story emerges as a case study of the deep transformations of agricultural experimentation during the last third of the twentieth century. The reorganisation of laboratory practice, human resources and institutional settings required by the production of transgenic animals had unanticipated consequences. One of these unanticipated effects was that the boundaries between animal and human health became blurred. As a result of this, new professional spaces emerged and the identity of Dolly the sheep was reconfigured, from an instrument for livestock improvement in the farm to a more universal symbol of the new cloning age.

  7. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2017

    USDA-ARS?s Scientific Manuscript database

    Disease evaluations of advanced peanut breeding lines are conducted annually to compare the agronomic traits (crop value, yield, seed grade and characteristics) and disease resistance in cultivars that are currently available or close to being released for the Southwest. In 2017, a total of 19 comm...

  8. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    PubMed

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  9. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  10. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring

    PubMed Central

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo

    2016-01-01

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs. PMID:26435541

  11. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring.

    PubMed

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo; Lee, Byeong Chun

    2016-09-30

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.

  12. [Advances of transgenic breeding in livestock].

    PubMed

    Yu, Da-Wei; Zhu, Hua-Bin; DU, Wei-Hua

    2011-05-01

    Transgenic technology represents a revolutionary way to produce elite livestock breeds, allowing introduction of alien gene into livestock genome. Currently, pronuclear microinjection of DNA and somatic cell nuclear transfer are two popular methods used to make transgenic farm animals. Transgenic technology can be used in livestock breeding for improving disease resistance, carcass composition, lactational performance, wool production, growth rate, and reproductive performance, as well as reducing negative environmental impact. In addition to introduction of animal transgenic technologies, this review described the status and the future perspective of transgenic breeding in livestock.

  13. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  14. The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia.

    PubMed

    Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor

    2014-08-01

    Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Meat and milk compositions of bovine clones

    PubMed Central

    Tian, X. Cindy; Kubota, Chikara; Sakashita, Kunihito; Izaike, Yoshiaki; Okano, Ryoichi; Tabara, Norio; Curchoe, Carol; Jacob, Lavina; Zhang, Yuqin; Smith, Sadie; Bormann, Charles; Xu, Jie; Sato, Masumi; Andrew, Sheila; Yang, Xiangzhong

    2005-01-01

    The technology is now available for commercial cloning of farm animals for food production, but is the food safe for consumers? Here, we provide data on >100 parameters that compare the composition of meat and milk from beef and dairy cattle derived from cloning to those of genetic- and breed-matched control animals from conventional reproduction. The cloned animals and the comparators were managed under the same conditions and received the same diet. The composition of the meat and milk from the clones were largely not statistically different from those of matched comparators, and all parameters examined were within the normal industry standards or previously reported values. The data generated from our match-controlled experiments provide science-based information desired by regulatory agencies to address public concerns about the safety of meat and milk from somatic animal clones. PMID:15829585

  16. Wildlife conservation and reproductive cloning.

    PubMed

    Holt, William V; Pickard, Amanda R; Prather, Randall S

    2004-03-01

    Reproductive cloning, or the production of offspring by nuclear transfer, is often regarded as having potential for conserving endangered species of wildlife. Currently, however, low success rates for reproductive cloning limit the practical application of this technique to experimental use and proof of principle investigations. In this review, we consider how cloning may contribute to wildlife conservation strategies. The cloning of endangered mammals presents practical problems, many of which stem from the paucity of knowledge about their basic reproductive biology. However, situations may arise where resources could be targeted at recovering lost or under-represented genetic lines; these could then contribute to the future fitness of the population. Approaches of this type would be preferable to the indiscriminate generation of large numbers of identical individuals. Applying cloning technology to non-mammalian vertebrates may be more practical than attempting to use conventional reproductive technologies. As the scientific background to cloning technology was pioneered using amphibians, it may be possible to breed imminently threatened amphibians, or even restore extinct amphibian species, by the use of cloning. In this respect species with external embryonic development may have an advantage over mammals as developmental abnormalities associated with inappropriate embryonic reprogramming would not be relevant.

  17. Statement on Human Cloning

    MedlinePlus

    ... form Search American Association for the Advancement of Science Statement on Human Cloning Tweet The American Association ... to implant a human cloned embryo for the purpose of reproduction. The scientific evidence documenting the serious ...

  18. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  19. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    ). However, technologies that enable the elimination of extraneous DNA sequences from the genome of sake yeast have been developed. Sake yeasts genetically modified with these technologies are called self-cloning yeasts and do not contain extraneous DNA sequences. These yeasts were exempted from the Japanese government's guidelines for genetically modified food. Protoplast fusion has also been utilized to breed favorable sake yeasts. Future directions for the breeding of sake yeasts are also proposed in this review. The reviewed research provides perspectives for the breeding of brewery yeasts in other fermentation industries.

  20. Interspecific Potato Breeding Lines Display Differential Colonization Patterns and Induced Defense Responses after Ralstonia solanacearum Infection

    PubMed Central

    Ferreira, Virginia; Pianzzola, María J.; Vilaró, Francisco L.; Galván, Guillermo A.; Tondo, María L.; Rodriguez, María V.; Orellano, Elena G.; Valls, Marc; Siri, María I.

    2017-01-01

    Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic latent infections that promote its global spread, hindering disease control. A potato breeding program is conducted in Uruguay based on the introgression of resistance from the wild native species S. commersonii Dun. Currently, several backcrosses were generated exploiting the high genetic variability of this wild species resulting in advanced interspecific breeding lines with different levels of bacterial wilt resistance. The overall aim of this work was to characterize the interaction of the improved potato germplasm with R. solanacearum. Potato clones with different responses to R. solanacearum were selected, and colonization, dissemination and multiplication patterns after infection were evaluated. A R. solanacearum strain belonging to the phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified to constitutively generate fluorescence and luminescence from either the green fluorescence protein gene or lux operon. These reporter strains were used to allow a direct and precise visualization of fluorescent and luminescent cells in plant tissues by confocal microscopy and luminometry. Based on wilting scoring and detection of latent infections, the selected clones were classified as susceptible or tolerant, while no immune-like resistance response was identified. Typical wilting symptoms in susceptible plants were correlated with high concentrations of bacteria in roots and along the stems. Tolerant clones showed a colonization pattern restricted to roots and a limited number of xylem vessels only in the stem base. Results indicate that resistance in potato is achieved through restriction of bacterial invasion and multiplication inside plant tissues, particularly in stems. Tolerant plants were also characterized by induction of anatomical and biochemical changes after

  1. Benefits and problems with cloning animals.

    PubMed Central

    Smith, L C; Bordignon, V; Babkine, M; Fecteau, G; Keefer, C

    2000-01-01

    Animal cloning is becoming a useful technique for producing transgenic farm animals and is likely to be used to produce clones from valuable adults. Other applications will also undoubtedly be discovered in the near future, such as for preserving endangered breeds and species. Although cloning promises great advantages for commerce and research alike, its outcome is not always certain due to high pregnancy losses and high morbidity and mortality during the neonatal period. Research into the mechanisms involved in the reprogramming of the nucleus is being conducted throughout the world in an attempt to better understand the molecular and cellular mechanisms involved in correcting these problems. Although the cause of these anomalies remains mostly unknown, similar phenotypes have been observed in calves derived through in vitro fertilization, suggesting that culture conditions are involved in these phenomena. In the meantime, veterinarians and theriogenologists have an important role to play in improving the efficiency of cloning by finding treatments to assure normal gestation to term and to develop preventative and curative care for cloned neonates. Images Figure 1. PMID:11143925

  2. Preservation and Reproduction of Microminipigs by Cloning Technology.

    PubMed

    Enya, Satoko; Kawarasaki, Tatsuo; Otake, Masayoshi; Kangawa, Akihisa; Uenishi, Hirohide; Mikawa, Satoshi; Nishimura, Takashi; Kuwahawa, Yasushi; Shibata, Masatoshi

    Microminipigs have been maintained in small populations of closed colonies, involving risks of inbreeding depression and genetic drift. In order to avoid these risks, we assessed the applicability of cloning technology. Male and female clones were produced from a stock of cryopreserved somatic cells, obtaining offspring by means of natural mating. Phenotypic and genotypic characteristics of original microminipigs, clones and their offspring were analyzed and recorded. Clones presented characteristics similar to those of the cell-stock data. Although the body weight of clones tended to be heavier than that of the cell-stock data, body weights of their offspring were similar to those of previous reports. Thus, cloned microminipigs have the potential to be a valuable genetic resource for reproduction and breeding. Our proposed methodology might be useful to provide a large number of animals with adequate quality from a limited population with sufficient genetic diversity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Path analysis of the energy density of wood in eucalyptus clones.

    PubMed

    Couto, A M; Teodoro, P E; Trugilho, P F

    2017-03-16

    Path analysis has been used for establishing selection criteria in genetic breeding programs for several crops. However, it has not been used in eucalyptus breeding programs yet. In the present study, we aimed to identify the wood technology traits that could be used as the criteria for direct and indirect selection of eucalyptus genotypes with high energy density of wood. Twenty-four eucalyptus clones were evaluated in a completely randomized design with five replications. The following traits were assessed: basic wood density, total extractives, lignin content, ash content, nitrogen content, carbon content, hydrogen content, sulfur content, oxygen content, higher calorific power, holocellulose, and energy density. After verifying the variability of all evaluated traits among the clones, a two-dimensional correlation network was used to determine the phenotypic patterns among them. The obtained coefficient of determination (0.94) presented a higher magnitude in relation to the effect of the residual variable, and it served as an excellent model for explaining the genetic effects related to the variations observed in the energy density of wood in all eucalyptus clones. However, for future studies, we recommend evaluating other traits, especially the morphological traits, because of the greater ease in their measurement. Selecting clones with high basic density is the most promising strategy for eucalyptus breeding programs that aim to increase the energy density of wood because of its high heritability and magnitude of the cause-and-effect relationship with this trait.

  4. Dogs cloned from adult somatic cells.

    PubMed

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  5. Advances in Breeding Management and Use of Ovulation Induction for Fixed-time AI.

    PubMed

    Kirkwood, R N; Kauffold, J

    2015-07-01

    The objective of the breeding herd is the predictable and consistent production of high quality pigs. To achieve this objective, an appropriate number of females need to be mated in each breeding week and they should maintain their pregnancy and deliver large litters. Many factors can impact achievement of optimal sow productivity, particularly breeding management. Most matings will involve artificial insemination (AI), and successful AI requires deposition into the cervix (or beyond) of sufficient viable high quality sperm at an appropriate time relative to ovulation. This is facilitated by improved knowledge of the sow's ovarian function prior to and during her oestrous period. Realization of the importance of establishing an adequate sperm reservoir in the oviduct at an appropriate time relative to ovulation has led to advances in the management of AI. The future of AI will likely involve insemination of single doses of high genetic merit semen, potentially having a reduced sperm concentration which is made possible by knowledge of the effect of site of sperm deposition on sow fertility. In particular, knowledge of when a sow is likely to ovulate during a natural or induced oestrous period will prove invaluable in the maintenance of herd productivity. This review will examine options for breeding management, including the control of oestrus and ovulation, on sow herd reproductive performance. © 2015 Blackwell Verlag GmbH.

  6. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  7. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  8. Applying isozyme analyses in tree-breeding programs

    Treesearch

    W. T. Adams

    1981-01-01

    Four examples illustrate the potential for practical use of isozyme analyses in applied breeding programs. These include identifying parent trees and clones, seed sources, and parentage of controlled crosses, and evaluating the effectiveness of different procedures involving open-pollination to produce seed of specific crosses. The improved ability to assess the true...

  9. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  10. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  11. Technological Literacy and Human Cloning. Resources in Technology.

    ERIC Educational Resources Information Center

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  12. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  13. Successful grafting in poplar species (Populus spp.) breeding

    Treesearch

    A. Assibi Mahama; Brian Sparks; Ronald S., Zalesny; Richard B. Hall

    2006-01-01

    Poor rooting of Populus deltoides Bartr. ex Marsh hardwood cuttings often has contributed to delays in breeding progress as a result of failures of scion wood before and/or after pollination. Seventeen clones were used, and the study was conducted in the greenhouse to test an "intervenous feeding" (IV) method, along with three different...

  14. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  15. Telomeres and the ethics of human cloning.

    PubMed

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  16. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    PubMed

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  17. Reproductive cloning in humans and therapeutic cloning in primates: is the ethical debate catching up with the recent scientific advances?

    PubMed

    Camporesi, S; Bortolotti, L

    2008-09-01

    After years of failure, in November 2007 primate embryonic stem cells were derived by somatic cellular nuclear transfer, also known as therapeutic cloning. The first embryo transfer for human reproductive cloning purposes was also attempted in 2006, albeit with negative results. These two events force us to think carefully about the possibility of human cloning which is now much closer to becoming a reality. In this paper we tackle this issue from two sides, first summarising what scientists have achieved so far, then discussing some of the ethical arguments in favour and against human cloning which are debated in the context of policy making and public consultation. Therapeutic cloning as a means to improve and save lives has uncontroversial moral value. As to human reproductive cloning, we consider and assess some common objections and failing to see them as conclusive. We do recognise, though, that there will be problems at the level of policy and regulation that might either impair the implementation of human reproductive cloning or make its accessibility restricted in a way that could become difficult to justify on moral grounds. We suggest using the time still available before human reproductive cloning is attempted successfully to create policies and institutions that can offer clear directives on its legitimate applications on the basis of solid arguments, coherent moral principles, and extensive public consultation.

  18. Research on reproduction is essential for captive breeding of endangered carnivore species.

    PubMed

    Jewgenow, K; Braun, B C; Dehnhard, M; Zahmel, J; Goeritz, F

    2017-04-01

    Assisted reproductive technology (ART) has great potential for conservation, but its successful application in captive breeding programmes of endangered species is often compromised by limited background on species' biology. Although carnivore species benefit from knowledge obtained in domesticated species (dogs, cats and ferrets), the focus of research is different. In pet animals, research in reproduction has mainly been focused on ovarian function and contraception, although substantial progress has also been made in the field of in vitro embryo production, transgenic embryos and cloning to aid relevant medical models. In endangered species, however, research should focus on characterizing reproductive traits (cyclicity and seasonality) to unravel species-specific endocrine principles of reproduction physiology. Based on this knowledge, it is crucial to enhance the ability to manipulate female reproductive cycles, especially those of embryo recipients. Furthermore, research conducted on molecular and cellular mechanisms of gamete and embryo development, as well as on cryopreservation protocols of gametes and embryos, is required for successful implementation of advanced ART to wild carnivores. This review will provide a summary on the state of the art with focus on ART contributing to conservation breeding of endangered carnivores. © 2016 Blackwell Verlag GmbH.

  19. Food consumption risks associated with animal clones: what should be investigated?

    PubMed

    Rudenko, Larisa; Matheson, John C; Adams, Amey L; Dubbin, Eric S; Greenlees, Kevin J

    2004-01-01

    Somatic Cell Nuclear Transfer (SCNT), or cloning, is likely to be used for the expansion of elite breeding stock of agronomically important livestock used for food. The Center for Veterinary Medicine at the US Food and Drug Administration has been developing a risk assessment to identify hazards and characterize food consumption risks that may result from cloning. The risk assessment is comprised of two prongs. The first evaluates the health of animal clones, and is referred to as the Critical Biological Systems Approach. The second considers the composition of meat and milk from animal clones. Assessing the safety of food products from animal clones and their progeny, at least during these early stages of the development of the technology, is best accomplished by using both approaches: prospectively drawing on our knowledge of biological systems in development and maturation, and in retrograde, from an analysis of food products. Subtle hazards and potential risks that may be posed by animal clones must, however, be considered in the context of other mutations and epigenetic changes that occur in all food animal populations.

  20. Human cloning: Eastern Mediterranean Region perspective.

    PubMed

    Abdur Rab, M; Khayat, M H

    2006-01-01

    Recent advances in genomics and biotechnology have ushered in a new era in health development. Therapeutic cloning possesses enormous potential for revolutionizing medical and therapeutic techniques. Cloning technology, however, is perceived as having the potential for reproductive cloning, which raises serious ethical and moral concerns. It is important that the Islamic countries come to a consensus on this vital issue. Developing science and technology for better health is a religious and moral obligation. There is an urgent need for Muslim scholars to discuss the issue of stem cell research and cloning rationally; such dialogue will not only consider the scientific merits but also the moral, ethical and legal implications.

  1. Exploration of genetic architecture through sib-ship reconstruction in advanced breeding population of Eucalyptus nitens.

    PubMed

    Klápště, Jaroslav; Suontama, Mari; Telfer, Emily; Graham, Natalie; Low, Charlie; Stovold, Toby; McKinley, Russel; Dungey, Heidi

    2017-01-01

    Accurate inference of relatedness between individuals in breeding population contributes to the precision of genetic parameter estimates, effectiveness of inbreeding management and the amount of genetic progress delivered from breeding programs. Pedigree reconstruction has been proven to be an efficient tool to correct pedigree errors and recover hidden relatedness in open pollinated progeny tests but the method can be limited by the lack of parental genotypes and the high proportion of alien pollen from outside the breeding population. Our study investigates the efficiency of sib-ship reconstruction in an advanced breeding population of Eucalyptus nitens with only partially tracked pedigree. The sib-ship reconstruction allowed the identification of selfs (4% of the sample) and the exploration of their potential effect on inbreeding depression in the traits studied. We detected signs of inbreeding depression in diameter at breast height and growth strain while no indications were observed in wood density, wood stiffness and tangential air-dry shrinkage. After the application of a corrected sib-ship relationship matrix, additive genetic variance and heritability were observed to increase where signs of inbreeding depression were initially detected. Conversely, the same genetic parameters for traits that appeared to be free of inbreeding depression decreased in size. It therefore appeared that greater genetic variance may be due, at least in part, to contributions from inbreeding in these studied populations rather than a removal of inbreeding as is traditionally thought.

  2. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    PubMed

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.

  3. Sugarcane Improvement Through Breeding and Biotechnology

    USDA-ARS?s Scientific Manuscript database

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  4. Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) Larval Performance on Eight Populus Clones

    Treesearch

    David R. Coyle; Joel D. McMillin; Richard B. Hall; Elwood R. Hart

    2001-01-01

    Abstract: The cottonwood leaf beetle, Chrysomela scripta F., is the most serious defoliator of young plantation-grown Populus in the eastern United States, yet there is a paucity of data on larval feeding performance across Populus clones used in tree breeding. Field experiments were conducted in 1998 and 1999...

  5. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  6. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  7. Increasing efficiency in production of cloned piglets.

    PubMed

    Callesen, Henrik; Liu, Ying; Pedersen, Hanne S; Li, Rong; Schmidt, Mette

    2014-12-01

    The low efficiency in obtaining piglets after production of cloned embryos was challenged in two steps-first by performing in vitro culture for 5-6 days after cloning to obtain later-stage embryos for more precise selection for transfer, and second by reducing the number of embryos transferred per recipient sow. The data set consisted of combined results from a 4-year period where cloning was performed to produce piglets that were transgenic for important human diseases. For this, different transgenes and cell types were used, and the cloning work was performed by several persons using oocytes from different pig breeds, but following a standardized and optimized protocol. Results showed that in vitro culture is possible with a relatively stable rate of transferable embryos around 41% and a pregnancy rate around 90%. Furthermore, a reduction from around 80 embryos to 40 embryos transferred per recipient was possible without changing the efficiency of around 14% (piglets born out of embryos transferred). It was concluded that this approach can increase the efficiency in obtaining piglets by means of in vitro culture and selection of high-quality embryos with subsequent transfer into more recipients. Such changes can also reduce the need for personnel, time, and material when working with this technology.

  8. Developments in European horse breeding and consequences for veterinarians in equine reproduction.

    PubMed

    Aurich, J; Aurich, C

    2006-08-01

    The liberalization of European animal breeding legislation and an increasing diversity of equestrian sports have led to a constant rise in the number of horse breeds and breed registries. In addition to the trend towards more and smaller breed registries, there is another trend towards an international expansion of the bigger established sport horse breeds. Regional breeds, at least in smaller countries, may no longer be able to run an independent breeding programme. The typical horse breeder, in the future, will be a female and qualified in equestrian sports. Artificial insemination (AI) mainly with fresh or cooled-transported semen has become a major breeding tool, allowing breeders all over Europe to benefit from the best stallions of most breeds. New AI techniques such as low-dose insemination may remain restricted to individual stallions and also the interest of breeding programmes in sex determination of foals via semen sorting is limited. Embryo transfer and associated techniques, although allowed by most breeds, have not contributed significantly to genetic progress in European sport horses so far. A potential use of cloning may be to produce gonad-intact copies from geldings that have performed to a superior level. With a more open and international structure of horse breeding and increased use of AI, equine reproduction and biotechnology should be emphasized by veterinary curricula and continuing professional education programmes.

  9. Ethical issues regarding human cloning: a nursing perspective.

    PubMed

    Dinç, Leyla

    2003-05-01

    Advances in cloning technology and successful cloning experiments in animals raised concerns about the possibility of human cloning in recent years. Despite many objections, this is not only a possibility but also a reality. Human cloning is a scientific revolution. However, it also introduces the potential for physical and psychosocial harm to human beings. From this point of view, it raises profound ethical, social and health related concerns. Human cloning would have an impact on the practice of nursing because it could result in the creation of new physiological and psychosocial conditions that would require nursing care. The nursing profession must therefore evaluate the ethics of human cloning, in particular the potential role of nurses. This article reviews the ethical considerations of reproductive human cloning, discusses the main reasons for concern, and reflects a nursing perspective regarding this issue.

  10. Advances in marker-assisted breeding of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...

  11. Global impact of accelerated plant breeding: Evidence from a meta-analysis on rice breeding.

    PubMed

    Lenaerts, Bert; de Mey, Yann; Demont, Matty

    2018-01-01

    Rice breeders in Asia and elsewhere in the world have long overlooked trying to shorten the time it takes to develop new varieties. Plant breeders have proposed a technique called Rapid Generation Advance (RGA) as a way to accelerate the results of public rice breeding programs. However, little is known about RGA's potential impact. Here, we present the first results of a global impact study of RGA. More specifically, we calculated the multiplicator effects of RGA on the research benefits generated by conventional rice breeding programs and applied them to a meta-analysis of selected impact studies in the literature. These insights are a first crucial step in developing a targeted approach for disseminating RGA technology among rice breeders to accelerate the impact of their public rice breeding programs around the world. We show that the additional benefits due to time savings are considerable and offer some insights into the economics of breeding. Our results confirm that the adoption of accelerated breeding would lead to substantial advantages to rice breeding programs and the earlier variety release leads to significant economic benefits to society. This can be important to policy makers when reshaping their public breeding methods and optimising their return on research investments in breeding.

  12. Establishment of a Somatic Cell Bank for Indian Buffalo Breeds and Assessing the Suitability of the Cryopreserved Cells for Somatic Cell Nuclear Transfer.

    PubMed

    Selokar, Naresh L; Sharma, Papori; Krishna, Ananth; Kumar, Deepak; Kumar, Dharmendra; Saini, Monika; Sharma, Arpna; Vijayalakshmy, Kennady; Yadav, Prem Singh

    2018-06-01

    Biobanks of cryopreserved gametes and embryos of domestic animals have been utilized to spread desired genotypes and to conserve the animal germplasm of endangered breeds. In principle, somatic cells can be used for the same purposes, and for reviving of animals, the somatic cells must be suitable for animal cloning techniques, such as somatic cell nuclear transfer. In the present study, we derived and cryopreserved somatic cells from three breeds of riverine and swamp-like type buffaloes and established a somatic cell bank. In total, 350 cryovials of 14 different individual animals (25 cryovials per animal) were cryopreserved and informative data such as breed value, origin, and others were documented. Immunostaining of the established cells against vimentin and cytokeratin suggested a commitment to the fibroblast lineage. In addition, microsatellite analysis was performed and documented for unambiguous parentage verification of clones in the future. Subsequently, the cryopreserved cells were tested for their suitability as nuclear donors (n = 7) using handmade cloning, and the reconstructed embryos were cultured in vitro. The cleavage rates (95.99% ± 2.17% vs. 82.18% ± 2.50%) and blastocyst rates (37.73% ± 1.54% vs. 24.31% ± 1.78%) were higher (p < 0.05) for riverine buffalo cells than that of swamp-like buffalo cells, whereas the total cell numbers of blastocysts (258.16 ± 36.25 vs. 198.16 ± 36.25, respectively) were similar. In conclusion, we demonstrated the feasibility of biobanking of buffalo somatic cells, and that the cryopreserved cells can be used to produce cloned embryos. This study encourages the development of somatic cell biobanks of domestic livestock, including endangered breeds of buffalo, to preserve valuable genotypes for future revitalization by animal cloning techniques.

  13. M6: A diploid potato inbred line for use in breeding and genetics research

    USDA-ARS?s Scientific Manuscript database

    M6 is a vigorous, homozygous breeding line derived by self-pollinating the diploid wild potato relative Solanum chacoense for seven generations. While most wild Solanum species are self-incompatible, this clone is homozygous for the dominant self-incompatibility inhibitor gene Sli. It is homozygous ...

  14. [Mystery and problems of cloning].

    PubMed

    Nikitin, V A

    2010-01-01

    The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.

  15. Use of BAC clones as standardized reagents for Marek’s disease virus research

    USDA-ARS?s Scientific Manuscript database

    The cloning of the Marek’s disease virus (MDV) genome as an infectious bacterial artificial chromosome (BAC) clone have led to major advances through our ability to study individual gene function by making precise insertions and deletions in the viral genome. We believe that MDV BAC clones will repl...

  16. Breeding for resistance in Norway spruce to the root and butt rot fungi Heterobasidion spp

    Treesearch

    G. Swedjemark; A.K. Borg-Karlson; B. Karlsson

    2012-01-01

    Results from previous studies of resistance in Norway spruce (Picea abies (L.) Karst.) to the pathogens Heterobasidion spp. show significant genotypic variation in fungal growth and spore susceptibility among Norway spruce clones. The genetic variation and the heritability are large enough for practical breeding purposes and...

  17. Therapeutic cloning: from consequences to contradiction.

    PubMed

    Coors, Marilyn

    2002-06-01

    The British Parliament legalized therapeutic cloning in December 2000 despite opposition from the European Union. The watershed event in Parliament's move was the active and unprecedented government support for the generation and destruction of human embryonic life merely as a means of medical advancement. This article contends that the utilitarian analysis of this procedure is necessary to identify the real world risks of therapeutic cloning but insufficient to identify the breach of defensible ethical limits that this procedure represents. A value-oriented approach to Kantian ethics demonstrates that the utilitarian endorsement of therapeutic cloning entails a contradiction of the necessity of human vulnerability and a faulty valuation of the human embryo. The concern is that a narrow utilitarian focus ultimately commodifies human embryonic life and preferences outcomes as the sole determinant of moral value.

  18. Photonic Programmable Tele-Cloning Network.

    PubMed

    Li, Wei; Chen, Ming-Cheng

    2016-06-29

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  19. Photonic Programmable Tele-Cloning Network

    PubMed Central

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838

  20. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-12-08

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats.

  1. Accelerating plant breeding.

    PubMed

    De La Fuente, Gerald N; Frei, Ursula K; Lübberstedt, Thomas

    2013-12-01

    The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Systematic cloning of an ORFeome using the Gateway system.

    PubMed

    Matsuyama, Akihisa; Yoshida, Minoru

    2009-01-01

    With the completion of the genome projects, there are increasing demands on the experimental systems that enable to exploit the entire set of protein-coding open reading frames (ORFs), viz. ORFeome, en masse. Systematic proteomic studies based on cloned ORFeomes are called "reverse proteomics," and have been launched in many organisms in recent years. Cloning of an ORFeome is such an attractive way for comprehensive understanding of biological phenomena, but is a challenging and daunting task. However, recent advances in techniques for DNA cloning using site-specific recombination and for high-throughput experimental techniques have made it feasible to clone an ORFeome with the minimum of exertion. The Gateway system is one of such the approaches, employing the recombination reaction of the bacteriophage lambda. Combining traditional DNA manipulation methods with modern technique of the recombination-based cloning system, it is possible to clone an ORFeome of an organism on an individual level.

  3. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    USDA-ARS?s Scientific Manuscript database

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  4. A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system

    PubMed Central

    Suzuki, Yasuhiro; Kagawa, Naoko; Fujino, Toru; Sumiya, Tsuyoshi; Andoh, Taichi; Ishikawa, Kumiko; Kimura, Rie; Kemmochi, Kiyokazu; Ohta, Tsutomu; Tanaka, Shigeo

    2005-01-01

    There is an increasing demand for easy, high-throughput (HTP) methods for protein engineering to support advances in the development of structural biology, bioinformatics and drug design. Here, we describe an N- and C-terminal cloning method utilizing Gateway cloning technology that we have adopted for chimeric and mutant genes production as well as domain shuffling. This method involves only three steps: PCR, in vitro recombination and transformation. All three processes consist of simple handling, mixing and incubation steps. We have characterized this novel HTP method on 96 targets with >90% success. Here, we also discuss an N- and C-terminal cloning method for domain shuffling and a combination of mutation and chimeragenesis with two types of plasmid vectors. PMID:16009811

  5. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    PubMed

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  6. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.

    PubMed

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.

  7. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning

    PubMed Central

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    , not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717

  8. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    PubMed

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  9. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  10. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  11. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  12. What is Cloning?

    MedlinePlus

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  13. Breed-Predispositions to Cancer in Pedigree Dogs

    PubMed Central

    Dobson, Jane M.

    2013-01-01

    Cancer is a common problem in dogs and although all breeds of dog and crossbred dogs may be affected, it is notable that some breeds of pedigree dogs appear to be at increased risk of certain types of cancer suggesting underlying genetic predisposition to cancer susceptibility. Although the aetiology of most cancers is likely to be multifactorial, the limited genetic diversity seen in purebred dogs facilitates genetic linkage or association studies on relatively small populations as compared to humans, and by using newly developed resources, genome-wide association studies in dog breeds are proving to be a powerful tool for unravelling complex disorders. This paper will review the literature on canine breed susceptibility to histiocytic sarcoma, osteosarcoma, haemangiosarcoma, mast cell tumours, lymphoma, melanoma, and mammary tumours including the recent advances in knowledge through molecular genetic, cytogenetic, and genome wide association studies. PMID:23738139

  14. Therapeutic cloning and tissue engineering.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-01-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  15. Targeted Proteomics Approach for Precision Plant Breeding.

    PubMed

    Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik

    2016-02-05

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.

  16. Piglets born from handmade cloning, an innovative cloning method without micromanipulation.

    PubMed

    Du, Y; Kragh, P M; Zhang, Y; Li, J; Schmidt, M; Bøgh, I B; Zhang, X; Purup, S; Jørgensen, A L; Pedersen, A M; Villemoes, K; Yang, H; Bolund, L; Vajta, G

    2007-11-01

    Porcine handmade cloning (HMC), a simplified alternative of micromanipulation based traditional cloning (TC) has been developed in multiple phases during the past years, but the final evidence of its biological value, births of piglets was missing. Here we report the first births of healthy piglets after transfer of blastocysts produced by HMC. As a cumulative effect of technical optimization, 64.3+/-2.3 (mean+/-S.E.M.) reconstructed embryos from 151.3+/-4.8 oocytes could be obtained after 3-4h manual work, including 1h pause between fusion and activation. About half (50.1+/-2.8%, n=16) of HMC reconstructed embryos developed to blastocysts with an average cell number of 77+/-3 (n=26) after 7 days in vitro culture (IVC). According to our knowledge, this is the highest in vitro developmental rate after porcine somatic cell nuclear transfer (SCNT). A total of 416 blastocysts from HMC, mixed with 150 blastocysts from TC using a cell line from a different breed were transferred surgically to nine synchronized recipients. Out of the four pregnancies (44.4%) two were lost, while two pregnancies went to term and litters of 3 and 10 piglets were delivered by Caesarean section, with live birth/transferred embryo efficiency of 17.2% (10/58) for HMC. Although more in vivo experiments are still needed to further stabilize the system, our data proves that porcine HMC may result in birth of healthy offspring. Future comparative examinations are required to prove the value of the new technique for large-scale application.

  17. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  18. Procreative liberty, enhancement and commodification in the human cloning debate.

    PubMed

    Shapshay, Sandra

    2012-12-01

    The aim of this paper is to scrutinize a contemporary standoff in the American debate over the moral permissibility of human reproductive cloning in its prospective use as a eugenic enhancement technology. I shall argue that there is some significant and under-appreciated common ground between the defenders and opponents of human cloning. Champions of the moral and legal permissibility of cloning support the technology based on the right to procreative liberty provided it were to become as safe as in vitro fertilization and that it be used only by adults who seek to rear their clone children. However, even champions of procreative liberty oppose the commodification of cloned embryos, and, by extension, the resulting commodification of the cloned children who would be produced via such embryos. I suggest that a Kantian moral argument against the use of cloning as an enhancement technology can be shown to be already implicitly accepted to some extent by champions of procreative liberty on the matter of commodification of cloned embryos. It is in this argument against commodification that the most vocal critics of cloning such as Leon Kass and defenders of cloning such as John Robertson can find greater common ground. Thus, I endeavor to advance the debate by revealing a greater degree of moral agreement on some fundamental premises than hitherto recognized.

  19. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  20. Islamic perspective on human cloning and stem cell research.

    PubMed

    Larijani, B; Zahedi, F

    2004-12-01

    Recent advances in the field of cloning and stem cell research have introduced new hope for treatment of serious diseases. But this promise has been accompanied by enormous questions. Currently, cloning is a matter of public discussion. It is rare that a field of science causes debate and challenge not only among scientists but also among ethicists, religious scholars, governments, and politicians. One important concern is religious arguments. Various religions have different attitudes toward the morality of these subjects; even within a particular religious tradition there is a diversity of opinions. The following article briefly reviews Islamic perspectives about reproductive/therapeutic cloning and stem cell research. The majority of Muslim jurists distinguish between reproductive and therapeutic cloning. The moral status of the human embryo, the most sensitive and disputed point in this debate, is also discussed according to Holy Quran teachings.

  1. The application of biotechnology in medicinal plants breeding research in China.

    PubMed

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  2. Using general and specific combining ability to further advance strawberry (Fragaria sp.) breeding

    USDA-ARS?s Scientific Manuscript database

    Strawberry is one of the five fruit crops included in the USDA-funded multi-institutionaland trans-disciplinary project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae”. A Crop Reference Set (CRS) was developed of 900 genotypes and seedlings from 40 crosses representing the breadth of rele...

  3. Science and technology of farm animal cloning: state of the art.

    PubMed

    Vajta, Gábor; Gjerris, Mickey

    2006-05-01

    tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.

  4. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  5. Future and applications of cloning.

    PubMed

    Trounson, Alan O

    2006-01-01

    The birth of viable offspring from somatic cell nuclear transfer (SCNT) in mammals caused a major re-examination of the understanding of the commitment of cells to specific tissue lineages during differentiation. The questions of whether cells undergo dedifferentiation or transdifferentiation during the development of offspring and how these changes are controlled is a source of ongoing debate that is yet to be resolved. Irrespective of the outcome of this debate, it is clear that cloning using SCNT has a place and purpose in the future of research and animal breeding. The future uses of SCNT could include the production of transgenic mice, the production of transgenic livestock and assisting with the re-establishment of endangered species. Human medicine also would benefit from future use of SCNT because it would allow the production of patient-specific embryonic stem cells.

  6. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding

    PubMed Central

    Wang, Wenqin; Le, Hien T. T.

    2016-01-01

    Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding. PMID:28097123

  7. Cloning, clones and clonal disease.

    PubMed

    Luzzatto, L

    2000-01-01

    In the past, cloning has been familiar to plant breeders because many plants can be easily reproduced in this way, bypassing the lengthy process of cross-fertilisation. Recently, the concept of cloning has become popular in human biology and medicine on two accounts. First, individual genes can be cloned from the enormous complexity of the DNA that makes up the human genetic material. It is expected that, within a few years, all the estimated 100,000 human genes will be isolated by this approach. This should make it possible to identify all the genes that determine the individual characteristics of human beings, including those responsible for causing human diseases or for making people more or less susceptible to pick up diseases from the environment. Cloned genes made into pharmaceutical products are already in use for treating a variety of diseases, from hormonal deficiencies to certain types of anaemia.

  8. The influence of alternative plant propagation and stand establishment techniques on survival and growth of eastern cottonwood (Populus deltoids Bartr.) clones

    Treesearch

    Donald J. Kaczmarek; Randall Rousseau; Jeff A. Wright; Brian Wachelka

    2014-01-01

    Four eastern cottonwood clones, including standard operational clone ST66 and three advanced clonal selections were produced and included in a test utilizing five different plant propagation methods. Despite relatively large first-year growth differences among clones, all clones demonstrated similar responses to the treatments and clone × cutting treatment interactions...

  9. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  10. Experimental embryology of mammals at the Jastrzebiec Institute of Genetics and Animal Breeding.

    PubMed

    Karasiewicz, Jolanta; Andrzej-Modlinski, Jacek

    2008-01-01

    Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).

  11. Tissue engineering applications of therapeutic cloning.

    PubMed

    Atala, Anthony; Koh, Chester J

    2004-01-01

    Few treatment options are available for patients suffering from diseased and injured organs because of a severe shortage of donor organs available for transplantation. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for replacement therapy. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  12. Influence of spatial distribution and size of clones on the realized outcrossing rate of the marsh cinquefoil (Comarum palustre)

    PubMed Central

    Somme, L.; Mayer, C.; Raspé, O.; Jacquemart, A.-L.

    2014-01-01

    Background and Aims Clonal growth is a common feature in flowering plants. As clone size increases, the selfing rate in self-compatible species is likely to increase due to more frequent geitono-pollination events (i.e. pollination among flowers within the same genet). This study investigated the breeding system of the marsh cinquefoil (Comarum palustre) and assessed spatial distribution of clones, clone size and architecture, and their effects on realized outcrossing rates. In addition, pollen dispersal was investigated in two patchy populations. Methods The species' breeding system was investigated under controlled conditions through hand pollinations (self- vs. cross-pollination). Using microsatellite markers, an assessment was made of the realized outcrossing rates and the genetic diversity in four natural populations, the clonal structure in two populations within five 15 × 15 m sampling plots following 0·5 × 0·5 m grids, and the pollen dispersal through paternity assignment tests in those two populations. Key Results Comarum palustre is a self-compatible species but only presents a low rate of spontaneous self-pollination. The occurrence of inbreeding depression was not detected at the seed set stage (δSS = 0·04). Clones were spatially clumped (AC = 0·60–0·80), with intermediate to no intermingling of the ramets (DC = 0·40–1·00). Genet size ranged from one to 171 ramets. Patchy populations had low outcrossing rates (tm = 0·33–0·46). Large clones showed lower outcrossing rates than small clones. Pollen dispersal mainly occurred within patches as only 1–7 % of the pollination events occurred between patches of >25 m separation. Seedling recruitment events were detected. Conclusions Genet size together with distances between patches, through increasing geitono-pollination events, appeared to be important factors influencing realized outcrossing rates. The study also revealed seed flow allowing seedling recruitment, which may contribute to

  13. Human cloning 2001.

    PubMed

    Healy, David L; Weston, Gareth; Pera, Martin F; Rombauts, Luk; Trounson, Alan O

    2002-05-01

    This review summaries human cloning from a clinical perspective. Natural human clones, that is, monozygotic twins, are increasing in the general community. Iatrogenic human clones have been produced for decades in infertile couples given fertility treatment such as ovulation induction. A clear distinction must be made between therapeutic cloning using embryonic stem cells and reproductive cloning attempts. Unlike the early clinical years of in vitro fertilization, with cloning there is no animal model that is safe and dependable. Until there is such a model, 'Dolly'-style human cloning is medically unacceptable.

  14. M7 germplasm release: A tetraploid clone derived from Solanum infundibuliforme for use in expanding the germplasm base for french fry processing

    USDA-ARS?s Scientific Manuscript database

    A new source of russet germplasm has been identified as a parent for processing and fresh market breeding programs. It was derived via bilateral sexual polyploidization following a cross between a diploid cultivated potato and the diploid wild species Solanum infundibuliforme. This clone, designated...

  15. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).

    PubMed

    Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean

    2017-04-28

    Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were

  16. Evaluation of genetic divergence among clones of conilon coffee after scheduled cycle pruning.

    PubMed

    Dalcomo, J M; Vieira, H D; Ferreira, A; Lima, W L; Ferrão, R G; Fonseca, A F A; Ferrão, M A G; Partelli, F L

    2015-11-30

    Coffea canephora genotypes from the breeding program of Instituto Capixaba de Pesquisa e Extensão Rural were evaluated, and genetic diversity was estimated with the aim of future improvement strategies. From an initial group of 55 genotypes, 18 from the region of Castelo, ES, were selected, and three clones of the cultivars "Vitória" and "robusta tropical." Upon completion of the scheduled cycle pruning, 17 morphoagronomic traits were measured in the 22 genotypes selected. The principal components method was used to evaluate the contributions relative to the traits. The genetic dissimilarity matrix was obtained through Mahalanobis generalized distance, and genotypes were grouped using the hierarchical method based on the mean of the distances. The most promising clones of Avaliação Castelo were AC02, AC03, AC12, AC13, AC22, AC24, AC26, AC27, AC28, AC29, AC30, AC35, AC36, AC37, AC39, AC40, AC43, and AC46. These methods detected high genetic variability, grouping, by similarity, the genotypes in five groups. The trait that contributed the least to genetic divergence was the number of leaves in plagiotropic branches; however, this was not eliminated, because discarding it altered the groups. There are superior genotypes with potential for use in the next stages of the breeding program, aimed at both the composition of clonal variety and hybridizations.

  17. Recent progress and problems in animal cloning.

    PubMed

    Tsunoda, Y; Kato, Y

    2002-01-01

    It is remarkable that mammalian somatic cell nuclei can form whole individuals if they are transferred to enucleated oocytes. Advancements in nuclear transfer technology can now be applied for genetic improvement and increase of farm animals, rescue of endangered species, and assisted reproduction and tissue engineering in humans. Since July 1998, more than 200 calves have been produced by nuclear transfer of somatic cell nuclei in Japan, but half of them were stillborn or died within several months of parturition. Morphologic abnormalities have also been observed in cloned calves and embryonic stem cell-derived mice. In this review, we discuss the present situation and problems with animal cloning and the possibility for its application to human medicine.

  18. Experimentally reduced corticosterone release promotes early breeding in black-legged kittiwakes.

    PubMed

    Goutte, Aurélie; Clément-Chastel, Céline; Moe, Børge; Bech, Claus; Gabrielsen, Geir Wing; Chastel, Olivier

    2011-06-15

    Breeding at the right time is important for successful reproduction. In birds, stressful environmental conditions are known to delay the timing of breeding but the underlying mechanisms are poorly understood. The stress hormone corticosterone appears to be a good candidate for mediating egg-laying date according to early environmental conditions and physiological state. By experimentally reducing the release of corticosterone in black-legged kittiwakes during the pre-laying period, we tested whether egg-laying date was mechanistically linked to corticosterone levels. Male and female kittiwakes were implanted with a low dose of exogenous corticosterone to inhibit endogenous corticosterone production. According to our predictions, the experimental reduction of corticosterone release was paralleled by a significant advancement of egg laying in females (around 4 days earlier). In addition, females with experimentally reduced corticosterone release gained mass during the pre-laying period compared with controls. Ultimately, the advancement of egg laying in females with experimentally reduced corticosterone levels was associated with an enhanced breeding success. This effect was strongly sex specific. In corticosterone-treated male kittiwakes, egg-laying date and reproductive success were not affected, but breeding probability was lower than in controls. This corticosterone treatment did not influence immediate clutch size, or return rate and breeding decision the following year. Our results support the hypothesis that corticosterone secretion during the pre-laying period mediates the timing of breeding in this long-lived seabird, possibly through the dynamics of energy reserves.

  19. Therapeutic cloning applications for organ transplantation.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-04-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. Copyright 2004 Elsevier B.V.

  20. Human cloning, stem cell research. An Islamic perspective.

    PubMed

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  1. Cloning the mammoth: a complicated task or just a dream?

    PubMed

    Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna

    2014-01-01

    Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved.

  2. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle

    USDA-ARS?s Scientific Manuscript database

    Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6,834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in t...

  3. [Stem cells and therapeutic cloning, medical perspectives under discussion].

    PubMed

    Manuel, Catherine; Lafon, Claude; Hairion, Dominique; Antoniotti, Stéphanie

    2004-03-13

    Innovative biotechnical progress over the past few years regards stem cells and therapeutic cloning, which open promising medical horizons for many presently incurable diseases. THE CURRENT DEBATE: The research work in France has been stalled because of the prohibitions listed in the so-called "bioethical" laws of 1994. The ongoing revision of these laws is based on a certain number of ethical questions and launches a disputable parlementary debate. Other than reproductive cloning and research on the embryo, the possibilities provided by stem cells and therapeutic cloning should be emphasized and the different positions advanced specified, showing an evolution in the laws in France. ABUSIVE LEGISLATIVE PROHIBITIONS: The proposed law, which maintains the prohibition for research on the embryo, with a 5-Year dispensation, and which explicitly prohibits therapeutic cloning, is not in keeping with the widening of in this field expected by research teams. Many scientists and physicians, supported by patients' associations, are aware of the importance of therapeutic progress attached to such research. They should not be stalled in their studies by the prohibitions maintained in the new law.

  4. Will genomic selection be a practical method for plant breeding?

    PubMed

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  5. Will genomic selection be a practical method for plant breeding?

    PubMed Central

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117

  6. Expansion of the gateway multisite recombination cloning toolkit.

    PubMed

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  7. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs.

    PubMed

    Adachi, Noritaka; Yamaguchi, Daisuke; Watanabe, Akiyuki; Miura, Narumi; Sunaga, Seiji; Oishi, Hitoshi; Hashimoto, Michiko; Oishi, Takatsugu; Iwamoto, Masaki; Hanada, Hirofumi; Kubo, Masanori; Onishi, Akira

    2014-04-24

    The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.

  8. Growth, Reproductive Performance, Carcass Characteristics and Meat Quality in F1 and F2 Progenies of Somatic Cell-Cloned Pigs

    PubMed Central

    ADACHI, Noritaka; YAMAGUCHI, Daisuke; WATANABE, Akiyuki; MIURA, Narumi; SUNAGA, Seiji; OISHI, Hitoshi; HASHIMOTO, Michiko; OISHI, Takatsugu; IWAMOTO, Masaki; HANADA, Hirofumi; KUBO, Masanori; ONISHI, Akira

    2014-01-01

    The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production. PMID:24492641

  9. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  10. Beyond promiscuity: mate-choice commitments in social breeding

    PubMed Central

    Boomsma, Jacobus J.

    2013-01-01

    Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241

  11. Chemical and morphological characteristics of new clones and commercial varieties of globe artichoke (Cynara cardunculus var. scolymus).

    PubMed

    Pandino, Gaetano; Lombardo, Sara; Mauromicale, Giovanni

    2011-09-01

    The globe artichoke is a widely consumed vegetable in the Mediterranean Basin, with Italy being the leading producer. In southern Italy, its cultivation contributes to local economic stability and social development. The producers are increasingly choosing to replace autochthonous varieties, such as 'Violetto di Sicilia', with cultivars bred or selected outside of the region, putting pressure on the maintenance of traditional varieties. Here, we have undertaken a detailed morphological and chemical analysis of a group of clones selected from a population of 'Violetto di Sicilia'. All the traits measured displayed genetic variation, particularly the total content of phenolics and minerals. The capitula of the 'Violetto di Sicilia' clones contained, on average, 6.3 g kg(-1) of fresh weight total phenolics, compared with 4.5 g kg(-1) in the two commercial varieties. The clones also had more inulin than commercial varieties (254 vs. 225 g kg(-1) of dry matter), as well as a good mineral content. The set of clones is of interest in the context of the proposed improvement of the crop through breeding and selection of genotypes with high nutritional quality and a specific end-use (industrial processing or fresh consumption).

  12. Advanced Cloning Tools for Construction of Designer Cellulosomes.

    PubMed

    Kahn, Amaranta; Bayer, Edward A; Moraïs, Sarah

    2018-01-01

    Cellulose deconstruction is achieved in nature through two main enzymatic paradigms, i.e., free enzymes and enzymatic complexes (called cellulosomes). Gaining insights into the mechanism of action and synergy among the different cellulases is of high interest, notably in the field of renewable energy, and specifically, for the conversion of cellulosic biomass to soluble sugars, en route to biofuels. In this context, designer cellulosomes are artificially assembled, chimaeric protein complexes that are used as a tool to comparatively study cellulose degradation by different enzymatic paradigms, and could also serve to improve cellulose deconstruction. Various molecular biology techniques are employed in order to design and engineer the various components of designer cellulosomes. In this chapter, we describe the cloning processes through which the appropriate modules are selected and assembled at the molecular level.

  13. New phenotypes for new breeding goals in pigs.

    PubMed

    Merks, J W M; Mathur, P K; Knol, E F

    2012-04-01

    Pig breeders in the past have adopted their breeding goals according to the needs of the producers, processors and consumers and have made remarkable genetic improvements in the traits of interest. However, it is becoming more and more challenging to meet the market needs and expectations of consumers and in general of the citizens. In view of the current and future trends, the breeding goals have to include several additional traits and new phenotypes. These phenotypes include (a) vitality from birth to slaughter, (b) uniformity at different levels of production, (c) robustness, (d) welfare and health and (e) phenotypes to reduce carbon footprint. Advancements in management, genomics, statistical models and other technologies provide opportunities for recording these phenotypes. These new developments also provide opportunities for making effective use of the new phenotypes for faster genetic improvement to meet the newly adapted breeding goals.

  14. Marker-assisted selection in plant breeding for salinity tolerance.

    PubMed

    Ashraf, M; Akram, N A; Mehboob-Ur-Rahman; Foolad, M R

    2012-01-01

    Marker-assisted selection (MAS) is the process of using morphological, biochemical, or DNA markers as indirect selection criteria for selecting agriculturally important traits in crop breeding. This process is used to improve the effectiveness or efficiency of selection for the traits of interest in breeding programs. The significance of MAS as a tool for crop improvement has been extensively investigated in different crop -species and for different traits. The use of MAS for manipulating simple/qualitative traits is straightforward and has been well reported. However, MAS for the improvement of complex/polygenic traits, including plant tolerance/resistance to abiotic stresses, is more complicated, although its usefulness has been recognized. With the recent advances in marker technology, including high-throughput genotyping of plants, together with the development of nested association mapping populations, it is expected that the utility of MAS for breeding for stress tolerance traits will increase. In this chapter, we describe the basic procedure for using MAS in crop breeding for salt tolerance.

  15. Accuracies of genomically estimated breeding values from pure-breed and across-breed predictions in Australian beef cattle.

    PubMed

    Boerner, Vinzent; Johnston, David J; Tier, Bruce

    2014-10-24

    The major obstacles for the implementation of genomic selection in Australian beef cattle are the variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE) from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef cattle seed stock sector. PE derived by the Beef CRC from multi-breed and pure-breed training populations were applied to genotyped Angus, Limousin and Brahman sires and young animals, but with no pure-breed Limousin in the training population. The accuracy of the resulting GEBV was assessed by their genetic correlation to their phenotypic target trait in a bi-variate REML approach that models GEBV as trait observations. Accuracies of most GEBV for Angus and Brahman were between 0.1 and 0.4, with accuracies for abattoir carcass traits generally greater than for live animal body composition traits and reproduction traits. Estimated accuracies greater than 0.5 were only observed for Brahman abattoir carcass traits and for Angus carcass rib fat. Averaged across traits within breeds, accuracies of GEBV were highest when PE from the pooled across-breed training population were used. However, for the Angus and Brahman breeds the difference in accuracy from using pure-breed PE was small. For the Limousin breed no reasonable results could be achieved for any trait. Although accuracies were generally low compared to published accuracies estimated within breeds, they are in line with those derived in other multi-breed populations. Thus PE developed by the Beef CRC can contribute to the implementation of genomic selection in

  16. Cloning and characterization of the canine receptor for advanced glycation end products.

    PubMed

    Murua Escobar, Hugo; Soller, Jan T; Sterenczak, Katharina A; Sperveslage, Jan D; Schlueter, Claudia; Burchardt, Birgit; Eberle, Nina; Fork, Melanie; Nimzyk, Rolf; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2006-03-15

    Metastasis is one of the major problems when dealing with malignant neoplasias. Accordingly, the finding of molecular targets, which can be addressed to reduce tumour metastasising, will have significant impact on the development of new therapeutic approaches. Recently, the receptor for advanced glycation end products (RAGE)-high mobility group B1 (HMGB1) protein complex has been shown to have significant influence on invasiveness, growth and motility of tumour cells, which are essential characteristics required for metastatic behaviour. A set of in vitro and in vivo approaches showed that blocking of this complex resulted in drastic suppression of tumour cell growth. Due to the similarities of human and canine cancer the dog has joined the common rodent animal model for therapeutic and preclinical studies. However, complete characterisation of the protein complex is a precondition to a therapeutic approach based on the blocking of the RAGE-HMGB1 complex to spontaneously occurring tumours in dogs. We recently characterised the canine HMGB1 gene and protein completely. Here we present the complete characterisation of the canine RAGE gene including its 1384 bp mRNA, the 1215 bp protein coding sequence, the 2835 bp genomic structure, chromosomal localisation, gene expression pattern, and its 404 amino acid protein. Furthermore we compared the CDS of six different canine breeds and screened them for single nucleotide polymorphisms.

  17. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    PubMed Central

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  18. Climate change and bird reproduction: warmer springs benefit breeding success in boreal forest grouse.

    PubMed

    Wegge, Per; Rolstad, Jørund

    2017-11-15

    Global warming is predicted to adversely affect the reproduction of birds, especially in northern latitudes. A recent study in Finland inferred that declining populations of black grouse, Tetrao tetrix , could be attributed to advancement of the time of mating and chicks hatching too early-supporting the mismatch hypothesis. Here, we examine the breeding success of sympatric capercaillie, T. urogallus, and black grouse over a 38-year period in southeast Norway. Breeding season temperatures increased, being most pronounced in April. Although the onset of spring advanced nearly three weeks, the peak of mating advanced only 4-5 days. In contrast to the result of the Finnish study, breeding success increased markedly in both species (capercaillie: 62%, black grouse: 38%). Both brood frequency and brood size increased during the study period, but significantly so only for brood frequency in capercaillie. Whereas the frequency of capercaillie broods was positively affected by rising temperatures, especially during the pre-hatching period, this was not the case in black grouse. Brood size, on the other hand, increased with increasing post-hatching temperatures in both species. Contrary to the prediction that global warming will adversely affect reproduction in boreal forest grouse, our study shows that breeding success was enhanced in warmer springs. © 2017 The Authors.

  19. Genetic data analysis for plant and animal breeding

    USDA-ARS?s Scientific Manuscript database

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  20. Numerous clones resistant to Phytophthora palmivora in the "Guiana" genetic group of Theobroma cacao L.

    PubMed

    Thevenin, Jean-Marc; Rossi, Vivien; Ducamp, Michel; Doare, Fabien; Condina, Virgile; Lachenaud, Philippe

    2012-01-01

    Cocoa black pod rot, a disease caused by Stramenopiles of the genus Phytophthora, and particularly by the pan-tropical species P. palmivora, causes serious production losses worldwide. In order to reduce the impact of these pests and diseases, preference is given to genetic control using resistant varieties and, to that end, breeders seek sources of resistance in wild cocoa trees. For instance, surveys of spontaneous cocoa trees in French Guiana between 1985 and 1995 led to the collection of abundant plant material forming a particular genetic group (the "Guiana" group). Following numerous one-off studies demonstrating the merits of this group as a source of resistance to Phytophthora, this article presents the results of a comprehensive study assessing the resistance of 186 "Guiana" clones in relation to the Guianan strain (GY 27) of P. palmivora. This study, undertaken in French Guiana, using an efficient methodology (ten series of tests and a statistical test adapted to the ordinal nature of the data) confirmed that the "Guiana" genetic group does indeed constitute an important source of resistance to P. palmivora, though with some variations depending on the demes of origin. Numerous clones (59) proved to be as resistant as the SCAVINA 6 resistance control, whilst nine were statistically more resistant. The "Resistant" and "Moderately Resistant" Guianan clones totalled 108 (58% of the total tested). Some of the clones more resistant than SCAVINA 6 could be incorporated into numerous cocoa breeding programmes, particularly those that also display other notable qualities. The same applies for numerous other clones equivalent to SCAVINA 6, especially the "elite"' clones GU 134-B, GU 139-A and GU 285-A.

  1. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    PubMed

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Expansion of the Gateway MultiSite Recombination Cloning Toolkit

    PubMed Central

    Shearin, Harold K.; Dvarishkis, Alisa R.; Kozeluh, Craig D.; Stowers, R. Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters. PMID:24204935

  3. The U.S. Food and Drug Administration should solidify the legal basis for its authority over reproductive cloning.

    PubMed

    Siegel, Bernard; Friede, Arnold I

    2013-12-01

    The promise and potential of stem cell research is apparent. However, ethical questions still linger. There is as yet no consensus in the U.S. Congress on how to address the issue of reproductive cloning and media confusion of this and the quite separate issue of therapeutic cloning inhibits therapeutic advance. This paper outlines the need for the FDA to undertake a deliberate process, with input from all stakeholders, to authoritatively establish its jurisdiction over human reproductive cloning so as to foster the life-saving potential of therapeutic cloning.

  4. Genetic basis for using Tradescantia clone 4430 as an environmental monitor of mutagens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmerling-Thompson, M.; Nawrocky, M.M.

    1980-01-01

    The Tradescantia stamen hair system developed by the late Dr. Arnold H. Sparrow has been used in a wide variety of radiobiological studies, and more recently as an environmental monitor for assessing the potential genetic hazards of various gaseous chemicals of both industrial and natural origin. The use of this system as a genetic monitor necessitates a thorough genetic analysis of the marker employed to measure mutagenicity. The phenotypic change in color from blue to pink in either petal or stamen hair cells has been used as a genetic marker under the assumption that the petal and stamen hair cellsmore » are heterozygous for blue, and if the dominant allele for blue color mutates or is lost, the recessive allele determines that the daughter cells will be pink. It is the purpose of this communication to present the results of genetic tests by conventional breeding methods involving the pink locus in Tradescantia clone 4430, the diploid clone used exclusively in the Mobile Monitoring Vehicle at Brookhaven National Laboratory. Confirmation of a genetic, as opposed to a physiological, origin of the pink color in the petal and stamen hair cells of Tradescantia clone 4430 is essential to evaluating the validity of this test system.« less

  5. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding.

    PubMed

    Zhou, Degui; Chen, Wei; Lin, Zechuan; Chen, Haodong; Wang, Chongrong; Li, Hong; Yu, Renbo; Zhang, Fengyun; Zhen, Gang; Yi, Junliang; Li, Kanghuo; Liu, Yaoguang; Terzaghi, William; Tang, Xiaoyan; He, Hang; Zhou, Shaochuan; Deng, Xing Wang

    2016-02-01

    Analyses of genome variations with high-throughput assays have improved our understanding of genetic basis of crop domestication and identified the selected genome regions, but little is known about that of modern breeding, which has limited the usefulness of massive elite cultivars in further breeding. Here we deploy pedigree-based analysis of an elite rice, Huanghuazhan, to exploit key genome regions during its breeding. The cultivars in the pedigree were resequenced with 7.6× depth on average, and 2.1 million high-quality single nucleotide polymorphisms (SNPs) were obtained. Tracing the derivation of genome blocks with pedigree and information on SNPs revealed the chromosomal recombination during breeding, which showed that 26.22% of Huanghuazhan genome are strictly conserved key regions. These major effect regions were further supported by a QTL mapping of 260 recombinant inbred lines derived from the cross of Huanghuazhan and a very dissimilar cultivar, Shuanggui 36, and by the genome profile of eight cultivars and 36 elite lines derived from Huanghuazhan. Hitting these regions with the cloned genes revealed they include numbers of key genes, which were then applied to demonstrate how Huanghuazhan were bred after 30 years of effort and to dissect the deficiency of artificial selection. We concluded the regions are helpful to the further breeding based on this pedigree and performing breeding by design. Our study provides genetic dissection of modern rice breeding and sheds new light on how to perform genomewide breeding by design. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Genomic selection in sugar beet breeding populations

    PubMed Central

    2013-01-01

    Background Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. Results We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. Conclusions The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding. PMID:24047500

  7. Genomic selection in sugar beet breeding populations.

    PubMed

    Würschum, Tobias; Reif, Jochen C; Kraft, Thomas; Janssen, Geert; Zhao, Yusheng

    2013-09-18

    Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.

  8. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow.

    PubMed

    Salamone, Daniel; Barañao, Lino; Santos, Claudio; Bussmann, Leonardo; Artuso, Jorge; Werning, Carlos; Prync, Aida; Carbonetto, Cesar; Dabsys, Susana; Munar, Carlos; Salaberry, Roberto; Berra, Guillermo; Berra, Ignacio; Fernández, Nahuel; Papouchado, Mariana; Foti, Marcelo; Judewicz, Norberto; Mujica, Ignacio; Muñoz, Luciana; Alvarez, Silvina Fenández; González, Eliseo; Zimmermann, Juan; Criscuolo, Marcelo; Melo, Carlos

    2006-07-13

    Transgenic farm animals have been proposed as an alternative to current bioreactors for large scale production of biopharmaceuticals. However, the efficiency of both methods in the production of the same protein has not yet been established. Here we report the production of recombinant human growth hormone (hGH) in the milk of a cloned transgenic cow at levels of up to 5 g l(-1). The hormone is identical to that currently produced by expression in E. coli. In addition, the hematological and somatometric parameters of the cloned transgenic cow are within the normal range for the breed and it is fertile and capable of producing normal offspring. These results demonstrate that transgenic cattle can be used as a cost-effective alternative for the production of this hormone.

  9. The global governance of human cloning: the case of UNESCO.

    PubMed

    Langlois, Adèle

    2017-03-21

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting "all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life". It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO's Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance.

  10. The global governance of human cloning: the case of UNESCO

    PubMed Central

    Langlois, Adèle

    2017-01-01

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting “all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life”. It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO’s Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance. PMID:28382210

  11. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds.

    PubMed

    Oberbauer, A M; Keller, G G; Famula, T R

    2017-01-01

    Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970-2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection

  12. Sexual maturation and fertility of male Nigerian Dwarf goat (Capra hircus) clones produced by somatic cell nuclear transfer.

    PubMed

    Gauthier, M; Pierson, J; Drolet, M; Bhatia, B; Baldassarre, H; Keefer, C L

    2001-01-01

    Three, genetically identical, Nigerian Dwarf bucks produced by somatic cell nuclear transfer (NT) of fetal fibroblasts were monitored for sexual maturation and fertility. Starting at four months of age, these male clones were trained to serve an artificial vagina (AV). Average age of the NT-derived bucks at first semen collection was 20 weeks, which was not different from that of other young bucks of this breed (average age at first collection = 20 weeks). Average sperm production at 5 months of age for the NT-derived bucks was 5.0 x 10(8) spermatozoa, which was comparable to that of dwarf bucks of similar age (3.4 x 10(8) spermatozoa). At seven months of age, semen collected from two NT-derived bucks was used to artificially inseminate six females (three does per buck). Five does were confirmed pregnant by ultrasound at day 42. Nine healthy kids, four males and five females, were born in March and April 2000. Viable spermatozoa were collected from one of the F1 males at 28 weeks of age. These results demonstrated that NT-derived bucks and one of their male offspring developed sexually within the normal timeframe for their breed and that the clones were fertile.

  13. Why Clone?

    MedlinePlus

    ... have been cloned already, including two relatives of cattle called the guar and the banteng, mouflon sheep, ... are underway to clone agricultural animals, such as cattle and pigs, that are efficient producers of high- ...

  14. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.

    PubMed

    McDermott, Molly E; DeGroote, Lucas W

    2016-10-01

    Climate change is influencing bird phenology worldwide, but we still lack information on how many species are responding over long temporal periods. We assessed how climate affected passerine reproductive timing and productivity at a constant effort mist-netting station in western Pennsylvania using a model comparison approach. Several lines of evidence point to the sensitivity of 21 breeding passerines to climate change over five decades. The trends for temperature and precipitation over 53 years were slightly positive due to intraseasonal variation, with the greatest temperature increases and precipitation declines in early spring. Regardless of broodedness, migration distance, or breeding season, 13 species hatched young earlier over time with most advancing >3 days per decade. Warm springs were associated with earlier captures of juveniles for 14 species, ranging from 1- to 3-day advancement for every 1 °C increase. This timing was less likely to be influenced by spring precipitation; nevertheless, higher rainfall was usually associated with later appearance of juveniles and breeding condition in females. Temperature and precipitation were positively related to productivity for seven and eleven species, respectively, with negative relations evident for six and eight species. We found that birds fledged young earlier with increasing spring temperatures, potentially benefiting some multibrooded species. Indeed, some extended the duration of breeding in these warm years. Yet, a few species fledged fewer juveniles in warmer and wetter seasons, indicating that expected future increases could be detrimental to locally breeding populations. Although there were no clear relationships between life history traits and breeding phenology, species-specific responses to climate found in our study provide novel insights into phenological flexibility in songbirds. Our research underscores the value of long-term monitoring studies and the importance of continuing constant

  15. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    PubMed

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  16. Generating an Open Reading Frame (ORF) Entry Clone and Destination Clone.

    PubMed

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    This protocol describes using the Gateway recombinatorial cloning system to create an Entry clone carrying an open reading frame (ORF) and then to transfer the ORF into a Destination vector. In this example, BP recombination is used to clone an ORF from a cDNA source into the Donor vector pDONR 221. The ORF from the resulting Entry clone is then transferred into the Destination vector pDEST-15; the product (the Destination clone) will express the ORF as an amino-terminal GST-fusion. The technique can be used as a guide for cloning any other DNA fragment of interest-a promoter sequence or 3' untranslated region (UTR), for example-with substitutions of different genetic material such as genomic DNA, att sites, and vectors as required. The series of constructions and transformations requires 9-15 d, not including time that may be required for sequence confirmation, if desired/necessary. © 2018 Cold Spring Harbor Laboratory Press.

  17. Cloning and Characterization of a Critical Regulator for Preharvest Sprouting in Wheat

    PubMed Central

    Liu, Shubing; Sehgal, Sunish K.; Li, Jiarui; Lin, Meng; Trick, Harold N.; Yu, Jianming; Gill, Bikram S.; Bai, Guihua

    2013-01-01

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production. PMID:23821595

  18. Genome Mapping and Molecular Breeding of Tomato

    PubMed Central

    Foolad, Majid R.

    2007-01-01

    The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989

  19. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Quick and clean cloning.

    PubMed

    Thieme, Frank; Marillonnet, Sylvestre

    2014-01-01

    Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.

  1. Ethical issues in animal cloning.

    PubMed

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  2. "Boldness" in the domestic dog differs among breeds and breed groups.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, p<0.001), as did breed group (F=10.66, numDF=8, denDF=772, p<0.001). Herding and gundog groups were broken into sub-groups based on historic breed purpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; p<0.001), and tending and loose-eyed herding breeds were bolder than heading and cattle-herding breeds (Reg. Coef.=1.744; S.E.=0.866; p=0.045 and Reg. Coef.=1.842; S.E.=0.693; p=0.0084, respectively). This study supports the existence of the shy-bold continuum in dogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  4. Universality of clone dynamics during tissue development

    NASA Astrophysics Data System (ADS)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  5. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  6. Reverse breeding: a novel breeding approach based on engineered meiosis.

    PubMed

    Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik

    2009-12-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome.

  7. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird

    PubMed Central

    Soukup, Sheryl Swartz; Drilling, Nancy E.; Eckerle, Kevin P.; Sakaluk, Scott K.; Thompson, Charles F.

    2016-01-01

    Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. PMID:27859132

  8. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops

    PubMed Central

    van Nocker, Steve; Gardiner, Susan E

    2014-01-01

    Woody perennial plants, including trees that produce fruits and nuts of horticultural value, typically have long breeding cycles, and development and introduction of improved cultivars by plant breeders may require many breeding cycles and dozens of years. However, recent advances in biotechnologies and genomics have the potential to accelerate cultivar development greatly in all crops. This mini-review summarizes approaches to reduce the number and the duration of breeding cycles for horticultural tree crops, and outlines the challenges that remain to implement these into efficient breeding pipelines. PMID:26504538

  9. The topsy-turvy cloning law.

    PubMed

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  10. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…

  11. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P<0.0001) and in non-cloned control pigs (r=0.9, P<0.0001). Shannon Weaver and principal component analysis (PCA) of the terminal restriction fragments (T-RFs) revealed no differences in the bacterial composition or variability of the fecal microbiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; P<0.02) and non cloned-control pigs (r=0.45; P<0.006), and negatively with the abundance of Bacteroidetes in cloned pigs (r=-0.33, P<0.04), but not in the non-cloned control pigs. The cloned pigs did not have reduced inter-individual variation as compared to non-cloned pigs in regard to their gut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an

  12. Reverse breeding: a novel breeding approach based on engineered meiosis

    PubMed Central

    Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik

    2009-01-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome. PMID:19811618

  13. Differences during the first lactation between cows cloned by somatic cell nuclear transfer and noncloned cows.

    PubMed

    Montazer-Torbati, F; Boutinaud, M; Brun, N; Richard, C; Neveu, A; Jaffrézic, F; Laloë, D; LeBourhis, D; Nguyen, M; Chadi, S; Jammes, H; Renard, J-P; Chat, S; Boukadiri, A; Devinoy, E

    2016-06-01

    Lactation performance is dependent on both the genetic characteristics and the environmental conditions surrounding lactating cows. However, individual variations can still be observed within a given breed under similar environmental conditions. The role of the environment between birth and lactation could be better appreciated in cloned cows, which are presumed to be genetically identical, but differences in lactation performance between cloned and noncloned cows first need to be clearly evaluated. Conflicting results have been described in the literature, so our aim was to clarify this situation. Nine cloned Prim' Holstein cows were produced by the transfer of nuclei from a single fibroblast cell line after cell fusion with enucleated oocytes. The cloned cows and 9 noncloned counterparts were raised under similar conditions. Milk production and composition were recorded monthly from calving until 200d in milk. At 67d in milk, biopsies were sampled from the rear quarter of the udder, their mammary epithelial cell content was evaluated, and mammary cell renewal, RNA, and DNA were then analyzed in relevant samples. The results showed that milk production did not differ significantly between cloned and noncloned cows, but milk protein and fat contents were less variable in cloned cows. Furthermore, milk fat yield and contents were lower in cloned cows during early lactation. At around 67 DIM, milk fat and protein yields, as well as milk fat, protein, and lactose contents, were also lower in cloned cows. These lower yields could be linked to the higher apoptotic rate observed in cloned cows. Apoptosis is triggered by insulin-like factor growth binding protein 5 (IGFBP5) and plasminogen activator inhibitor (PAI), which both interact with CSN1S2. During our experiments, CSN1S2 transcript levels were lower in the mammary gland of cloned cows. The mammary cell apoptotic rate observed in cloned cows may have been related to the higher levels of DNA (cytosine-5

  14. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds

    PubMed Central

    Keller, G. G.; Famula, T. R.

    2017-01-01

    Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into

  15. Rapid one-step recombinational cloning

    PubMed Central

    Fu, Changlin; Wehr, Daniel R.; Edwards, Janice; Hauge, Brian

    2008-01-01

    As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning. PMID:18424799

  16. Post-mortem re-cloning of a transgenic red fluorescent protein dog.

    PubMed

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun

    2011-12-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.

  17. Post-mortem re-cloning of a transgenic red fluorescent protein dog

    PubMed Central

    Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo

    2011-01-01

    Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification. PMID:22122908

  18. Comparison of molecular breeding values based on within- and across-breed training in beef cattle.

    PubMed

    Kachman, Stephen D; Spangler, Matthew L; Bennett, Gary L; Hanford, Kathryn J; Kuehn, Larry A; Snelling, Warren M; Thallman, R Mark; Saatchi, Mahdi; Garrick, Dorian J; Schnabel, Robert D; Taylor, Jeremy F; Pollak, E John

    2013-08-16

    Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained

  19. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    PubMed Central

    2013-01-01

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Methods Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. Results With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Conclusions Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training

  20. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Development of basic technologies for improvement of breeding and cultivation of Japanese gentian

    PubMed Central

    Nishihara, Masahiro; Tasaki, Keisuke; Sasaki, Nobuhiro; Takahashi, Hideyuki

    2018-01-01

    Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians. PMID:29681744

  2. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  3. [Nuclear transfer and therapeutic cloning].

    PubMed

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  4. Advancing breeding phenology does not affect incubation schedules in chestnut-crowned babblers: Opposing effects of temperature and wind.

    PubMed

    Capp, Elliot; Liebl, Andrea L; Cones, Alexandra G; Russell, Andrew F

    2018-01-01

    Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler ( Pomatostomus ruficeps ), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

  5. Sugars in peach fruit: a breeding perspective

    PubMed Central

    Cirilli, Marco; Bassi, Daniele; Ciacciulli, Angelo

    2016-01-01

    The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in ‘omics’ sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders. PMID:26816618

  6. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    PubMed Central

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  7. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    USDA-ARS?s Scientific Manuscript database

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  8. Effect of lignin content and subunit composition on digestibility in clones of timothy (Phleum pratense L.).

    PubMed

    Kärkönen, Anna; Tapanila, Tarja; Laakso, Tapio; Seppänen, Mervi M; Isolahti, Mika; Hyrkäs, Maarit; Virkajärvi, Perttu; Saranpää, Pekka

    2014-07-02

    Lignin amount and subunit composition were analyzed from stems and leaf sheaths of timothy (Phleum pratense L.) clones of different in vitro digestibility. Lignin concentration in stems and leaf sheaths was higher in clones of low digestibility than those of high digestibility. No change in lignin concentration occurred in stems as digestibility decreased. Intriguingly, the lignin concentration was lower and the syringyl/guaiacyl (S/G) ratio was higher in stems compared to leaf sheaths at all developmental stages studied. The developmental-associated decrease in digestibility correlated with the increase in S units in lignin in stems and leaf sheaths and in the amounts of p-coumaric acid and ferulic acid residues in the cell wall of stems. Yields of copper oxidation products increased in stems during maturation indicating qualitative changes in the lignin structure. This correlated strongly with the developmentally linked decrease in digestibility. The information obtained is valuable for breeding and for DNA marker development.

  9. Ethical issues in livestock cloning.

    PubMed

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity.

  10. Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts.

    PubMed

    Jónás, D; Ducrocq, V; Fritz, S; Baur, A; Sanchez, M-P; Croiseau, P

    2017-02-01

    An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5-11% more accurate than a pedigree-based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single-breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation. © 2016 Blackwell Verlag GmbH.

  11. [Human cloning or cannibalism].

    PubMed

    Sokolowski, L M

    2001-01-01

    In this article I develop the idea presented in my previous work that human cloning would be of little practical use since almost any aim that one would like to attain by multiple cloning of a concrete man or a group of people, are unattainable or it might be achieved by easier, cheaper and more efficient traditional methods. For this reason cloning of a man is unlikely to occur on a larger scale and only few people will decide to clone themselves. In this sense no social effects of human cloning will be disastrous for the human population. Yet investigations in human genetics are very important since they may provide medical applications far more important than human cloning. It is argued that the main trend of modern medicine: organ transplantation from an alien donor, will become socially dangerous in near future since the number of donors will be drastically smaller than the number of potential patients waiting for transplantations. This in turn may cause social conflicts and a form of medical cannibalism may arise. These problems and conflicts will be avoided if organ transplantation from an alien donor is replaced by organ cloning, i.e. by transplanting an organ developed from the patient.

  12. Gametic embryogenesis and haploid technology as valuable support to plant breeding.

    PubMed

    Germanà, Maria Antonietta

    2011-05-01

    Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders' search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.

  13. Recombination-assisted megaprimer (RAM) cloning

    PubMed Central

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  14. Human cloning and child welfare.

    PubMed Central

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  15. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops.

    PubMed

    Bohra, Abhishek; Jha, Uday C; Adhimoolam, Premkumar; Bisht, Deepak; Singh, Narendra P

    2016-05-01

    A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

  16. Social behavior and kin discrimination in a mixed group of cloned and non cloned heifers (Bos taurus).

    PubMed

    Coulon, M; Baudoin, C; Abdi, H; Heyman, Y; Deputte, B L

    2010-12-01

    For more than ten years, reproductive biotechnologies using somatic cell nuclear transfer have made possible the production of cloned animals in various domestic and laboratory species. The influence of the cloning process on offspring characteristics has been studied in various developmental aspects, however, it has not yet been documented in detail for behavioral traits. Behavioral studies of cloned animals have failed to show clear inter-individual differences associated with the cloning process. Preliminary results showed that clones favor each other's company. Preferential social interactions were observed among cloned heifers from the same donor in a mixed herd that also included cloned heifers and control heifers produced by artificial insemination (AI). These results suggest behavioral differences between cloned and non-cloned animals and similarities between clones from the same donor. The aim of the present study was to replicate and to extend these previous results and to study behavioral and cognitive mechanisms of this preferential grouping. We studied a group composed of five cloned heifers derived from the same donor cow, two cloned heifers derived from another donor cow, and AI heifers. Cloned heifers from the same donor were more spatially associated and interacted more between themselves than with heifers derived from another donor or with the AI individuals. This pattern indicates a possible kin discrimination in clones. To study this process, we performed an experiment (using an instrumental conditioning procedure with food reward) of visual discrimination between images of heads of familiar heifers, either related to the subjects or not. The results showed that all subjects (AI and cloned heifers) discriminated between images of familiar cloned heifers produced from the same donor and images of familiar unrelated heifers. Cattle discriminated well between images and used morphological similarities characteristic of cloned related heifers. Our

  17. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. Copyright © 2010 Wiley Periodicals, Inc.

  18. Optimally cloned binary coherent states

    NASA Astrophysics Data System (ADS)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  19. Three concepts of cloning in human beings.

    PubMed

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  20. A simple language to script and simulate breeding schemes: the breeding scheme language

    USDA-ARS?s Scientific Manuscript database

    It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...

  1. Breeding for plant heat tolerance at vegetative and reproductive stages.

    PubMed

    Driedonks, Nicky; Rieu, Ivo; Vriezen, Wim H

    2016-06-01

    Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

  2. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students.

    PubMed

    Campbell, A Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. © 2014 A. M. Campbell et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Domain selection combined with improved cloning strategy for high throughput expression of higher eukaryotic proteins

    PubMed Central

    Chen, Yunjia; Qiu, Shihong; Luan, Chi-Hao; Luo, Ming

    2007-01-01

    Background Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. Results With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. Conclusion The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics. PMID:17663785

  4. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  5. Miniaturized GPS Tags Identify Non-breeding Territories of a Small Breeding Migratory Songbird.

    PubMed

    Hallworth, Michael T; Marra, Peter P

    2015-06-09

    For the first time, we use a small archival global positioning system (GPS) tag to identify and characterize non-breeding territories, quantify migratory connectivity, and identify population boundaries of Ovenbirds (Seiurus aurocapilla), a small migratory songbird, captured at two widely separated breeding locations. We recovered 15 (31%) GPS tags with data and located the non-breeding territories of breeding Ovenbirds from Maryland and New Hampshire, USA (0.50 ± 0.15 ha, mean ± SE). All non-breeding territories had similar environmental attributes despite being distributed across parts of Florida, Cuba and Hispaniola. New Hampshire and Maryland breeding populations had non-overlapping non-breeding population boundaries that encompassed 114,803 and 169,233 km(2), respectively. Archival GPS tags provided unprecedented pinpoint locations and associated environmental information of tropical non-breeding territories. This technology is an important step forward in understanding seasonal interactions and ultimately population dynamics of populations throughout the annual cycle.

  6. Lessons learned from cloning dogs.

    PubMed

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals. © 2012 Blackwell Verlag GmbH.

  7. Consumers' attitudes toward consumption of cloned beef. The impact of exposure to technological information about animal cloning.

    PubMed

    Aizaki, Hideo; Sawada, Manabu; Sato, Kazuo

    2011-10-01

    Novel food technologies, such as cloning, have been introduced into the meat production sector; however, their use is not widely supported by many consumers. This study was designed to assess whether Japanese consumers' attitudes toward consumption of cloned beef (specifically, beef derived from bovine embryo and somatic cell-cloned cattle) would change after they were provided with technological information on animal cloning through a web-based survey. The results revealed that most respondents did not discriminate between their attitudes toward the consumption of the two types of cloned beef, and that most respondents did not change their attitudes toward cloned beef after receiving the technological information. The respondents' individual characteristics, including their knowledge about the food safety of cloned beef and their basic knowledge about animal cloning, influenced the likelihood of a change in their attitudes after they received the information. In conclusion, some consumers might become less uncomfortable about the consumption of cloned beef by the straightforward provision of technological information about animal cloning; however, most consumers are likely to maintain their attitudes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Atlantic salmon brood stock management and breeding handbook

    USGS Publications Warehouse

    Kincaid, Harold L.; Stanley, Jon G.

    1989-01-01

    Anadromus runs of Atlantic salmon have been restored to the Connecticut, Merrimack, Pawcatuck, Penobscot, and St. Croix rivers in New England by the stocking of more than 8 million smolts since 1948. Fish-breeding methods have been developed that minimize inbreeding and domestication and enhance natural selection. Methods are available to advance the maturation of brood stock, control the sex of production lots and store gametes. Current hatchery practices emphasize the use of sea-run brood stock trapped upon return to the rivers and a limited number of captive brood stock and rejuvenated kelts. Fish are allowed to mature naturally, after which they are spawned and incubated artificially. Generally, 1-year smolts are produced, and excess fish are stocked as fry in headwater streams. Smolts are stocked during periods of rising water in spring. Self-release pools are planned that enable smolts to choose the emigration time. Culturists keep good records that permit evaluation of the performance of strains and the effects of breeding practices. As Atlantic salmon populations expand, culturists must use sound breeding methods that enhance biotic potential while maintaining genetic diversity and protecting unique gene pools.

  9. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.

    PubMed

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Stability and broad-sense heritability of mineral content in potato: Iron

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency in humans occurs in all regions of the world. Potatoes are a modest source of iron. The purpose of this study was to determine if genetic variation for potato tuber iron content exists. Iron content in potato was measured in 33 clones, including varieties and advanced breeding sele...

  11. Pedigree and herd characterization of a donkey breed vulnerable to extinction.

    PubMed

    Quaresma, M; Martins, A M F; Rodrigues, J B; Colaço, J; Payan-Carreira, R

    2014-03-01

    Most donkey and local horse breeds are vulnerable to extinction as mechanization of agriculture progress throughout the world. The present study analyzed the pedigree and herd records of the donkey Asinina de Miranda breed (RAM), identifying genealogical and human factors that may affect the breed genetic diversity in the future and suggesting suitable strategies to breed preservation, early on the conservation program. The breeding rate was very low, with a ratio of foaling/live animals of 0.23 (178/760). The estimated number of founders and ancestors contributing to the reference population was 128 and 121. The number of founder herds in the reference population was 64, with an effective number of founder herds for the reference population of 7.6. The mean age of herd owners was 65.50 ± 0.884 years, with a negative association among the herd size and owner's age (P<0.001). In contrast, the size of the herd and the ownership of a male were both positively associated (P<0.001) with the herd number of in-born foals. Both the owners' age and the herd location (RAM home region v. dispersal region) were negatively associated with the foaling number (P<0.001). The main identified risk factors were: low breeding rates; low number of males and their unequal contribution to the genetic pool; unequal contribution of the herds to genetic pool; and advanced age of herd owners.

  12. Breeding potential of elite Pee Dee germplasm in Upland cotton breeding programs

    USDA-ARS?s Scientific Manuscript database

    Successful plant breeding programs begin with parental line selection. Effective parental line selection is facilitated when the breeding potential of candidate parental lines is known. Using topcross families involving germplasm representing eight US public cotton breeding programs, we evaluated th...

  13. Cloning, killing, and identity.

    PubMed Central

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  14. Twins: A cloning experience.

    PubMed

    Prainsack, Barbara; Spector, Tim D

    2006-11-01

    Drawing upon qualitative interviews with monozygotic (identical) twins sharing 100% of their genes, and with dizygotic (fraternal) twins and singletons as control groups, this paper explores what it means to be genetically identical. (The twins interviewed were from the TwinsUK register in London.) In the context of the ongoing debate on human reproductive cloning, it examines questions such as: To what extent do identical twins perceive their emotional and physical bond to be a result of their genetic makeup? What would they think if they had been deliberately created genetically identical? How would they feel about being genetically identical to a person who was born a few years earlier or later? First, our respondents ascribed no great significance to the role of genes in their understanding of what it means to be identical twins. Second, the opinion that human reproductive cloning would "interfere with nature", or "contradict God's will", was expressed by our respondents exclusively on the abstract level. The more our respondents were able to relate a particular invented cloning scenario to their own life-worlds, the lower the prevalence of the argument. Third, for all three groups of respondents, the scenario of having been born in one of the other groups was perceived as strange. Fourth, the aspect that our respondents disliked about cloning scenarios was the potential motives of the cloners. Without equating monozygotic twins directly with "clones", these results from "naturally" genetically identical individuals add a new dimension to what a future cloning situation could entail: The cloned person might possibly (a) perceive a close physical and emotional connection to the progenitor as a blessing; (b) suffer from preconceptions of people who regard physical likeness as a sign of incomplete individuality; and (c) perceive the idea of not having been born a clone of a particular person as unpleasant.

  15. Interspecific reciprocity explains mobbing behaviour of the breeding chaffinches, Fringilla coelebs.

    PubMed

    Krams, Indrikis; Krama, Tatjana

    2002-11-22

    When prey animals discover a predator close by, they mob it while uttering characteristic sounds that attract other prey individuals to the vicinity. Mobbing causes a predator to vacate its immediate foraging area, which gives an opportunity for prey individuals to continue their interrupted daily activity. Besides the increased benefits, mobbing behaviour also has its costs owing to injuries or death. The initiator of mobbing may be at increased risk of predation by attracting the predator's attention, especially if not joined by other neighbouring prey individuals. Communities of breeding birds have always been considered as temporal aggregations. Since an altruist could not prevent cheaters from exploiting its altruism in an anonymous community, this excluded any possibility of explaining mobbing behaviour in terms of reciprocal altruism. However, sedentary birds may have become acquainted since the previous non-breeding season. Migrant birds, forming anonymous communities at the beginning of the breeding season, may also develop closer social ties during the course of the breeding season. We tested whether a male chaffinch, a migrant bird, would initiate active harassment of a predator both at the beginning of the breeding season and a week later when it has become a member of a non-anonymous multi-species aggregation of sedentary birds. We expected that male chaffinches would be less likely to initiate a mob at the beginning of the breeding season when part of an anonymous multi-species aggregation of migratory birds. However, their mobbing activity should increase as the breeding season advances. Our results support these predictions. Cooperation among individuals belonging to different species in driving the predator away may be explained as interspecific reciprocity based on interspecific recognition and temporal stability of the breeding communities.

  16. Interspecific reciprocity explains mobbing behaviour of the breeding chaffinches, Fringilla coelebs.

    PubMed Central

    Krams, Indrikis; Krama, Tatjana

    2002-01-01

    When prey animals discover a predator close by, they mob it while uttering characteristic sounds that attract other prey individuals to the vicinity. Mobbing causes a predator to vacate its immediate foraging area, which gives an opportunity for prey individuals to continue their interrupted daily activity. Besides the increased benefits, mobbing behaviour also has its costs owing to injuries or death. The initiator of mobbing may be at increased risk of predation by attracting the predator's attention, especially if not joined by other neighbouring prey individuals. Communities of breeding birds have always been considered as temporal aggregations. Since an altruist could not prevent cheaters from exploiting its altruism in an anonymous community, this excluded any possibility of explaining mobbing behaviour in terms of reciprocal altruism. However, sedentary birds may have become acquainted since the previous non-breeding season. Migrant birds, forming anonymous communities at the beginning of the breeding season, may also develop closer social ties during the course of the breeding season. We tested whether a male chaffinch, a migrant bird, would initiate active harassment of a predator both at the beginning of the breeding season and a week later when it has become a member of a non-anonymous multi-species aggregation of sedentary birds. We expected that male chaffinches would be less likely to initiate a mob at the beginning of the breeding season when part of an anonymous multi-species aggregation of migratory birds. However, their mobbing activity should increase as the breeding season advances. Our results support these predictions. Cooperation among individuals belonging to different species in driving the predator away may be explained as interspecific reciprocity based on interspecific recognition and temporal stability of the breeding communities. PMID:12495502

  17. Breed-specific reference intervals for assessing thyroid function in seven dog breeds.

    PubMed

    Hegstad-Davies, Rebecca L; Torres, Sheila M F; Sharkey, Leslie C; Gresch, Sarah C; Muñoz-Zanzi, Claudia A; Davies, Peter R

    2015-11-01

    Thyroxine (T4), free T4 (FT4), and thyrotropin (TSH) concentrations were measured in serum from 693 healthy representatives from 7 dog breeds (Alaskan Malamute, Collie, English Setter, Golden Retriever, Keeshond, Samoyed, or Siberian Husky) to determine whether breed-specific reference intervals (RIs) are warranted. Veterinarians reviewed the health history, performed a physical examination, and approved laboratory data for the enrolled dogs. Many purebred dogs had T4 and FT4 concentrations that were at, or below, the lower limits previously determined for non-breed-specific RIs. Mean concentrations of T4, FT4, and TSH varied significantly among breeds. The range of mean concentration of T4 (19.7 nmol/L [1.53 µg/dL] in English Setters to 29.0 nmol/L [2.25 µg/dL] in Keeshonds) and FT4 (12.6 pmol/L [0.98 ng/dL] in English Setters to 20.2 pmol/L [1.57 ng/dL] in Samoyeds) was considerable. Median TSH values ranged from 6.10 mIU/L (0.07 ng/mL; Alaskan Malamute and Golden Retriever) to 17.6 mIU/L (0.26 ng/mL; Collie). Mean T4 and FT4 concentrations were higher in females. Increasing age was associated with decreasing T4 and FT4, and increasing TSH concentration. The substantial ranges across breeds of measures of central tendency (mean, median) for all hormones indicate that breed-specific RIs are warranted. RIs encompassing the central 95% of reference values for all breeds combined, and for individual breeds, were calculated using nonparametric (TSH) and robust (T4, FT4) methods. Use of breed-specific RIs in combination with careful attention to the potential for pre-analytical and analytical variability in test results will improve thyroid function assessment in these breeds. © 2015 The Author(s).

  18. Production of potato minitubers using advanced environmental control technologies developed for growing plants in space

    NASA Astrophysics Data System (ADS)

    Britt, Robert G.

    1998-01-01

    Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions, rather than by the thousands which are currently produced in advanced seed potato systems, a new-dimension in seed potato development, breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system, higher quality potato production, and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

  19. Therapeutic cloning and reproductive liberty.

    PubMed

    Sparrow, Robert

    2009-04-01

    Concern for "reproductive liberty" suggests that decisions about embryos should normally be made by the persons who would be the genetic parents of the child that would be brought into existence if the embryo were brought to term. Therapeutic cloning would involve creating and destroying an embryo, which, if brought to term, would be the offspring of the genetic parents of the person undergoing therapy. I argue that central arguments in debates about parenthood and genetics therefore suggest that therapeutic cloning would be prima facie unethical unless it occurred with the consent of the parents of the person being cloned. Alternatively, if therapeutic cloning is thought to be legitimate, this undermines the case for some uses of reproductive cloning by implying that the genetic relation it establishes between clones and DNA donors does not carry the same moral weight as it does in cases of normal reproduction.

  20. Animal cloning: problems and prospects.

    PubMed

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  1. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.

    PubMed

    Jacobsen, Evert; Schouten, Henk J

    2007-05-01

    There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.

  2. Quantum cloning by cellular automata

    NASA Astrophysics Data System (ADS)

    D'Ariano, G. M.; Macchiavello, C.; Rossi, M.

    2013-03-01

    We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1→2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.

  3. Rescuing valuable genomes by animal cloning: a case for natural disease resistance in cattle.

    PubMed

    Westhusin, M E; Shin, T; Templeton, J W; Burghardt, R C; Adams, L G

    2007-01-01

    Tissue banking and animal cloning represent a powerful tool for conserving and regenerating valuable animal genomes. Here we report an example involving cattle and the rescue of a genome affording natural disease resistance. During the course of a 2-decade study involving the phenotypic and genotypic analysis for the functional and genetic basis of natural disease resistance against bovine brucellosis, a foundation sire was identified and confirmed to be genetically resistant to Brucella abortus. This unique animal was utilized extensively in numerous animal breeding studies to further characterize the genetic basis for natural disease resistance. The bull died in 1996 of natural causes, and no semen was available for AI, resulting in the loss of this valuable genome. Fibroblast cell lines had been established in 1985, cryopreserved, and stored in liquid nitrogen for future genetic analysis. Therefore, we decided to utilize these cells for somatic cell nuclear transfer to attempt the production of a cloned bull and salvage this valuable genotype. Embryos were produced by somatic cell nuclear transfer and transferred to 20 recipient cows, 10 of which became pregnant as determined by ultrasound at d 40 of gestation. One calf survived to term. At present, the cloned bull is 4.5 yr old and appears completely normal as determined by physical examination and blood chemistry. Furthermore, in vitro assays performed to date indicate this bull is naturally resistant to B. abortus, Mycobacterium bovis, and Salmonella typhimurium, as was the original genetic donor.

  4. Equine cloning: in vitro and in vivo development of aggregated embryos.

    PubMed

    Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F

    2012-07-01

    The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.

  5. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  6. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations.

  7. [Therapeutic cloning in debate].

    PubMed

    de Wert, G

    2001-11-03

    Human embryos can be conceived by cell nuclear transfer in order to isolate human embryonic stem cells (hES cells) for research into autologous cell therapy (therapeutic cloning). However, this technique broaches the major ethical problem concerning the instrumental use of human preimplantation embryos. From the viewpoint of subsidiarity, it is argued that various potential alternatives for therapeutic cloning should first be investigated further. The question as to whether therapeutic cloning should be allowed only becomes apparent when research with surplus embryos obtained in the course of in-vitro fertilization suggests that usable transplants can be obtained in vitro from hES cells, and when the potential alternatives for therapeutic cloning are either less promising or need more time for development than is currently expected.

  8. [Cloning: applications in humans 2. Ethical considerations].

    PubMed

    de Wert, G M; Geraedts, J P

    2001-05-01

    Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustify as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.

  9. [Cloning: applications in humans. II. Ethical considerations].

    PubMed

    de Wert, G M; Geraedts, J P

    2000-05-13

    Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustifiable as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.

  10. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

    PubMed

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

  11. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    PubMed Central

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  12. Genomic-based-breeding tools for tropical maize improvement.

    PubMed

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  13. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    PubMed

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  14. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  15. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines.

    PubMed

    Cericola, Fabio; Jahoor, Ahmed; Orabi, Jihad; Andersen, Jeppe R; Janss, Luc L; Jensen, Just

    2017-01-01

    Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5-0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy.

  16. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  17. Urolithiasis in dogs. II: Breed prevalence, and interrelations of breed, sex, age, and mineral composition.

    PubMed

    Ling, G V; Franti, C E; Ruby, A L; Johnson, D L

    1998-05-01

    To analyze selected breed-related data for canine urinary calculi. 11,000 specimens: 5,781 from female dogs, 5,215 from males, and 4 from dogs of unrecorded sex. Information was compiled for all canine urinary calculi submitted between July 1981 and January 1994. Results for a mixed-breed group and 26 of the most common breeds of stone-forming dogs were analyzed. Interrelations of breed, sex, and age of affected dogs and mineral composition of the specimens were determined. Prevalence of 5 specific mineral types was significantly correlated between the sexes of 27 common breed groups: struvite, calcium phosphate (apatite), calcium oxalate, brushite, and urate. Struvite-containing calculi were seen in high proportions in both sexes of 7 breeds, and in low proportions in both sexes of 7 other breeds. Male and female Lhasa Apsos, Cairn Terriers, and 5 other breeds had high proportions of oxalate-containing calculi; values in males were substantially higher. Low numbers of oxalate-containing calculi were seen in both sexes of 7 breeds; Dalmatians had the lowest numbers. Males and females of 6 breeds had high numbers of urate-containing calculi, Dalmatians and English Bulldogs had the highest numbers. Low amounts of urate were found in calculi from males and females of 6 breeds, Samoyeds had the lowest numbers. Highest proportions of cystine-containing calculi were seen in male Dachshunds, English Bulldogs, and Chihuahuas. Males of 8 breeds had no specimens that contained cystine; only 2 such specimens were obtained from females. Prevalence of uroliths differs among breed, age, and sex of affected dogs. Breed, sex, and age of dogs; mineral types of calculi in males versus females; and their anatomic location within the tract are important considerations for clinicians when evaluating risk in dogs with urolithiasis and in identifying areas that need further in-depth applied or clinical investigation, or both.

  18. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize

    PubMed Central

    Nepolean, Thirunavukkarsau; Kaul, Jyoti; Mukri, Ganapati; Mittal, Shikha

    2018-01-01

    Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems. PMID:29696027

  19. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  20. Delayed egg-laying and shortened incubation duration of Arctic-breeding shorebirds coincide with climate cooling.

    PubMed

    Kwon, Eunbi; English, Willow B; Weiser, Emily L; Franks, Samantha E; Hodkinson, David J; Lank, David B; Sandercock, Brett K

    2018-01-01

    Biological impacts of climate change are exemplified by shifts in phenology. As the timing of breeding advances, the within-season relationships between timing of breeding and reproductive traits may change and cause long-term changes in the population mean value of reproductive traits. We investigated long-term changes in the timing of breeding and within-season patterns of clutch size, egg volume, incubation duration, and daily nest survival of three shorebird species between two decades. Based on previously known within-season patterns and assuming a warming trend, we hypothesized that the timing of clutch initiation would advance between decades and would be coupled with increases in mean clutch size, egg volume, and daily nest survival rate. We monitored 1,378 nests of western sandpipers, semipalmated sandpipers, and red-necked phalaropes at a subarctic site during 1993-1996 and 2010-2014. Sandpipers have biparental incubation, whereas phalaropes have uniparental incubation. We found an unexpected long-term cooling trend during the early part of the breeding season. Three species delayed clutch initiation by 5 days in the 2010s relative to the 1990s. Clutch size and daily nest survival showed strong within-season declines in sandpipers, but not in phalaropes. Egg volume showed strong within-season declines in one species of sandpiper, but increased in phalaropes. Despite the within-season patterns in traits and shifts in phenology, clutch size, egg volume, and daily nest survival were similar between decades. In contrast, incubation duration did not show within-season variation, but decreased by 2 days in sandpipers and increased by 2 days in phalaropes. Shorebirds demonstrated variable breeding phenology and incubation duration in relation to climate cooling, but little change in nonphenological components of traits. Our results indicate that the breeding phenology of shorebirds is closely associated with the temperature conditions on breeding ground, the

  1. The first 50 years of the North American Breeding Bird Survey

    USGS Publications Warehouse

    Sauer, John; Ziolkowski, David; Pardieck, Keith L.; Smith, Adam C.; Hudson, Marie-Anne R.; Rodriguez, Vicente; Berlanga, Humberto; Niven, Daniel; Link, William

    2017-01-01

    The vision of Chandler (Chan) S. Robbins for a continental-scale omnibus survey of breeding birds led to the development of the North American Breeding Bird Survey (BBS). Chan was uniquely suited to develop the BBS. His position as a government scientist had given him experience with designing and implementing continental-scale surveys, his research background made him an effective advocate of the need for a survey to monitor pesticide effects on birds, and his prominence in the birding community gave him connections to infrastructure—a network of qualified volunteer birders who could conduct roadside surveys with standardized point counts. Having started in the eastern United States and the Atlantic provinces of Canada in 1966, the BBS now provides population change information for ∼546 species in the continental United States and Canada, and recently initiated routes in Mexico promise to greatly expand the areas and species covered by the survey. Although survey protocols have remained unchanged for 50 years, the BBS remains relevant in a changing world. Several papers that follow in this Special Section of The Condor: Ornithological Advances review how the BBS has been applied to conservation assessments, especially in combination with other large-scale survey data. A critical feature of the BBS program is an active research program into field and analytical methods to enhance the quality of the count data and to control for factors that influence detectability. Papers in the Special Section also present advances in BBS analyses that improve the utility of this expanding and sometimes controversial survey. In this Perspective, we introduce the Special Section by reviewing the history of the BBS, describing current analyses, and providing summary trend results for all species, highlighting 3 groups of conservation concern: grassland-breeding birds, aridland-breeding birds, and aerial insectivorous birds.

  2. Islamic perspectives on human cloning.

    PubMed

    Sadeghi, Mahmoud

    2007-01-01

    The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.

  3. Cloning of the short-tailed Gyeongju Donggyeong dog via SCNT: conserving phenotypic inheritance.

    PubMed

    Choi, Yoo Bin; Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Setyawan, Erif Maha Nugraha; Lee, Seok Hee; Lee, Byeong Chun

    2016-02-01

    Somatic cell nuclear transfer is a useful tool to maintain genetic information of animals. The Gyeongju Donggyeong dog is a breed registered as natural monument in Korea. The unique feature of the Donggyeong dog is its tail, as the Donggyeong dog can be classified as either short tailed or tailless. The aim of this study was to preserve the Donggyeong dog's unique feature by cloning. Fibroblasts were obtained from a short-tailed Donggyeong dog. In vivo matured oocytes were enucleated, microinjected with a donor cell and fused electrically. Reconstructed embryos were transferred to six recipient dogs. One surrogate became pregnant, and one short-tailed Donggyeong dog was delivered. This study demonstrated that the phenotype of the Donggyeong dog could be conserved by somatic cell nuclear transfer.

  4. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802.

    PubMed

    Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan

    2010-02-01

    Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.

  5. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved.

  6. Update on the First Cloned Dog and Outlook for Canine Cloning.

    PubMed

    Jang, Goo; Lee, ByeongChun

    2015-10-01

    As man's best friend, dogs have an important position in human society. Ten years ago, we reported the first cloned dog, and his birth has raised various scientific issues, such as those related to health, reproduction, and life span. He has developed without any unique health issues. In this article, we summarize and present perspectives on canine cloning.

  7. Cloning

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  8. Therapeutic and reproductive cloning: a critique.

    PubMed

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  9. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  10. Towards social acceptance of plant breeding by genome editing.

    PubMed

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.

    PubMed

    Hozé, C; Fritz, S; Phocas, F; Boichard, D; Ducrocq, V; Croiseau, P

    2014-01-01

    Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed

  12. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    PubMed

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  13. [Scientific ethics of human cloning].

    PubMed

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  14. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  15. Breeding season survival and breeding incidence of female Mottled Ducks on the upper Texas gulf coast

    USGS Publications Warehouse

    Rigby, Elizabeth A.; Haukos, David A.

    2012-01-01

    Previous Mottled Duck (Anas fulvigula) studies suggested that high female breeding season survival may be caused by low nesting effort, but few breeding season estimates of survival associated with nesting effort exist on the western Gulf Coast. Here, breeding season survival (N = 40) and breeding incidence (N = 39) were estimated for female Mottled Ducks on the upper Texas coast, 2006–2008. Females were fitted with backpack radio transmitters and visually relocated every 3–4 days. Weekly survival was estimated using the Known Fate procedure of program MARK with breeding incidence estimated as the annual proportion of females observed nesting or with broods. The top-ranked survival model included a body mass covariate and held weekly female survival constant across weeks and years (SW = 0.986, SE = 0.006). When compared to survival across the entire year estimated from previous band recovery and age ratio analysis, survival rate during the breeding season did not differ. Breeding incidence was well below 100% in all years and highly variable among years (15%–63%). Breeding season survival and breeding incidence were similar to estimates obtained with implant transmitters from the mid-coast of Texas. The greatest breeding incidence for both studies occurred when drought indices indicated average environmental moisture during the breeding season. The observed combination of low breeding incidence and high breeding season survival support the hypothesis of a trade-off between the ecological cost of nesting effort and survival for Mottled Duck females. Habitat cues that trigger nesting are unknown and should be investigated.

  16. The ethics of human reproductive cloning.

    PubMed

    Strong, Carson

    2005-03-01

    This article addresses the question of whether human reproductive cloning could be ethically justifiable in at least some cases involving infertile couples who would choose cloning as a way to have a genetically related child. At present, the risk of congenital anomalies constitutes a compelling argument against human reproductive cloning. The article explores whether reproductive cloning could be ethically justifiable if, at some future time, cloning becomes possible without an elevated risk of anomalies. It is argued that freedom to use cloning is a form of procreative freedom and, as such, deserves respect. All of the objections that have been raised against human reproductive cloning fall under three main categories: those that appeal to the interests of the child, those based on consequences for society, and those arising from teleological views. Objections that appeal to the child's interests are, in turn, of two main kinds: consequentialist and deontological. All of these types of objections are examined, and it is found that each involves serious problems that prevent it from being a reasonable objection in the context of the infertility cases considered. It is concluded that human reproductive cloning would be ethically justifiable in at least some cases involving infertile couples, provided that it could be performed without an elevated risk of anomalies.

  17. Production of cloned NIBS (Nippon Institute for Biological Science) and α-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates.

    PubMed

    Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H; Nunoya, Tetsuo

    2013-01-01

    Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. © 2013 John Wiley & Sons A/S.

  18. Production of cloned NIBS (Nippon Institute for Biological Science) and α-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates

    PubMed Central

    Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H.; Nunoya, Tetsuo

    2013-01-01

    Background Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. Method and Results In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). Conclusions These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. PMID:23581451

  19. Economical quantum cloning in any dimension

    NASA Astrophysics Data System (ADS)

    Durt, Thomas; Fiurášek, Jaromír; Cerf, Nicolas J.

    2005-11-01

    The possibility of cloning a d -dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine for qubits found in Phys. Rev. A 60, 2764 (1999). We prove the impossibility of constructing an economical version of the optimal universal 1→2 cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d -dimensional 1→2 phase-covariant cloner, which optimally clones all balanced superpositions with arbitrary phases, can be realized economically only in dimension d=2 . The used ansatz is supported by numerical evidence up to d=7 . An economical phase-covariant cloner can nevertheless be constructed for d>2 , albeit with a slightly lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the 1→2 Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2 .

  20. Walking or Waiting? Topologies of the Breeding Ground in Malaria Control

    PubMed Central

    Lezaun, Javier

    2013-01-01

    Few places bear as much historical and scientific significance as the breeding ground, the accumulation of stagnant water where disease-carrying insects lay their eggs. Since the turn of the twentieth century, when mosquitoes of the Anopheles genus were identified as the vector of malaria transmission, these aquatic habitats have been a key object of epidemiological research and public health intervention against the disease. Yet the breeding ground can be incorporated into a number of different topologies, each implying a different spatialization of malaria and a distinct imagination of what kind of mosquito control is ‘doable'. A contemporary example of malaria control in Dar es Salaam, Tanzania, illuminates an essential tension between what we characterize as territorial and bionomic approaches to the breeding ground—that is, between control strategies premised on treating all mosquito habitats within a given region, and those that prioritize certain sites on the basis of their position within ecological networks. Each topology localizes the breeding ground by reference to a distinct set of relations, and thus advances an idiosyncratic understanding of what sort of research is worthwhile conducting and what kinds of intervention are sustainable. The multiple ways in which the breeding ground can become an object of research and action clarifies the role of topology as an infra-logic of public health, and makes explicit the politics implicit in efforts to bring different orders of the local to scale. PMID:25937707

  1. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    PubMed

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Trypanosoma cruzi: clones isolated from the Colombian strain, reproduce the parental strain characteristics, with ubiquitous histotropism

    PubMed Central

    Camandaroba, Edson; Thé, Torriceli S; Pessina, Daniel Huber; Andrade, Sonia G

    2006-01-01

    Clonal histotropism and biological characters of five clones isolated during the early acute phase of the infection of Swiss mice with the Colombian strain of Trypanosoma cruzi (T. cruzi I), Biodeme Type III, were investigated. Clones were isolated from mice at the 10th and the 30th day of infection with the Colombian strain. Isolation was performed by micromanipulation and injection of one trypomatigote blood form into newborn mice, followed by passages into suckling mice for obtaining the inocula for the experimental groups. Mice infected with parental strain were also studied. All the clones have shown the basic characteristics of Biodeme Type III, with the same patterns of parasitemia, tissue tropism, morphological characters and isoenzymic profiles, such as the parental strain. Histotropism was most intense to myocardium and skeletal muscles, with intense lesions found in the advanced phase (20th to 30th day of infection). Both parental strain and the clones were seen to parasitize several organs and tissues; amastigote nests were identified in the cytoplasm of macrophages, adipose cells, smooth muscle of intestinal wall and Auerbach's neuronal plexus. The findings of the present study confirm the homology of the clones isolated from the Colombian strain, with predominance of a ‘principal clone’ and an ubiquitous distribution of parasites belonging to a same clone. PMID:16709229

  3. Evaluation and identification of Marek’s disease virus BAC clones as standardized reagents for research

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease (MD), a lymphoproliferative disease in chickens. Understanding of MDV gene function advanced significantly following the cloning of the MDV genome as either a series of overlapping cosmids or as a bacterial artificial chr...

  4. Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.

    PubMed

    Dinjaski, Nina; Huang, Wenwen; Kaplan, David L

    2018-01-01

    Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.

  5. Canine Breed-Specific Hepatopathies.

    PubMed

    Watson, Penny

    2017-05-01

    Canine hepatopathies, both congenital and acquired, arise from an interaction between genes and environment. Many show increased breed prevalences. This article reviews the current understanding on breed predispositions for congenital portosystemic shunts; microvascular dysplasia and portal vein hypoplasia; ductal plate abnormalities (congenital hepatic fibrosis and Caroli disease); chronic hepatitis (both copper associated and idiopathic); vacuolar hepatopathies; and gallbladder mucocele. Although all these diseases can occur in many breeds and crossbreeds, understanding breed predispositions helps recognition and will guide future research to improve understanding of causes and treatments. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  6. Human reproductive cloning: a conflict of liberties.

    PubMed

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  7. Interspecies Somatic Cell Nuclear Transfer: Advancements and Problems

    PubMed Central

    Lagutina, Irina; Fulka, Helena; Lazzari, Giovanna

    2013-01-01

    Abstract Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the “Dolly experiment,” the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus–cytoplasmic incompatibility. PMID:24033141

  8. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  9. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  10. Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies.

    PubMed

    Tulpová, Zuzana; Luo, Ming-Cheng; Toegelová, Helena; Visendi, Paul; Hayashi, Satomi; Vojta, Petr; Paux, Etienne; Kilian, Andrzej; Abrouk, Michaël; Bartoš, Jan; Hajdúch, Marián; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2018-03-08

    Bread wheat (Triticum aestivum L.) is a staple food for a significant part of the world's population. The growing demand on its production can be satisfied by improving yield and resistance to biotic and abiotic stress. Knowledge of the genome sequence would aid in discovering genes and QTLs underlying these traits and provide a basis for genomics-assisted breeding. Physical maps and BAC clones associated with them have been valuable resources from which to generate a reference genome of bread wheat and to assist map-based gene cloning. As a part of a joint effort coordinated by the International Wheat Genome Sequencing Consortium, we have constructed a BAC-based physical map of bread wheat chromosome arm 7DS consisting of 895 contigs and covering 94% of its estimated length. By anchoring BAC contigs to one radiation hybrid map and three high resolution genetic maps, we assigned 73% of the assembly to a distinct genomic position. This map integration, interconnecting a total of 1713 markers with ordered and sequenced BAC clones from a minimal tiling path, provides a tool to speed up gene cloning in wheat. The process of physical map assembly included the integration of the 7DS physical map with a whole-genome physical map of Aegilops tauschii and a 7DS Bionano genome map, which together enabled efficient scaffolding of physical-map contigs, even in the non-recombining region of the genetic centromere. Moreover, this approach facilitated a comparison of bread wheat and its ancestor at BAC-contig level and revealed a reconstructed region in the 7DS pericentromere. Copyright © 2018. Published by Elsevier B.V.

  11. To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples

    PubMed Central

    Winters, Misa; Barta, Jodi Lynn; Monroe, Cara; Kemp, Brian M.

    2011-01-01

    The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones. To address this issue, a comparative study was designed to examine both cloned and direct sequences amplified from ∼3,500 year-old ancient northern fur seal DNA extracts. Majority rules and the Consensus Confidence Program were used to generate consensus sequences for each individual from the cloned sequences, which exhibited damage at 31 of 139 base pairs across all clones. In no instance did the consensus of clones differ from the direct sequence. This study demonstrates that, when appropriate, cloning need not be the default method, but instead, should be used as a measure of authentication on a case-by-case basis, especially when this practice adds time and cost to studies where it may be superfluous. PMID:21738625

  12. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  14. The Ascent of Cat Breeds: Genetic Evaluations of Breeds and Worldwide Random Bred Populations

    PubMed Central

    Lipinski, Monika J.; Froenicke, Lutz; Baysac, Kathleen C.; Billings, Nicholas C.; Leutenegger, Christian M.; Levy, Alon M.; Longeri, Maria; Niini, Tirri; Ozpinar, Haydar; Slater, Margaret R.; Pedersen, Niels C.; Lyons, Leslie A.

    2008-01-01

    The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing seventeen random bred populations from five continents and twenty-two breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese Bobtail were more aligned with European/American than Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity, however, this loss did not correlate with breed popularity or age. PMID:18060738

  15. Breeding of tomorrow's chickens to improve well-being.

    PubMed

    Cheng, H-W

    2010-04-01

    Chickens, as well as other animals, have the ability to change their behavior (behavioral plasticity) and physiology (physiological plasticity) based on the costs and benefits to fit their environment (adaptation). Through natural selection, the population preserves and accumulates traits that are beneficial and rejects those that are detrimental in their prevailing environments. The surviving populations are able to contribute more genes associated with beneficial traits for increased fitness to subsequent generations. Natural selection is slow but constant; working over multiple generations, the changes to the population often appear silent or undetectable at a given point in history. Chickens were domesticated from the wild red jungle fowl. The principle of domestication of chickens, as well as other farm animals, by humans is similar to that of natural selection: selecting the best animals with the highest survivability and reproducibility (artificial selection). Compared with natural selection, the process of artificial selection is motivated by human needs and acts more rapidly with more visible results over a short time period. This process has been further accelerated following the development of current breeding programs and the emergence of specialized breeding companies. A laying hen, for example, produces more than 300 hundred eggs a year, whereas a jungle fowl lays 4 to 6 eggs in a year. During the domestication process, chickens retained their capability to adapt to their housing environments, which is usually achieved by genetic changes occurring with each subsequent generation. Genes control the behavioral, physiological, immunological, and psychological responses of animals to stressors, including environmental stimulations. With advances in understanding of genetic mediation of animal physiology and behavior and the discovery of the genome sequences of many species, animal production breeding programs can be improved in both speed and efficiency

  16. Cloning of endangered mammalian species: any progress?

    PubMed

    Loi, Pasqualino; Galli, Cesare; Ptak, Grazyna

    2007-05-01

    Attempts through somatic cell nuclear transfer to expand wild populations that have shrunk to critical numbers is a logical extension of the successful cloning of mammals. However, although the first mammal was cloned 10 years ago, nuclear reprogramming remains phenomenological, with abnormal gene expression and epigenetic deregulation being associated with the cloning process. In addition, although cloning of wild animals using host oocytes from different species has been successful, little is known about the implication of partial or total mitochondrial DNA heteroplasmy in cloned embryos, fetuses and offspring. Finally, there is a need for suitable foster mothers for inter-intra specific cloned embryos. Considering these issues, the limited success achieved in cloning endangered animals is not surprising. However, optimism comes from the rapid gain in the understanding of the molecular clues underlying nuclear reprogramming. If it is possible to achieve a controlled reversal of the differentiated state of a cell then it is probable that other issues that impair the cloning of endangered animals, such as the inter-intra species oocyte or womb donor, will be overcome in the medium term.

  17. Natural losses in tuber weight during storage as a predictor of susceptibility to post-wounding blackspot in advanced potato breeding materials.

    PubMed

    Grudzińska, Magdalena; Barbaś, Piotr

    2017-08-01

    In potatoes, mechanical damage and the formation of black spots in the tuber flesh cause substantial economic losses and degradation of quality. The aim of this study was to determine the susceptibility of new potato genotypes (178 elite breeding lines) to blackspot damage after 7 months' storage at 5 and 8 °C, and to examine whether this susceptibility correlated with natural losses. The lowest index of blackspot damage after harvest was found in genotypes from the mid-late group of earliness and low-susceptibility group, and after storage in genotypes from the early group of earliness and low-susceptibility group. After storage at 5 °C tubers were characterized by a lower susceptibility to bruising compared with tubers stored at 8 °C. The storage temperature significantly affected the natural losses in advanced potato breeding materials after storage in the case of all earliness and susceptibility groups. The highest susceptibility to blackspot damage and natural losses occurred in potatoes stored at 8 °C (r = 0.85-0.91). Such a relationship was not observed in potatoes stored at 5 °C. For potato tubers susceptible to the formation of after-wounding blackspot, the natural losses arising as a result of storage at 8 °C can be used as a subjective method to evaluate the susceptibility of potatoes to the formation of black spots in the flesh. However, this observation needs further studies and stronger proof of this theory. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape.

    PubMed

    Hwang, Chin-Feng; Xu, Kenong; Hu, Rong; Zhou, Rita; Riaz, Summaira; Walker, M Andrew

    2010-08-01

    The dagger nematode, Xiphinema index, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) x V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks.

  19. Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape

    PubMed Central

    Hwang, Chin-Feng; Xu, Kenong; Hu, Rong; Zhou, Rita; Riaz, Summaira

    2010-01-01

    The dagger nematode, Xiphinemaindex, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) × V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks. PMID:20490447

  20. Experimental dissociation of individual quality, food and timing of breeding effects on double-brooding in a migratory songbird.

    PubMed

    O'Brien, Erin L; Dawson, Russell D

    2013-07-01

    Annual reproductive success in many species is influenced by the number of breeding attempts within a season. Although previous studies have shown isolated effects of female quality, food, and timing of breeding on the probability of female birds producing second broods, to our knowledge, none have tested the relative importance of multiple factors and their interactions using simultaneous manipulations within populations of free-living birds. In this study, we show that individual quality and timing of breeding interact to affect the probability of double-brooding in female mountain bluebirds (Sialia currucoides). High-quality females (those that naturally initiated clutches early in the season) were more likely to double-brood, regardless of whether their hatching date was advanced or delayed, whereas later breeding, lower quality females were much less likely to double-brood when their first attempt was delayed. This indicates that annual fecundity of poorer quality (or younger) female bluebirds may be more sensitive to seasonal variation in environmental conditions. In addition, birds that were provided with supplemental food throughout first breeding attempts were more likely to double-brood in one of the study years, suggesting that female bluebirds may be energetically limited in their capacity to initiate a second brood. Females that had their first brood delayed also had a shorter inter-brood interval and were moulting fewer feathers during second broods compared to controls, while females in better condition showed more advanced moult in second breeding attempts. Taken together, our results demonstrate the combined effects of age- or individual quality-mediated energetic trade-offs between current and future reproduction, and between investments in offspring and self-maintenance, on annual fecundity of female birds.

  1. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  2. The effects of dog breed development on genetic diversity and the relative influences of performance and conformation breeding.

    PubMed

    Pedersen, N; Liu, H; Theilen, G; Sacks, B

    2013-06-01

    Genetic diversity was compared among eight dog breeds selected primarily for conformation (Standard Poodle, Italian Greyhound and show English Setter), conformation and performance (Brittany), predominantly performance (German Shorthaired and Wirehaired Pointers) or solely performance (field English Setter and Red Setter). Modern village dogs, which better reflect ancestral genetic diversity, were used as the standard. Four to seven maternal and one to two Y haplotypes were found per breed, with one usually dominant. Diversity of maternal haplotypes was greatest in village dogs, intermediate in performance breeds and lowest in conformation breeds. Maternal haplotype sharing occurred across all breeds, while Y haplotypes were more breed specific. Almost all paternal haplotypes were identified among village dogs, with the exception of the dominant Y haplotype in Brittanys, which has not been identified heretofore. The highest heterozygosity based on 24 autosomal microsatellites was found in village dogs and the lowest in conformation (show) breeds. Principal coordinate analysis indicated that conformation-type breeds were distinct from breeds heavily used for performance, the latter clustering more closely with village dogs. The Brittany, a well-established dual show and field breed, was also genetically intermediate between the conformation and performance breeds. The number of DLA-DRB1 alleles varied from 3 to 10 per breed with extensive sharing. SNPs across the wider DLA region were more frequently homozygous in all pure breeds than in village dogs. Compared with their village dog relatives, all modern breed dogs exhibit reduced genetic diversity. Genetic diversity was even more reduced among breeds under selection for show/conformation. © 2012 Blackwell Verlag GmbH.

  3. Species-specific challenges in dog cloning.

    PubMed

    Kim, G A; Oh, H J; Park, J E; Kim, M J; Park, E J; Jo, Y K; Jang, G; Kim, M K; Kim, H J; Lee, B C

    2012-12-01

    Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning. © 2012 Blackwell Verlag GmbH.

  4. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs.

    PubMed

    Donner, Jonas; Anderson, Heidi; Davison, Stephen; Hughes, Angela M; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Kaukonen, Maria; Forman, Oliver P; Fretwell, Neale; Cole, Cynthia A; Lohi, Hannes

    2018-04-01

    Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk

  5. Recombinant lactoferrin (Lf) of Vechur cow, the critical breed of Bos indicus and the Lf gene variants.

    PubMed

    Anisha, Shashidharan; Bhasker, Salini; Mohankumar, Chinnamma

    2012-03-01

    Vechur cow, categorized as a critically maintained breed by the FAO, is a unique breed of Bos indicus due to its extremely small size, less fodder intake, adaptability, easy domestication and traditional medicinal property of the milk. Lactoferrin (Lf) is an iron-binding glycoprotein that is found predominantly in the milk of mammals. The full coding region of Lf gene of Vechur cow was cloned, sequenced and expressed in a prokaryotic system. Antibacterial activity of the recombinant Lf showed suppression of bacterial growth. To the best of our knowledge this is the first time that the full coding region of Lf gene of B. indicus Vechur breed is sequenced, successfully expressed in a prokaryotic system and characterized. Comparative analysis of Lf gene sequence of five Vechur cows with B. taurus revealed 15 SNPs in the exon region associated with 11 amino acid substitutions. The amino acid arginine was noticed as a pronounced substitution and the tertiary structure analysis of the BLfV protein confirmed the positions of arginine in the β sheet region, random coil and helix region 1. Based on the recent reports on the nutritional therapies of arginine supplementation for wound healing and for cardiovascular diseases, the higher level of arginine in the lactoferrin protein of Vechur cow milk provides enormous scope for further therapeutic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  7. Knowledge and attitudes toward human cloning in Israel.

    PubMed

    Barnoy, Sivia; Ehrenfeld, Malka; Sharon, Rina; Tabak, Nili

    2006-04-01

    The success of mammal cloning in 1997 has brought the issue of human cloning into public discussion. Human cloning has several aspects and potential applications for use in both reproductive and non-reproductive matters. The aim of this study was to evaluate the knowledge and attitudes toward human cloning in Israel. Data from 120 respondents (68 health professionals and 52 non-health professionals), all Jewish, Hebrew speaking with at least 15 years of education each, were collected using two questionnaires that dealt with knowledge and attitudes toward human cloning. Results showed that although health professionals had significantly more knowledge that non-health professionals, all respondents had poor knowledge about cloning. No difference in attitudes was found between the groups. Most respondents opposed human cloning, but more positive attitudes toward non-reproductive cloning were found. The results are discussed in the context of the deficit model. The findings indicate a need to provide information about human cloning to allow people to form their attitudes based on factual knowledge.

  8. Derived variants at six genes explain nearly half of size reduction in dog breeds.

    PubMed

    Rimbault, Maud; Beale, Holly C; Schoenebeck, Jeffrey J; Hoopes, Barbara C; Allen, Jeremy J; Kilroy-Glynn, Paul; Wayne, Robert K; Sutter, Nathan B; Ostrander, Elaine A

    2013-12-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.

  9. Animal Cloning and Food Safety

    MedlinePlus

    ... concluded that meat and milk from clones of cattle, swine (pigs), and goats, and the offspring of ... natural mating the composition of food products from cattle, swine, and goat clones, or the offspring of ...

  10. Reproductive cloning combined with genetic modification.

    PubMed

    Strong, C

    2005-11-01

    Although there is widespread opposition to reproductive cloning, some have argued that its use by infertile couples to have genetically related children would be ethically justifiable. Others have suggested that lesbian or gay couples might wish to use cloning to have genetically related children. Most of the main objections to human reproductive cloning are based on the child's lack of unique nuclear DNA. In the future, it may be possible safely to create children using cloning combined with genetic modifications, so that they have unique nuclear DNA. The genetic modifications could be aimed at giving such children genetic characteristics of both members of the couple concerned. Thus, cloning combined with genetic modification could be appealing to infertile, lesbian, or gay couples who seek genetically related children who have genetic characteristics of both members. In such scenarios, the various objections to human reproductive cloning that are based on the lack of genetic uniqueness would no longer be applicable. The author argues that it would be ethically justifiable for such couples to create children in this manner, assuming these techniques could be used safely.

  11. Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data.

    PubMed

    Leroy, G; Verrier, E; Meriaux, J C; Rognon, X

    2009-06-01

    The genetic diversity of 61 dog breeds raised in France was investigated. Genealogical analyses were performed on the pedigree file of the French kennel club. A total of 1514 dogs were also genotyped using 21 microsatellite markers. For animals born from 2001 to 2005, the average coefficient of inbreeding ranged from 0.2% to 8.8% and the effective number of ancestors ranged from 9 to 209, according to the breed. The mean value of heterozygosity was 0.62 over all breeds (range 0.37-0.77). At the breed level, few correlations were found between genealogical and molecular parameters. Kinship coefficients and individual similarity estimators were, however, significantly correlated, with the best mean correlation being found for the Lynch & Ritland estimator (r = 0.43). According to both approaches, it was concluded that special efforts should be made to maintain diversity for three breeds, namely the Berger des Pyrénées, Braque Saint-Germain and Bull Terrier.

  12. Cloning strategy for producing brush-forming protein-based polymers.

    PubMed

    Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E

    2005-01-01

    Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.

  13. Protection of genetic heritage in the era of cloning

    PubMed Central

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep. This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  14. Protection of genetic heritage in the era of cloning.

    PubMed

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep.This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity.

  15. Are Cloned Quantum States Macroscopic?

    NASA Astrophysics Data System (ADS)

    Fröwis, F.; Dür, W.

    2012-10-01

    We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger’s cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.

  16. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.

  17. Serial bull cloning by somatic cell nuclear transfer.

    PubMed

    Kubota, Chikara; Tian, X Cindy; Yang, Xiangzhong

    2004-06-01

    Although the list of species successfully cloned continues to grow, serial cloning has not been reported in species other than the mouse. Here we describe two live births of second-generation clones of a bull. Clones of the first and second generations appear healthy and have normal telomere lengths. Our attempts to produce the third generation of clones were unsuccessful.

  18. U.S. consumers attitudes toward farm animal cloning.

    PubMed

    Brooks, Kathleen R; Lusk, Jayson L

    2011-10-01

    In January 2008, the United States Food and Drug Administration concluded "meat and milk from cattle, swine, and goat clones or their offspring are as safe to eat as food we eat from those species now" (U.S. FDA, 2010). However, cloning remains a very controversial topic. A web-based survey administered by Knowledge Networks was used to determine U.S. consumers' awareness of and attitudes toward meat and milk from cloned cattle. Findings reveal consumers do not differentiate much between products from cloned animals and products from non-cloned animals. Overall consumers are concerned that animal cloning is an unnatural process and that it will lead to human cloning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Local circulating clones of Staphylococcus aureus in Ecuador.

    PubMed

    Zurita, Jeannete; Barba, Pedro; Ortega-Paredes, David; Mora, Marcelo; Rivadeneira, Sebastián

    The spread of pandemic Staphylococcus aureus clones, mainly methicillin-resistant S. aureus (MRSA), must be kept under surveillance to assemble an accurate, local epidemiological analysis. In Ecuador, the prevalence of the USA300 Latin American variant clone (USA300-LV) is well known; however, there is little information about other circulating clones. The aim of this work was to identify the sequence types (ST) using a Multiple-Locus Variable number tandem repeat Analysis 14-locus genotyping approach. We analyzed 132 S. aureus strains that were recovered from 2005 to 2013 and isolated in several clinical settings in Quito, Ecuador. MRSA isolates composed 46.97% (62/132) of the study population. Within MRSA, 37 isolates were related to the USA300-LV clone (ST8-MRSA-IV, Panton-Valentine Leukocidin [PVL] +) and 10 were related to the Brazilian clone (ST239-MRSA-III, PVL-). Additionally, two isolates (ST5-MRSA-II, PVL-) were related to the New York/Japan clone. One isolate was related to the Pediatric clone (ST5-MRSA-IV, PVL-), one isolate (ST45-MRSA-II, PVL-) was related to the USA600 clone, and one (ST22-MRSA-IV, PVL-) was related to the epidemic UK-EMRSA-15 clone. Moreover, the most prevalent MSSA sequence types were ST8 (11 isolates), ST45 (8 isolates), ST30 (8 isolates), ST5 (7 isolates) and ST22 (6 isolates). Additionally, we found one isolate that was related to the livestock associated S. aureus clone ST398. We conclude that in addition to the high prevalence of clone LV-ST8-MRSA-IV, other epidemic clones are circulating in Quito, such as the Brazilian, Pediatric and New York/Japan clones. The USA600 and UK-EMRSA-15 clones, which were not previously described in Ecuador, were also found. Moreover, we found evidence of the presence of the livestock associated clone ST398 in a hospital environment. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Breeding bird communities

    Treesearch

    Vanessa L. Artman; Randy Dettmers

    2003-01-01

    Prescribed burning is being applied on an experimental basis to restore and maintain mixed-oak communities in southern Ohio. This chapter describes baseline conditions for the breeding bird community prior to prescribed burning. We surveyed breeding bird populations at four study areas using the territory-mapping method. We observed 35 bird species during the surveys....

  1. Patterns of molecular genetic variation among cat breeds.

    PubMed

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  2. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Comparison of molecular breeding values based on within- and across-breed training in beef cattle

    USDA-ARS?s Scientific Manuscript database

    Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized ...

  4. Metabolomic phenotyping of a cloned pig model

    PubMed Central

    2011-01-01

    Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. Conclusions From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals. PMID:21859467

  5. Human embryo cloning prohibited in Hong Kong.

    PubMed

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  6. Genomic analyses of modern dog breeds.

    PubMed

    Parker, Heidi G

    2012-02-01

    A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized worldwide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog, resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other.

  7. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity.

    PubMed

    Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin

    2018-05-01

    Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Distribution of quantum Fisher information in asymmetric cloning machines

    PubMed Central

    Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang

    2014-01-01

    An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d ≤ 18, whereas some but not all asymmetric cloning strategies could be worse than symmetric ones when d > 18. PMID:25484234

  9. Genomic selection across multiple breeding cycles in applied bread wheat breeding.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2016-06-01

    We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.

  10. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  11. Applications of quantum cloning

    NASA Astrophysics Data System (ADS)

    Pomarico, E.; Sanguinetti, B.; Sekatski, P.; Zbinden, H.; Gisin, N.

    2011-10-01

    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detectors.

  12. Across-breed EPD tables for the year 2016 adjusted to breed differences for birth year of 2014

    USDA-ARS?s Scientific Manuscript database

    Records of progeny of 18 breeds were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects of weaning weight, among 15 of the 18 breeds for carcass marbling and ribeye area and among 14 of the 18 breeds for fat depth and carcass weight. The r...

  13. BREEDING AND GENETICS SYMPOSIUM: Climate change and selective breeding in aquaculture.

    PubMed

    Sae-Lim, P; Kause, A; Mulder, H A; Olesen, I

    2017-04-01

    Aquaculture is the fastest growing food production sector and it contributes significantly to global food security. Based on Food and Agriculture Organization (FAO) of the United Nations, aquaculture production must increase significantly to meet the future global demand for aquatic foods in 2050. According to Intergovernmental Panel on Climate Change (IPCC) and FAO, climate change may result in global warming, sea level rise, changes of ocean productivity, freshwater shortage, and more frequent extreme climate events. Consequently, climate change may affect aquaculture to various extents depending on climatic zones, geographical areas, rearing systems, and species farmed. There are 2 major challenges for aquaculture caused by climate change. First, the current fish, adapted to the prevailing environmental conditions, may be suboptimal under future conditions. Fish species are often poikilothermic and, therefore, may be particularly vulnerable to temperature changes. This will make low sensitivity to temperature more important for fish than for livestock and other terrestrial species. Second, climate change may facilitate outbreaks of existing and new pathogens or parasites. To cope with the challenges above, 3 major adaptive strategies are identified. First, general 'robustness' will become a key trait in aquaculture, whereby fish will be less vulnerable to current and new diseases while at the same time thriving in a wider range of temperatures. Second, aquaculture activities, such as input power, transport, and feed production contribute to greenhouse gas emissions. Selection for feed efficiency as well as defining a breeding goal that minimizes greenhouse gas emissions will reduce impacts of aquaculture on climate change. Finally, the limited adoption of breeding programs in aquaculture is a major concern. This implies inefficient use of resources for feed, water, and land. Consequently, the carbon footprint per kg fish produced is greater than when fish from

  14. Whole genome comparison of donor and cloned dogs

    PubMed Central

    Kim, Hak-Min; Cho, Yun Sung; Kim, Hyunmin; Jho, Sungwoong; Son, Bongjun; Choi, Joung Yoon; Kim, Sangsoo; Lee, Byeong Chun; Bhak, Jong; Jang, Goo

    2013-01-01

    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic cell nuclear transfer produced an almost identical genome. The whole genome sequence data of donor and cloned dogs can provide a resource for further investigations on epigenetic contributions in phenotypic differences. PMID:24141358

  15. Derived variants at six genes explain nearly half of size reduction in dog breeds

    PubMed Central

    Rimbault, Maud; Beale, Holly C.; Schoenebeck, Jeffrey J.; Hoopes, Barbara C.; Allen, Jeremy J.; Kilroy-Glynn, Paul; Wayne, Robert K.; Sutter, Nathan B.; Ostrander, Elaine A.

    2013-01-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds. PMID:24026177

  16. "Goodbye Dolly?" The ethics of human cloning.

    PubMed Central

    Harris, J

    1997-01-01

    The ethical implications of human clones have been much alluded to, but have seldom been examined with any rigour. This paper examines the possible uses and abuses of human cloning and draws out the principal ethical dimensions, both of what might be done and its meaning. The paper examines some of the major public and official responses to cloning by authorities such as President Clinton, the World Health Organisation, the European parliament, UNESCO, and others and reveals their inadequacies as foundations for a coherent public policy on human cloning. The paper ends by defending a conception of reproductive rights of "procreative autonomy" which shows human cloning to be not inconsistent with human rights and dignity. PMID:9451604

  17. Therapeutic cloning research and ethical oversight.

    PubMed

    Spriggs, M

    2003-08-01

    Cloning Trevor, a story about therapeutic cloning research, appeared in the June issue of The Atlantic Monthly. The story gives a human face to the people whom therapeutic cloning could benefit. It presents an argument for government funding and it puts the usual calls for a moratorium on embryonic stem cell research to allow for more debate, in a less favourable light. The story also highlights some problems with ethical oversight.

  18. Genomic Analyses of Modern Dog Breeds

    PubMed Central

    Parker, Heidi G.

    2013-01-01

    A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized world-wide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other. PMID:22231497

  19. [Prospects of molecular breeding in medical plants].

    PubMed

    Ma, Xiao-Jun; Mo, Chang-Ming

    2017-06-01

    The molecular-assisted breeding, transgenic breeding and molecular designing breeding are three development directions of plant molecular breeding. Base on these three development directions, this paper summarizes developing status and new tendency of research field of genetic linkage mapping, QTL mapping, association mapping, molecular-assisted selections, pollen-mediated transformations, agrobacterium-mediated transformations, particle gun-mediated transformations, genome editing technologies, whole-genome sequencing, transcriptome sequencing, proteome sequencing and varietal molecular designing. The objective and existing problem of medical plant molecular breeding were discussed the prospect of these three molecular breeding technologies application on medical plant molecular breeding was outlooked. Copyright© by the Chinese Pharmaceutical Association.

  20. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  1. Cloning-free CRISPR

    PubMed Central

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385

  2. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size.

    PubMed

    Medugorac, Ivica; Medugorac, Ana; Russ, Ingolf; Veit-Kensch, Claudia E; Taberlet, Pierre; Luntz, Bernhard; Mix, Henry M; Förster, Martin

    2009-08-01

    In times of rapid global and unforeseeable environmental changes, there is an urgent need for a sustainable cattle breeding policy, based on a global view. Most of the indigenous breeds are specialized in a particular habitat or production system but are rapidly disappearing. Thus, they represent an important resource to meet present and future breeding objectives. Based on 105 microsatellites, we obtained thorough information on genetic diversity and population structure of 16 cattle breeds that cover a geographical area from the domestication centre near Anatolia, through the Balkan and alpine regions, to the North-West of Europe. Breeds under strict artificial selection and indigenous breeds under traditional breeding schemes were included. The overall results showed that the genetic diversity is widespread in Busa breeds in the Anatolian and Balkan areas, when compared with the alpine and north-western European breeds. Our results reflect long-term evolutionary and short-term breeding events very well. The regular pattern of allele frequency distribution in the entire cattle population studied clearly suggests conservation of rare alleles by conservation of preferably unselected traditional breeds with large effective population sizes. From a global and long-term conservation genetics point of view, the native and highly variable breeds closer to the domestication centre could serve as valuable sources of genes for future needs, not only for cattle but also for other farm animals.

  3. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs

    PubMed Central

    Anderson, Heidi; Davison, Stephen; Hughes, Angela M.; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M.; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Forman, Oliver P.; Fretwell, Neale; Cole, Cynthia A.; Lohi, Hannes

    2018-01-01

    Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk

  4. Cloning Mice.

    PubMed

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  5. Biological parameters used in setting captive-breeding quotas for Indonesia's breeding facilities.

    PubMed

    Janssen, Jordi; Chng, Serene C L

    2018-02-01

    The commercial captive breeding of wildlife is often seen as a potential conservation tool to relieve pressure on wild populations, but laundering of wild-sourced specimens as captive bred can seriously undermine conservation efforts and provide a false sense of sustainability. Indonesia is at the center of such controversy; therefore, we examined Indonesia's captive-breeding production plan (CBPP) for 2016. We compared the biological parameters used in the CBPP with parameters in the literature and with parameters suggested by experts on each species and identified shortcomings of the CBPP. Production quotas for 99 out of 129 species were based on inaccurate or unrealistic biological parameters and production quotas deviated more than 10% from what parameters in the literature allow for. For 38 species, the quota exceeded the number of animals that can be bred based on the biological parameters (range 100-540%) calculated with equations in the CBPP. We calculated a lower reproductive output for 88 species based on published biological parameters compared with the parameters used in the CBPP. The equations used in the production plan did not appear to account for other factors (e.g., different survival rate for juveniles compared to adult animals) involved in breeding the proposed large numbers of specimens. We recommend the CBPP be adjusted so that realistic published biological parameters are applied and captive-breeding quotas are not allocated to species if their captive breeding is unlikely to be successful or no breeding stock is available. The shortcomings in the current CBPP create loopholes that mean mammals, reptiles, and amphibians from Indonesia declared captive bred may have been sourced from the wild. © 2017 Society for Conservation Biology.

  6. No-cloning of quantum steering

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Yi; Lambert, Neill; Liao, Teh-Lu; Nori, Franco; Li, Che-Ming

    2016-06-01

    Einstein-Podolsky-Rosen (EPR) steering allows two parties to verify their entanglement, even if one party’s measurements are untrusted. This concept has not only provided new insights into the nature of non-local spatial correlations in quantum mechanics, but also serves as a resource for one-sided device-independent quantum information tasks. Here, we investigate how EPR steering behaves when one-half of a maximally entangled pair of qudits (multidimensional quantum systems) is cloned by a universal cloning machine. We find that EPR steering, as verified by a criterion based on the mutual information between qudits, can only be found in one of the copy subsystems but not both. We prove that this is also true for the single-system analogue of EPR steering. We find that this restriction, which we term ‘no-cloning of quantum steering’, elucidates the physical reason why steering can be used to secure sources and channels against cloning-based attacks when implementing quantum communication and quantum computation protocols.

  7. Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain.

    PubMed

    Yen, T-Y; Li, K-P; Ou, S-C; Shien, J-H; Lu, H-M; Chang, P-C

    2015-01-01

    Muscovy duck parvovirus (MDPV) infection is a highly contagious and fatal disease of Muscovy ducklings. The infectious clone methodology is a valuable tool to study the pathogenic mechanisms of viruses, but no infectious clone of MDPV is yet available. In this study, a plasmid clone containing the full-length genome of MDPV was constructed using the TA cloning methodology. This MDPV clone was found to be infectious after transfection of primary Muscovy duck embryo fibroblast cells and passage in embryonated Muscovy duck eggs. Site-directed mutagenesis showed that the K75N mutation in the VP1 protein of MDPV resulted in the partial attenuation of the virus. The availability of an MDPV infectious clone can facilitate investigation of the pathogenic mechanisms of MDPV and development of vaccines against diseases caused by MDPV.

  8. Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.

    PubMed

    Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki

    2015-01-01

    Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self-cloning

  9. Examining the Potential Role of Foliar Chemistry in Imparting Potato Germplasm Tolerance to Potato Psyllid, Green Peach Aphid, and Zebra Chip Disease.

    PubMed

    Prager, S M; Wallis, C M; Jones, M; Novy, R; Trumble, J T

    2018-02-09

    Long-term, sustainable management of zebra chip disease of potato, caused by 'Candidatus Liberibacter solanacearum' (Lso) and vectored by potato psyllids (Bactericera cockerelli Sulc [Hemiptera: Triozidae]), requires development of cultivars resistant or tolerant to infection or capable of reducing spread or both. We examined the influence that five experimental breeding clones of potato had on potato psyllids and their ability to vector Lso. The ability of these potato clones to resist aphids (green peach aphids, Myzus persicae Sulzer [Hemiptera: Aphididae]) also was examined. Due to the importance of host chemistry on plant-insect interactions, levels of primary metabolites of amino acids and sugars, as well as secondary metabolites including polyphenolics, terpenoids, and alkaloids were compared between breeding clones and a commercial cultivar. Findings for compound levels then were associated with observed changes in host susceptibility to psyllids or aphids. Psyllids oviposited less on three breeding clones than Atlantic, but no significant effects of breeding clones on psyllid feeding or choice were observed. Aphid reproduction was reduced on two clones relative to Atlantic. A05379-211 had greater sugar levels and postpsyllid amino acid levels than Atlantic. Total alkaloid and phenolic levels were greater in all breeding clones than Atlantic. Total terpenoid levels were greater in PALB03016-3 and PALB03016-6 than Atlantic, which might explain, in part, the observed resistance to psyllid oviposition and aphid reproduction. Overall, these results suggest that increased levels of certain metabolites in breeding clones could affect psyllid and aphid reproduction. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Spatial genetic structure of bristle-thighed curlews (Numenius tahitiensis): breeding area differentiation not reflected on the non-breeding grounds

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Tibbitts, T. Lee; Gill, Robert E.; Williams, Ian S.; Talbot, Sandra L.

    2015-01-01

    Migratory birds occupy geographically and ecologically disparate areas during their annual cycle with conditions on breeding and non-breeding grounds playing separate and important roles in population dynamics. We used data from nuclear microsatellite and mitochondrial DNA control region loci to assess the breeding and non-breeding spatial genetic structure of a transoceanic migrant shorebird, the bristle-thighed curlew. We found spatial variance in the distribution of allelic and haplotypic frequencies between the curlew's two breeding areas in Alaska but did not observe this spatial structure throughout its non-breeding range on low-lying tropical and subtropical islands in the Central Pacific (Oceania). This suggests that the two breeding populations do not spatially segregate during the non-breeding season. Lack of migratory connectivity is likely attributable to the species' behavior, as bristle-thighed curlews exhibit differential timing of migration and some individuals move among islands during non-breeding months. Given the detrimental impact of many past and current human activities on island ecosystems, admixture of breeding populations in Oceania may render the bristle-thighed curlew less vulnerable to perturbations there, as neither breeding population will be disproportionally affected by local habitat losses or by stochastic events. Furthermore, lack of migratory connectivity may enable bristle-thighed curlews to respond to changing island ecosystems by altering their non-breeding distribution. However, availability of suitable non-breeding habitat for curlews in Oceania is increasingly limited on both low-lying and high islands by habitat loss, sea level rise, and invasive mammalian predators that pose a threat to flightless and flight-compromised curlews during the molting period.

  11. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.

    PubMed

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  12. Genetic potential of common bean progenies selected for crude fiber content obtained through different breeding methods.

    PubMed

    Júnior, V A P; Melo, P G S; Pereira, H S; Bassinello, P Z; Melo, L C

    2015-05-29

    Gastrointestinal health is of great importance due to the increasing consumption of functional foods, especially those concern-ing diets rich in fiber content. The common bean has been valorized as a nutritious food due to its appreciable fiber content and the fact that it is consumed in many countries. The current study aimed to evaluate and compare the genetic potential of common bean progenies of the carioca group, developed through different breeding methods, for crude fiber content. The progenies originated through hybridization of two advanced strains, CNFC 7812 and CNFC 7829, up to the F7 generation using three breeding methods: bulk-population, bulk within F2 families, and single seed descent. Fifteen F8 progenies were evaluated in each method, as well as two check cultivars and both parents, us-ing a 7 x 7 simple lattice design, with experimental plots comprised of two 4-m long rows. Field trials were conducted in eleven environments encompassing four Brazilian states and three different sowing times during 2009 and 2010. Estimates of genetic parameters indicate differences among the breeding methods, which seem to be related to the different processes for sampling the advanced progenies inherent to each method, given that the trait in question is not subject to natural selection. Variability amongst progenies occurred within the three breeding methods and there was also a significant effect of environment on the progeny for all methods. Progenies developed by bulk-population attained the highest estimates of genetic parameters, had less interaction with the environment, and greater variability.

  13. Efficient Breeding by Genomic Mating.

    PubMed

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  14. Assortative mating and fragmentation within dog breeds.

    PubMed

    Björnerfeldt, Susanne; Hailer, Frank; Nord, Maria; Vilà, Carles

    2008-01-28

    There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same processes which have

  15. Assortative mating and fragmentation within dog breeds

    PubMed Central

    2008-01-01

    Background There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Results Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. Conclusion The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same

  16. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    PubMed

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  17. A computational approach to animal breeding.

    PubMed

    Berger-Wolf, Tanya Y; Moore, Cristopher; Saia, Jared

    2007-02-07

    We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics. In this paper, we propose the first discrete model of the controlled animal breeding problem and analyse heuristics for two possible objectives: (1) breeding for maximum diversity and (2) breeding a target individual. These two goals are representative of conservation biology and agricultural livestock management, respectively. We evaluate several mating strategies and provide upper and lower bounds for the expected number of matings. While the population parameters may vary and can change the actual number of matings for a particular strategy, the order of magnitude of the number of expected matings and the relative competitiveness of the mating heuristics remains the same. Thus, our simple discrete model of the animal breeding problem provides a novel viable and robust approach to designing and comparing breeding strategies in captive populations.

  18. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines.

    PubMed

    Wang, Ju; McClean, Phillip E; Lee, Rian; Goos, R Jay; Helms, Ted

    2008-04-01

    Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.

  19. Current achievements and future directions in genetic engineering of European plum (Prunus domestica L.).

    PubMed

    Petri, Cesar; Alburquerque, Nuria; Faize, Mohamed; Scorza, Ralph; Dardick, Chris

    2018-06-01

    In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding ('FasTrack' breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species.

  20. Eradication of Herpesvirus simiae from a Rhesus Monkey Breeding Colony. B-virus Eradication in Breeding Rhesus

    DTIC Science & Technology

    1992-10-01

    Herpesvirus simiae from a Rhesus Monkey Breeding Colony B-virus Eradication in Breeding Rhesus 6. AUTHOR(S) Jerome J. Sauber , John W. Fanton, Roger C...for Laboratory Animal Science October 1992 An Attempt to Eradicate Herpesvirus simiae from a Rhesus Monkey Breeding Colony Jerome J. Sauber , John W

  1. Therapeutic cloning in the mouse

    PubMed Central

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  2. Energy Values of Nine Populus Clones

    Treesearch

    Terry F. Strong

    1980-01-01

    Compares calorific values for components of nine Populus clones. The components include stem wood, stem bark, and branches. Also compares calorific values for clones of balsam poplar and black cottonwood parentages.

  3. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis.

    PubMed

    Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E; Grzybowski, Tomasz; Oleński, Kamil; Kamiński, Stanisław; Fadel, Fernanda Ruiz; Alagaili, Abdulaziz N; Mohammed, Osama B; Bogdanowicz, Wiesław

    2016-08-09

    Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication. Copyright © 2016 Pilot et al.

  4. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis

    PubMed Central

    Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E.; Grzybowski, Tomasz; Oleński, Kamil; Kamiński, Stanisław; Fadel, Fernanda Ruiz; Alagaili, Abdulaziz N.; Mohammed, Osama B.; Bogdanowicz, Wiesław

    2016-01-01

    Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome.” This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication. PMID:27233669

  5. Goals and hurdles for a successful implementation of genomic selection in breeding programme for selected annual and perennial crops.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk Jan

    Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.

  6. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research

    USDA-ARS?s Scientific Manuscript database

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product qua...

  7. Geotemporal Analysis of Neisseria meningitidis Clones in the United States: 2000–2005

    PubMed Central

    Wiringa, Ann E.; Shutt, Kathleen A.; Marsh, Jane W.; Cohn, Amanda C.; Messonnier, Nancy E.; Zansky, Shelley M.; Petit, Susan; Farley, Monica M.; Gershman, Ken; Lynfield, Ruth; Reingold, Arthur; Schaffner, William; Thompson, Jamie; Brown, Shawn T.; Lee, Bruce Y.; Harrison, Lee H.

    2013-01-01

    Background The detection of meningococcal outbreaks relies on serogrouping and epidemiologic definitions. Advances in molecular epidemiology have improved the ability to distinguish unique Neisseria meningitidis strains, enabling the classification of isolates into clones. Around 98% of meningococcal cases in the United States are believed to be sporadic. Methods Meningococcal isolates from 9 Active Bacterial Core surveillance sites throughout the United States from 2000 through 2005 were classified according to serogroup, multilocus sequence typing, and outer membrane protein (porA, porB, and fetA) genotyping. Clones were defined as isolates that were indistinguishable according to this characterization. Case data were aggregated to the census tract level and all non-singleton clones were assessed for non-random spatial and temporal clustering using retrospective space-time analyses with a discrete Poisson probability model. Results Among 1,062 geocoded cases with available isolates, 438 unique clones were identified, 78 of which had ≥2 isolates. 702 cases were attributable to non-singleton clones, accounting for 66.0% of all geocoded cases. 32 statistically significant clusters comprised of 107 cases (10.1% of all geocoded cases) were identified. Clusters had the following attributes: included 2 to 11 cases; 1 day to 33 months duration; radius of 0 to 61.7 km; and attack rate of 0.7 to 57.8 cases per 100,000 population. Serogroups represented among the clusters were: B (n = 12 clusters, 45 cases), C (n = 11 clusters, 27 cases), and Y (n = 9 clusters, 35 cases); 20 clusters (62.5%) were caused by serogroups represented in meningococcal vaccines that are commercially available in the United States. Conclusions Around 10% of meningococcal disease cases in the U.S. could be assigned to a geotemporal cluster. Molecular characterization of isolates, combined with geotemporal analysis, is a useful tool for understanding the spread of virulent meningococcal

  8. Human cloning: category, dignity, and the role of bioethics.

    PubMed

    Shuster, Evelyne

    2003-10-01

    Human cloning has been simultaneously a running joke for massive worldwide publicity of fringe groups like the Raelians, and the core issue of an international movement at the United Nations in support of a treaty to ban the use of cloning techniques to produce a child (so called reproductive cloning). Yet, even though debates on human cloning have greatly increased since the birth of Dolly, the clone sheep, in 1997, we continue to wonder whether cloning is after all any different from other methods of medically assisted reproduction, and what exactly makes cloning an 'affront to the dignity of humans.' Categories we adopt matter mightily as they inform but can also misinform and lead to mistaken and unproductive decisions. And thus bioethicists have a responsibility to ensure that the proper categories are used in the cloning debates and denounce those who try to win the ethical debate through well-crafted labels rather than well-reasoned argumentations. But it is as important for bioethicists to take a position on broad issues such as human cloning and species altering interventions. One 'natural question' would be, for example, should there be an international treaty to ban human reproductive cloning?

  9. [Cloning and law in Hungary].

    PubMed

    Julesz, Máté

    2015-03-01

    Reproductive human cloning is prohibited in Hungary, as in many other countries. Therapeutic human cloning is not prohibited, just like in many other countries. Stem cell therapy is also allowed. Article III, paragraph (3) of the Hungarian basic law (constitution) strictly forbids total human cloning. Article 1 of the Additional Protocol to the Oviedo Convention, on the Prohibition of Cloning Human Beings (1998) stipulates that any intervention seeking to create a human being genetically identical to another human being, whether living or dead, is prohibited. In Hungary, according to Article 174 of the Criminal Code, total human cloning constitutes a crime. Article 180, paragraph (3) of the Hungarian Act on Health declares that embryos shall not be brought about for research purposes; research shall be conducted only on embryos brought about for reproductive purposes when this is authorized by the persons entitled to decide upon its disposal, or when the embryo is damaged. Article 180, paragraph (5) of the Hungarian Act on Health stipulates that multiple individuals who genetically conform to one another shall not be brought about. According to Article 181, paragraph (1) of the Hungarian Act on Health, an embryo used for research shall be kept alive for not longer than 14 days, not counting the time it was frozen for storage and the time period of research.

  10. Emotional reactions to human reproductive cloning.

    PubMed

    May, Joshua

    2016-01-01

    Extant surveys of people's attitudes towards human reproductive cloning focus on moral judgements alone, not emotional reactions or sentiments. This is especially important given that some (especially Leon Kass) have argued against such cloning on the ground that it engenders widespread negative emotions, like disgust, that provide a moral guide. To provide some data on emotional reactions to human cloning, with a focus on repugnance, given its prominence in the literature. This brief mixed-method study measures the self-reported attitudes and emotions (positive or negative) towards cloning from a sample of participants in the USA. Most participants condemned cloning as immoral and said it should be illegal. The most commonly reported positive sentiment was by far interest/curiosity. Negative emotions were much more varied, but anxiety was the most common. Only about a third of participants selected disgust or repugnance as something they felt, and an even smaller portion had this emotion come to mind prior to seeing a list of options. Participants felt primarily interested and anxious about human reproductive cloning. They did not primarily feel disgust or repugnance. This provides initial empirical evidence that such a reaction is not appropriately widespread. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies.

    PubMed

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could

  12. Breeding habitat associations and predicted distribution of an obligate tundra-breeding bird, Smith's Longspur

    USGS Publications Warehouse

    Wild, Teri C.; Kendall, Steven J.; Guldager, Nikki; Powell, Abby N.

    2015-01-01

    Smith's Longspur (Calcarius pictus) is a species of conservation concern which breeds in Arctic habitats that are expected to be especially vulnerable to climate change. We used bird presence and habitat data from point-transect surveys conducted at 12 sites across the Brooks Range, Alaska, 2003–2009, to identify breeding areas, describe local habitat associations, and identify suitable habitat using a predictive model of Smith's Longspur distribution. Smith's Longspurs were observed at seven sites, where they were associated with a variety of sedge–shrub habitats composed primarily of mosses, sedges, tussocks, and dwarf shrubs; erect shrubs were common but sparse. Nonmetric multidimensional scaling ordination of ground cover revealed positive associations of Smith's Longspur presence with sedges and mosses and a negative association with high cover of shrubs. To model predicted distribution, we used boosted regression trees to relate landscape variables to occurrence. Our model predicted that Smith's Longspurs may occur in valleys and foothills of the northeastern and southeastern mountains and in upland plateaus of the western mountains, and farther west than currently documented, over a predicted area no larger than 15% of the Brooks Range. With climate change, shrubs are expected to grow larger and denser, while soil moisture and moss cover are predicted to decrease. These changes may reduce Smith's Longspur habitat quality and limit distribution in the Brooks Range to poorly drained lowlands and alpine plateaus where sedge–shrub tundra is likely to persist. Conversely, northward advance of shrubs into sedge tundra may create suitable habitat, thus supporting a northward longspur distribution shift.

  13. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    PubMed Central

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2014-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. PMID:20085739

  14. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype

    PubMed Central

    Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette

    2013-01-01

    The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype. PMID:23974297

  15. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette

    2013-01-01

    The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.

  16. [Therapeutic cloning. Biology, perspectives and alternatives].

    PubMed

    Maddox-Hyttel, Poul

    2003-02-24

    Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.

  17. Quantum cloning disturbed by thermal Davies environment

    NASA Astrophysics Data System (ADS)

    Dajka, Jerzy; Łuczka, Jerzy

    2016-06-01

    A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.

  18. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    PubMed

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  19. Genome-wide association and prediction of grain and semolina quality traits in durum wheat breeding populations

    USDA-ARS?s Scientific Manuscript database

    Grain yield and semolina quality traits are essential selection criteria in durum wheat breeding. However, high cost of phenotypic screening limited the selection only on small number of lines and at later generations. This leads to relatively low selection efficiency due to the advancement of undes...

  20. Aging of Cloned Animals: A Mini-Review.

    PubMed

    Burgstaller, Jörg Patrick; Brem, Gottfried

    2017-01-01

    The number of species for which somatic cell nuclear transfer (SCNT) protocols are established is still increasing. Due to the high number of cloned farm, companion, and sport animals, the topic of animal cloning never ceases to be of public interest. Numerous studies cover the health status of SCNT-derived animals, but very few cover the effects of SCNT on aging. However, only cloned animals that reach the full extent of the species-specific lifespan, doing so with only the normal age-related afflictions and diseases, would prove that SCNT can produce completely healthy offspring. Here, we review the available literature and own data to answer the question whether the aging process of cloned animals is qualitatively different from normal animals. We focus on 4 main factors that were proposed to influence aging in these animals: epigenetic (dys)regulation, accumulation of damaged macromolecules, shortened telomeres, and (nuclear donor-derived) age-related DNA damage. We find that at least some cloned animals can reach the species-specific maximum age with a performance that matches that of normal animals. However, for most species, only anecdotal evidence of cloned animals reaching high age is available. We therefore encourage reports on the aging of cloned animals to make further analysis on the performance of SCNT possible. © 2016 S. Karger AG, Basel.

  1. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  2. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  3. Immunogenomics of gastrointestinal nematode infection in ruminants - breeding for resistance to produce food sustainably and safely.

    PubMed

    Sweeney, T; Hanrahan, J P; Ryan, M T; Good, B

    2016-09-01

    Gastrointestinal nematode (GIN) infection of ruminants represents a major health and welfare challenge for livestock producers worldwide. The emergence of anthelmintic resistance in important GIN species and the associated animal welfare concerns have stimulated interest in the development of alternative and more sustainable strategies aimed at the effective management of the impact of GINs. These integrative strategies include selective breeding using genetic/genomic tools, grazing management, biological control, nutritional supplementation, vaccination and targeted selective treatment. In this review, the logic of selecting for "resistance" to GIN infection as opposed to "resilience" or "tolerance" is discussed. This is followed by a review of the potential application of immunogenomics to genetic selection for animals that have the capacity to withstand the impact of GIN infection. Advances in relevant genomic technologies are highlighted together with how these tools can be advanced to support the integration of immunogenomic information into ruminant breeding programmes. © 2016 John Wiley & Sons Ltd.

  4. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs

    PubMed Central

    Winward, Josh; Beattie, Ursula; Cipolli, William

    2018-01-01

    Among species, larger animals tend to live longer than smaller ones, however, the opposite seems to be true for dogs—smaller dogs tend to live significantly longer than larger dogs across all breeds. We were interested in the mechanism that may allow for small breeds to age more slowly compared with large breeds in the context of cellular metabolism and oxidative stress. Primary dermal fibroblasts from small and large breed dogs were grown in culture. We measured basal oxygen consumption (OCR), proton leak, and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of reactive species (RS) production, reduced glutathione (GSH) content, mitochondrial content, lipid peroxidation (LPO) damage and DNA (8-OHdg) damage. Our data suggests that as dogs of both size classes age, proton leak is significantly higher in older dogs, regardless of size class. We found that all aspects of glycolysis were significantly higher in larger breeds compared with smaller breeds. We found significant differences between age classes in GSH concentration, and a negative correlation between DNA damage in puppies and mean breed lifespan. Interestingly, RS production showed no differences across size and age class. Thus, large breed dogs may have higher glycolytic rates, and DNA damage, suggesting a potential mechanism for their decreased lifespan compared with small breed dogs. PMID:29694441

  5. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    PubMed

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Cloning: can it be good for us? An overview of cloning technology and its moral implications.

    PubMed

    FitzGerald, K

    2001-01-01

    Adequate answers to moral questions about cloning require a working knowledge of the science and technology involved, both present and anticipated. This essay presents an overview of the current state of somatic cell nuclear transfer technology (SCNT), the type of cloning that now permits whole organism reproduction from adult DNA. This essay explains the basic science and technology of SCNT and explores its potential uses. Next, this essay notes remaining scientific obstacles and unanswered moral questions that must be resolved before SCNT can be used for human reproduction. Attention is given to aspects related to cloning for therapeutic and research purposes.

  7. An ordination of life histories using morphological proxies: capital vs. income breeding in insects.

    PubMed

    Davis, Robert B; Javoiš, Juhan; Kaasik, Ants; Õunap, Erki; Tammaru, Toomas

    2016-08-01

    Predictive classifications of life histories are essential for evolutionary ecology. While attempts to apply a single approach to all organisms may be overambitious, recent advances suggest that more narrow ordination schemes can be useful. However, these schemes mostly lack easily observable proxies of the position of a species on respective axes. It has been proposed that, in insects, the degree of capital (vs. income) breeding, reflecting the importance of adult feeding for reproduction, correlates with various ecological traits at the level of among-species comparison. We sought to prove these ideas via rigorous phylogenetic comparative analyses. We used experimentally derived life-history data for 57 species of European Geometridae (Lepidoptera), and an original phylogenetic reconstruction. The degree of capital breeding was estimated based on morphological proxies, including relative abdomen size of females. Applying Brownian-motion-based comparative analyses (with an original update to include error estimates), we demonstrated the associations between the degree of capital breeding and larval diet breadth, sexual size dimorphism, and reproductive season. Ornstein-Uhlenbeck model based phylogenetic analysis suggested a causal relationship between the degree of capital breeding and diet breadth. Our study indicates that the gradation from capital to income breeding is an informative axis to ordinate life-history strategies in flying insects which are affected by the fecundity vs. mobility trade off, with the availability of easy to record proxies contributing to its predictive power in practical contexts. © 2016 by the Ecological Society of America.

  8. Controlled activation of retrotransposition for plant breeding.

    PubMed

    Paszkowski, Jerzy

    2015-04-01

    Plant genomes consist to a large extent of transposable elements (TEs), predominantly retrotransposons. Their accumulation through periodic transposition bursts has shaped the structure and regulatory organization of plant genomes, often contributing to phenotypic traits. Transposon-generated phenotypes selected by humans during plant domestication have been maintained under strict selection during subsequent plant breeding. Our knowledge of the epigenetic, environmental, and developmental regulation of TE activity has advanced considerably in recent years. Here I will consider TEs as an attractive endogenous source of genetic variation that can be liberated in a controlled fashion and thus offer novel phenotypic diversity to be selected for crop improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Endangered wolves cloned from adult somatic cells.

    PubMed

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  10. Clone tag detection in distributed RFID systems

    PubMed Central

    Kamaludin, Hazalila; Mahdin, Hairulnizam

    2018-01-01

    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy. PMID:29565982

  11. Clone tag detection in distributed RFID systems.

    PubMed

    Kamaludin, Hazalila; Mahdin, Hairulnizam; Abawajy, Jemal H

    2018-01-01

    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.

  12. [Human cloning in Muslim and Arab law].

    PubMed

    Aldeeb Abu-Sahlieh, Sami A

    2009-01-01

    Cloning is a modern medical procedure that Muslim religious authorities treat en resorting to the general principles established by classical Muslim law based on the Koran and the Sunnah of Muhhamad as the messenger of God. In this regard, human beings are not capable of deciding what is or what is not lawful without resorting to divine norms. Cloning clashes with several principles. Firstly, the principle of the respect for life in relation to surpernumeraries, but Muslim authors are not in unanimous agreement on the determination of the moment at which life begins. Secondly, is the respect of progeny: cloning could only take place between a married couple. But even if these two principles are respected, cloning poses two major problems: the diversity of species expounded by the Koran and the Sunnah and a lack of interest. Which explains the quasi-unanimous opposition of Muslim writings regarding cloning.

  13. Behavioral profiles of dog breeds.

    PubMed

    Hart, B L; Miller, M F

    1985-06-01

    Breed behavior profiles were obtained by a method that was quantitative and free of personal biases. The profiles concerned 13 traits, eg, excitability, snapping at children, watchdog barking, and affection demand, which are of interest to people wanting dogs as pets. Authorities for the development of the profiles were 48 small animal veterinarians and 48 obedience judges, randomly selected from directories so as to represent equally men and women, and eastern, central, and western geographic regions of the United States. Each authority was asked to rank on each of the behavioral traits a list of 7 breeds chosen randomly from a list of 56 breeds. The data were analyzed in a custom-designed computer program that pooled the data and then ranked all 56 breeds on the basis of the 13 traits. The results indicated that some behavioral traits discriminate between breeds better than others. An examination of sample profiles indicated the feasibility of developing a statistically meaningful behavioral profile that integrates comparative rankings of several authorities balanced as to representation of geographic location, sex, and type of experience with dogs.

  14. Migratory double breeding in Neotropical migrant birds.

    PubMed

    Rohwer, Sievert; Hobson, Keith A; Rohwer, Vanya G

    2009-11-10

    Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants.

  15. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers.

    PubMed

    Bigi, D; Marelli, S P; Randi, E; Polli, M

    2015-12-01

    Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of H E found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.

  16. Probabilistic Metrology Attains Macroscopic Cloning of Quantum Clocks

    NASA Astrophysics Data System (ADS)

    Gendra, B.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.; Chiribella, G.

    2014-12-01

    It has recently been shown that probabilistic protocols based on postselection boost the performances of the replication of quantum clocks and phase estimation. Here we demonstrate that the improvements in these two tasks have to match exactly in the macroscopic limit where the number of clones grows to infinity, preserving the equivalence between asymptotic cloning and state estimation for arbitrary values of the success probability. Remarkably, the cloning fidelity depends critically on the number of rationally independent eigenvalues of the clock Hamiltonian. We also prove that probabilistic metrology can simulate cloning in the macroscopic limit for arbitrary sets of states when the performance of the simulation is measured by testing small groups of clones.

  17. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.

  18. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  19. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  20. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  1. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  2. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the united states

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a significant concern for ruminant health and food safety. Recently, a highly pathogenic C. jejuni clone (named SA) has emerged as the predominant cause of ruminant abortion and a significant cause of foodborne illnesses in the United States. Despite the recent advance in und...

  3. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes.

    PubMed

    Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A

    2012-12-01

    Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in

  4. Male and female breeding strategies in a cooperative primate.

    PubMed

    Yamamoto, Maria Emilia; Araujo, Arrilton; Arruda, Maria de Fatima; Lima, Ana Karinne Moreira; Siqueira, Jose de Oliveira; Hattori, Wallisen Tadashi

    2014-11-01

    Marmosets are cooperative breeders organized as extended family groups, but breeding is generally restricted to a single pair. Breeding competition is fierce in female marmosets; males, on the other hand, show low levels of intragroup aggression. We investigated male and female breeding strategies and the resulting reproductive output in 9 wild groups. Reproductive output, tenure of breeding animals, identification of the breeding system, breeding position replacements, migration and infanticide were recorded; also, we recorded grooming and aggression. Replacement of the breeding male or female was observed on nine occasions. On four occasions, the son of the breeding male inherited the breeding post, but we never observed inheritance of a breeding post by a daughter. Mostly, females attained a breeding post by immigrating to a group that had a breeding vacancy. Our results showed that Callithrix jacchus males and females use different strategies to attain a breeding position and maintain it for as long as possible. These strategies prolong the tenure of the breeding position, which is the best way to produce a large number of offspring. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Telomere lengthening by trichostatin A treatment in cloned pigs].

    PubMed

    Xie, Bing-Teng; Ji, Guang-Zhen; Kong, Qing-Ran; Mao, Jian; Shi, Yong-Qian; Liu, Shi-Chao; Wu, Mei-Ling; Wang, Juan; Liu, Lin; Liu, Zhong-Hua

    2012-12-01

    Telomeres are repeated GC rich sequences at the end of chromosomes, and shorten with each cell division due to DNA end replication problem. Previously, reprogrammed somatic cells of cloned animals display variable telomere elongation. However, it was reported that the cloned animals including Dolly do not reset telomeres and show premature aging. In this study, we investigated telomere function in cloned or transgenic cloned pigs, including the cloned Northeast Min pigs, eGFP, Mx, and PGC1α transgenic cloned pigs, and found that the telomere lengths of cloned pigs were significantly shorter than the nuclear donor adult fibroblasts and age-matched noncloned pigs (P<0.05), indicating that nuclear reprogramming did not restore cellular age of donor cells after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), an inhibitor of histone deacetylase, has proven to enhance the efficiency of nuclear reprogramming in several species. In order to test whether TSA also can effectively enhance reprogramming of telomeres, TSA (40 nmol/L) was used to treat porcine cloned embryos at 1-cell stage for 24 h. Consistent with previous reports, the developmental rate of SCNT embryos to the blastocyst stage was significantly increased compared with those of the control group (16.35% vs. 27.09%, 21.60% vs. 34.90%, P<0.05). Notably, the telomere length of cloned porcine blastocysts was also significantly elongated (P<0.05). Although TSA did not improve the cloning efficiency (1.3% vs. 1.7%, TSA vs. control), the telomere lengths of cloned pig-lets were significantly longer compared with those of the control group and the donor fibroblasts (P<0.05). In conclusion, telomeres have not been effectively restored by SCNT in pigs but TSA can effectively lengthen the telomere lengths of cloned pigs.

  6. Within- and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise.

    PubMed

    Legarra, A; Baloche, G; Barillet, F; Astruc, J M; Soulas, C; Aguerre, X; Arrese, F; Mintegi, L; Lasarte, M; Maeztu, F; Beltrán de Heredia, I; Ugarte, E

    2014-05-01

    Genotypes, phenotypes and pedigrees of 6 breeds of dairy sheep (including subdivisions of Latxa, Manech, and Basco-Béarnaise) from the Spain and France Western Pyrenees were used to estimate genetic relationships across breeds (together with genotypes from the Lacaune dairy sheep) and to verify by forward cross-validation single-breed or multiple-breed genetic evaluations. The number of rams genotyped fluctuated between 100 and 1,300 but generally represented the 10 last cohorts of progeny-tested rams within each breed. Genetic relationships were assessed by principal components analysis of the genomic relationship matrices and also by the conservation of linkage disequilibrium patterns at given physical distances in the genome. Genomic and pedigree-based evaluations used daughter yield performances of all rams, although some of them were not genotyped. A pseudo-single step method was used in this case for genomic predictions. Results showed a clear structure in blond and black breeds for Manech and Latxa, reflecting historical exchanges, and isolation of Basco-Béarnaise and Lacaune. Relatedness between any 2 breeds was, however, lower than expected. Single-breed genomic predictions had accuracies comparable with other breeds of dairy sheep or small breeds of dairy cattle. They were more accurate than pedigree predictions for 5 out of 6 breeds, with absolute increases in accuracy ranging from 0.05 to 0.30 points. They were significantly better, as assessed by bootstrapping of candidates, for 2 of the breeds. Predictions using multiple populations only marginally increased the accuracy for a couple of breeds. Pooling populations does not increase the accuracy of genomic evaluations in dairy sheep; however, single-breed genomic predictions are more accurate, even for small breeds, and make the consideration of genomic schemes in dairy sheep interesting. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning.

    PubMed

    Carbonetti, Sara; Oliver, Brian G; Vigdorovich, Vladimir; Dambrauskas, Nicholas; Sack, Brandon; Bergl, Emilee; Kappe, Stefan H I; Sather, D Noah

    2017-09-01

    Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  9. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    PubMed

    Gopal, Murali; Gupta, Alka

    2016-01-01

    method - for realizing this next-generation plant breeding approach. Our aim, thus, is to bring closer the information accrued through the advanced nucleotide sequencing and bioinformatics in conjunction with conventional culture-dependent isolation method for practical application in plant breeding and overall agriculture.

  10. TILLING for plant breeding.

    PubMed

    Sharp, Peter; Dong, Chongmei

    2014-01-01

    TILLING is widely used in plant functional genomics. Mutagenesis and SNP detection is combined to allow for the isolation of mutations in genes of interest. It can also be used as a plant breeding tool, whereby variation in known or candidate genes of interest to breeding programs is generated. Here we describe a simple low-cost TILLING procedure.

  11. [Product safety analysis of somatic cell cloned bovine].

    PubMed

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  12. Selection of cyanobacteria isolated from mosquito breeding sites as a potential food source for mosquito larvae.

    PubMed Central

    Thiery, I; Nicolas, L; Rippka, R; Tandeau de Marsac, N

    1991-01-01

    One way to increase the persistence of larvicidal toxins in mosquito breeding sites is to clone the corresponding genes in microorganisms, such as cyanobacteria, which could serve as a source of food for the larvae. We isolated and cultured 10 strains of cyanobacteria from three mosquito breeding sites along the French Mediterranean coast. Most of the strains were tolerant to a relatively wide range of salt concentrations, and all of them were totally or partially resistant to at least four of the five biological or chemical larvicides used in the local mosquito control program. Six unicellular strains from these habitats and Synechococcus strain PCC 7942, a strain maintained for more than 10 years under laboratory conditions, were assessed for ingestion and digestion by larvae Culex pipiens and Anopheles gambiae mosquitoes. The numbers of cells ingested and digested were dependent on the cyanobacterial strain and varied with the mosquito species. Three of the new isolates, Synechococcus strain PCC 8905 and Synechocystis strains PCC 8906 and PCC 8912, were ingested and digested rapidly by larvae of both mosquito species. Since these strains are also tolerant to larvicides and relatively resistant to elevated salt concentrations, they meet the basic requirements for potential recipients of bacterial genes that encode endotoxins. PMID:1677241

  13. Habitat selection by breeding red-winged blackbirds

    USGS Publications Warehouse

    Albers, P.H.

    1978-01-01

    Habitat preferences of breeding Red-winged Blackbirds in an agricultural area were determined by comparing population density, landscape characteristics, and vegetational descriptions. Observations were made throughout the breeding season. Preferred breeding habitats of Red-wings, in order of preference, were wetlands, hayfields, old fields, and pastures. Males and females occupied old fields and wetlands first, then hayfields, and finally, pastures. Cutting of hayfields caused territorial abandonment by both sexes within 48 h. The apparent movement of displaced females from cut hayfields to uncut hayfields suggests that habitat fidelity of females is strong after the breeding effort has begun. Breeding Red-wings exhibited general preferences for trees, large amounts of habitat edge, erect old vegetation, and sturdy, tall, and dense vegetation. Vegetative forms and species, such as upland grasses, broad- and narrow-leafed monocots in wetlands, and forbs were important to the Red-wing at various times during the breeding season. Landscape and vegetational preferences of breeding adults were easier to observe early in the breeding season (March through May) than later. Vegetational growth and increases in the size of the breeding population probably make these preferences more difficult to detect. Territory size was poorly correlated with landscape and vegetational characteristics in uplands but strongly correlated with broad- and narrow-leafed mono cots and vegetative height in wetlands. Wetland territories were smaller than upland territories. Territories increased in size during the middle and late portions of the breedi g season. Habitat selection by the Red-winged Blackbird can best be studied by evaluating vegetative preferences throughout the breeding season.

  14. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  15. Between-breed variations in resistance/resilience to gastrointestinal nematodes among indigenous goat breeds in Uganda.

    PubMed

    Onzima, R B; Mukiibi, R; Ampaire, A; Benda, K K; Kanis, E

    2017-12-01

    Gastrointestinal nematodes (GINs), Haemonchus contortus, are a major health problem in goat production. Resistance to H. contortus, the most prevalent GIN in Uganda, was studied among three indigenous goat breeds to assess their differences. Twelve male goats of each breed approximately 7 months old of small East African (SEA), Mubende, and Kigezi goats from smallholder farmers in Arua, Mubende, and Kabale were assembled for the study. At the station, they were dewormed with a combination therapy of the broad-spectrum dewormers closantel and albendazole to free the goats of gastrointestinal parasites. During experimentation, the goats were kept indoors and ad libitum fed on clean banana peels and napier grass. On attainment of zero-worm-egg status, the goats were artificially infected with 18,000 third-stage (L3) larvae of H. contortus prepared according to Baermann's procedure. Data were collected on fecal egg count (FEC), packed cell volume (PCV), and body weight (BW) on a 2-week basis until 12 weeks post infection and carcass weight and total worm count (WC) in the abomasum at termination of the experiment. The data on FEC, PCV, and BW were subjected to repeated-measure analysis of variance and the others by one-way analysis of variance. FEC between breeds was only significantly different at 12 weeks post infection (p = 0.04). Generally, higher FEC was recorded in Kigezi compared to SEA and Mubende goats. Carcass weight was significantly different among breeds (p < 0.05), with Mubende having the highest carcass weight, followed by Kigezi and SEA. PCV and daily weight gains were significantly different between breeds (p < 0.05). WC was not significantly different between the breeds. FEC and PCV were weakly significant at later stages of the experiment with higher parasite burden suggesting potential variation in resistance to H. contortus. These differences could be exploited in designing breeding programs with disease resistance in indigenous goat

  16. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  17. Genetic Distinctiveness of the Herdwick Sheep Breed and Two Other Locally Adapted Hill Breeds of the UK

    PubMed Central

    Bowles, Dianna; Carson, Amanda; Isaac, Peter

    2014-01-01

    There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits) and PRLR (reproductive performance traits) also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the lentivirus. PMID

  18. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE PAGES

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; ...

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  19. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  20. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

    PubMed Central

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelbagi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbonnaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security. PMID:26322050

  1. Population ecology of the mallard: II. Breeding habitat conditions, size of the breeding populations, and production indices

    USGS Publications Warehouse

    Pospahala, Richard S.; Anderson, David R.; Henny, Charles J.

    1974-01-01

    This report, the second in a series on a comprehensive analysis of mallard population data, provides information on mallard breeding habitat, the size and distribution of breeding populations, and indices to production. The information in this report is primarily the result of large-scale aerial surveys conducted during May and July, 1955-73. The history of the conflict in resource utilization between agriculturalists and wildlife conservation interests in the primary waterfowl breeding grounds is reviewed. The numbers of ponds present during the breeding season and the midsummer period and the effects of precipitation and temperature on the number of ponds present are analyzed in detail. No significant cycles in precipitation were detected and it appears that precipitation is primarily influenced by substantial seasonal and random components. Annual estimates (1955-73) of the number of mallards in surveyed and unsurveyed breeding areas provided estimates of the size and geographic distribution of breeding mallards in North America. The estimated size of the mallard breeding population in North America has ranged from a high of 14.4 million in 1958 to a low of 7.1 million in 1965. Generally, the mallard breeding population began to decline after the 1958 peak until 1962, and remained below 10 million birds until 1970. The decline and subsequent low level of the mallard population between 1959 and 1969 .generally coincided with a period of poor habitat conditions on the major breeding grounds. The density of mallards was highest in the Prairie-Parkland Area with an average of nearly 19.2 birds per square mile. The proportion of the continental mallard breeding population in the Prairie-Parkland Area ranged from 30% in 1962 to a high of 600/0 in 1956. The geographic distribution of breeding mallards throughout North America was significantly related to the number of May ponds in the Prairie-Parkland Area. Estimates of midsummer habitat conditions and indices to

  2. Ethical, legal, and social aspects of farm animal cloning in the 6th Framework Programme for Research.

    PubMed

    Claxton, John; Sachez, Elena; Matthiessen-Guyader, Line

    2004-01-01

    Cloned livestock have potential importance in the provision of improved medicine as well as in the development of livestock production. The public is, however, increasingly concerned about the social and ethical consequences of these advances in knowledge and techniques. There is unevenness throughout Europe in different Member States' attitudes to research into livestock cloning. Although there is EU legislation controlling the use of animals for research purposes, there is no legislation specifically governing cloning in livestock production. The main EU reference is the 9th Opinion of the European Group on Ethics, which states "Cloning of farm animals may prove to be of medical and agricultural as well as economic benefit. It is acceptable only when the aims and methods are ethically justified and when carried out under ethical conditions." The ethical justification includes the avoidance of suffering, the use of the 3Rs principle and a lack of better alternatives. The Commission addresses these issues in the 6th Framework Programme by promoting the integration of ethical, legal and social aspects in all proposals where they are relevant, by fostering ethical awareness and foresight in the proposals, by encouraging public dialogue, and by supporting specific actions to promote the debate. Research must respect fundamental ethical principles, including animal welfare requirements.

  3. Canine TCOF1; cloning, chromosome assignment and genetic analysis in dogs with different head types.

    PubMed

    Haworth, K E; Islam, I; Breen, M; Putt, W; Makrinou, E; Binns, M; Hopkinson, D; Edwards, Y

    2001-08-01

    We describe the construction of a dog embryonic head/neck cDNA library and the isolation of the dog homolog of the Treacher Collins Syndrome gene, TCOF1. The protein shows a similar three-domain structure to that described for human TCOF1, but the dog gene lacks exon 10 and contains two exons not present in the human sequence. In addition, exon 19 is differentially spliced in the dog. How these structural differences relate to TCOF1 phosphorylation is discussed. Isolation of a genomic clone allowed the exon/intron boundaries to be characterized and the dog TCOF1 gene to be mapped to CF Chr 4q31, a region syntenic to human Chr 5. Genetic analysis of DNA of dogs from 13 different breeds identified nine DNA sequence variants, three of which gave rise to amino acid substitutions. Grouping dogs according to head type showed that a C396T variant, leading to a Pro117Ser substitution, is associated with skull/face shape in our dog panel. The numbers are small, but the association between the T allele and brachycephaly, broad skull/short face, was highly significant (p = 0.000024). The short period of time during which the domestic dog breeds have been established suggests that this mutation has arisen only once in the history of dog domestication.

  4. DNA hypomethylation of individual sequences in aborted cloned bovine fetuses.

    PubMed

    Chen, Tao; Jiang, Yan; Zhang, Yan-Ling; Liu, Jing-He; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2005-09-01

    Cloned bovines have a much higher abortion rate than those derived in vivo. Available evidence indicates that inappropriate epigenetic reprogramming of donor nuclei is the primary cause of cloning failure. To gain a better understanding of the DNA methylation changes associated with the high abortion rate of cloned bovines, we examined the DNA methylation status of a repeated sequence (satellite I) and the promoter regions of two single-copy genes (interleukin 3/cytokeratin) in aborted cloned fetuses, aborted fetuses derived from artificial insemination (AI), cloned adults and AI adults by bisulfite sequencing and restriction enzyme analysis. Two of four aborted cloned fetuses show very low methylation levels in the two single-copy gene promoter regions. One of the two fetuses also showed undermethylated status in the satellite I sequence. The other two aborted cloned fetuses have similar methylation levels to those of aborted AI fetuses. However, no difference in methylation was observed between cloned adults and AI adults. Our results demonstrate for the first time the undermethylated status of individual sequences in aborted cloned fetuses. These findings suggest that aberrant DNA methylation may contribute to the developmental failure of cloned bovine fetuses.

  5. D-loop haplotype diversity in Brazilian horse breeds

    PubMed Central

    Ianella, Patrícia; Albuquerque, Maria do Socorro Maués; Paiva, Samuel Rezende; do Egito, Andréa Alves; Almeida, Leonardo Daniel; Sereno, Fabiana T. P. S.; Carvalho, Luiz Felipe Ramos; Mariante, Arthur da Silva; McManus, Concepta Margaret

    2017-01-01

    Abstract The first horses were brought to Brazil by the colonizers after 1534. Over the centuries, these animals evolved and adapted to local environmental conditions usually unsuitable for exotic breeds, thereby originating locally adapted Brazilian breeds. The present work represents the first description of maternal genetic diversity in these horse breeds based on D-loop sequences. A D-Loop HSV-I fragment of 252 bp, from 141 horses belonging to ten Brazilian breeds / genetic groups (locally adapted and specialized breeds) were analysed. Thirty-five different haplotypes belonging to 18 haplogroups were identified with 33 polymorphic sites. Haplotype diversity (varying from 0.20 to 0.96) and nucleotide diversity (varying from 0.0039 to 0.0239) was lower for locally adapted than for specialized breeds, with the same pattern observed for FST values. Haplogroups identified in Brazilian breeds are in agreement with previous findings in South American samples. The low variability observed mainly in locally adapted breeds, indicates that, to ensure conservation of these breeds, careful reproductive management is needed. Additional genetic characterization studies are required to support accurate decision-making. PMID:28863209

  6. Nutrient reserve dynamics of breeding canvasbacks

    USGS Publications Warehouse

    Barzen, Jeb A.; Serie, Jerome R.

    1990-01-01

    We compared nutrients in reproductive and nonreproductive tissues of breeding Canvasbacks (Aythya valisineria) to assess the relative importance of endogenous reserves and exogenous foods. Fat reserves of females increased during rapid follicle growth and varied more widely in size during the early phase of this period. Females began laying with ca. 205 g of fat in reserve and lost 1.8 g of carcass fat for every 1 g of fat contained in their ovary and eggs. Females lost body mass (primarily fat) at a declining rate as incubation advanced. Protein reserves increased directly with dry oviduct mass during rapid follicle growth. This direct relationship was highly dependent upon data from 2 birds and likely biased by structural size. During laying, protein reserves did not vary with the combined mass of dry oviduct and dry egg protein. Between laying and incubation, mean protein reserves decreased by an amount equal to the protein found in 2.1 Canvasback eggs. Calcium reserves did not vary with the cumulative total of calcium deposited in eggs. Mean calcium reserve declined by the equivalent content of 1.2 eggs between laying and incubation. We believe that protein and calcium were stored in small amounts during laying, and that they were supplemented continually by exogenous sources. In contrast, fat was stored in large amounts and contributed significantly to egg production and body maintenance. Male Canvasbacks lost fat steadily-but not protein or calcium-as the breeding season progressed.

  7. Cloning and characterization of new bioluminescent proteins

    NASA Astrophysics Data System (ADS)

    Szent-Gyorgyi, Christopher; Ballou, Byron T.; Dagnal, Erich; Bryan, Bruce

    1999-07-01

    Over the past two years Prolume has undertaken a comprehensive program to clone luciferases and associated 'green fluorescent proteins' (GFPs) from marine animals that use coelenterazine as the luciferin. To data we have cloned several bioluminescent proteins, including two novel copepod luciferases and two anthozoan GFPs. These four proteins have sequences that differ greatly form previously cloned analogous proteins; the sequence diversity apparently is due to independent evolutionary origins and unusual evolutionary constraints. Thus coelenterazine-based bioluminescent systems may also manifest a variety of useful properties. We discuss form this taxonomic perspective the initial biochemical and spectral characterization of our cloned proteins. Emphasis is placed on the anthozoan luciferase-GFP systems, whose efficient resonance energy transfer has elicited much current interest.

  8. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    PubMed

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  9. Indirect genetic estimates of breeding population size in the polyploid green sturgeon (Acipenser medirostris).

    PubMed

    Israel, J A; May, B

    2010-03-01

    The utility of genetic measures for kinship reconstruction in polysomic species is not well evaluated. We developed a framework to test hypotheses about estimating breeding population size indirectly from collections of outmigrating green sturgeon juveniles. We evaluated a polysomic dataset, in allelic frequency and phenotypic formats, from green sturgeon to describe the relationship among known progeny from experimental families. The distributions of relatedness values for kin classes were used for reconstructing green sturgeon pedigrees from juveniles of unknown relationship. We compared three rarefaction functions that described the relationship between the number of kin groups and number of samples in a pedigree to estimate the annual abundance of spawners contributing to the threatened green sturgeon Southern Distinct Population Segment in the upper Sacramento River. Results suggested the estimated abundance of breeding green sturgeon remained roughly constant in the upper Sacramento River over a 5-year period, ranging from 10 to 28 individuals depending on the year and rarefaction method. These results demonstrate an empirical understanding for the distribution of relatedness values among individuals is a benefit for assessing pedigree reconstruction methods and identifying misclassification rates. Monitoring of rare species using these indirect methods is feasible and can provide insight into breeding and ontogenetic behaviour. While this framework was developed for specific application to studying fish populations in a riverscape, the framework could be advanced to improve genetic estimation of breeding population size and to identify important breeding habitats of rare species when combined with finer-scaled sampling of offspring.

  10. Photosynthesis and leaf water relations in four American sycamore clones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Z.; Land, S.B. Jr.

    1995-11-01

    Photosynthesis, transpiration, stomatal conductance, and xylem pressure potential were studied to examine clonal variation and clone-by-season interactions in rooted cuttings of four sycamore clones (Platanus occidentalis L.). These physiological parameters were measured during June through November of the second and third growing seasons in the field. Stomatal conductance, xylem pressure potential, and photosynthesis were higher in June-July than in August-November. The four clones did not differ significantly in yearly average photosynthetic rates, but clone 11 tended to have higher rates early in each growing season (June-July) than did the other three clones. Dry periods during August-September of the second seasonmore » and during October of the third season apparently caused clone 11 to close its stomata more than clone 17, as indicated by significant clone-by-season interactions for reductions in stomatal conductance and transpiration late in the morning. Clone 17 was generally able to maintain high xylem pressure potential, stomatal conductance, and transpiration throughout the growing season, probably because of its large root system. 36 refs., 2 figs., 5 tabs.« less

  11. Human research cloning, embryos, and embryo-like artifacts.

    PubMed

    Hyun, Insoo; Jung, Kyu Won

    2006-01-01

    Research suggests that cloning is incapable of producing a viable embryo when it is used on primate eggs. In fact, the entity created may not qualify as an embryo at all. If the results stand, cloning avoids the moral objections typically lodged against it, and cloning is itself an "alternative source" of stem cells.

  12. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  13. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  14. Cloning animals by somatic cell nuclear transfer--biological factors.

    PubMed

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-11-13

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other species, this review will be focused on somatic cell cloning of cattle.

  15. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Permits for cooperative breeding. 15.24...

  16. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Permits for cooperative breeding. 15.24...

  17. 50 CFR 15.24 - Permits for cooperative breeding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Permits for cooperative breeding. 15.24...

  18. Photonic quantum simulator for unbiased phase covariant cloning

    NASA Astrophysics Data System (ADS)

    Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.

    2018-01-01

    We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.

  19. Transmitter responsiveness in two newly isolated clones of neuroblastoma X glioma hybrid.

    PubMed

    Ogura, A; Amano, T

    1983-01-10

    Mouse neuroblastoma clone N1E-115 cells and rat glioma clone C6 cells were hybridized and two new clones were isolated. One clone, designated NG115-301, possessed weak electric excitability to an applied current pulse, while another clone, NG115-401, generated an action potential in response to the pulse. The former clone responded to serotonin and catecholamines with slow hyperpolarizations, while the latter clone responded to catecholamines with transient depolarizations. Both clones did not respond to acetylcholine. These types of responses have not been reported in any available clones. These clones may enrich the repertoire of cell clones useful for the characterization of transmitter reception mechanisms in the nervous system.

  20. Optimization of embryo culture conditions for increasing efficiency of cloning in buffalo (Bubalus bubalis) and generation of transgenic embryos via cloning.

    PubMed

    Wadhwa, Neerja; Kunj, Neetu; Tiwari, Shuchita; Saraiya, Megha; Majumdar, Subeer S

    2009-09-01

    Cloning in bovine species is marred by low efficiency of blastocyst formation. Any increase in the efficiency of blastocyst formation upon nuclear transfer will greatly enhance the efficiency of cloning. In the present study, the effect of various media, protein sources, and growth factors on the development of cloned buffalo embryos was evaluated. Among various combinations tested, culture of cloned embryos in TCM-199 media on the feeder layer of Buffalo Oviductal Epithelial Cells (BOEC) in the presence of bovine serum albumin-free fatty acid (BSA-FFA) and leukemia inhibitory factor (LIF) provided most suitable environment for efficient development of cloned blastocysts. Under these conditions, we achieved a blastocyst formation rate of 43%, which is better than those reported previously. Because preimplantation embryonic development, in vivo, occurs in an environment of oviductal cells, the blastocysts generated by this method may presumably be more suitable for implantation and further development. Additionally, we generated green blastocysts from enucleated oocytes by transfer of nuclei from cells transfected with EGFP transgene, showing possibility of transgenesis via cloning in this species. To our knowledge, this is the first report regarding the production of transgenic cloned buffalo embryos and their developmental competence with respect to various media, cocultures, and supplements.

  1. Breed and other effects on reproductive traits and breeding soundness categorization in young beef bulls in Florida.

    PubMed

    Chenoweth, P J; Chase, C C; Thatcher, M J; Wilcox, C J; Larsen, R E

    1996-11-01

    Yearling, grass-fed, beef bulls at the USDA Subtropical Agricultural Research Station, Brooksville, Florida, were assessed for physical and semen traits in January, April, July and October of 1991 (Trial 1) and 1992 (Trial 2). Bulls were given a breeding soundness evaluation (BSE) using revised semen and scrotal circumference (SC) criteria. In Trial 1, the bulls consisted of Angus (n = 15), Brahman (n = 14), Hereford (n = 15) and Senepol (n = 14). In Trial 2, the breeds were Angus (n = 15), Brahman (n = 16), Romosinuano (n = 13) and Nellore x Brahman (n = 9). Trial bulls generally showed delayed growth compared with grain-fed bulls in temperate environments. Breed influenced semen traits (percentage sperm motility, normal spermatozoa and those with primary abnormalities) in both trials. Temperate Bos taurus breeds (Angus, Hereford) were generally superior to Bos indicus breeds (Brahman, Nellore x Brahman). Tropically-adapted Bos taurus breeds (Senepol, Romosinuano) were intermediate for those traits tested. In general, tropically-adapted Bos taurus breeds were more similar in reproductive development to temperate Bos taurus than to Bos indicus breeds. Breed by test period interactions occurred and were mainly influenced by delayed sexual maturity of Bos indicus bulls. Qualitative semen traits increased with bull age, particularly from 12 to 18 mo. Scrotal circumference development was slower in the Bos indicus breeds. Bulls of satisfactory BSE status at 18.1 to 22 mo of age were 73.9% in Trial 1 and 58.5% in Trial 2. Brahman bulls had the least satisfactory BSE scores in both years (Trial 1, 44.4%; Trial 2, 22.2%). Most bulls failed to achieve satisfactory BSE status due to a small SC relative to age (Trial 1, 66%; Trial 2, 72%). The most efficacious use of the BSE was > or = 15 mo in Bos taurus bulls and > 18 mo for Bos indicus bulls. Although the BSE has proven to be useful for the assessment of young, pasture-raised bulls in semi-tropical environments, use of SC

  2. Sequential quantum cloning under real-life conditions

    NASA Astrophysics Data System (ADS)

    Saberi, Hamed; Mardoukhi, Yousof

    2012-05-01

    We consider a sequential implementation of the optimal quantum cloning machine of Gisin and Massar and propose optimization protocols for experimental realization of such a quantum cloner subject to the real-life restrictions. We demonstrate how exploiting the matrix-product state (MPS) formalism and the ensuing variational optimization techniques reveals the intriguing algebraic structure of the Gisin-Massar output of the cloning procedure and brings about significant improvements to the optimality of the sequential cloning prescription of Delgado [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.150502 98, 150502 (2007)]. Our numerical results show that the orthodox paradigm of optimal quantum cloning can in practice be realized in a much more economical manner by utilizing a considerably lesser amount of informational and numerical resources than hitherto estimated. Instead of the previously predicted linear scaling of the required ancilla dimension D with the number of qubits n, our recipe allows a realization of such a sequential cloning setup with an experimentally manageable ancilla of dimension at most D=3 up to n=15 qubits. We also address satisfactorily the possibility of providing an optimal range of sequential ancilla-qubit interactions for optimal cloning of arbitrary states under realistic experimental circumstances when only a restricted class of such bipartite interactions can be engineered in practice.

  3. Sequencing consolidates molecular markers with plant breeding practice.

    PubMed

    Yang, Huaan; Li, Chengdao; Lam, Hon-Ming; Clements, Jonathan; Yan, Guijun; Zhao, Shancen

    2015-05-01

    Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.

  4. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.

  5. Long-term changes in migration timing of Song Thrush Turdus philomelos at the southern Baltic coast in response to temperatures on route and at breeding grounds.

    PubMed

    Redlisiak, Michał; Remisiewicz, Magdalena; Nowakowski, Jarosław K

    2018-05-26

    Climate warming causes the advancement of spring arrival of many migrant birds breeding in Europe, but the effects on their autumn migration are less known. We aimed to determine any changes in the timing of Song Thrush captured during spring and autumn migrations at the Polish Baltic coast from 1975 to 2014, and if these were related to long-term changes of temperature at their breeding grounds and migration routes. The timing of spring migration at Hel ringing station in 1975-2014 did not show long-term advance, but they had responded to environmental conditions on the year-to-year basis. The warmer the temperatures were in April on their migration route, the earlier were the dates of the median and the end of spring migration at Hel. The beginning of autumn migration at the Mierzeja Wiślana ringing station advanced by 5 days between 1975 and 2014. The warmer the April on route, and the July at the Song Thrushes' breeding grounds, the earlier young birds began autumn migration across the Baltic coast. We suggest this was a combined effect of adults' migration and breeding early during warm springs and young birds getting ready faster for autumn migration during warm summers. The average time span of 90% of the autumn migration was extended by 5 days, probably because of early migration of young birds from first broods and late of those from second broods enabled by warm springs and summers. The response of Song Thrushes' migration timing to temperatures on route and at the breeding grounds indicated high plasticity in the species and suggested it might adapt well to climate changes.

  6. Weather effects on avian breeding performance and implications of climate change.

    PubMed

    Skagen, Susan K; Adams, Amy A Yackel

    2012-06-01

    The influence of recent climate change on the world's biota has manifested broadly, resulting in latitudinal range shifts, advancing dates of arrival of migrants and onset of breeding, and altered community relationships. Climate change elevates conservation concerns worldwide because it will likely exacerbate a broad range of identified threats to animal populations. In the past few decades, grassland birds have declined faster than other North American avifauna, largely due to habitat threats such as the intensification of agriculture. We examine the effects of local climatic variations on the breeding performance of a bird endemic to the shortgrass prairie, the Lark Bunting (Calamospiza melanocorys) and discuss the implications of our findings relative to future climate predictions. Clutch size, nest survival, and productivity all positively covaried with seasonal precipitation; yet relatively intense daily precipitation events temporarily depressed daily survival of nests. Nest survival was positively related to average temperatures during the breeding season. Declining summer precipitation may reduce the likelihood that Lark Buntings can maintain stable breeding populations in eastern Colorado although average temperature increases of up to 3 degrees C (within the range of this study) may ameliorate declines in survival expected with drier conditions. Historic climate variability in the Great Plains selects for a degree of vagility and opportunism rather than strong site fidelity and specific adaptation to local environments. These traits may lead to northerly shifts in distribution if climatic and habitat conditions become less favorable in the drying southern regions of the Great Plains. Distributional shifts in Lark Buntings could be constrained by future changes in land use, agricultural practices, or vegetative communities that result in further loss of shortgrass prairie habitats.

  7. Weather effects on avian breeding performance and implications of climate change

    USGS Publications Warehouse

    Skagen, Susan K.; Yackel Adams, Amy A.

    2012-01-01

    The influence of recent climate change on the world’s biota has manifested broadly, resulting in latitudinal range shifts, advancing dates of arrival of migrants and onset of breeding, and altered community relationships. Climate change elevates conservation concerns worldwide because it will likely exacerbate a broad range of identified threats to animal populations. In the past few decades, grassland birds have declined faster than other North American avifauna, largely due to habitat threats such as the intensification of agriculture. We examine the effects of local climatic variations on the breeding performance of a bird endemic to the shortgrass prairie, the Lark Bunting (Calamospiza melanocorys) and discuss the implications of our findings relative to future climate predictions. Clutch size, nest survival, and productivity all positively covaried with seasonal precipitation, yet relatively intense daily precipitation events temporarily depressed daily survival of nests. Nest survival was positively related to average temperatures during the breeding season. Declining summer precipitation may reduce the likelihood that Lark Buntings can maintain stable breeding populations in eastern Colorado although average temperature increases of up to 38C (within the range of this study) may ameliorate declines in survival expected with drier conditions. Historic climate variability in the Great Plains selects for a degree of vagility and opportunism rather than strong site fidelity and specific adaptation to local environments. These traits may lead to northerly shifts in distribution if climatic and habitat conditions become less favorable in the drying southern regions of the Great Plains. Distributional shifts in Lark Buntings could be constrained by future changes in land use, agricultural practices, or vegetative communities that result in further loss of shortgrass prairie habitats.

  8. Post-Death Cloning of Endangered Jeju Black Cattle (Korean Native Cattle): Fertility and Serum Chemistry in a Cloned Bull and Cow and Their Offspring

    PubMed Central

    KIM, Eun Young; SONG, Dong Hwan; PARK, Min Jee; PARK, Hyo Young; LEE, Seung Eun; CHOI, Hyun Yong; MOON, Jeremiah Jiman; KIM, Young Hoon; MUN, Seong Ho; OH, Chang Eon; KO, Moon Suck; LEE, Dong Sun; RIU, Key Zung; PARK, Se Pill

    2013-01-01

    Abstract To preserve Jeju black cattle (JBC; endangered native Korean cattle), a pair of cattle, namely a post-death cloned JBC bull and cow, were produced by somatic cell nuclear transfer (SCNT) in a previous study. In the present study, we examined the in vitro fertilization and reproductive potentials of these post-death cloned animals. Sperm motility, in vitro fertilization and developmental capacity were examined in a post-death cloned bull (Heuk Oll Dolee) and an extinct nuclear donor bull (BK94-13). We assessed reproductive ability in another post-death cloned cow (Heuk Woo Sunee) using cloned sperm for artificial insemination (AI). There were no differences in sperm motility or developmental potential of in vitro fertilized embryos between the post-death cloned bull and its extinct nuclear donor bull; however, the embryo development ratio was slightly higher in the cloned sperm group than in the nuclear donor sperm group. After one attempt at AI, the post-death cloned JBC cow became pregnant, and gestation proceeded normally until day 287. From this post-death cloned sire and dam, a JBC male calf (Heuk Woo Dolee) was delivered naturally (weight, 25 kg). The genetic paternity/maternity of the cloned JBC bull and cow with regard to their offspring was confirmed using International Society for Animal Genetics standard microsatellite markers. Presently, Heuk Woo Dolee is 5 months of age and growing normally. In addition, there were no significant differences in blood chemistry among the post-death cloned JBC bull, the cow, their offspring and cattle bred by AI. This is the first report showing that a pair of cattle, namely, a post-death cloned JBC bull and cow, had normal fertility. Therefore, SCNT can be used effectively to increase the population of endangered JBC. PMID:23955237

  9. Post-death cloning of endangered Jeju black cattle (Korean native cattle): fertility and serum chemistry in a cloned bull and cow and their offspring.

    PubMed

    Kim, Eun Young; Song, Dong Hwan; Park, Min Jee; Park, Hyo Young; Lee, Seung Eun; Choi, Hyun Yong; Moon, Jeremiah Jiman; Kim, Young Hoon; Mun, Seong Ho; Oh, Chang Eon; Ko, Moon Suck; Lee, Dong Sun; Riu, Key Zung; Park, Se Pill

    2013-12-17

    To preserve Jeju black cattle (JBC; endangered native Korean cattle), a pair of cattle, namely a post-death cloned JBC bull and cow, were produced by somatic cell nuclear transfer (SCNT) in a previous study. In the present study, we examined the in vitro fertilization and reproductive potentials of these post-death cloned animals. Sperm motility, in vitro fertilization and developmental capacity were examined in a post-death cloned bull (Heuk Oll Dolee) and an extinct nuclear donor bull (BK94-13). We assessed reproductive ability in another post-death cloned cow (Heuk Woo Sunee) using cloned sperm for artificial insemination (AI). There were no differences in sperm motility or developmental potential of in vitro fertilized embryos between the post-death cloned bull and its extinct nuclear donor bull; however, the embryo development ratio was slightly higher in the cloned sperm group than in the nuclear donor sperm group. After one attempt at AI, the post-death cloned JBC cow became pregnant, and gestation proceeded normally until day 287. From this post-death cloned sire and dam, a JBC male calf (Heuk Woo Dolee) was delivered naturally (weight, 25 kg). The genetic paternity/maternity of the cloned JBC bull and cow with regard to their offspring was confirmed using International Society for Animal Genetics standard microsatellite markers. Presently, Heuk Woo Dolee is 5 months of age and growing normally. In addition, there were no significant differences in blood chemistry among the post-death cloned JBC bull, the cow, their offspring and cattle bred by AI. This is the first report showing that a pair of cattle, namely, a post-death cloned JBC bull and cow, had normal fertility. Therefore, SCNT can be used effectively to increase the population of endangered JBC.

  10. Cloning: Past, Present, and the Exciting Future. Breakthroughs in Bioscience.

    ERIC Educational Resources Information Center

    Di Berardino, Marie A.

    This document explores the history of cloning by focusing on Dolly the Sheep, one of the first large animal clonings. The disadvantages and advantages of transgenic clones are discussed as well as the future implications of cloning from the perspective of human health. (Contains 10 resources.) (YDS)

  11. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.

    PubMed

    Wang, Yu; Bennewitz, Jörn; Wellmann, Robin

    2017-05-12

    Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. For local

  12. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  13. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers.

    PubMed

    Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru

    2013-01-16

    Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types

  14. Genomics-based precision breeding approaches to improve drought tolerance in rice.

    PubMed

    Swamy, B P Mallikarjuna; Kumar, Arvind

    2013-12-01

    Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  16. ESTs from Seeds to Assist the Selective Breeding of Jatropha curcas L. for Oil and Active Compounds

    PubMed Central

    Gomes, Kleber A; Almeida, Tiago C; Gesteira, Abelmon S; Lôbo, Ivon P; Guimarães, Ana Carolina R; de Miranda, Antonio B; Van Sluys, Marie-Anne; da Cruz, Rosenira S; Cascardo, Júlio CM; Carels, Nicolas

    2010-01-01

    We report here on the characterization of a cDNA library from seeds of Jatropha curcas L. at three stages of fruit maturation before yellowing. We sequenced a total of 2200 clones and obtained a set of 931 non-redundant sequences (unigenes) after trimming and quality control, ie, 140 contigs and 791 singlets with PHRED quality ≥10. We found low levels of sequence redundancy and extensive metabolic coverage by homology comparison to GO. After comparison of 5841 non-redundant ESTs from a total of 13193 reads from GenBank with KEGG, we identified tags with nucleotide variations among J. curcas accessions for genes of fatty acid, terpene, alkaloid, quinone and hormone pathways of biosynthesis. More specifically, the expression level of four genes (palmitoyl-acyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B, lysophosphatidic acid acyltransferase and geranyl pyrophosphate synthase) measured by real-time PCR proved to be significantly different between leaves and fruits. Since the nucleotide polymorphism of these tags is associated to higher level of gene expression in fruits compared to leaves, we propose this approach to speed up the search for quantitative traits in selective breeding of J. curcas. We also discuss its potential utility for the selective breeding of economically important traits in J. curcas. PMID:26217103

  17. Factors influencing the commercialisation of cloning in the pork industry.

    PubMed

    Pratt, S L; Sherrer, E S; Reeves, D E; Stice, S L

    2006-01-01

    Production of cloned pigs using somatic cell nuclear transfer (SCNT) is a repeatable and predictable procedure and multiple labs around the world have generated cloned pigs and genetically modified cloned pigs. Due to the integrated nature of the pork production industry, pork producers are the most likely to benefit and are in the best position to introduce cloning in to production systems. Cloning can be used to amplify superior genetics or be used in conjunction with genetic modifications to produce animals with superior economic traits. Though unproven, cloning could add value by reducing pig-to-pig variability in economically significant traits such as growth rate, feed efficiency, and carcass characteristics. However, cloning efficiencies using SCNT are low, but predictable. The inefficiencies are due to the intrusive nature of the procedure, the quality of oocytes and/or the somatic cells used in the procedure, the quality of the nuclear transfer embryos transferred into recipients, pregnancy rates of the recipients, and neonatal survival of the clones. Furthermore, in commercial animal agriculture, clones produced must be able to grow and thrive under normal management conditions, which include attainment of puberty and subsequent capability to reproduce. To integrate SCNT into the pork industry, inefficiencies at each step of the procedure must be overcome. In addition, it is likely that non-surgical embryo transfer will be required to deliver cloned embryos, and/or additional methods to generate high health clones will need to be developed. This review will focus on the state-of-the-art for SCNT in pigs and the steps required for practical implementation of pig cloning in animal agriculture.

  18. A genealogical survey of Australian registered dog breeds.

    PubMed

    Shariflou, Mohammad R; James, John W; Nicholas, Frank W; Wade, Claire M

    2011-08-01

    Breeding practices were analysed for 32 registered dog breeds representing very small registries (120 Central Asian shepherd dogs) through to very large registries (252,521 German shepherd dogs) in Australia. The vast majority (91%) of registered kennels in Australia that were sampled did not regularly employ either close breeding or popular sire usage in their kennels and the weighted mean inbreeding coefficient of Australian pedigree dogs was <5%. Australian breed mean inbreeding coefficients ranged from 0% (Central Asian shepherd dog) to 10.1% (Bichon Frise). Breed effective population sizes ranged from 26 (Ibizan hound) to 1090 (Golden retriever), comparable with other species of domesticated animals. The relatively low levels of inbreeding suggest that pedigree dog disorders are unlikely to arise frequently from the use of popular sires or close breeding in Australian registered dog breeds. It is possible that deleterious allele fixation might be driven by founder effects, genetic drift or adverse selection practices, which were not assessed in this analysis. European popular sire definitions should be revisited for rare breeds. Copyright © 2011. Published by Elsevier Ltd.

  19. Myths about Cloning

    MedlinePlus

    ... to have health problems all their lives. Myth: Cow clones make human pharmaceuticals in their milk. Myth: ... actual animal. For example, if they’re Holstein cows, the pattern of their spots, or the shape ...

  20. Assigning breed origin to alleles in crossbred animals.

    PubMed

    Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M

    2016-08-22

    For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns

  1. Ethical dimensions of therapeutic human cloning.

    PubMed

    Reiss, Michael J

    2002-09-11

    Therapeutic human cloning has the potential significantly to reduce human suffering and enhance human happiness. This is the main ethical argument in its favour. The main ethical arguments against it centre on questions to do with the moral status of the human embryo. A subsidiary set of arguments arises from the connections between therapeutic human cloning and reproductive cloning. Most of the ethical questions concerning the status of the human embryo have long been examined in the context of abortion, though they are being re-examined in the context of genetic screening and embryo research. A consensus on such matters seems extremely unlikely to result in the near future. The current role of ethicists may not, therefore, be so much to attempt to produce a definitive answer to the question of the status of the human embryo at the very early developmental stages at which therapeutic human cloning would take place, but more to help clarify arguments and indicate the implications of particular approaches. That is what this paper seeks to do.

  2. Breeding design considerations for coastal Douglas-fir.

    Treesearch

    Randy Johnson

    1998-01-01

    The basic principles of designing forest tree breeding programs are reviewed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in the Pacific Northwest. Breeding populations are discussed given current and future breeding zone sizes and seed orchard designs. Seed orchard composition is discussed for potential genetic gain and maintaining...

  3. Should we clone human beings? Cloning as a source of tissue for transplantation.

    PubMed Central

    Savulescu, J

    1999-01-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus. PMID:10226910

  4. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  5. Breeding strategies for north central tree improvement programs

    Treesearch

    Ronald P. Overton; Hyun Kang

    1985-01-01

    The rationales and concepts of long-term tree breeding are discussed and compared with those for short-term breeding. A model breeding program is reviewed which maximizes short-term genetic gain for currently important traits and provides genetic resources that can be used effectively in future short-term breeding. The resources of the north-central region are examined...

  6. Population structure of four Thai indigenous chicken breeds.

    PubMed

    Mekchay, Supamit; Supakankul, Pantaporn; Assawamakin, Anunchai; Wilantho, Alisa; Chareanchim, Wanwisa; Tongsima, Sissades

    2014-03-27

    In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required. Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds--Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken--the red jungle fowls (RJF), and two commercial chicken breeds--the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD=0.341, LK=0.357, DA=0.349 and CH=0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The F(ST) values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The F(ST) values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern. These results indicated that the Thai indigenous chicken breeds may descend from the

  7. Population structure of four Thai indigenous chicken breeds

    PubMed Central

    2014-01-01

    Background In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required. Results Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds- Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken - the red jungle fowls (RJF), and two commercial chicken breeds - the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD= 0.341, LK= 0.357, DA=0.349 and CH= 0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The FST values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The FST values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern. Conclusion These results indicated that the Thai indigenous chicken

  8. Counterfactual quantum cloning without transmitting any physical particles

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Zhai, Shuqin; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2017-11-01

    We propose a counterfactual 1 →2 economical phase-covariant cloning scheme. Compared with the existing protocols using flying qubits, the main difference of the presented scheme is that the cloning can be achieved without transmitting the photon between the two parties. In addition, this counterfactual scheme does not need to construct controlled quantum gates to perform joint logical operations between the cloned qubit and the blank copy. We also numerically evaluate the performance of the present scheme in the practical experiment, which shows this cloning scheme can be implemented with a high success of probability and the fidelity is close to the optimal value in the ideal asymptotic limit.

  9. A Comparison of Phenotypic Traits Related to Trypanotolerance in Five West African Cattle Breeds Highlights the Value of Shorthorn Taurine Breeds

    PubMed Central

    Berthier, David; Peylhard, Moana; Dayo, Guiguigbaza-Kossigan; Flori, Laurence; Sylla, Souleymane; Bolly, Seydou; Sakande, Hassane; Chantal, Isabelle; Thevenon, Sophie

    2015-01-01

    Background Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N’Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. Methodology/Principal Findings This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. Conclusions We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge

  10. A comparison of phenotypic traits related to trypanotolerance in five west african cattle breeds highlights the value of shorthorn taurine breeds.

    PubMed

    Berthier, David; Peylhard, Moana; Dayo, Guiguigbaza-Kossigan; Flori, Laurence; Sylla, Souleymane; Bolly, Seydou; Sakande, Hassane; Chantal, Isabelle; Thevenon, Sophie

    2015-01-01

    Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N'Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for

  11. pPCV, a versatile vector for cloning PCR products.

    PubMed

    Janner, Christiane R; Brito, Ana Lívia P; Moraes, Lidia Maria P; Reis, Viviane Cb; Torres, Fernando Ag

    2013-01-01

    The efficiency of PCR product cloning depends on the nature of the DNA polymerase employed because amplicons may have blunt-ends or 3' adenosines overhangs. Therefore, for amplicon cloning, available commercial vectors are either blunt-ended or have a single 3' overhanging thymidine. The aim of this work was to offer in a single vector the ability to clone both types of PCR products. For that purpose, a minimal polylinker was designed to include restriction sites for EcoRV and XcmI which enable direct cloning of amplicons bearing blunt-ends or A-overhangs, respectively, still offering blue/white selection. When tested, the resulting vector, pPCV, presented high efficiency cloning of both types of amplicons.

  12. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  13. Towards an understanding of British public attitudes concerning human cloning.

    PubMed

    Shepherd, Richard; Barnett, Julie; Cooper, Helen; Coyle, Adrian; Moran-Ellis, Jo; Senior, Victoria; Walton, Chris

    2007-07-01

    The ability of scientists to apply cloning technology to humans has provoked public discussion and media coverage. The present paper reports on a series of studies examining public attitudes to human cloning in the UK, bringing together a range of quantitative and qualitative methods to address this question. These included a nationally representative survey, an experimental vignette study, focus groups and analyses of media coverage. Overall the research presents a complex picture of attitude to and constructions of human cloning. In all of the analyses, therapeutic cloning was viewed more favourably than reproductive cloning. However, while participants in the focus groups were generally negative about both forms of cloning, and this was also reflected in the media analyses, quantitative results showed more positive responses. In the quantitative research, therapeutic cloning was generally accepted when the benefits of such procedures were clear, and although reproductive cloning was less accepted there was still substantial support. Participants in the focus groups only differentiated between therapeutic and reproductive cloning after the issue of therapeutic cloning was explicitly raised; initially they saw cloning as being reproductive cloning and saw no real benefits. Attitudes were shown to be associated with underlying values associated with scientific progress rather than with age, gender or education, and although there were a few differences in the quantitative data based on religious affiliation, these tended to be small effects. Likewise in the focus groups there was little direct appeal to religion, but the main themes were 'interfering with nature' and the 'status of the embryo', with the latter being used more effectively to try to close down further discussion. In general there was a close correspondence between the media analysis and focus group responses, possibly demonstrating the importance of media as a resource, or that the media reflect

  14. [Offspring quality and its related factors of different Brachionus calyciflorus clones].

    PubMed

    Dong, Lili; Xi, Yilong; Zhang, Lei

    2006-12-01

    This paper studied the neonate starvation-endurance duration of four Brachionus calyciflorus clones (Clone A, B, C and D) with different biochemical-genetic characteristics at 15 degrees C, 20 degrees C, 25 degrees C and 30 degrees C, and the relationships of this duration with the temperature and the body- and egg volumes of B. calyciflorus. The results showed that at 15 degrees C, the neonates of Clone B had the shortest starvation-endurance duration (45.67 h); at 20 degrees C and 25 degrees C, the neonates' starvation-endurance duration of Clone C was the longest, being 61.33 h and 72.01 h, respectively; while at 30 degrees C, this duration of Clone A was the longest (40.11 h). The neonates' starvation-endurance duration of Clone A was the longest at 15 degrees C, those of Clone B and C were the shortest at 30 degrees C, while that of Clone D decreased with raising temperature. The neonates' starvation-endurance duration of all the four clones was negatively correlated with temperature. There was a negative correlation between this duration of Clone A and its egg volume, and the reverse was true for Clone C. The neonates' starvation-endurance duration of Clone B and D was positively correlated with the body volume of rotifer mother.

  15. Production objectives, trait and breed preferences of farmers keeping N'Dama, Fulani Zebu and crossbred cattle and implications for breeding programs.

    PubMed

    Traoré, S A; Markemann, A; Reiber, C; Piepho, H P; Valle Zárate, A

    2017-04-01

    Many local livestock breeds in developing countries are being replaced by exotic breeds, leading to a loss of genetic resources. In southern Mali, for the past two decades, a trend towards increasing crossbreeding between the trypanotolerant N'Dama cattle and the trypano-susceptible Fulani Zebu cattle has been taking place. A survey with 160 farmers owning a cattle herd was carried out in southern Mali to investigate their production objectives, as well as trait and breed preferences and correlated socio-economic determinants in order to understand farmers' breeding decisions and to identify comparative advantages of three breed groups (N'Dama, Fulani Zebu and crossbreds) raised in the study area. Data were analyzed using an exploded logit model. The reasons for raising cattle, as well as trait and breed preferences reflected the multiple objectives of the farmers. Draught power and savings were the most important production objectives. Productive traits were ranked highest; farmers reported large body size as the most preferred trait, followed by fertility, draught ability and milk yield. Crossbreds were the favored breed group. Breed preferences were mainly explained by 'resistance to disease' for N'Dama cattle and 'high market price' for Fulani Zebu and crossbred cattle. Production objectives, trait and breed preferences were mainly influenced by farmer group (local farmers and settled transhumants). Local farmers put comparatively more emphasis on livestock functions linked to crop production such as draught power. They had a higher preference for traction ability as a selection trait and preferred N'Dama over Fulani Zebu cattle. Settled transhumants emphasized milk yield as a selection trait and preferred Fulani Zebu over N'Dama. The results indicate that the trend towards more crossbreeding will continue putting the N'Dama breed under high risk of genetic dilution in southern Mali. The N'Dama cattle remain a valuable breed due to their adaptive traits such as

  16. Prevalence of congenital heart disease in 76,301 mixed-breed dogs and 57,025 mixed-breed cats.

    PubMed

    Schrope, Donald P

    2015-09-01

    Assess the prevalence of congenital heart disease (CHD) in a large population of mixed-breed dogs and cats. 76,301 mixed-breed dogs and 57,025 mixed-breed cats. Retrospective review of records and examinations based on specified diagnostic criteria. Among mixed-breed dogs, the prevalence of CHD was 0.13% (51.4% female) and of innocent murmurs was 0.10% (53.0% male). Pulmonic stenosis was the most common defect followed by patent ductus arteriosus, aortic stenosis, and ventricular septal defect. Among mixed-breed cats, prevalence of CHD was 0.14% (55.2% male) and of innocent murmurs was 0.16% (54.4% male). When the 25 cats with dynamic left or right ventricular outflow obstruction were counted with cases of innocent murmurs, the overall prevalence was 0.2%. Ventricular septal defects were the most common feline CHD followed closely by aortic stenosis and hypertrophic obstructive cardiomyopathy. There was no overall sex predilection for CHD in mixed-breed cats or dogs, and no significant difference in CHD prevalence between cats or dogs. Among dogs, subvalvular aortic stenosis and mitral valve dysplasia had a male predisposition while patent ductus arteriosus had a female predisposition. Among cats, valvular pulmonic stenosis, subvalvular and valvular aortic stenosis, and ventricular septal defects had a male predisposition while pulmonary artery stenosis had a female predisposition. The prevalence of CHD in a mixed-breed dogs and cats is lower than for prior studies, perhaps due to the lack of purebreds in the study population or actual changes in disease prevalence. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Relationships among and variation within rare breeds of swine.

    PubMed

    Roberts, K S; Lamberson, W R

    2015-08-01

    Extinction of rare breeds of livestock threatens to reduce the total genetic variation available for selection in the face of the changing environment and new diseases. Swine breeds facing extinction typically share characteristics such as small size, slow growth rate, and high fat percentage, which limit them from contributing to commercial production. Compounding the risk of loss of variation is the lack of pedigree information for many rare breeds due to inadequate herd books, which increases the chance that producers are breeding closely related individuals. By making genetic data available, producers can make more educated breeding decisions to preserve genetic diversity in future generations, and conservation organizations can prioritize investments in breed preservation. The objective of this study was to characterize genetic variation within and among breeds of swine and prioritize heritage breeds for preservation. Genotypes from the Illumina PorcineSNP60 BeadChip (GeneSeek, Lincoln, NE) were obtained for Guinea, Ossabaw Island, Red Wattle, American Saddleback, Mulefoot, British Saddleback, Duroc, Landrace, Large White, Pietrain, and Tamworth pigs. A whole-genome analysis toolset was used to construct a genomic relationship matrix and to calculate inbreeding coefficients for the animals within each breed. Relatedness and average inbreeding coefficient differed among breeds, and pigs from rare breeds were generally more closely related and more inbred ( < 0.05). A multidimensional scaling diagram was constructed based on the SNP genotypes. Animals within breeds clustered tightly together except for 2 Guinea pigs. Tamworth, Duroc, and Mulefoot tended to not cluster with the other 7 breeds.

  18. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding

    PubMed Central

    Bellamy, Paul E.; Hill, Ross A.; Ferns, Peter N.

    2016-01-01

    Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies. Here we use 23 years of data for a temperate woodland bird species, the great tit (Parus major), breeding in deciduous woodland in eastern England to demonstrate a time-lagged linear relationship between the on-set of egg laying and the winter index of the North Atlantic Oscillation such that timing can be predicted from the winter index for the previous year. Thus the timing of bird breeding (and, by inference, the timing of spring events in general) can be predicted one year in advance. We also show that the relationship with the winter index appears to arise through an abiotic time-lag with local spring warmth in our study area. Examining this link between local conditions and larger-scale processes in the longer-term showed that, in the past, significant relationships with the immediately preceding winter index were more common than those with the time-lagged index, and especially so from the late 1930s to the early 1970s. However, from the mid 1970s onwards, the time-lagged relationship has become the most significant, suggesting a recent change in climate patterns. The strength of the current time-lagged relationship suggests that it might have relevance for other temperature-dependent ecological relationships. PMID:27182711

  19. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  20. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Breed distribution and history of canine mdr1-1Δ, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage

    PubMed Central

    Neff, Mark W.; Robertson, Kathryn R.; Wong, Aaron K.; Safra, Noa; Broman, Karl W.; Slatkin, Montgomery; Mealey, Katrina L.; Pedersen, Niels C.

    2004-01-01

    A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Δ, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Δ are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Δ have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs. PMID:15289602

  2. Breed distribution and history of canine mdr1-1Delta, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage.

    PubMed

    Neff, Mark W; Robertson, Kathryn R; Wong, Aaron K; Safra, Noa; Broman, Karl W; Slatkin, Montgomery; Mealey, Katrina L; Pedersen, Niels C

    2004-08-10

    A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Delta, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Delta are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Delta have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs.

  3. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, C.M.; Berg, D.E.; Wang, G.

    1997-07-08

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed. 4 figs.

  4. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, Claire M.; Berg, Douglas E.; Wang, Gan

    1997-01-01

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed.

  5. Admixture and Local Breed Marginalization Threaten Algerian Sheep Diversity

    PubMed Central

    Ciani, Elena; Kdidi, Samia; Aouissat, Miloud; Dhimi, Laziz; Lafri, Mohamed; Maftah, Abderrahman; Mehtar, Nadhira

    2015-01-01

    Due to its geo-climatic conditions, Algeria represents a biodiversity hotspot, with sheep breeds well adapted to a patchwork of extremely heterogeneous harsh habitats. The importance of this peculiar genetic reservoir increases as climate change drives the demand for new adaptations. However, the expansion of a single breed (Ouled-Djellal) which occurred in the last decades has generated a critical situation for the other breeds; some of them are being subjected to uncontrolled cross-breeding with the favored breed and/or to marginalization (effective size contraction). This study investigated genetic diversity within and among six of the nine Algerian breeds, by use of 30 microsatellite markers. Our results showed that, in spite of the census contraction experienced by most of the considered breeds, genetic diversity is still substantial (average gene diversity ranging 0.68 to 0.76) and inbreeding was not identified as a problem. However, two breeds (Rembi and Taâdmit) appeared to have lost most of their genetic originality because of intensive cross-breeding with Ouled-Djellal. Based on the above evidence, we suggest Hamra, Sidaoun, and D’man as breeds deserving the highest priority for conservation in Algeria. PMID:25875832

  6. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  7. Is income breeding an appropriate construct for waterfowl?

    USGS Publications Warehouse

    Janke, Adam K.; Anteau, Michael J.; Markl, Nicholas; Stafford, Joshua D.

    2015-01-01

    Breeding birds use a range of nutrient accumulation and allocation strategies to meet the nutritional demands of clutch formation and incubation. On one end of the spectrum, capital breeders use stored nutrients acquired prior to clutch formation and incubation to sustain metabolism during reproduction, while on the opposite end, income breeders derive nutrients solely from exogenous sources on the breeding grounds. Blue-winged Teal (Anas discors) are an ideal candidate to test for adoption of an income strategy among migratory waterfowl because of their small body size, temperate breeding range, and timing of reproduction relative to pulses in nutrient availability within breeding habitats. We collected migrating and pre-breeding Blue-winged Teal (n = 110) during the warmest spring in over a century in the southern edge of the species’ breeding range, which produced ideal conditions to test for adoption of an income breeding strategy among migratory waterfowl. Regression analyses revealed that females accumulated protein and fat reserves early in follicle development and appeared to mobilize at least some reserves coincident with the onset of clutch formation. Accumulation and subsequent mobilization of nutrient reserves was inconsistent with adherence to an income breeding strategy and suggested breeding Blue-winged Teal used capital (albeit locally acquired) for reproduction. Our results add to existing knowledge on the ubiquity of endogenous nutrient reserve accumulation prior to and during reproduction by waterfowl, perhaps suggesting endogenous nutrient reserves are universally used for clutch formation or incubation to some degree. If indeed Blue-winged Teal and other waterfowl universally use capital for breeding, research and conservation efforts should shift from evaluating whether an income breeding strategy is used and focus on when and where necessary capital is acquired prior to clutch formation.

  8. A strategy for clone selection under different production conditions.

    PubMed

    Legmann, Rachel; Benoit, Brian; Fedechko, Ronald W; Deppeler, Cynthia L; Srinivasan, Sriram; Robins, Russell H; McCormick, Ellen L; Ferrick, David A; Rodgers, Seth T; Russo, A Peter

    2011-01-01

    Top performing clones have failed at the manufacturing scale while the true best performer may have been rejected early in the screening process. Therefore, the ability to screen multiple clones in complex fed-batch processes using multiple process variations can be used to assess robustness and to identify critical factors. This dynamic ranking of clones' strategy requires the execution of many parallel experiments than traditional approaches. Therefore, this approach is best suited for micro-bioreactor models which can perform hundreds of experiments quickly and efficiently. In this study, a fully monitored and controlled small scale platform was used to screen eight CHO clones producing a recombinant monoclonal antibody across several process variations, including different feeding strategies, temperature shifts and pH control profiles. The first screen utilized 240 micro-bioreactors were run for two weeks for this assessment of the scale-down model as a high-throughput tool for clone evaluation. The richness of the outcome data enable to clearly identify the best and worst clone as well as process in term of maximum monoclonal antibody titer. The follow-up comparison study utilized 180 micro-bioreactors in a full factorial design and a subset of 12 clone/process combinations was selected to be run parallel in duplicate shake flasks. Good correlation between the micro-bioreactor predictions and those made in shake flasks with a Pearson correlation value of 0.94. The results also demonstrate that this micro-scale system can perform clone screening and process optimization for gaining significant titer improvements simultaneously. This dynamic ranking strategy can support better choices of production clones. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  9. Proper reprogramming of imprinted and non-imprinted genes in cloned cattle gametogenesis.

    PubMed

    Kaneda, Masahiro; Watanabe, Shinya; Akagi, Satoshi; Inaba, Yasushi; Geshi, Masaya; Nagai, Takashi

    2017-11-01

    Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non-imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non-cloned bulls. We found no differences between cloned and non-cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha-satellite and Art2) in oocytes recovered from cloned and non-cloned cows. Again, no significant differences were observed between clones and non-clones. These results suggested that imprinted and non-imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring. © 2017 Japanese Society of Animal Science.

  10. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  11. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cloning of non-human primates: the road "less traveled by".

    PubMed

    Sparman, Michelle L; Tachibana, Masahito; Mitalipov, Shoukhrat M

    2010-01-01

    Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model.

  13. Clone and genomic repositories at the American Type Culture Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maglott, D.R.; Nierman, W.C.

    1990-01-01

    The American Type Culture Collection (ATCC) has a long history of characterizing, preserving, and distributing biological resource materials for the scientific community. Starting in 1925 as a repository for standard bacterial and fungal strains, its collections have diversified with technologic advances and in response to the requirements of its users. To serve the needs of the human genetics community, the National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), established an international Repository of Human DNA Probes and Libraries at the ATCC in 1985. This repository expanded the existing collections of recombinant clones and librariesmore » at the ATCC, with the specific purposes of (1) obtaining, amplifying, and distribution probes detecting restriction fragment length polymorphisms (RFLPs); (2) obtaining, amplifying, and distributing genomic and cDNA clones from known genes independent of RFLP detection; (3) distributing the chromosome-specific libraries generated by the National Laboratory Gene Library Project at the Lawrence Livermore and Los Alamos National Laboratories and (4) maintaining a public, online database describing the repository materials. Because it was recognized that animal models and comparative mapping can be crucial to genomic characterization, the scope of the repository was broadened in February 1989 to include probes from the mouse genome.« less

  14. Persian walnut breeding in California

    Treesearch

    Charles A. Leslie; Gale H. McGranahan

    2004-01-01

    For over 50 years the University of California Davis Walnut Breeding Program has worked to address the needs of California walnut growers by identifying genetic approaches to problems and developing improved cultivars. The breeding program is a cooperative endeavor that draws on the efforts and resources of university researchers and facilities, USDA germplasm programs...

  15. Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds

    PubMed Central

    Parker, Heidi G.; Kukekova, Anna V.; Akey, Dayna T.; Goldstein, Orly; Kirkness, Ewen F.; Baysac, Kathleen C.; Mosher, Dana S.; Aguirre, Gustavo D.; Acland, Gregory M.; Ostrander, Elaine A.

    2007-01-01

    The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage. PMID:17916641

  16. Diet of canvasbacks during breeding

    USGS Publications Warehouse

    Austin, J.E.; Serie, J.R.; Noyes, J.H.

    1990-01-01

    We examined diets of canvasbacks (Aythya valisineria) breeding in southwestern Manitoba during 1977-81. Percent volume of animal foods consumed did not differ between males and females nor among prenesting, rapid follicle growth, laying, incubation, and renesting periods in females (mean = 50.1%). Tubers and shoots of fennelleaf pondweed (Potamogeton pectinatus) and midge larvae (Chironomidae) were the predominant foods, comprising on average 45% and 23% of the diet volume, respectively. Continued importance of plant foods to canvasbacks throughout reproduction contrasts with the mostly invertebrate diets of other prairie-breeding ducks, and does not fit current theories of nutritional ecology of breeding anatids (i.e., females meet the protein requirements of reproduction by consuming a high proportion of animal foods).

  17. Pig cloning by microinjection of fetal fibroblast nuclei.

    PubMed

    Onishi, A; Iwamoto, M; Akita, T; Mikawa, S; Takeda, K; Awata, T; Hanada, H; Perry, A C

    2000-08-18

    Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.

  18. [Human cloning and the protection of women's interests].

    PubMed

    Canabes, Marcela Ahumada

    2008-01-01

    The Human Cloning, both therapeutic and full birth cloning, involves and affects women in a special way. The United Nation's Declaration on the Cloning of Human Beings includes a special clause referred to them. Also the Spanish law does it. This works pretend to analyse the meaning of the inclusion of women's interests in this document. At the same time, I will consider the foundations and the importance of the reference to the women.

  19. (New hosts and vectors for genome cloning)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.

  20. Colombian Creole horse breeds: Same origin but different diversity

    PubMed Central

    Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar

    2012-01-01

    In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940

  1. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones

    PubMed Central

    Li, Chunjia; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-01-01

    Abstract Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. PMID:28444313

  2. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  3. Cloning animals by somatic cell nuclear transfer – biological factors

    PubMed Central

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  4. The potential of open learning in animal breeding.

    PubMed

    Lohuis, M M; Lohuis, C T; Petrongolo, R A

    1999-07-01

    Animal breeding education is presently facing many challenges. These include rapid changes in breeding knowledge and technology, resource and funding restrictions, and altering demographics of the learner and the animal breeding industry. These challenges can be met via an open learning educational format. This nontraditional approach is based on the needs of individual learners, not the interests of the teacher or the institution. An important feature of open learning is its appropriateness for the professional development audience. Delivery methods include interactive distance courses on the Web, computer-assisted learning, and team-based study. The Canadian dairy breeding industry has expressed the need for ongoing professional development to understand and adopt new animal breeding technologies. The University of Guelph responded by delivering a series of animal breeding short courses (Executive Certificate Program in Animal Breeding) to industry decision makers in 1997. A version modified specifically for farmers and breeding industry personnel was offered in 1998. Through the collaboration of experts from various agricultural institutions and the use of a learner-centered format, this professional development initiative was a pedagogical and financial success. This paper describes how the open learning approach differs from traditional university teaching. Using the University of Guelph example in animal breeding professional development, the framework for a successful open learning program will be examined. The best practices for effective adult education will also be identified and discussed within this case study.

  5. Signatures of Diversifying Selection in European Pig Breeds

    PubMed Central

    Wilkinson, Samantha; Lu, Zen H.; Megens, Hendrik-Jan; Archibald, Alan L.; Haley, Chris; Jackson, Ian J.; Groenen, Martien A. M.; Crooijmans, Richard P. M. A.; Ogden, Rob; Wiener, Pamela

    2013-01-01

    Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition. PMID:23637623

  6. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  7. Phenotypic effects of somatic cell cloning in the mouse.

    PubMed

    Ogura, A; Inoue, K; Ogonuki, N; Lee, J; Kohda, T; Ishino, F

    2002-01-01

    Although a variety of phenotypes and epigenetic alterations have been reported in animals cloned from somatic cells, the exact nature and consequences of cloning remain unclear. We cloned mice using fresh or short-term cultures of donor cells (cumulus cells, immature Sertoli cells, and fetal or adult fibroblast cells) with defined genetic backgrounds, and then compared the phenotypic and epigenetic characteristics of the cloned mice with those of fertilization-derived control mice. Irrespective of the nucleus-donor cell type, about 50% of the reconstructed embryos developed to the morula/blastocyst stage, but about 90% of these clones showed arrested development between days 5 and 8, shortly after implantation. Most of the clones were alive at term, readily recovered respiration, and did not show any malformations or overgrowths. However, their placentas were two- to threefold larger than those of the controls, due to hyperplasia of the basal (or spongiotrophoblast) layer. Although there was significant suppression of a subset of both imprinted and non-imprinted placental genes, fetal gene suppression was minimal. The seven imprinted genes that we examined were all expressed correctly from the parental alleles. These findings were consistent for every cell type from the midgestation through term stages. Therefore, cloning by nuclear transfer does not perturb the parent-specific imprinting memory that is established during gametogenesis, and the phenotypic and epigenetic effects of cloning are restricted to placental development at the midgestation and term stages. Twelve male mice that were born in a normal manner following nuclear transfer with immature Sertoli cells (B6D2F1 genetic background) were subjected to long-term observation. They died earlier than the genotype-matched controls (50% survival point: 550 days vs. 1028 days, respectively), most probably due to severe pneumonia, which indicates that unexpected phenotypes can appear as a result of the long

  8. Information-theoretic limitations on approximate quantum cloning and broadcasting

    NASA Astrophysics Data System (ADS)

    Lemm, Marius; Wilde, Mark M.

    2017-07-01

    We prove quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed states. The results are based on information-theoretic (entropic) considerations and generalize the well-known no-cloning and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning machine on the symmetric subspace of n qudits and symmetrized partial trace channels are dual to each other. This duality manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational sense that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial trace channel and vice versa. The duality extends to give control of the performance of generalized universal quantum cloning machines (UQCMs) on subspaces more general than the symmetric subspace. This gives a way to quantify the usefulness of a priori information in the context of cloning. For example, we can control the performance of an antisymmetric analog of the UQCM in recovering from the loss of n -k fermionic particles.

  9. [The status of human cloning in the international setting].

    PubMed

    Rey del Castillo, Javier

    2006-01-01

    The General Assembly of the United Nations submitted a Declaration on Human Cloning in March 2005. The text of such Declaration was the result of a difficult and long process, taking more than three years. Being a Declaration instead of a Resolution, it has not legal capability in inforcing United Nations members to act according to its recommendations. This article begins with an explanation of several terms referred to cloning. Different countries' legislation on cloning is analyzed. Positions of the same countries at the Convention of the United Nations are as well analyzed. Comparing both countries' views shows that national legislation on cloning is independent and orientated by some countries' particular interests and biological and ethical views on these issues. Future developments on human cloning and its applications will be shared among all countries, both the ones currently allowing and supporting "therapeutic" cloning and the ones now banning it. In such case, it would be important to reach agreements on these issues at an international level. The article discusses possible legislative developments and offers some proposals to reach such agreements.

  10. Cloning and adoption: a reply to Levy and Lotz.

    PubMed

    Strong, Carson

    2008-02-01

    In previous articles I discussed the ethics of human reproductive cloning, focusing on a possible future scenario in which reproductive cloning can be accomplished without an elevated risk of anomalies to the children who are created. I argued that in such a scenario it would be ethically permissible for infertile couples to use cloning as a way to have genetically related children and that such use should not be prohibited. In 'Reproductive Cloning and a (Kind of) Genetic Fallacy', Neil Levy and Mianna Lotz raise objections to my conclusions. They disagree with the view, for which I argued, that some couples can have defensible reasons for desiring genetically related children. They also offer several new arguments against reproductive cloning, including an argument that it would diminish the number of adoptions, thereby adversely affecting the welfare of children who need to be adopted. In this paper I point out that Levy and Lotz's criticisms misconstrue my arguments and that there are serious problems with their arguments for prohibiting infertile couples from using cloning, including their argument from adoption.

  11. High-throughput phenotyping of large wheat breeding nurseries using unmanned aerial system, remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Haghighattalab, Atena

    Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging technologies are reducing these obstacles. Advances in genotyping technologies have significantly decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, this is just part of the equation. Field-based phenotyping informs a breeder's decision as to which lines move forward in the breeding cycle. This has long been the most expensive and time-consuming, though most critical, aspect of breeding. The grand challenge remains in connecting genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic composition of lines or cultivars. In this context, the current study was undertaken to investigate the utility of UAS in assessment field trials in wheat breeding programs. The major objective was to integrate remotely sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding nurseries. The initial step was to develop and validate a semi-automated high-throughput phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data (vegetation indices and height) extracted from UAS imagery and manual measurements were examined and found to have a high correlation. Data derived from UAS imagery performed as well as manual measurements while exponentially increasing the amount of data available. The high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to develop a within season grain yield prediction model. Due to the variety in genotypes and environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly across the field. This makes geographically weighted regression models a good choice as a

  12. Owner perceived differences between mixed-breed and purebred dogs.

    PubMed

    Turcsán, Borbála; Miklósi, Ádám; Kubinyi, Enikő

    2017-01-01

    Studies about the behaviours of mixed-breed dogs are rare, although mixed-breeds represent the majority of the world's dog population. We have conducted two surveys to investigate the behavioural, demographic, and dog keeping differences between purebred and mixed-breed companion dogs. Questionnaire data were collected on a large sample of dogs living in Germany (N = 7,700 purebred dogs representing more than 200 breeds, and N = 7,691 mixed-breeds). We found that according to their owners, mixed-breeds were (1) less calm, (2) less sociable toward other dogs, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). Mixed-breeds and purebreds were similar in trainability and boldness scores. However, twelve out of 20 demographic and dog keeping factors differed between purebred and mixed-breed dogs, and two factors showed considerable (> 10%) differences: neutering was more frequent among mixed-breeds, and they were acquired at older ages than purebreds (p < 0.001 for both), which could result in the observed behaviour differences. After controlling for the distribution of the demographic and dog keeping factors, we found that mixed-breeds were (1) more trainable than purebreds, (2) less calm, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). We discuss that these differences at least partly might be due to selective forces. Our results suggest that instead of being the "average" dogs, mixed-breeds represent a special group with characteristic behavioural traits.

  13. Owner perceived differences between mixed-breed and purebred dogs

    PubMed Central

    Turcsán, Borbála; Miklósi, Ádám; Kubinyi, Enikő

    2017-01-01

    Studies about the behaviours of mixed-breed dogs are rare, although mixed-breeds represent the majority of the world’s dog population. We have conducted two surveys to investigate the behavioural, demographic, and dog keeping differences between purebred and mixed-breed companion dogs. Questionnaire data were collected on a large sample of dogs living in Germany (N = 7,700 purebred dogs representing more than 200 breeds, and N = 7,691 mixed-breeds). We found that according to their owners, mixed-breeds were (1) less calm, (2) less sociable toward other dogs, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). Mixed-breeds and purebreds were similar in trainability and boldness scores. However, twelve out of 20 demographic and dog keeping factors differed between purebred and mixed-breed dogs, and two factors showed considerable (> 10%) differences: neutering was more frequent among mixed-breeds, and they were acquired at older ages than purebreds (p < 0.001 for both), which could result in the observed behaviour differences. After controlling for the distribution of the demographic and dog keeping factors, we found that mixed-breeds were (1) more trainable than purebreds, (2) less calm, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). We discuss that these differences at least partly might be due to selective forces. Our results suggest that instead of being the “average” dogs, mixed-breeds represent a special group with characteristic behavioural traits. PMID:28222103

  14. Genetic screening for PRA-associated mutations in multiple dog breeds shows that PRA is heterogeneous within and between breeds.

    PubMed

    Downs, Louise M; Hitti, Rebekkah; Pregnolato, Silvia; Mellersh, Cathryn S

    2014-03-01

    To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry. © 2013 American College of Veterinary Ophthalmologists.

  15. Molecular plant breeding: methodology and achievements.

    PubMed

    Varshney, Rajeev K; Hoisington, Dave A; Nayak, Spurthi N; Graner, Andreas

    2009-01-01

    The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F(1)s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.

  16. Modulation of heart rate response to acute stressors throughout the breeding season in the king penguin Aptenodytes patagonicus.

    PubMed

    Viblanc, Vincent A; Smith, Andrew D; Gineste, Benoit; Kauffmann, Marion; Groscolas, René

    2015-06-01

    'Fight-or-flight' stress responses allow animals to cope adaptively to sudden threats by mobilizing energy resources and priming the body for action. Because such responses can be costly and redirect behavior and energy from reproduction to survival, they are likely to be shaped by specific life-history stages, depending on the available energy resources and the commitment to reproduction. Here, we consider how heart rate (HR) responses to acute stressors are affected by the advancing breeding season in a colonial seabird, the king penguin (Aptenodytes patagonicus). We subjected 77 birds (44 males, 33 females) at various stages of incubation and chick-rearing to three experimental stressors (metal sound, distant approach and capture) known to vary both in their intensity and associated risk, and monitored their HR responses. Our results show that HR increase in response to acute stressors was progressively attenuated with the stage of breeding from incubation to chick-rearing. Stress responses did not vary according to nutritional status or seasonal timing (whether breeding was initiated early or late in the season), but were markedly lower during chick-rearing than during incubation. This pattern was obvious for all three stressors. We discuss how 'fight-or-flight' responses may be modulated by considering the energy commitment to breeding, nutritional status and reproductive value of the brood in breeding seabirds. © 2015. Published by The Company of Biologists Ltd.

  17. Biotechnology. Perseverance leads to cloned pig in Japan.

    PubMed

    Pennisi, E; Normile, D

    2000-08-18

    Low success rates and unpredictable results have plagued cloning researchers, particularly those trying to clone pigs. Now, on page 1188, Japanese researchers offer the first scientific report of a cloned pig, named Xena, raising hopes that pigs could one day provide an unlimited supply of organs for transplantation thanks to their close physiological relationship to humans. But this week those hopes were dealt a blow by more evidence suggesting that pig retroviruses can infect human cells.

  18. [Media, cloning, and bioethics].

    PubMed

    Costa, S I; Diniz, D

    2000-01-01

    This article was based on an analysis of three hundred articles from mainstream Brazilian periodicals over a period of eighteen months, beginning with the announcement of the Dolly case in February 1997. There were two main objectives: to outline the moral constants in the press associated with the possibility of cloning human beings and to identify some of the moral assumptions concerning scientific research with non-human animals that were published carelessly by the media. The authors conclude that there was a haphazard spread of fear concerning the cloning of human beings rather than an ethical debate on the issue, and that there is a serious gap between bioethical reflections and the Brazilian media.

  19. Disease burden in four populations of dog and cat breeds compared to mixed-breed dogs and European shorthair cats.

    PubMed

    Keijser, S F A; Meijndert, L E; Fieten, H; Carrière, B J; van Steenbeek, F G; Leegwater, P A J; Rothuizen, J; Nielen, M

    2017-05-01

    Current public and professional opinion is that many dog breeds suffer from health issues related to inherited diseases or extreme phenotypes. The aim of this historical comparative observational study was to evaluate the breed-related disease burden in three purebred dog populations (Chihuahua, French bulldog, Labrador retriever) and one purebred cat breed (Persian cats) in the Netherlands by comparison to a control population of mixed-breed dogs and European Shorthair cats. A qualitative query was performed, consisting of a literature review and collecting the expert opinions of University veterinary specialists, to gather insight into potential diseases of the study population. Next, a referral clinic case control study of the patients referred to specific medical disciplines in the University Clinic was performed. The odds ratio (OR) was calculated to determine the likelihood of a patient referred to a particular medical discipline being a certain breed. Together, the qualitative query and the case control study resulted in a list of potentially relevant diseases limited to five organ systems per breed. These were analysed in data from primary practices. Patient files from ten primary practices over a period of two years were manually extracted and examined. Four-hundred individual patient records per breed as well as 1000 non-breed records were randomly selected from the 10 practices, weighted per practice size. Records were then examined and the presence or absence of certain diseases was identified. To evaluate the disease burden per breed, proportional difference (PD) was estimated, as well as the animal's age at presentation in months. The results of the referral clinic case control study showed an overrepresentation (Odds Ratio>1.5) of the selected breeds in several medical specialties, while median age at presentation was in some cases significantly lower than in the non-breed animals. Results of the practice-based extended cross-sectional study showed

  20. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Cluggish, B.; Kim, J. S.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recentmore » charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.« less